Supporting Information

Synergistic silver/scandium catalysis for divergent synthesis of skeletally diverse chromene derivatives

Shuai Liu,^a Ke Chen,^a Xin-Chan Lan,^a Wen-Juan Hao,^{*,a} Guigen Li,^b Shu-Jiang Tu,^{*,a} and Bo Jiang^{*,a} ^aSchool of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China. Email: wjhaol@jsnu.edu.cn (WJH); laotu@jsnu.edu.cn (SJT); jiangchem@jsnu.edu.cn (BJ) Fax: +8651683500065; Tel: +8651683500065

^bDepartment of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States.

Context

General Information	.S2
Optimization of Reaction Conditions	S2-S3
The ORTEP Drawing of 3a , 4b and 5a	.S4
General Procedure for the Synthesis of Products 3-5	.85
Characterization Data of Compounds 3a-3o	.S5-S10
Characterization Data of Compounds 4a-4o	.S10-S15
Characterization Data of Compounds 5a-5f	S15-S17
Copies of ¹ H, ¹³ C, and ¹⁹ F NMR Spectra for Compounds 3a-3o	S18-S48
Copies of ¹ H, ¹³ C, and ¹⁹ F NMR Spectra for Compounds 4a-4o	S49-S78
Copies of ¹ H, ¹³ C, and ¹⁹ F NMR Spectra for Compounds 5a-5f	S79-S91

General Information

¹H NMR (¹³C NMR) spectra were measured on a Bruker DPX 400 MHz spectrometer in DMSO- d_6 (CDCl₃, or Acetone- d_6) with chemical shift (δ) given in ppm relative to TMS as internal standard [(s = singlet, d = doublet, t = triplet, brs = broad singlet, m = multiplet), coupling constant (Hz)]. HRMS (ESI) was determined by using microTOF-QII HRMS/MS instrument (BRUKER). X-Ray crystallographic analysis was performed with a Siemens SMART CCD and a Siemens P4 diffractometer.

Table 1. Optimization of Reaction Conditions

			Tu		5a	
Entry	Co-Catalyst (mol %)	Solvent	T (°C)	Yield ^b (%)		
				3 a	4 a	5a
1 ^a	AgTFA (10)	Toluene	50	trace	trace	trace
2 ^a	AgTFA (10)/BiNPO ₄ H (10)	Toluene	50	35	trace	trace
3 ^a	AgOAc (10)/BiNPO ₄ H 10)	Toluene	50	ND ^c	trace	trace
4 ^a	AgOTf (10)/BiNPO ₄ H (10)	Toluene	50	33	trace	trace
5 ^a	AgNO ₃ (10)/BiNPO ₄ H (10)	Toluene	50	22	trace	trace
6 ^a	AgTFA (10)/TFA (10)	Toluene	50	23	trace	trace
7 ^a	AgTFA (10)/Sc(OTf) ₃ (10)	Toluene	50	68	trace	trace
8 ^a	AgTFA (10)/Sn(OTf) ₂ (10)	Toluene	50	trace	trace	trace
9 ^a	AgTFA (10)/Zn(OTf) ₂ (10)	Toluene	50	41	trace	trace
10 ^a	PdCl ₂ (10)/Sc(OTf) ₃ (10)	Toluene	50	trace	trace	trace
11 ^a	Cu(OTf) ₂ (10)/Sc(OTf) ₃ (10)	Toluene	50	trace	trace	trace
12 ^a	AgTFA (5)/ Sc(OTf) ₃ (10)	Toluene	50	53	trace	trace
13 ^a	AgTFA (10)/Sc(OTf) ₃ (10)	CH ₃ CN	50	58	trace	trace
14 ^a	AgTFA (10)/Sc(OTf) ₃ (10)	1,4-Dioxane	50	trace	trace	trace
15 ^a	AgTFA (10)/Sc(OTf) ₃ (10)	THF	50	trace	trace	trace
16 ^a	AgTFA (10)/Sc(OTf) ₃ (10)	DCE	50	trace	trace	trace
17 ^a	AgTFA (10)/Sc(OTf) ₃ (10)	Toluene	r.t.	43	trace	trace
18 ^a	AgTFA (10)/Sc(OTf) ₃ (10)	Toluene	70	33	25	12
19 ^a	AgTFA (10)/Sc(OTf) ₃ (10)	Toluene	80	12	63	15
20 ^a	AgTFA (10)/Sc(OTf) ₃ (10)	Toluene	90	trace	65	13
21ª	AgTFA (10)/Sc(OTf) ₃ (10)	Toluene	100	ND	68	trace
22 ^a	AgTFA (10)/Sc(OTf) ₃ (10)	Toluene	110	ND	65	trace
23 ^a	AgTFA (10)/Sc(OTf) ₃ (20)	Toluene	100	ND	78	trace
24 ^a	AgTFA (10)/Sc(OTf) ₃ (30)	Toluene	100	ND	72	trace
25 ^d	AgTFA (10)/Sc(OTf) ₃ (10)	Toluene	80	trace	trace	72

"Reaction conditions: 1a (0.3 mmol), 2a (0.2 mmol), Ag-catalyst (x mol%), Lewis acid/ catalyst (y mol%), solvent (3.0 mL), under air conditions.

^bIsolated yield based on substrate 2a. ^cNot detected (ND). ^d Using 1a (0.2 mmol) and 2a (0.6 mmol); isolated yield based on substrate 1a.

Our initial investigation was started with the treatment of β -alkynyl ketone **1a** and *o*-hydroxybenzyl alcohol **2a** in a 1.5:1 mole ratio under air conditions in toluene at 50 °C using silver trifluoroacetate

(AgTFA, 10 mol %) as a catalyst, but the transformation did not proceed (Table S1, entry S1). Merging AgTFA with 1,1'-Binaphthyl-2,2'-diyl hydrogen phosphate (BiNPO₄H, 10 mol %) as co-catalytic system delivered the desired spiro[chromane-2,1'-isochromene] 3a, albeit with a low 35% yield (entry S2). Screening followed by several others silver salts often used in the catalytic transformations such as AgOAc, silver trifluormethanesulfonate (AgOTf) and silver nitrate (AgNO₃) showed that all these attempted silver catalysts showed a lower catalytic capability and gave unsatisfactory results as compared with AgTFA (entries S3-S5). Exchanging BiNPO₄H for trifluoroacetic acid (TFA, 10 mol %) as a Brønsted acid catalyst led to a poor yield of 23% (entry S6), indicating that Brønsted acid catalyst may disfavor this transformation. Next, we considered using Lewis acid catalyst to explore this bicyclization cascade. To our delight, the combination of AgTFA and Sc(OTf)₃ as a dual catalyst system makes these transformations work well, furnishing the desired 6,6-dibenzannulated spiroketal **3a** in 68% yield (entry S7). The use of AgTFA/Sn(OTf)₂ or AgTFA/Zn(OTf)₂ as a co-catalytic system resulted in a very inferior outcome (entries S8-S9). When PdCl₂/Sc(OTf)₃ or Cu(OTf)₂/Sc(OTf)₃ was used as a bimetallic catalyst, the reaction did not work (entries S10-S11), indicating that silver catalyst is critical for this transformation. Employment of a lower loading of AgTFA resulted in a relatively lower yield of **3a** (entry S12). The investigation of the solvent effect revealed that the use of solvents including acetonitrile (CH₃CN), 1,4-dioxane, tetrahydrofuran (THF), and 1,2-dichloroethane (DCE) has no positive effect on the yield of 3a (entries S13-S16). Lower conversion of **3a** was observed with the reaction temperature being at room temperature (entry S17). Surprisingly, elevating the reaction temperature to 70 °C provided product **3a** in 33% yield, along with two unexpected products, benzo[c]xanthenes 4a and spiro[chromane-2,5'-isochromeno[3,4-b]chromene] 5a (entry S18). Next, our endeavor aimed at improving the generation of products 4a and 5a was made by adjusting reaction conditions. It is found that the selectivity of reaction shows an important dependency on temperature (entries S19-S22). For instance, elevating the reaction temperature from 70 °C to 100 °C facilitated the formation of 4a (68%) and simultaneously suppressed the formation of 5a without observation of 3a. After carful optimizations, we found that the reaction in the presence of 10 mol % of AgTFA and 20 mol % of Sc(OTf)₃ worked more efficiently and offered a 78% yield of 4a (entry S23), whereas adjusting substrate ratio to 1:3 gave product 5a in 72% yield with use of 10 mol % of AgTFA and 10 mol % of Sc(OTf)₃ at 80 °C in the current catalytic tricyclization (entry S25).

