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General Procedure

Solvents used in the experimental processes were purified prior to use. 1,3,5-tris(4-bromo-
phenyl)benzene, NH4PF;, and RuCl;-3H,0 and other materials were directly purchased from J &
K Chemical Technology and used without further purification. Analytical thin layer
chromatography (TLC) was performed on aluminum-backed sheets precoated with Al,O; (150
F254 adsorbent, 0.25 mm thick; Merck, Germany). Column chromatography was conducted using
neutral Al,O3; (200-300 mesh) or SiO, from Sinopharm Chemical Reagent Co. The 'H NMR
spectra were recorded at 25 °C on a Bruker spectrometer operating at either 500 or 400 MHz for
'H or 13C, respectively. Chemical shifts were reported in parts per million (ppm) referenced to the
residual solvent peak for 'H and '3C NMR, respectively. Transmission electron microscopy
measurements were performed on a JEM-2100F TEM operating at 200 kV, the sample was
dissolved in MeCN at a concentration of ~10¢ M. The solutions were drop cast onto a carbon-
coated Cu grid (300-400 mesh) and extra solution was absorbed by filter paper to avoid
aggregation, images were taken with a JEOL 2010 Transmission Electron Microscope. Electro-
spray ionization (ESI) mass spectra were recorded with a Bruker Q-TOF Qualification Standard
Kit., using solutions of 0.1mg sample in 10 mL of CHCl3/ MeCN (1:3, v/v) for ligands or 1 mg in
10 mL of MeCN or MeCN/MeOH (3:1, v/v) for complexes. UV-visible spectrophotometer was
corrected for the background spectrum of the solvent. The molecular models were obtained
following the same settings in the literatureS!. Calculations were proceeded with Anneal and
Geometry Optimization functions in Forcite module of Materials Studio version 6.1 program

(Accelrys Software, Inc.).



Synthesis of the key metallo-organic ligand, Ru''-dimer [Ru?"L;]
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Scheme S1: Synthetic route of metallo-organic ligand RuL,,

3'-Boronatophenyl[2,2':6',2"|terpyridine 2 was prepared according to the literatureS? from 3-
formylphenylboronic acid and 2-acetylpyridine.

4" 5“

3. 1,3,5-Tris(4-bromophenyl)benzene (543.0 mg, 1.00 mmol) and 3'-boronatophenyl[2,2":6',2"]-
terpyridine (211.9 mg, 0.60 mmol) was added to a 250 mL flask, then THF (120 mL) and NaOH
(40 mg, 1.00 mmol) in 1 mL of water was added, The system was degassed for 10 min, and
Pd(PPh;), (104.0 mg, 0.09 mmol), as the catalyst, was added. The mixture was stirred at 90 °C
under nitrogen for 24 h, after cooled to 25 °C, then concentrated in vacuo followed by column
chromatography (Al,O;), eluting with the mixture of petroleum ether and CH,Cl, to obtain the
pure product, as white solid (300 mg, 65%); m.p. 267 °C, 'H NMR (500 MHz, CDCl;, ppm)
58.83 (s, 2H, tpyH>>*), 8.77-8.76 (d, 2H, J = 5 Hz, tpyH>?"), 8.73-8.71 (t, 4H, J = 10 Hz, tpyH*>*"),
8.17 (s, 1H, PhH?), 7.95-7.91 (m, 3H, tpyH**, PhH"), 7.86-7.81 (m, 4H, PhH%52), 7.78-7.76 (d,
1H, J = 10 Hz, PhHY), 7.73 (s, 1H, PhH®), 7.66-7.59 (m, 9H, PhHM), 7.41-7.38 (t, 2H, J = 15 Hz,
PhA3"); 13C NMR (101 MHz, CDCl;, ppm) 8 156.20, 156.08, 150.37, 149.18, 142.25, 141.43,
141.41, 140.36, 139.91, 139.84, 139.34, 136.95,132.05, 129.51, 128.97, 127.93, 127.76, 126.64,
126.46, 126.09, 125.19, 124.76, 123.92,122.03, 121.44, 119.08; ESI-MS (772.07 calcd. for
C4sHy9BroN3): m/z 772.12 (M + H)™.



