Metallosupramolecular 3D Assembly of Dimetallic $Zn_4[RuL_2]_2$ and

Trimetallic Fe₂Zn₂[RuL₂]₂

Mingzhao Chen, Jun Wang, Sourav Chakraborty, Die Liu, Zhilong Jiang, Qianqian Liu, Jun Yan, Hong Zhong, George R. Newkome and Pingshan Wang

Table of Contents

GENERAL PROCEDURE	2
Synthesis of the key metallo-organic ligand, $Ru^{II}\mbox{-}dimer[Ru^{2+}L_2]\mbox{-}$	3
Self-assembly of dimetallic Fe_4[RuL_2]_2, Fe_6[RuL_2]_3, ZN_4[RuL_2]_2 and trimetallic Fe_2ZN_2[RuL_2]_2	
SUPRAMOLECULES	5
NMR SPECTRA OF LIGAND AND COMPLEX	9
ESI-MS SPECTRA DATA OF OF LIGAND AND COMPLEX	22
MOLECULAR MODELS	26
References	26

General Procedure

Solvents used in the experimental processes were purified prior to use. 1,3,5-tris(4-bromophenyl)benzene, NH_4PF_{6} , and $RuCl_3 \cdot 3H_2O$ and other materials were directly purchased from J & K Chemical Technology and used without further purification. Analytical thin layer chromatography (TLC) was performed on aluminum-backed sheets precoated with Al₂O₃ (150 F254 adsorbent, 0.25 mm thick; Merck, Germany). Column chromatography was conducted using neutral Al₂O₃ (200-300 mesh) or SiO₂ from Sinopharm Chemical Reagent Co. The ¹H NMR spectra were recorded at 25 °C on a Bruker spectrometer operating at either 500 or 400 MHz for ¹H or ¹³C, respectively. Chemical shifts were reported in parts per million (ppm) referenced to the residual solvent peak for ¹H and ¹³C NMR, respectively. Transmission electron microscopy measurements were performed on a JEM-2100F TEM operating at 200 kV, the sample was dissolved in MeCN at a concentration of $\sim 10^{-6}$ M. The solutions were drop cast onto a carboncoated Cu grid (300-400 mesh) and extra solution was absorbed by filter paper to avoid aggregation, images were taken with a JEOL 2010 Transmission Electron Microscope. Electrospray ionization (ESI) mass spectra were recorded with a Bruker Q-TOF Qualification Standard Kit., using solutions of 0.1mg sample in 10 mL of CHCl₃/ MeCN (1:3, v/v) for ligands or 1 mg in 10 mL of MeCN or MeCN/MeOH (3:1, v/v) for complexes. UV-visible spectrophotometer was corrected for the background spectrum of the solvent. The molecular models were obtained following the same settings in the literature^{S1}. Calculations were proceeded with Anneal and Geometry Optimization functions in Forcite module of Materials Studio version 6.1 program (Accelrys Software, Inc.).

Synthesis of the key metallo-organic ligand, Ru^{II}-dimer [Ru²⁺L₂]

Scheme S1: Synthetic route of metallo-organic ligand RuL₂.

3'-Boronatophenyl[2,2':6',2'']terpyridine 2 was prepared according to the literature^{S2} from 3-formylphenylboronic acid and 2-acetylpyridine.

3. 1,3,5-Tris(4-bromophenyl)benzene (543.0 mg, 1.00 mmol) and 3'-boronatophenyl[2,2':6',2"]-terpyridine (211.9 mg, 0.60 mmol) was added to a 250 mL flask, then THF (120 mL) and NaOH (40 mg, 1.00 mmol) in 1 mL of water was added, The system was degassed for 10 min, and Pd(PPh₃)₄ (104.0 mg, 0.09 mmol), as the catalyst, was added. The mixture was stirred at 90 °C under nitrogen for 24 h, after cooled to 25 °C, then concentrated *in vacuo* followed by column chromatography (Al₂O₃), eluting with the mixture of petroleum ether and CH₂Cl₂ to obtain the pure product, as white solid (300 mg, 65%); m.p. 267 °C, ¹H NMR (500 MHz, CDCl₃, ppm) $\delta 8.83$ (s, 2H, tpy $H^{3',5'}$), 8.77-8.76 (d, 2H, J = 5 Hz, tpy $H^{6,6''}$), 8.73-8.71 (t, 4H, J = 10 Hz, tpy $H^{3,3''}$), 8.17 (s, 1H, Ph H^{a}), 7.95-7.91 (m, 3H, tpy $H^{4,4''}$, Ph H^{h}), 7.86-7.81 (m, 4H, Ph $H^{e,f,g}$), 7.78-7.6 (d, 1H, J = 10 Hz, Ph H^{d}), 7.73 (s, 1H, Ph H^{c}), 7.66-7.59 (m, 9H, Ph $H^{h,i,j}$), 7.41-7.38 (t, 2H, J = 15 Hz, Ph $H^{5,5''}$); ¹³C NMR (101 MHz, CDCl₃, ppm) δ 156.20, 156.08, 150.37, 149.18, 142.25, 141.43, 141.41, 140.36, 139.91, 139.84, 139.34, 136.95,132.05, 129.51, 128.97, 127.93, 127.76, 126.64, 126.46, 126.09, 125.19, 124.76, 123.92,122.03, 121.44, 119.08; ESI-MS (772.07 calcd. for C₄₅H₂₉Br₂N₃): m/z 772.12 (M + H)⁺.