Figure 1. The ORTEP Drawing of 3a

Figure 2. The ORTEP Drawing of 4b

Figure 3. The ORTEP Drawing of 5a

General procedure for the synthesis of compounds 3

Example for the synthesis of **3a**:

A mixture of 1-(2-(phenylethynyl)phenyl)ethanone (**1a**, 0.3 mmol, 66.0 mg), 2-(hydroxy(phenyl)methyl)phenol (**2a**, 0.2 mmol, 40.0 mg), Sc(OTf)₃ (10 mol%, 9.8 mg) and AgTFA (10 mol%, 4.4 mg) were added in a 25-mL reaction vial, which was sealed and heated at 50 °C until TLC (petroleum ether: ethyl acetate= 12:1) revealed that conversion of the starting material **2a** was completed. Then the reaction mixture was concentrated by vacuum distillation and was purified by flash column chromatography (silica gel, mixtures of petroleum ether / acetic ester, 50:1, v/v) to afford the desired pure products (**3a**, 54.7 mg, 68% yield) as white solid.

General procedure for the synthesis of compounds 4

Example for the synthesis of 4a

A mixture of 1-(2-(phenylethynyl)phenyl)ethanone (1a, 0.3 mmol, 66.0 mg), 2-(hydroxy(phenyl)methyl)phenol (2a, 0.2 mmol, 40.0 mg), Sc(OTf)₃ (20 mol%, 19.6 mg) and AgTFA (10 mol%, 4.4 mg) were added in a 25-mL reaction vial, which was sealed and heated at 100 °C until TLC (petroleum ether: ethyl acetate= 12:1) revealed that conversion of the starting material 2a was completed. Then the reaction mixture was concentrated by vacuum distillation and was purified by flash column chromatography (silica gel, petroleum ether) to afford the desired pure products (4a, 59.9 mg, 78% yield) as white solid.

General procedure for the synthesis of compounds 5

Example for the synthesis of 5a

A mixture of 1-(2-(phenylethynyl)phenyl)ethanone (1a, 0.2 mmol, 66.0 mg), 2-(hydroxy(phenyl)methyl)phenol (2a, 0.6 mmol, 40.0 mg), Sc(OTf)₃ (10 mol%, 9.8 mg) and AgTFA (10 mol%, 4.4 mg) were added in a 25-mL reaction vial. The solution was stirred at 80 °C for 30 min, the reaction mixture was concentrated by vacuum distillation and was purified by flash column chromatography (silica gel, petroleum ether / ethylacetate = 50/1, v/v) to afford the desired pure products (5a, 84.1 mg, 72% yield) as white solid.

3',4-diphenylspiro[chroman-2,1'-isochromene] (3a)

54.7 mg, 68%; white solid, mp 181-182 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.54-7.48 (m, 3H), 7.46-7.39 (m, 5H), 7.37-7.31 (m, 6H), 7.16-7.11 (m, 1H), 6.97-6.90 (m, 2H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.68 (s, 1H), 4.90-4.84 (m, 1H), 2.97-2.89 (m, 1H), 2.88-2.82 (m, 1H) ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 152.3, 149.5, 144.2, 134.4, 130.8, 129.6, 129.3(8), 129.3(5), 129.1, 128.8(3), 128.8(0), 128.5, 128.0, 127.1, 127.0, 125.5, 125.2, 125.1, 123.7, 121.5, 117.6, 101.3, 98.6, 39.1, 39.0. IR (film, v, cm⁻¹). 3022, 1787, 1499, 1254, 1045, 1003, 883, 749. HR-MS (APCI) m/z calcd for C₂₉H₂₃O₂ [M+H]⁺403.1698, found 403.1703.

4-phenyl-3'-(p-tolyl)spiro[chroman-2,1'-isochromene] (3b)

51.6 mg, 62%; white solid, mp 188-189 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.49 (d, J = 7.6 Hz, 1H), 7.44-7.38 (m, 5H), 7.38-7.28 (m, 5H), 7.11 (d, J = 8.0 Hz, 3H), 6.97-6.88 (m, 2H), 6.82 (d, J = 8.0 Hz, 1H), 6.61 (s, 1H), 4.89-4.80 (m, 1H), 2.94-2.86 (m, 1H), 2.86-2.77 (m, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 152.3, 149.7, 144.3, 138.9, 131.7, 131.0, 129.5, 129.3, 129.2, 129.1, 128.8, 128.0, 126.9(4), 126.9(0), 125.5, 125.1, 125.0, 123.7, 121.4, 117.6, 100.6, 98.5, 39.1, 39.0, 21.3. IR (film, v, cm⁻¹). 3027, 1484, 1454, 1228, 1050, 1008, 879, 762. HR-MS (APCI) m/z calcd for C₃₀H₂₅O₂ [M+H]⁺ 417.1855, found 417.1854.

4-phenyl-3'-(p-tolyl)spiro[chroman-2,1'-isochromene] (3c)

50.8 mg, 61%; white solid, mp 160-161 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.50 (d, J = 7.2 Hz, 1H), 7.44-7.39 (m, 5H), 7.35-7.29 (m, 4H), 7.19 (d, J = 7.2 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 6.97-6.92 (m, 2H), 6.83 (d, J = 8.0 Hz, 1H), 6.64 (s, 1H), 4.90-4.83 (m, 1H), 2.96-2.89 (m, 1H), 2.86-2.80 (m, 1H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 152.4, 149.8, 144.4, 138.0, 134.5, 130.9, 129.7, 129.6, 129.3, 129.1, 128.8, 128.4, 128.0, 127.1, 127.0, 126.1, 125.7, 125.1, 123.7, 122.4, 121.6, 117.7, 101.4, 98.5, 39.1, 21.5. IR (film, v, cm⁻¹) 3023, 1484, 1450, 1257, 1051, 1006, 872, 741. HR-MS (APCI) m/z calcd for C₃₀H₂₅O₂ [M+H]⁺ 417.1855, found 417.1861.