RuY,. Ligand 1 (300.0 mg, 38.88 pmol) was dissolved in a 1:1 solution of CHCI;:MeOH (100
mL), then RuCl;-3H,0 (50.0 mg 18.52 umol) and 3 drop of 4-ethylmorpholine was added. The
mixture was stirred at 75 °C for 24 h, After cooled to 25 °C, then concentrated in vacuo followed
by column chromatography (Al,O;) eluting with the (1:1) mixture of MeOH and CH,Cl, to
generate a pure product, as red solid: (198 mg, 60%), m.p. >300 °C; 'H NMR (400 MHz, CD;CN,
ppm) & 9.16 (s, 4H, tpyH>-"), 8.75-8.73 (d, J = 8 Hz, 4H, tpyH>?"), 8.57 (s, 2H, PhH?), 8.27-8.25
(d, 2H, J = 8 Hz, PhAHY), 8.11-8.04 (m, 12H, PhH>teh), 8.02-7.98 (t, 4H, J = 16 Hz, tpyH**"), 7.94-
7.90 (m, 4H, PhH"Y), 7.83-7.72 (m, 16H, PhH), 7.49-7.48 (d, 4H, J = 8 Hz, tpyH®*®"), 7.25-7.22 (t,
4H, J = 12 Hz, tpyH>>"). 3C NMR (101 MHz, CDs;CN, ppm) 8 158.26, 155.52, 152.35, 148.16,
141.63, 141.12, 140.03, 139.59, 139.53, 138.10, 137.60, 131.89, 130.31, 129.32, 128.80, 128.07,
128.04, 127.77, 127.44, 126.91, 126.31, 124.98, 124.84, 124.53, 121.78, 121.56; ESI-MS
(1934.98 calced. for CooHsgBrsF:NgP,Ru with PFs  counter ions): m/z 1789.06 (M — PF4 )" and
822.06 (M — 2PF; )**.
4"5"

Ligand Ru?'L,. RuY, (150.00 mg, 87.40 umol) and 3'-boronatophenyl[2,2":6',2"]terpyridine
(741.00 mg, 2.10 mmol) was added to a 250 mL flask, then added in a 5:1 solution of MeCN :
MeOH (100 mL), and K,COj3; (241.20 mg, 1.75 mmol) dissolved in 1.7 mL of water was added.
The mixture was degassed for 10 min, and Pd(PPh;), (121.0 mg, 105.0 umol), as the catalyst, was
added. The mixture was stirred at 90 °C under nitrogen for 4 d, then concentrated in vacuo
followed by column chromatography (Al,Os;) eluting with a mixed solvent of MeOH and CH,Cl,
to give the pure the product, as red solid (157 mg, 60%); m.p. >300 °C, 'H NMR (400 MHz,
DMSO, ppm) & 9.08 (s, 4H, AtpyH?-), 8.66-8.64 (d, 4H, J = 8 Hz, “tpyH>-"), 8.29 (s, 8H,
BtpyH?-"), 8.26-8.25 (d, 8H, J = 4 Hz, BtpyH**"), 8.21 (s, 2H, ~PhH?), 8.19-8.17 (d, 8H, J = 8 Hz,
BtpyH33"), 7.93-7.91 (d, 2H, J = 8 Hz, APhHP), 7.70 (s, 4H, BPhH?), 7.67-7.48 (m, 36H, AtpyH**',
B-tpy-H**', APhHdf, BPhHe, PhH®), 7.45-7.37 (m, 16H, BPhAH>4f), 7.24-7.20 (t, 4H, J = 16 Hz,
BPhA®), 7.08-7.07 (d, 4H, J = 4 Hz, *pyH®>°"), 7.04-7.01 (m, 10H, BtpyH>>", PhHY), 6.80-6.77 (t,
4H, J = 12 Hz, AtpyH>*"); ESI-MS (2848.79 calcd. for C74H;14F12NsPoRu with PFg ): m/z
1278.79 (M — 2PF¢ )**.