RuY₂. Ligand **1** (300.0 mg, 38.88 μmol) was dissolved in a 1:1 solution of CHCl₃:MeOH (100 mL), then RuCl₃·3H₂O (50.0 mg 18.52 μmol) and 3 drop of 4-ethylmorpholine was added. The mixture was stirred at 75 °C for 24 h, After cooled to 25 °C, then concentrated *in vacuo* followed by column chromatography (Al₂O₃) eluting with the (1:1) mixture of MeOH and CH₂Cl₂ to generate a pure product, as red solid: (198 mg, 60%), m.p. >300 °C; ¹H NMR (400 MHz, CD₃CN, ppm) δ 9.16 (s, 4H, tpy $H^{3',5'}$), 8.75-8.73 (d, *J* = 8 Hz, 4H, tpy $H^{3,3''}$), 8.57 (s, 2H, Ph H^a), 8.27-8.25 (d, 2H, *J* = 8 Hz, Ph H^b), 8.11-8.04 (m, 12H, Ph $H^{e,f,g,h}$), 8.02-7.98 (t, 4H, *J* = 16 Hz, tpy $H^{4,4''}$), 7.94-7.90 (m, 4H, Ph $H^{c,d}$), 7.83-7.72 (m, 16H, Ph $H^{i,j}$), 7.49-7.48 (d, 4H, *J* = 8 Hz, tpy $H^{6,6''}$), 7.25-7.22 (t, 4H, *J* = 12 Hz, tpy $H^{5,5''}$). ¹³C NMR (101 MHz, CD₃CN, ppm) δ 158.26, 155.52, 152.35, 148.16, 141.63, 141.12, 140.03, 139.59, 139.53, 138.10, 137.60, 131.89, 130.31, 129.32, 128.80, 128.07, 128.04, 127.77, 127.44, 126.91, 126.31, 124.98, 124.84, 124.53, 121.78, 121.56; ESI-MS (1934.98 calcd. for C₉₀H₅₈Br₄F₁₂N₆P₂Ru with PF₆⁻ counter ions): m/z 1789.06 (M – PF₆⁻)⁺ and 822.06 (M – 2PF₆⁻)²⁺.

Ligand Ru²⁺**L**₂. RuY₂ (150.00 mg, 87.40 μmol) and 3'-boronatophenyl[2,2':6',2"]terpyridine (741.00 mg, 2.10 mmol) was added to a 250 mL flask, then added in a 5:1 solution of MeCN : MeOH (100 mL), and K₂CO₃ (241.20 mg, 1.75 mmol) dissolved in 1.7 mL of water was added. The mixture was degassed for 10 min, and Pd(PPh₃)₄ (121.0 mg, 105.0 μmol), as the catalyst, was added. The mixture was stirred at 90 °C under nitrogen for 4 d, then concentrated *in vacuo* followed by column chromatography (Al₂O₃) eluting with a mixed solvent of MeOH and CH₂Cl₂ to give the pure the product, as red solid (157 mg, 60%); m.p. >300 °C, ¹H NMR (400 MHz, DMSO, ppm) δ 9.08 (s, 4H, ^AtpyH^{3',5'}), 8.66-8.64 (d, 4H, *J* = 8 Hz, ^AtpyH^{3',3''}), 8.29 (s, 8H, ^BtpyH^{3',5'}), 8.26-8.25 (d, 8H, J = 4 Hz, ^BtpyH^{6,6''}), 8.21 (s, 2H, ^APhH^a), 7.67-7.48 (m, 36H, ^AtpyH^{4,4''}, ^B-tpy-H^{4,4''}, ^APhH^e, PhH^e, PhH^e, 7.45-7.37 (m, 16H, ^BPhH^h), 7.67-7.48 (m, 36H, ^AtpyH^{4,4''}, ^BPhH^e), 7.08-7.07 (d, 4H, *J* = 4 Hz, ^AtpyH^{6,6''}), 7.04-7.01 (m, 10H, ^BtpyH^{5,5''}, PhH^h), 6.80-6.77 (t, 4H, *J* = 12 Hz, ^AtpyH^{5,5''}); ESI-MS (2848.79 calcd. for C₁₇₄H₁₁₄F₁₂N₁₈P₂Ru with PF₆⁻): m/z 1278.79 (M – 2PF₆⁻)²⁺.