3'-(4-ethylphenyl)-4-phenylspiro[chroman-2,1'-isochromene] (3d)

54.2 mg, 63%; white solid, mp 184-185 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.48 (d, J = 7.6 Hz, 1H), 7.44-7.37 (m, 7H), 7.34-7.28 (m, 3H), 7.14-7.08 (m, 3H), 6.93-6.87 (m, 2H), 6.82 (d, J = 8.4 Hz, 1H), 6.60 (s, 1H), 4.86-4.81 (m, 1H), 293-2.86 (m, 1H), 2.84-2.79 (m, 1H), 2.63 (m, 2H), 1.24-1.19 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 152.3, 149.7, 145.3, 144.3, 131.9, 131.0, 129.5, 129.3, 129.1(4), 129.1(7), 128.8, 128.0, 126.9(4), 126.9(9), 125.5, 125.3, 125.0, 123.7, 121.4, 117.6, 100.6, 98.5, 39.1, 39.0, 28.7, 15.4. IR (film, v, cm⁻¹) 3024, 1512, 1452, 1226, 1052, 1009, 913, 762. HR-MS (APCI) m/z calcd for C₃₁H₂₇O₂ [M+H]⁺ 431.2011, found 431.2009.

3'-(4-(tert-butyl)phenyl)-4-phenylspiro[chroman-2,1'-isochromene] (3e)

48.5 mg, 53%; white solid, mp 201-202 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.48 (d, J = 7.6 Hz, 2H), 7.44-7.42 (m, 2H), 7.40-7.38 (m, 4H), 7.35-7.30 (m, 5H), 7.14-7.09 (m, 1H), 6.95-6.89 (m, 2H), 6.82 (d, J = 8.0 Hz, 1H), 6.61 (s, 1H), 4.89-4.83 (m, 1H), 2.95-2.88 (m, 1H), 2.84-2.78 (m, 1H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 152.3, 152.1, 149.7, 144.3, 131.7, 131.0, 129.5, 129.3, 129.1, 128.8, 128.0, 127.0, 126.9, 125.5, 125.4, 125.1, 125.0, 123.7, 121.5, 117.0, 100.6, 98.4, 39.1, 39.0, 34.7, 31.2. IR (film, v, cm⁻¹) 3028, 1485, 1451, 1231, 1107, 1005, 879, 749. HR-MS (APCI) m/z calcd for C₃₃H₃₀O₂ [M+H]⁺ 459.2324, found 459.2328.

3'-(4-fluorophenyl)-4-phenylspiro[chroman-2,1'-isochromene] (3f)

48.7 mg, 58%; white solid, mp 181-182 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.49 (d, J = 7.2 Hz, 1H), 7.45-7.40 (m, 4H), 7.39-7.36 (m, 3H), 7.34-7.30 (m, 3H), 7.13-7.09 (m, 1H), 7.00-6.95 (m, 2H), 6.93-6.88 (m, 2H), 6.83-6.80 (m, 1H), 6.58 (s, 1H), 4.84-4.78 (m, 1H), 2.94-2.87 (m, 1H), 2.84-2.79 (m, 1H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 163.1(¹ $J_{CF} = 243.7$ Hz), 152.2, 148.7, 144.1, 130.7, 130.6(⁴ $J_{CF} = 3.2$ Hz), 129.5(³ $J_{CF} = 8.6$ Hz), 129.1, 129.0, 128.8, 128.1, 127.2, 127.1, 127.0(1), 127.0(0), 125.5, 125.1, 123.7, 121.6, 117.6, 115.5(² $J_{CF} = 21.7$ Hz), 101.1, 98.6, 39.0. IR (film, v, cm⁻¹) 3022, 1507, 1482, 1227, 1044, 1008, 881, 763. HR-MS (APCI) m/z calcd for C₂₉H₂₂FO₂ [M+H]⁺421.1604, found 421.1602.

3'-(4-chlorophenyl)-4-phenylspiro[chroman-2,1'-isochromene] (3g)

37.5 mg, 43%; white solid, mp 230-231 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.48 (d, *J* = 7.2 Hz, 1H), 7.45-7.39 (m, 2H), 7.38-7.35 (m, 5H), 7.34-7.29 (m, 3H), 7.26-7.23 (m, 2H), 7.12-7.08 (m, 1H), 6.93-6.87 (m, 2H), 6.81-6.78 (m, 1H), 6.63 (s, 1H), 4.81-4.76 (m, 1H), 2.93-2.86 (m, 1H), 2.84-2.78 (m, 1H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 152.1, 148.5, 144.1, 134.6, 132.9, 130.5, 129.6, 129.3, 129.0, 128.8, 128.7, 128.1, 127.4, 127.0, 126.4, 125.4, 125.2, 123.7, 121.6, 117.5, 101.8, 98.6, 39.0. IR (film, v, cm⁻¹) 3025, 1491, 1453, 1227, 1048, 1009, 881, 766. HR-MS (APCI) m/z calcd for C₂₉H₂₂ClO₂ [M+H]⁺ 437.1308, found 437.1306.

3'-(4-bromophenyl)-4-phenylspiro[chroman-2,1'-isochromene] (3h)

43.2 mg, 45%; white solid, mp 233-234 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.48 (d, *J* = 7.6 Hz, 1H), 7.44-7.41 (m, 2H), 7.40-7.37 (m, 4H), 7.35 (d, *J* = 5.2 Hz, 1H), 7.33-7.28 (m, 5H), 7.12-7.08 (m, 1H), 6.92-6.87 (m, 2H), 6.79 (d, *J* = 8.0 Hz, 1H), 6.64 (s, 1H), 4.80-4.75 (m, 1H), 2.93-2.86 (m, 1H), 2.83-2.78 (m, 1H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) IR (film, v, cm⁻¹). 152.1, 148.5, 144.1, 133.3, 131.6, 130.5, 129.6, 129.3, 129.0, 128.8, 128.1, 127.4, 127.0, 126.6, 125.4, 125.2, 123.8, 122.9, 121.6, 117.5, 101.8, 98.6, 39.0. IR (film, v, cm⁻¹) 3022, 1489,1452, 1227, 1071, 1006, 880, 765. HR-MS (APCI) m/z calcd for C₂₉H₂₂BrO₂ [M+H]⁺ 481.0803, found 481.0799.

6'-fluoro-4-phenyl-3'-(p-tolyl)spiro[chroman-2,1'-isochromene] (3j)

50.3 mg, 58%; white solid, mp 244-245 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.47-7.43 (m, 1H), 7.42-7.37 (m, 3H), 7.37-7.30 (m, 4H), 7.13-7.09 (m, 3H), 7.00-6.95 (m, 2H), 6.94-6.88 (m, 2H), 6.83-6.79 (m, 1H), 6.55 (s, 1H), 4.85-4.79 (m, 1H), 2.89-2.83 (m, 1H), 2.83-2.78 (m, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 163.4(¹*J*_{CF} = 245.5 Hz), 152.2, 150.9, 144.1, 139.4, 133.5 (⁴*J*_{CF} = 9.2 Hz), 131.2, 129.3, 129.2, 129.0, 128.8, 128.1, 127.0, 125.8(⁵*J*_{CF} = 9.0 Hz), 125.4, 125.3, 125.2(⁶*J*_{CF} = 2.6Hz), 121.6, 117.5, 113.6(²*J*_{CF} = 22.3Hz), 111.1(³*J*_{CF} = 22.3Hz), 99.9, 98.4, 39.2, 39.0, 21.3. IR (film, v, cm⁻¹) 3026, 1611, 1511, 1205, 1050, 1009, 878, 762. HR-MS (APCI) m/z calcd for C₃₀H₂₄FO₂ [M+H]⁺ 435.1760, found 435.1762.