Self-assembly of dimetallic Fes[Rul,];, Feg[RulL;];, Zn4Rul,], and trimetallic

Fe,Zn,[Rul;], supramolecules

Fee[Ru L2]3

Scheme S2: Synthetic route of bimetallic supramolecules dimer Fe4[RuL,], and trimer Feg[RuL,];
via terpyridinyl metallo-organic ligand Ru?*L,.

Mixture of the dimetallic dimer Fe [Rul;], and trimer Feg[RuL,];, Ligand RulL, (15.2
mg, 17.0 pmol) and FeCl,4H,0 (7.4 mg, 37.4 pmol) were dissolved in MeCN (40 mL). The
solution was heated at 90 °C for 12 h. After cooled to 25 °C, excess NH4PFs in MeOH was added
to get a purple precipitate, which was filtered and washed with MeOH to generate a red solid. The
precipitate was filtered and residue was flash column chromatographed (SiO,) eluting with
MeCN/sat. KNO;3 (aq)/H,O (100:30:1 to 100:15:1) to generate the Fe4Rul,], and trimer

Feg[RuL,]s, as the purple precipitates after then the counterion exchanged to PFs ; m.p. >300 °C.
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Figure S1. a) 'TH NMR and 2D NMR DOSY spectrum (500 MHz) of a mixtures of dimer
Fey[Rul;]; and trimer Feg[RulL,;]; in DMSO shows two singles band at log D =-10.50 and -10.75.

b) The ESI-MS spectrum of mixture of Fes[RuL,], and Fes[RuL,];.

Scheme S3: Synthetic route of supramolecular dimetallic Zny4[Rul,], and trimetallic

Fe,Zn;,[Rul,;], via intermediate Zn[RuL;] and Fe[RuL,], respectively.



Ligand Zn[RuL,]|. Ligand RuL, (3.80 mg, 1.33 pmol) was dissolved in 3:1 solution CHCl;:
MeOH (120 mL), then ultrasonically dispersed for 5 min, Zn(NO;), 6H,0 (dissolved in MeOH)
(1.33 mg, 6.81pumol) was added, then heated at 90 °C for 12 h, After cooled to 25 °C, excess
NH4PF¢ in MeOH was added to give a purple precipitate, which was filtered and washed with
MeOH to generate a red solid: m.p. >300 °C; 'H NMR (500 MHz, CD;CN, ppm): 8 9.40 (s, 4H,
AMpyH?), 9.34 (s, 4H, CtpyH*-"), 9.02-9.00 (d, 4H, J = 10 Hz, ‘tpyH>>"), 8.97-8.95 (d, 4H, J = 10
Hz, “tpyH>3"), 8.89 (s, 4H, BtpyH>), 8.80-8.79 (d, 4H, J = 5 Hz, BtpyH®?"), 8.76-8.74 (d, 4H,
BtpyH33"), 88.62 (s, 2H, APhH?), 8.60 (s, 2H, ¢PhH?), 8.32-8.28 (m, 6H, ~PhH®, BPhH?, CPhHP),
8.20-8.11 (m, 32H, CtpyH**', APhHYef BPhHP, CPhHYe!, PhHeM), 8.04-8.02 (t, 4H, J = 10 Hz,
BtpyH**"), 8.00-7.90 (m, 22H, AtpyH**', CtpyH®Y", APhH¢, BPhH%ef, CPhH®), 7.78-7.75 (t, 2H, J =
15 Hz, BPhH), 7.55-7.50 (m, 8H, “tpyH®®", BtpyH>>"), 7.45-7.43 (t, 4H, J = 10 Hz, CtpyH>""),
7.25-7.22 (t, 4H, J = 15 Hz, “tpyH>"); ESI-MS (3203.65 calcd. for C;74H;14F24NsPsRuZn with
PFs ): m/z 1456.33 (M — 2PFs )*", m/z 922.57 (M — 3PF¢ )** and m/z 655.69 (M — 4PF4 )*'.