Self-assembly of dimetallic Fe₄[RuL₂]₂, Fe₆[RuL₂]₃, Zn₄[RuL₂]₂ and trimetallic Fe₂Zn₂[RuL₂]₂ supramolecules

Scheme S2: Synthetic route of bimetallic supramolecules dimer $Fe_4[RuL_2]_2$ and trimer $Fe_6[RuL_2]_3$ *via* terpyridinyl metallo-organic ligand $Ru^{2+}L_2$.

Mixture of the dimetallic dimer $Fe_4[RuL_2]_2$ and trimer $Fe_6[RuL_2]_3$. Ligand RuL_2 (15.2 mg, 17.0 µmol) and $FeCl_2 \cdot 4H_2O$ (7.4 mg, 37.4 µmol) were dissolved in MeCN (40 mL). The solution was heated at 90 °C for 12 h. After cooled to 25 °C, excess NH₄PF₆ in MeOH was added to get a purple precipitate, which was filtered and washed with MeOH to generate a red solid. The precipitate was filtered and residue was flash column chromatographed (SiO₂) eluting with MeCN/sat. KNO₃ (aq)/H₂O (100:30:1 to 100:15:1) to generate the Fe₄[RuL₂]₂ and trimer Fe₆[RuL₂]₃, as the purple precipitates after then the counterion exchanged to PF₆⁻; m.p. >300 °C.

Figure S1. a) ¹H NMR and 2D NMR DOSY spectrum (500 MHz) of a mixtures of dimer $Fe_4[RuL_2]_2$ and trimer $Fe_6[RuL_2]_3$ in DMSO shows two singles band at log D = -10.50 and -10.75. b) The ESI-MS spectrum of mixture of $Fe_4[RuL_2]_2$ and $Fe_6[RuL_2]_3$.

Scheme S3: Synthetic route of supramolecular dimetallic $Zn_4[RuL_2]_2$ and trimetallic $Fe_2Zn_2[RuL_2]_2$ via intermediate $Zn[RuL_2]$ and $Fe[RuL_2]$, respectively.

Ligand Zn[RuL₂]. Ligand RuL₂ (3.80 mg, 1.33 µmol) was dissolved in 3:1 solution CHCl₃: MeOH (120 mL), then ultrasonically dispersed for 5 min, Zn(NO₃)₂·6H₂O (dissolved in MeOH) (1.33 mg, 6.81µmol) was added, then heated at 90 °C for 12 h, After cooled to 25 °C, excess NH₄PF₆ in MeOH was added to give a purple precipitate, which was filtered and washed with MeOH to generate a red solid: m.p. >300 °C; ¹H NMR (500 MHz, CD₃CN, ppm): δ 9.40 (s, 4H, ^AtpyH^{3',5'}), 9.34 (s, 4H, ^CtpyH^{3',5'}), 9.02-9.00 (d, 4H, *J* = 10 Hz, ^CtpyH^{3,3''}), 8.97-8.95 (d, 4H, *J* = 10 Hz, ^AtpyH^{3,3''}), 8.89 (s, 4H, ^BtpyH^{3',5'}), 8.80-8.79 (d, 4H, *J* = 5 Hz, ^BtpyH^{6,6''}), 8.76-8.74 (d, 4H, ^BtpyH^{3,3''}), δ 8.62 (s, 2H, ^APhH^a), 8.60 (s, 2H, ^CPhH^a), 8.32-8.28 (m, 6H, ^APhH^b, ^BPhH^a, ^CPhH^b), 8.20-8.11 (m, 32H, ^CtpyH^{4,4''}, ^APhH^{d,e,f}, ^BPhH^b, ^CPhH^{d,e,f}, PhH^{g,h,i}), 8.04-8.02 (t, 4H, *J* = 10 Hz, ^BtpyH^{4,4''}), 8.00-7.90 (m, 22H, ^AtpyH^{6,6''}, ^BtpyH^{6,5''}), 7.45-7.43 (t, 4H, *J* = 10 Hz, ^CtpyH^{5,5''}), 7.25-7.22 (t, 4H, *J* = 15 Hz, ^AtpyH^{5,5''}); ESI-MS (3203.65 calcd. for C₁₇₄H₁₁₄F₂₄N₁₈P₄RuZn with PF₆⁻): m/z 1456.33 (M – 2PF₆⁻)²⁺, m/z 922.57 (M – 3PF₆⁻)³⁺ and m/z 655.69 (M – 4PF₆⁻)⁴⁺.