6-fluoro-3',4-diphenylspiro[chroman-2,1'-isochromene] (3k)

48.7 mg, 58%; white solid, mp 185-186 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.50-7.38 (m, 6H), 7.38-7.32 (m, 4H), 7.32-7.27 (m, 4H), 6.84- 6.74 (m, 2H), 6.66 (s, 1H), 6.65-6.61 (m, 1H), 4.84-4.77 (m, 1H), 2.93-2.86 (m, 1H), 2.84-2.78 (m, 1H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 157.5(¹*J*_{CF} = 237.4Hz), 149.4, 148.2, 143.4, 134.3, 130.8, 129.7, 129.0(0), 129.0(6), 128.9, 128.5, 127.2 (⁴*J*_{CF} = 9.4Hz), 126.9, 126.8, 125.1(⁶*J*_{CF} = 2.4Hz), 123.7, 118.6(⁵*J*_{CF} = 8.1Hz), 115.3(²*J*_{CF} = 23.4Hz), 114.9(³*J*_{CF} = 23.1Hz), 101.4, 98.5, 39.2, 38.6. IR (film, v, cm⁻¹) 3023, 1484, 1453, 1256, 1046, 1008, 818, 759. HR-MS (APCI) m/z calcd for C₂₉H₂₂FO₂ [M+H]⁺ 421.1604, found 421.1607.

6-bromo-3',4-diphenylspiro[chroman-2,1'-isochromene] (3l)

49.9 mg, 52%; white solid, mp 212-213 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.50-7.46 (m, 3H), 7.45-7.40 (m, 3H), 7.36 (d, J = 8.0 Hz, 3H), 7.35-7.30 (m, 5H), 7.23-7.19 (m, 1H), 7.05 (d, J = 1.2 Hz, 1H), 6.70 (d, J = 8.8 Hz, 1H), 6.66 (s, 1H), 4.87-4.78 (m, 1H), 2.93-2.85 (m, 1H), 2.84-2.78 (m, 1H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 151.4, 149.3, 143.2, 134.2, 131.8, 131.1, 130.7, 129.7, 129.0(3), 129.0(6), 128.7, 128.6, 127.7, 127.3, 127.2, 125.2, 125.1, 123.7, 119.5, 113.8, 101.3, 98.6, 39.0, 38.7. IR (film, v, cm⁻¹) 3029, 1471, 1453, 1229, 1074, 1005, 885, 776. HR-MS (APCI) m/z calcd for C₂₉H₂₂BrO₂ [M+H]⁺ 481.0803, found 481.0805.

6-methyl-3',4-diphenylspiro[chroman-2,1'-isochromene](3m)

59.9 mg, 72%; white solid, mp 188-189 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.50-7.46 (m, 3H), 7.43-7.37 (m, 5H), 7.34-7.28 (m, 6H), 6.92-6.88 (m, 1H), 6.71 (d, J = 8.0 Hz, 2H), 6.64 (s, 1H), 4.82-4.76 (m, 1H), 2.89-2.82 (m, 1H), 2.81-2.76 (m, 1H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 150.1, 149.6, 144.3, 134.5, 130.8, 130.6, 129.5, 129.4, 129.4, 129.1, 128.8, 128.7, 128.4, 127.1, 126.9, 125.2, 125.0(3), 125.0(9), 123.7, 117.3, 101.2, 98.5, 39.2, 39.0, 20.7. IR (film, v, cm⁻¹) 3029, 1492, 1452, 1230, 1061, 1003, 872, 760. HR-MS (APCI) m/z calcd for C₃₀H₂₅O₂ [M+H]⁺417.1855, found 417.1851.

6-chloro-3'-phenyl-4-(m-tolyl)spiro[chroman-2,1'-isochromene] (3n)

54.0 mg, 60%; white solid, mp 199-200 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.50-7.45 (m, 3H), 7.45-7.41 (m, 1H), 7.36-7.29 (m, 6H), 7.15 (d, J = 8.0 Hz, 3H), 7.07-7.03 (m, 1H), 6.92-6.89 (m, 1H), 6.74 (d, J = 8.8 Hz, 1H), 6.65 (s, 1H), 4.78-4.73 (m, 1H), 2.92-2.85 (m, 1H), 2.81-2.76 (m, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 150.9, 149.4, 143.1, 138.7, 134.2, 130.7, 129.7, 128.9(4), 128.9(9), 128.9(8), 128.8, 128.5, 128.1, 127.3, 127.2, 126.3, 126.0, 125.1(4), 125.1(8), 123.7, 119.0, 101.3, 98.6, 38.9, 38.6, 21.5. IR (film, v, cm⁻¹) 3024, 1489, 1454, 1228, 1047, 1007, 890, 752. HR-MS (APCI) m/z calcd for C₃₀H₂₄ClO₂ [M+H]⁺ 451.1465, found 451.1466.

3'-phenyl-4-(p-tolyl)spiro[chroman-2,1'-isochromene] (30)

45.8 mg, 55%; white solid, mp 186-187 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.51-7.45 (m, 3H), 7.45-7.40 (m, 1H), 7.32 (d, *J* = 7.6 Hz, 2H), 7.30-7.26 (m, 5H), 7.21 (d, *J* = 7.6 Hz, 2H), 7.12-7.07 (m, 1H), 6.94 (d, *J* = 7.6 Hz, 1H), 6.91-6.86 (m, 1H), 6.81 (d, *J* = 8.0 Hz, 1H), 6.65 (s, 1H), 4.85-4.78 (m, 1H), 2.93-2.85 (m, 1H), 2.83-2.77 (m, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 152.2, 149.5, 141.2, 136.6, 134.4, 130.8, 129.5(4), 129.5(0), 129.3, 128.9, 128.8, 128.4, 127.9, 127.1, 125.7, 125.2, 125.1, 123.7, 121.5, 117.5, 101.3, 98.6, 39.1, 38.5, 21.1. IR (film, v, cm⁻¹) 3029, 1483, 1453, 1253, 1045, 1008, 881, 752. HR-MS (APCI) m/z calcd for C₃₀H₂₅O₂ [M+H]⁺417.1855, found 417.1856.

6,7-diphenyl-7H-benzo[c]xanthene (4a)

59.9 mg, 78%; white solid, mp 191-192 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.57 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.64-7.54 (m, 2H), 7.43 (s, 1H), 7.41-7.31 (m, 4H), 7.24 (d, J = 7.2 Hz, 1H), 7.16 (d, J = 7.6 Hz, 1H), 7.11-6.96 (m, 6H), 6.75-6.69 (m, 2H), 5.37 (s, 1H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 150.7, 147.0, 146.3, 140.5, 140.3, 133.0, 129.5, 129.1, 128.2, 127.9, 127.6, 127.5(0), 127.5(7), 127.1, 126.7, 126.1, 126.0, 125.7, 123. 8, 123.7, 121.9, 117.4, 116.7, 42.9. IR (film, v, cm⁻¹) 3023, 1487, 1387, 1234, 1090, 887, 750. HR-MS (APCI) m/z calcd for C₂₉H₂₁O [M+H]⁺ 385.1592, found 385.1594.