Ligand Fe[RulL,]. Ligand RuL, (19.40 mg, 6.81 umol) was dissolved in DMSO (50 mL),
FeCl,-4H,0 (dissolved in MeOH) (1.33 mg, 6.81umol) was added, then heated at 90 °C for 12 h,
After cooled to 25 °C, excess NH4PF¢ in MeOH was added to get a purple precipitate, which was
filtered and washed with MeOH to generate a dark purple solid: m.p. >300 °C; 'H NMR (500
MHz, CD;CN, ppm) 8 9.32 (s, 4H, “tpyH>->), 9.15 (s, 4H, AtpyH>-), 8.93 (s, 4H, BtpyH>>), 8.82-
8.78 (m, 8H, BtpyH>", BtpyH®*¢"), 8.73-8.71 (d, 4H, J = 10 Hz, *tpyFH*-"), 8.69-8.67 (d, 4H, J= 10
Hz, CtpyH*2"), 8.55 (s, 2H, PhH?), 8.36-8,34 (d, 2H, J = 10 Hz, “Ph/P), 8.30 (s, 2H, BPhH?), 8.25-
8.13 (m, 32H, APhHP4ef, BPhHY, CPhH>def PhHeM), 8.06-8.05 (t, 4H, J = 5 Hz, BtpyH**"), 8.02-
7.92 (m, 22H, ApyH**', CtpyH**', APhH®, BPhHYef, °PhH°), 7.81-7.77 (m, 2H, J = 20 Hz, BPhH®),
7.54-7.49 (m, 8H, AtpyH*®", BtpyH>"), 7.27-7.26 (d, 4H, J =5 Hz, tpyH**"), 7.24-7.20 (t, 4H, J =
20 Hz, “tpyH>*"), 7.15-7.12 (t, 4H, J = 15 Hz, “tpyH>"); ESI-MS (3194.66 calcd. for
C174H14F24FeNgP4,Ru with PFg ): m/z 919.60 (M — 3PFs )*>* and m/z 653.46 (M — 4PF )**.



4"5"

Dimetallic Zny[RuL,],. Ligand Zn[RuL,] (3.40 mg, 1.19 pumol) was dissolved in 3:1
solution CHCl;: MeOH (120 mL), then ultrasonically dispersed for 5 min, Zn(NOs),-6H,O
(dissolved in MeOH) (0.71 mg, 2.39 umol) was added, then heated at 90 °C for 12 h, After
cooling to 25 °C, excess NH4PF¢ in MeOH was added to give a red precipitate, which was filtered
and washed with MeOH to generate a red solid: m.p. >300 °C; 'H NMR (500 MHz, CD;CN,
ppm) 89.18 (s, 8H, “tpyH>-"), 9.15 (s, 8H, CtpyH>>*), 9.12 (s, 8H, BtpyH>-"), 8.87-8.85 (d, 8H, J =
10 Hz, AtpyH>*"), 8.81-8.79 (d, 8H, J = 10 Hz, BtpyH>3"), 8.74-8.73 (d, 8H, J = 5 Hz, CtpyH>*"),
8.63 (s, 4H, ~PhH?), 8.58 (s, 4H, CPhH?), 8.55 (s, 4H, BPhH?), 8.30-8.13 (m, 100 H, AtpyH**,
BtpyH*#', APhHP4ef BPhHbdef Cphpbdef Phpehi) 8.01-7.91 (m, 36H, AtpyHoo', BtpyH?",
CtpyH**', APhH®, BPhHC, CPhH®), 7.53-7.49 (m, 16H, *tpyH>">", CtpyH®S"), 7.46-7.44 (t, 8H, J = 10
Hz, BtpyH>~"), 7.25-7.22 (t, 8H, J = 15 Hz, “tpyH>").