Ligand Fe[RuL₂]. Ligand RuL₂ (19.40 mg, 6.81 µmol) was dissolved in DMSO (50 mL), FeCl₂·4H₂O (dissolved in MeOH) (1.33 mg, 6.81µmol) was added, then heated at 90 °C for 12 h, After cooled to 25 °C, excess NH₄PF₆ in MeOH was added to get a purple precipitate, which was filtered and washed with MeOH to generate a dark purple solid: m.p. >300 °C; ¹H NMR (500 MHz, CD₃CN, ppm) δ 9.32 (s, 4H, ^CtpyH^{3',5'}), 9.15 (s, 4H, ^AtpyH^{3',5'}), 8.93 (s, 4H, ^BtpyH^{3',5'}), 8.82-8.78 (m, 8H, ^BtpyH^{3,3"}, ^BtpyH^{6,6"}), 8.73-8.71 (d, 4H, *J* = 10 Hz, ^AtpyH^{3,3"}), 8.69-8.67 (d, 4H, *J* = 10 Hz, ^CtpyH^{3,3"}), 8.55 (s, 2H, PhH^a), 8.36-8,34 (d, 2H, *J* = 10 Hz, ^CPhH^b), 8.30 (s, 2H, ^BPhH^a), 8.25-8.13 (m, 32H, ^APhH^{b,d,e,f}, ^BPhH^b, ^CPhH^{a,d,e,f}, PhH^{g,h,i}), 8.06-8.05 (t, 4H, *J* = 5 Hz, ^BtpyH^{4,4"}), 8.02-7.92 (m, 22H, ^AtpyH^{4,4"}, ^CtpyH^{4,4"}, ^APhH^c, ^BPhH^{d,e,f}, ^CPhH^c), 7.81-7.77 (m, 2H, *J* = 20 Hz, ^BPhH^e), 7.54-7.49 (m, 8H, ^AtpyH^{6,6"}, ^BtpyH^{5,5"}), 7.27-7.26 (d, 4H, *J* = 5 Hz, ^CtpyH^{6,6"}), 7.24-7.20 (t, 4H, *J* = 20 Hz, ^AtpyH^{5,5"}), 7.15-7.12 (t, 4H, *J* = 15 Hz, ^CtpyH^{5,5"}); ESI-MS (3194.66 calcd. for C₁₇₄H₁₁₄F₂₄FeN₁₈P₄Ru with PF₆⁻): m/z 919.60 (M – 3PF₆⁻)³⁺ and m/z 653.46 (M – 4PF₆⁻)⁴⁺.