7-phenyl-6-(p-tolyl)-7H-benzo[c]xanthene (4b)

70.0 mg, 88%; white solid, mp 185-186 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.56 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.63-7.52 (m, 2H), 7.42 (s, 1H), 7.34-7.31 (m, 1H), 7.25-7.20 (m, 1H), 7.18-7.11 (m, 3H), 7.06-6.99 (m, 4H), 6.96 (d, J = 6.8 Hz, 2H), 6.77-6.73 (m, 2H), 5.37 (s, 1H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 150.8, 147.0, 146.3, 140.3, 137.6, 136.8, 133.0, 129.4, 129.0, 128.6, 128.2, 127.6, 127.5(7), 127.5(5), 126.6, 126.1, 126.0, 125.9, 123.9, 123.7(1), 123.7(6), 121.8, 117.6, 116.7, 43.0, 21.3. IR (film, v, cm⁻¹) 3024, 1487, 1387, 1234, 1090, 814, 749. HR-MS (APCI) m/z calcd for C₃₀H₂₃O [M+H]⁺ 399.1749, found 399.1750.

7-phenyl-6-(m-tolyl)-7H-benzo[c]xanthene (4c)

70.0 mg, 88%; white solid, mp 185-186 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.57 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.64-7.60 (m, 1H), 7.58-7.53 (m, 1H), 7.42 (s, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.24-7.15 (m, 4H), 7.05-6.99 (m, 4H), 6.90 (s, 1H), 6.81-6.71 (m, 3H), 5.31 (s, 1H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 150.7, 146.9, 146.5, 140.5, 140.4, 137.4, 133.0, 130.4, 129.0, 128.2, 127.8, 127.7, 127.6, 127.5(2), 127.5(8), 126.7, 126.4, 126.1, 125.9, 125.8, 123.7, 123.6, 121.8, 117.5, 116.7, 43.1, 21.4. IR (film, v, cm⁻¹) 3021, 1487, 1390, 1242, 1090, 883,750. HR-MS (APCI) m/z calcd for C₃₀H₂₃O [M+H]⁺ 399.1749, found 399.1754.

6-(4-ethylphenyl)-7-phenyl-7H-benzo[c]xanthene (4d)

66.7 mg, 81%; white solid, mp 156-157 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.56 (d, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.64-7.54 (m, 2H), 7.43 (s, 1H), 7.33 (d, *J* = 8.4 Hz, 1H), 7.25-7.21 (m, 1H), 7.17 (d, *J* = 7.6 Hz, 3H), 7.05-6.94 (m, 6H), 6.75-6.70 (m, 2H), 5.39 (s, 1H), 2.77-2.71 (m, 2H), 1.33 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 150.7, 146.9, 146.4, 143.3, 140.3, 137.8, 133.0, 129.4, 129.1, 128.2, 127.6, 127.5, 127.4, 126.7, 126.0, 125.9, 123.8, 123.7, 123.6, 121.8, 117.6, 116.7, 42.9, 28.7, 15.9. IR (film, v, cm⁻¹) 3026, .1487, 1383, 1235, 1090, 852, 751. HR-MS (APCI) m/z calcd for C₃₁H₂₅O [M+H]⁺ 413.1905, found 413.1909.

6-(4-(tert-butyl)phenyl)-7-phenyl-7H-benzo[c]xanthene (4e)

69.5 mg, 79%; white solid, mp 202-203 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.57 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.64-7.60 (m, 1H), 7.57-7.53 (m, 1H), 7.45 (s, 1H), 7.38-7.32 (m, 3H), 7.25-7.21 (m, 1H), 7.17-7.15 (m, 1H), 7.03-6.97 (m, 6H), 6.71-6.67 (m, 2H), 5.42 (s, 1H), 1.42 (s, 9H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 150.6, 150.1, 146.8, 146.4, 140.3, 137.6, 133.0, 129.2, 129.1, 128.1, 127.6(7), 127.6(5), 127.5, 126.6, 126.0, 125.8, 125.7, 124.8, 123.7(2), 123.7(9), 123.6, 121.8, 117.6, 116.6, 42.8, 34.6, 31.5. IR (film, v, cm⁻¹) 3023, 1485, 1389, 1256, 1087, 830, 747. HR-MS (APCI) m/z calcd for C₃₃H₂₉O [M+H]⁺ 441.2218, found 441.2220.

6-(4-methoxyphenyl)-7-phenyl-7H-benzo[c]xanthene (4f)

52.2 mg, 63%; white solid, mp 196-197 °C; ¹H NMR (400 MHz, CDCl₃; *δ*, ppm) 8.57 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.65-7.53 (m, 2H), 7.42 (s, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.26-7.17 (m, 2H), 7.06-6.96 (m, 6H), 6.88 (d, J = 8.0 Hz, 2H), 6.77 (d, J = 6.8 Hz, 2H), 5.37 (s, 1H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; *δ*, ppm) 158.9, 150.8, 147.0, 146.4, 140.0, 133.0(2), 133.0(8), 130.6, 129.0, 128.3, 127.6, 127.5, 126.7, 126.1, 125.9(8), 125.9(5), 124.0, 123.7(9), 123.7(6), 121.8, 117.8, 116.7, 113.3, 55.4, 43.0. IR (film, v, cm⁻¹) 3026, 1487, 1388, 1254, 1091, 825. 744. HR-MS (APCI) m/z calcd for C₃₀H₂₃O₂ [M+H]⁺415.1698, found 415.1703.

6-(4-fluorophenyl)-7-phenyl-7H-benzo[c]xanthene (4g)

66.7 mg, 83%; white solid, mp 184-185 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.57 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.65-7.54 (m, 2H), 7.39 (s, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.25-7.21 (m, 1H), 7.16 (d, J = 7.6 Hz, 1H), 7.01-6.94 (m, 8H), 6.76-6.72 (m, 2H), 5.29 (s, 1H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 162.2(¹ $J_{CF} = 244.4$ Hz), 150.5, 147.0, 146.3, 139.3, 136.5(⁴ $J_{CF} = 3.3$ Hz), 132.9, 131.1(³ $J_{CF} = 7.9$ Hz), 129.1, 128.3, 127.7, 127.5, 126.8, 126.2, 126.1, 125.4, 123.9, 123.8, 123.7, 121. 9, 117.3, 116.7, 114.7(² $J_{CF} = 21.2$ Hz), 43.0. IR

(film, v, cm⁻¹) 3030, 1487, 1386, 1232, 1092, 830, 748. HR-MS (APCI) m/z calcd for $C_{29}H_{20}FO [M+H]^+$ 403.1498, found 403.1497.

6-(4-chlorophenyl)-7-phenyl-7H-benzo[c]xanthene (4h)

63.5 mg, 76%; white solid, mp 196-197 °C; ¹H NMR (400 MHz, CDCl₃; *δ*, ppm) 8.56 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.65-7.54 (m, 2H), 7.38 (s, 1H), 7.34-7.27 (m, 3H), 7.25-7.20 (m, 1H), 7.18-7.14 (m, 1H), 7.07-6.92 (m, 6H), 6.78-6.73 (m, 2H), 5.28 (s, 1H). ¹³C NMR (100 MHz, CDCl₃; *δ*, ppm) 150.5, 147.0, 146.2, 139.0, 133.2, 132.9, 130.8, 129.0, 128.4, 128.0, 127.7, 127.5(8), 127.5(5), 126.9, 126.3, 126.2, 125.4, 123.9, 123.8(0), 123.8(6), 121.9, 117.1, 116.7, 43.0. IR (film, v, cm⁻¹) 3028, 1487, 1386, 1233, 1087, 848, 747. HR-MS (APCI) m/z calcd for C₂₉H₂₀ClO [M+H]⁺ 419.1203, found 419.1208.