Dimetallic Zn₄[RuL₂]₂. Ligand Zn[RuL₂] (3.40 mg, 1.19 µmol) was dissolved in 3:1 solution CHCl₃: MeOH (120 mL), then ultrasonically dispersed for 5 min, Zn(NO₃)₂·6H₂O (dissolved in MeOH) (0.71 mg, 2.39 µmol) was added, then heated at 90 °C for 12 h, After cooling to 25 °C, excess NH₄PF₆ in MeOH was added to give a red precipitate, which was filtered and washed with MeOH to generate a red solid: m.p. >300 °C; ¹H NMR (500 MHz, CD₃CN, ppm) δ 9.18 (s, 8H, ^AtpyH^{3',5'}), 9.15 (s, 8H, ^CtpyH^{3',5'}), 9.12 (s, 8H, ^BtpyH^{3',5'}), 8.87-8.85 (d, 8H, *J* = 10 Hz, ^AtpyH^{3,3''}), 8.81-8.79 (d, 8H, *J* = 10 Hz, ^BtpyH^{3,3''}), 8.74-8.73 (d, 8H, *J* = 5 Hz, ^CtpyH^{3,3''}), 8.63 (s, 4H, ^APhH^a), 8.58 (s, 4H, ^CPhH^a), 8.55 (s, 4H, ^BPhH^a), 8.30-8.13 (m, 100 H, ^AtpyH^{4,4''}, ^BtpyH^{4,4''}, ^APhH^{b,d,e,f}, ^CPhH^{b,d,e,f}, ^CPhH^{b,d,e,f}, PhH^{g,h,i}), 8.01-7.91 (m, 36H, ^AtpyH^{6,6''}, ^BtpyH^{6,6''}, ^CtpyH^{4,4''}, ^APhH^c, ^BPhH^c, ^CPhH^c), 7.53-7.49 (m, 16H, ^AtpyH^{5,5''}, ^CtpyH^{6,6''}), 7.46-7.44 (t, 8H, *J* = 10 Hz, ^BtpyH^{5,5''}), 7.25-7.22 (t, 8H, *J* = 15 Hz, ^CtpyH^{5,5''}).

Trimetallic Fe₂Zn₂[RuL₂]₂. Ligand **Fe[RuL₂]** (2.70 mg, 0.85 μmol) was dissolved in 3:1 solution CHCl₃:MeOH (100 mL), then ultrasonically dispersed for 5 min, Zn(NO₃)₂·6H₂O (dissolved in MeOH) (0.25 mg, 0.85 μmol) was added, then heated at 90 °C for 12 h, After cooled to 25 °C, excess NH₄PF₆ in MeOH was added to get a purple precipitate, which was filtered and washed with MeOH to generate a dark purple solid: m.p. >300 °C; ¹H NMR (500 MHz, DMSO, ppm) δ 9.78 (s, 8H, ^CtpyH^{3',5'}), 9.59 (s, 8H, ^AtpyH^{3',5'}), 9.28 (s, 8H, ^BtpyH^{3',5'}), 9.16-9.15 (m, 8H, ^AtpyH^{3,3"}), 9.12-9.11 (m, 16H, ^BtpyH^{3,3"}, ^CtpyH^{3,3"}), 8.98-8.96 (m, 4H, ^CPhH^d), 8.87 (s, 4H, ^BPhH^a), 8.82 (s, 4H, ^CPhH^a), 8.76-8.74 (m, 4H, ^BPhH^b), 8.70 (s, 4H, ^APhH^a), 8.61-8.60 (m, 4H, ^BPhH^d), 8.53-8.51 (m, 4H, ^CtpyH^{6,6"}, ^CtpyH^{6,6"}, ^CtpyH^{4,4"}, ^APhH^{c,e,f}, ^BPhH^{c,e,f}, ^CPhH^{c,e,f}, PhH^{g,h,i}), 7.61-7.59 (m, 16H, ^CtpyH^{6,6"}, ^BtpyH^{5,5"}), 7.23-7.20 (m, 8H, ^AtpyH^{5,5"}).

Molecular cartoons for Zn₄[RuL₂]₂:

Figure S2. Illustration three possible $Zn_4[RuL_2]_2$ isomers (¹H NMR spectrum for **1** and **2** should have two singlets for tpy $H^{3'5'}$ and for **3** should be three singlets for tpy $H^{3'5'}$).^{S3}

12PF 3. 3 4 5, 5' С 6, 6" g,h,i b.d.e. 8.4 8.2 8.0 Chemical shift(ppm) 9.2 8.8 8.6 7.8 7.6 7.4 7.2 9.0

NMR spectra of ligand and complex

Figure S3. ¹H NMR spectrum (400 MHz) of Zn₄(RuL₂)₂ in CD₃CN.

Figure S4. 2D COSY spectrum (400 MHz) of Zn₄(RuL₂)₂ in CD₃CN.

Figure S5. 2D NOESY spectrum (400 MHz) of $Zn_4(RuL_2)_2$ in CD₃CN.

Figure S6. 2D DOSY spectrum (500 MHz) of Zn₄(RuL₂)₂ in CD₃CN.