6-(4-bromophenyl)-7-phenyl-7H-benzo[c]xanthene (4i)

72.1 mg, 78%; white solid, mp 192-193 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm). 8.54-8.50 (m, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.65-7.60 (m, 1H), 7.58-7.53 (m, 1H), 7.43 (s, 1H), 7.40-7.32 (m, 3H), 7.31-7.27 (m, 2H), 7.21 (d, *J* = 8.4 Hz, 1H), 7.08-6.97 (m, 5H), 6.70-6.66 (m, 2H), 5.31 (s, 1H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) IR (film, v, cm⁻¹). 149.8, 146.6, 145.6, 140.2, 140.1, 133.0, 131.7, 130.6, 129.4, 128.4, 128.0, 127.8, 127.6, 127.4, 127.3, 126.9, 126.4, 126.1, 124.1, 123.6, 121.7, 118.5, 116.8, 115.8, 42.8. IR (film, v, cm⁻¹) 3041, 1487, 1385, 1234, 1092, 827, 755. HR-MS (APCI) m/z calcd for C₂₉H₂₀BrO [M+H]⁺ 463.0698, found 463.0691.

6-butyl-7-phenyl-7H-benzo[c]xanthene (4j)

35.7 mg,49%; white solid, mp 140-141 °C; ¹H NMR (400 MHz, CDCl₃; *δ*, ppm). 8.51-8.48 (m, 1H), 7.78-7.74 (m, 1H), 7.57-7.49 (m, 2H), 7.40-7.35 (m, 2H), 7.31-7.27 (m, 1H), 7.24-7.17 (m, 5H), 7.13-7.08 (m, 1H), 7.07-7.03 (m, 1H), 5.46 (s, 1H), 2.81-2.73 (m, 1H), 2.61-2.52 (m, 1H), 1.66-1.57 (m, 1H), 1.42-1.34 (m, 3H), 0.90 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃; *δ*, ppm) 150.6, 147.1, 146.2, 139.1, 133.4, 128.9, 128.8, 127.6, 127.4, 126.9, 126.5, 126.3, 125.7, 125.1, 123.5, 123.0, 122.2, 121.8, 117.8, 116.7, 42.8, 32.8, 32.2, 22.8,

14.0. IR (film, v, cm⁻¹) 3021, 1487, 1394, 1258, 1098, 848, 750. HR-MS (APCI) m/z calcd for C₂₇H₂₅O [M+H]⁺ 365.1905, found 365.1907.

9-fluoro-6,7-diphenyl-7H-benzo[c]xanthene (4l)

57.9 mg, 72%; white solid, mp 164-165 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm). 8.56-8.52 (m, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.64-7.60 (m, 1H), 7.59-7.54 (m, 1H), 7.43 (s, 1H), 7.38-7.27 (m, 4H), 7.08-6.99 (m, 5H), 6.95-6.90 (m, 1H), 6.86-6.83 (m, 1H), 6.71-6.67 (m, 2H), 5.32 (s, 1H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 158.7(¹*J*_{CF} = 239.9Hz), 146.8(⁶*J*_{CF} = 2.1Hz), 145.7, 140.4, 140.1, 133.0, 129.4, 128.3, 127.9, 127.5, 127.4, 127.2, 127.0(⁵*J*_{CF} = 7.5Hz), 126.8, 126.4, 126.1, 123.9, 123.6, 121.8, 117.8(⁴*J*_{CF} = 8.3Hz), 116.4, 115.0(³*J*_{CF} = 23.1Hz), 114.6(²*J*_{CF} = 23.5Hz), 43.14. IR (film, v, cm⁻¹) 3023, 1490, 1394, 1214, 1026, 852, 766. HR-MS (APCI) m/z calcd for C₂₉H₂₀FO [M+H]⁺403.1498, found 403.1497.

9-bromo-6,7-diphenyl-7H-benzo[c]xanthene (4m)

55.4 mg, 60%; white solid, mp 209-210 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm). 8.57 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.66-7.62 (m, 1H), 7.59-7.55 (m, 1H), 7.45 (d, J = 8.4 Hz, 2H), 7.39 (s, 1H), 7.35-7.31 (m, 1H), 7.25-7.21 (m, 1H), 7.18-7.15 (m, 1H), 7.06-7.01 (m, 4H), 6.92 (d, J = 5.6 Hz, 2H), 6.78-6.75 (m, 2H), 5.29 (s, 1H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 150.5, 147.1, 146.2, 139.5, 139.0, 132.9, 131.2, 131.0, 129.0, 128.4, 127.7, 127.5(0), 127.5(6), 126.9, 126.3, 126.2, 125.4, 123.9, 123.8(8), 123.8(5), 121.9, 121.4, 117.0, 116.7, 43.0. IR (film, v, cm⁻¹) 3056, 1492, 1394, 1254, 1091, 850, 757. HR-MS (APCI) m/z calcd for C₂₉H₂₀BrO [M+H]⁺ 463.0698, found 463.0693.

3-chloro-6-(4-chlorophenyl)-7-phenyl-7H-benzo[c]xanthene (4n)

55.1 mg, 61%; white solid, mp 196-197 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm). 8.55 (d, J = 2.0 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.54-7.50 (m, 1H), 7.38-7.30 (m, 4H), 7.28-7.24 (m, 1H), 7.19-7.16 (m, 1H), 7.09-7.03 (m, 4H), 6.98 (s, 2H), 6.78-6.73 (m, 2H), 5.29 (s, 1H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 150.7, 146.9, 146.4, 143.3, 140.3, 137.8, 133.0, 129.4, 129.1, 128.2, 127.6, 127.5, 127.4, 126.7, 126.0, 125.9, 123.8, 123.7, 123.6,

121.8, 117.6, 116.7, 42.9, 28.7, 15.9. IR (film, v, cm⁻¹) 3014, 1493, 1382, 1250, 1098, 887, 748. HR-MS (APCI) m/z calcd for $C_{29}H_{19}Cl_2O [M+H]^+$ 453.0813, found 453.0819.

6-phenyl-7-(p-tolyl)-7H-benzo[c]xanthene (40)

60.5 mg, 76%; white solid, mp 160-161 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm). 8.56 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.63-7.59 (m, 1H), 7.56-7.53 (m, 1H), 7.43 (s, 1H), 7.38-7.30 (m, 4H), 7.23-7.19 (m, 1H), 7.16-7.14 (m, 1H), 7.09 (s, 2H), 7.02-6.98 (m, 1H), 6.81 (d, J = 8.0 Hz, 2H), 6.60 (d, J = 8.0 Hz, 2H), 5.31 (s, 1H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 150.8, 147.0, 143.4, 140.6, 140.3, 135.6, 132.9, 129.5, 128.9(4), 128.9(2), 127.9, 127.5, 127.2, 127.1, 126.6, 126.1, 125.9, 123.8, 123.7, 121.8, 117.6, 116.6, 42.5, 20.9. IR (film, v, cm⁻¹) 3021, 1485, 1391, 1238, 1088, 820, 752. HR-MS (APCI) m/z calcd for C₃₀H₂₃O [M+H]⁺ 399.1749, found 399.1740.

4,6a',12'-triphenyl-12',12a'-dihydro-6a'H-spiro[chroman-2,5'-isochromeno[3,4-b]chromene] (5a)

84.1 mg,72%; white solid, mp 182-183 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm). 7.38 (d, J = 7.2 Hz, 2H), 7.33-7.29 (m, 6H),7.27-7.23 (m, 3H), 7.21-7.13 (m, 5H), 7.04-6.93 (m, 5H), 6.89-6.85 (m, 2H), 6.81-6.73 (m, 2H), 6.46 (d, J = 8.0 Hz, 1H), 6.30 (d, J = 7.6 Hz, 1H), 4.57-4.51 (m, 1H), 4.15 (d, J = 10.8 Hz, 1H), 3.93 (d, J = 10.4 Hz, 1H), 2.47 (d, J = 10.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 152.6, 151.9, 143.9, 141.9, 140.5, 135.7, 134.9, 130.2, 129.2(0), 129.2(5), 129.1, 128.6(3), 128.6(5), 128.5, 128.3, 128.0, 127.9, 127.8, 127.6, 127.5(9), 127.5(5), 127.2, 126.9, 126.8, 125.9, 124.3, 121.3, 120.9, 117.9, 117.1, 99.3, 99.1, 48.0, 45.3, 45.2, 38.8. IR (film, v, cm⁻¹) 3022, 1487, 1455, 1227, 1003, 884, 750. HR-MS (APCI) m/z calcd for C₄₂H₃₃O₃ [M+H]⁺ 585.2430, found 585.2433.

4,12'-diphenyl-6a'-(p-tolyl)-12',12a'-dihydro-6a'H-spiro[chroman-2,5'-isochromeno[3,4-b]chromene] (5b)

63.4 mg, 53%; white solid, mp 227-228 °C; ¹H NMR (400 MHz, CDCl₃; δ, ppm). 7.34-7.26 (m, 9H), 7.24 (s, 2H), 7.20-7.14 (m, 3H), 7.04-6.98 (m, 5H), 6.96-6.92 (m, 1H), 6.89-6.84 (m, 2H), 6.80 (d, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 7.6 Hz, 1H), 6.53-6.49 (m, 1H), 6.29 (d, *J* = 7.2 Hz, 1H), 4.57-4.50 (m, 1H), 4.15 (d, *J* = 10.8 Hz, 1H),

3.92 (d, J = 10.4 Hz, 1H), 2.52-2.45 (m, 2H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 150.5, 149.8, 144.1, 142.1, 140.7, 135.7, 135.0, 130.4, 130.2, 130.0, 129.4, 129.3, 129.1, 128.6, 128.5, 128.4, 128.2, 128.2, 127.9, 127.7, 127.6, 127.4, 127.1, 126.9, 126.7, 125.5, 123.9, 117.7, 116.9, 99.2, 99.1, 48.1, 45.7, 45.4, 38.8, 20.7. IR (film, v, cm⁻¹) 3028, 1486, 1451, 1230, 1005, 823, 758. HR-MS (APCI) m/z calcd for C₄₄H₃₅O₃ [M+H]⁺ 599.2586, found 599.2587.

4,12'-diphenyl-6a'-(m-tolyl)-12',12a'-dihydro-6a'H-spiro[chroman-2,5'-isochromeno[3,4-b]chromene] (5c)

76.5 mg, 64%; white solid, mp 254-255 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm). 7.34-7.31 (m, 2H), 7.30-7.28 (m, 3H), 7.26-7.23 (m, 5H), 7.20-7.13 (m, 3H), 7.08-7.04 (m, 3H), 7.02-6.97 (m, 3H), 6.96-6.93 (m, 1H), 6.88-6.84 (m, 2H), 6.80 (d, J = 7.6 Hz, 1H), 6.72 (d, J = 7.6 Hz, 1H), 6.46-6.43 (m, 1H), 6.29 (d, J = 7.2 Hz, 1H), 4.57-4.51 (m, 1H), 4.14 (d, J = 10.8 Hz, 1H), 3.92 (d, J = 10.8 Hz, 1H), 2.52-2.45 (m, 2H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 152.7, 151.9, 143.9, 141.9, 140.3, 136.9, 135.7, 134.8, 130.2, 129.3, 129.2, 129.1(1), 129.1(7), 129.0, 128.6, 128.5, 128.4, 128.0, 127.9, 127.7, 127.4, 127.2, 127.1, 126.9, 126.8, 125.9, 124.3, 123.9, 121.2, 120.9, 118.0, 117.1, 108.1, 99.3, 99.1, 48.0, 45.3, 45.2, 38.8, 21.5. IR (film, v, cm⁻¹) 3026, 1486, 1449, 1234, 1007, 890, 750. HR-MS (APCI) m/z calcd for C₄₄H₃₅O₃ [M+H]⁺ 599.2586, found 599.2583.

6a'-(4-(tert-butyl)phenyl)-4,12'-diphenyl-12',12a'-dihydro-6a'H-spiro[chroman-2,5'-isochromeno[3,4-b]chro mene] (5d)

70.4 mg, 55%; white solid, mp >300 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm). 7.38-7.34 (m, 3H), 7.34-7.32 (m, 4H), 7.30 (s, 2H), 7.26 (s, 2H), 7.25-7.20 (m, 4H), 7.18 (d, *J* = 7.6 Hz, 1H), 7.05-7.01 (m, 3H), 6.99 (d, *J* = 8.0 Hz, 1H), 6.91-6.88 (m, 2H), 6.82 (d, *J* = 7.6 Hz, 1H), 6.75 (d, *J* = 7.6 Hz, 1H), 6.42 (d, *J* = 8.0 Hz, 1H), 6.34 (d, *J* = 7.6 Hz, 1H), 4.58-4.52 (m, 1H), 4.15 (d, *J* = 10.4 Hz, 1H), 3.94 (d, *J* = 10.4 Hz, 1H), 2.54-2.47 (m, 2H), 1.32 (s, 9H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 152.7, 151.9, 150.8, 144.0, 142.1, 137.6, 136.0, 134.9, 130.2, 129.2, 129.1, 128.6, 128.5(0), 128.5(5), 128.3, 127.9(3), 127.9(5), 127.6, 127.4, 127.1(2), 127.1(8), 126.9, 126.8, 125.9, 124.4, 124.3, 121.2, 120.8, 118.0, 117.1, 99.2, 99.1, 48.1, 45.5, 45.1, 38.8, 34.5, 31.3, 31.2. IR (film, v, cm⁻¹) 3028, 1487, 1453, 1228, 1109, 891, 768. HR-MS (APCI) m/z calcd for C₄₆H₄₁O₃ [M+H]⁺ 641.3056, found 641.3060.

6a'-(4-fluorophenyl)-4,12'-diphenyl-12',12a'-dihydro-6a'H-spiro[chroman-2,5'-isochromeno[3,4-b]chromene] (5e)

69.8 mg, 58%; white solid, mp 285-286 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm). 7.37-7.27 (m, 9H), 7.25-7.20 (m, 3H), 7.19-7.14 (m, 2H), 7.03-6.98 (m, 3H), 6.95-6.92 (m, 1H), 6.90-6.84 (m, 4H), 6.80 (d, *J* = 8.0 Hz, 1H), 6.74 (d, *J* = 8.0 Hz, 1H), 6.50-6.46 (m, 1H), 6.29 (d, *J* = 7.2 Hz, 1H), 4.56-4.49 (m, 1H), 4.14 (d, *J* = 10.8 Hz, 1H), 3.88 (d, *J* = 10.8 Hz, 1H), 2.52-2.43 (m, 2H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 162.4(¹*J*_{CF} = 239.9Hz), 152.5, 151.8, 143.8, 141.7, 136.5 (⁴*J*_{CF} = 3.3Hz), 135.4, 134.8, 130.2, 129.6, 129.5(³*J*_{CF} = 8.3Hz), 129.3, 129.2, 129.1, 128.7, 128.5, 128.1, 128.0, 127.9, 127.6, 127.3, 127.0, 126.9, 125.9, 124.2, 121.4, 121.0, 117.7, 117.0, 114.3(²*J*_{CF} = 21.3), 99.3, 98.7, 47.9, 45.4, 45.2, 38.7. IR (film, v, cm⁻¹) 3028, 1488, 1449, 1231, 1040, 918, 747. HR-MS (APCI) m/z calcd for C₄₂H₃₂FO₃ [M+H]⁺ 603.2335, found 603.2343.