Figure S7. ¹H NMR spectrum (500 MHz) of Fe₂Zn₂(RuL₂)₂ in DMSO-d₆.

Figure S8. 2D COSY spectrum (500 MHz) of Fe₂Zn₂(RuL₂)₂ in DMSO-d₆.

Figure S9. 2D NOESY spectrum (500 MHz) of Fe₂Zn₂(RuL₂)₂ in DMSO-d₆.

Figure S10. 2D DOSY spectrum (500 MHz) of Fe₂Zn₂(RuL₂)₂ in DMSO-d₆.

Figure S11. ¹H NMR spectrum (500 MHz) of ligand 3 in CDCl₃.

Figure S12. 2D COSY spectrum (500 MHz) of ligand 3 in CDCl₃.

Figure S13. 2D NOESY spectrum (500 MHz) of ligand 3 in CDCl_{3.}

Figure S14. ¹³C spectrum (400 MHz) of ligand 3 in CDCl_{3.}

Figure S15. ¹H NMR spectrum (400 MHz) of RuY₂ in CD₃CN.

Figure S16. 2D COSY spectrum (400 MHz) of RuY₂ in CD₃CN.

Figure S17. 2D NOESY spectrum (400 MHz) of RuY₂ in CD₃CN.

Figure S18. ¹³C spectrum (400 MHz) of ligand RuY₂ in CDCl_{3.}

Figure S19. ¹H NMR spectrum (400 MHz) of ligand RuL₂ in DMSO-d₆.

Figure S20. 2D COSY spectrum (400 MHz) of ligand RuL₂ in DMSO-d₆.

Figure S21. 2D NOESY spectrum (400 MHz) of ligand RuL₂ in DMSO-d₆.

Figure S22. ¹H NMR spectrum (500 MHz) of ligand Zn[RuL₂] in CD₃CN.

Figure S23. 2D COSY spectrum (500 MHz) of ligand Zn[RuL₂] in CD₃CN.

Figure S24. 2D NOESY spectrum (500 MHz) of ligand $Zn[RuL_2]$ in CD₃CN.

Figure S25. ¹H NMR spectrum (500 MHz) of ligand Fe[RuL₂] in CD₃CN.

Figure S26. 2D COSY spectrum (500 MHz) of ligand Fe[RuL₂] in CD₃CN.

Figure S27. 2D NOESY spectrum (500 MHz) of ligand Fe[RuL₂] in CD₃CN.

ESI-MS spectra data of of ligand and complex

Figure S28. The ESI-MS spectrum of ligand 3.

Figure S29. The ESI-MS spectrum of RuY₂.

Figure S30. The ESI-MS spectrum of RuL₂.

Figure S31. The ESI-MS spectrum of ligand Zn[RuL₂].

Figure S32. The ESI-MS spectrum of ligand Fe[RuL₂].

Figure S33. The ESI-MS spectrum of Zn₂[RuL₂].

Figure S34. The ESI-MS spectrum of Fe₂Zn₂[RuL₂]₂.

Figure S35. Theoretical and measured isotope patterns for various charge states of $Zn_4[RuL_2]_2$ (PF₆⁻, as counterion).

Figure S36. Theoretical and measured isotope patterns for various charge states of $Fe_2Zn_2[RuL_2]_2$ (PF_6^- , as counterion).

Molecular models

Figure S37. Energy-minimized structure of Zn₄[RuL₂]₂.

Figure S38. Energy-minimized structure of Fe₂Zn₂[RuL₂]₂.

References

S1: J. L. Wang, X. Li, X. Lu, I. F. Hsieh, Y. Cao, C. N. Moorefield, C. Wesdemiotis, S. Z. Cheng and G. R. Newkome, *J. Am. Chem. Soc.*, 2011, **133**, 11450.

S2: T.-Z. Xie, S.-Y. Liao, K. Guo, X. Lu, X. Dong, M. Huang, C. N. Moorefield, S. Z. D. Cheng, X. Liu, C. Wesdemiotis and G. R. Newkome, *J. Am. Chem. Soc.*, 2014, **136**, 8165.

S3: S. Chakraborty, W. Hong, K. J. Endres, T. Z. Xie, L. Wojtas, C. N. Moorefield, C. Wesdemiotis and G. R. Newkome, *J. Am. Chem. Soc.*, 2017, **139**, 3012.