6a'-phenyl-4,12'-di-p-tolyl-12',12a'-dihydro-6a'H-spiro[chroman-2,5'-isochromeno[3,4-b]chromene] (5e)

77.1 mg, 63%; white solid, mp 234-235 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.38 (d, *J* = 7.2 Hz, 2H), 7.33-7.29 (m, 6H), 7.25-7.22 (m, 3H), 7.21-7.15 (m, 4H), 7.02-6.94 (m, 5H), 6.83 (d, *J* = 8.0 Hz, 1H), 6.55 (d, *J* = 26.4 Hz, 2H), 6.37 (d, *J* = 8.4 Hz, 1H), 6.28 (d, *J* = 8.0 Hz, 1H), 4.49-4.44 (m, 1H), 4.09 (d, *J* = 10.4Hz, 1H), 3.89 (d, *J* = 10.8 Hz, 1H), 2.47-2.41 (m, 2H), 2.19 (s, 3H), 2.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 150.5, 149.8, 144.1, 142.1, 140.7, 135.7, 135.0, 130.4, 130.2, 130.0, 129.4, 129.3, 129.1, 128.6, 128.5, 128.4, 128.3, 128.2(3), 128.2(9), 127.9, 127.7, 127.6, 127.4, 127.3, 127.1, 126.9, 126.7, 125.5, 123.9, 117.7, 116.9, 99.2, 99.1, 48.1, 45.7, 45.4, 38.8, 20.7. IR (film, v, cm⁻¹) 3025, 1485, 1450, 1232, 1004, 912, 754. HR-MS (APCI) m/z calcd for C₄₄H₃₇O₃ [M+H]⁺ 613.2743, found 613.2749.

¹³C NMR Spectrum of Compound 3a

¹H NMR Spectrum of Compound 3b

¹³C NMR Spectrum of Compound 3b

¹H NMR Spectrum of Compound 3c

¹³C NMR Spectrum of Compound 3c

S24

¹³C NMR Spectrum of Compound 3d

¹H NMR Spectrum of Compound 3e

¹³C NMR Spectrum of Compound 3e

¹H NMR Spectrum of Compound 3f

¹³C NMR Spectrum of Compound 3f

-200 -180 -160 -140 -120 -90 -100 f1 (ppm) <mark>8</mark> - ²-**-**90 -20 4 ဓိ -20 -10 0 9

-115.553

¹⁹F NMR Spectrum of Compound 3f

¹H NMR Spectrum of Compound 3g

¹³C NMR Spectrum of Compound 3g

S33

¹³C NMR Spectrum of Compound 3h

¹H NMR Spectrum of Compound 3j

¹³C NMR Spectrum of Compound 3j
-200 -180 -160 -140 -120 -90 -100 f1 (ppm) -80 -70 -60 -20 -40 0. O, - 90 -20 -10 0 10

--122.159

¹⁹F NMR Spectrum of Compound 3j

¹H NMR Spectrum of Compound 3k

¹³C NMR Spectrum of Compound 3k

¹H NMR Spectrum of Compound 31

¹³C NMR Spectrum of Compound 31

¹H NMR Spectrum of Compound 3m

¹³C NMR Spectrum of Compound 3m

¹H NMR Spectrum of Compound 3n

¹³C NMR Spectrum of Compound 3n

¹H NMR Spectrum of Compound 30

¹³C NMR Spectrum of Compound 30

¹H NMR Spectrum of Compound 4a

¹³C NMR Spectrum of Compound 4a

¹H NMR Spectrum of Compound 4b

¹³C NMR Spectrum of Compound 4b

¹H NMR Spectrum of Compound 4c

¹³C NMR Spectrum of Compound 4c

¹³C NMR Spectrum of Compound 4d

¹H NMR Spectrum of Compound 4e

¹³C NMR Spectrum of Compound 4e

¹H NMR Spectrum of Compound 4f

¹³C NMR Spectrum of Compound 4f

¹H NMR Spectrum of Compound 4g

¹³C NMR Spectrum of Compound 4g

-200 -180 -160 -140 -120 -90 -100 f1 (ppm) -80 -70 -60 -50 -40 -30 -20 -10 0 10

-116.403

¹⁹F NMR Spectrum of Compound 4g

¹H NMR Spectrum of Compound 4h

¹³C NMR Spectrum of Compound 4h

¹H NMR Spectrum of Compound 4i

¹³C NMR Spectrum of Compound 4i

708.01			- o
-0.920 -1.322 -1.322 -1.322			0.0
			0.5
685.1 866.1		≖20.£	1.0
22.458 -7.030			1.5
970.7- 940.7-		- VU F	2.0
290'2- S01'2-		T 00'I	.2
-7.126		ד-70.1 ד-70.1	0
012.7. 202.7.			ິຕິ -
		3.5	
			4.0
612.7- 212			- 4.5 m)
782.7- 782.7-			5.0 f1 (pp
-2.547 -2.547 -2.560 -2.587 -2.5777 -2.5777 -2.5777 -2.5777 -2.5777 -2.5777 -2.5777 -2.5777 -2.57777 -2.57777 -2.5777777777777777777777777777777777777		æ-00.r	5.5
			. 0.9
		[L0.1	. 0
-2 387 		至00.1 至90.5	- 2
809'2- 129'2-		2.07-1 2.07-1	7.5
942.7- 252.7- 252.7-		L10.1	8.0
679.7- 693.7-		≖ ∠6 [.] 0	8.5
-7.750 -7.750 -7.77			9.0
984.8- 184.8-			9.5
702.8- 28.504			10.0

¹H NMR Spectrum of Compound 4j

¹³C NMR Spectrum of Compound 4j

¹H NMR Spectrum of Compound 41

¹³C NMR Spectrum of Compound 41

¹H NMR Spectrum of Compound 4m

¹³C NMR Spectrum of Compound 4m

¹H NMR Spectrum of Compound 4n

¹³C NMR Spectrum of Compound 4n

¹H NMR Spectrum of Compound 40

¹³C NMR Spectrum of Compound 40

¹³C NMR Spectrum of Compound 5a

¹H NMR Spectrum of Compound 5b

¹³C NMR Spectrum of Compound 5b

¹H NMR Spectrum of Compound 5c

¹³C NMR Spectrum of Compound 5c

¹H NMR Spectrum of Compound 5d

¹³C NMR Spectrum of Compound 5d

¹H NMR Spectrum of Compound 5e

¹³C NMR Spectrum of Compound 5e

-200 -180 -160 -140 -120 -90 -100 f1 (ppm) -80 -70 Ч, -60 -50 0 0 Ч Ч -40 - 90 -20 -10 0 10

733.651--

¹⁹F NMR Spectrum of Compound 5e

¹H NMR Spectrum of Compound 5f

¹³C NMR Spectrum of Compound 5f