Trimetallic Fe,Zn,[Rul;],. Ligand Fe[RuL,] (2.70 mg, 0.85 pmol) was dissolved in 3:1
solution CHCI;:MeOH (100 mL), then ultrasonically dispersed for 5 min, Zn(NOs),-6H,O
(dissolved in MeOH) (0.25 mg, 0.85 umol) was added, then heated at 90 °C for 12 h, After cooled
to 25 °C, excess NH4PF¢ in MeOH was added to get a purple precipitate, which was filtered and
washed with MeOH to generate a dark purple solid: m.p. >300 °C; 'H NMR (500 MHz, DMSO,
ppm) 6 9.78 (s, 8H, CtpyH>~"), 9.59 (s, 8H, AtpyH>-*), 9.28 (s, 8H, BtpyH>->), 9.16-9.15 (m, 8H,
AMpyH?>2"), 9.12-9.11 (m, 16H, BtpyH>*", CtpyH>-"), 8.98-8.96 (m, 4H, “PhHY), 8.87 (s, 4H, BPhH?),
8.82 (s, 4H, “PhH?), 8.76-8.74 (m, 4H, BPhHP), 8.70 (s, 4H, ~“PhH?), 8.61-8.60 (m, 4H, BPhHY),
8.53-8.51 (m, 4H, CtpyHP), 8.48-8.46 (m, 4H, ~PhHY), 8.42-8.40 (m, 4H, ~Ph/P®), 8.33-7.95 (m,
104H, AtpyH**', Btpy H**", Btpy HoS", Ctpy H**', APhH®f, BPhHCt, CPhHf, PhH2M), 7.61-7.59 (m,
16H, StpyH>®", BtpyH>"), 7.35-7.29 (m, 16H, AtpyH>®", CtpyH>>"), 7.23-7.20 (m, 8H, “AtpyH>").



Molecular cartoons for Zn, Rul,],:
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Figure S2. Illustration three possible Zny[RuL,], isomers ('"H NMR spectrum for 1 and 2 should

have two singlets for tpyH>>" and for 3 should be three singlets for tpyH>>").S3

NMR spectra of ligand and complex

9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2
Chemical shift(ppm)

Figure S3. 'H NMR spectrum (400 MHz) of Zng(RuL,), in CD;CN.
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Figure S7. '"H NMR spectrum (500 MHz) of Fe,Zn,(RuL,), in DMSO-dg.
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Figure S8. 2D COSY spectrum (500 MHz) of Fe,Zn,(RuL,), in DMSO-dg.
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Figure S9. 2D NOESY spectrum (500 MHz) of Fe,Zn,(Rul;), in DMSO-d.
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Figure S10. 2D DOSY spectrum (500 MHz) of Fe,Zn,(RuL,), in DMSO-d;.
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Figure S11. 'H NMR spectrum (500 MHz) of ligand 3 in CDCl;.



8.0

9.0 8.5 8.0 7.5

" Chemical shi-ft(ppm)
Figure S12. 2D COSY spectrum (500 MHz) of ligand 3 in CDCl;.
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Figure S13. 2D NOESY spectrum (500 MHz) of ligand 3 in CDCl;,
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Figure S14. 13C spectrum (400 MHz) of ligand 3 in CDCl;,
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Figure S16. 2D COSY spectrum (400 MHz) of RuY; in CD;CN.
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Figure S18. 13C spectrum (400 MHz) of ligand RuY; in CDClI;,
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Figure S20. 2D COSY spectrum (400 MHz) of ligand RuL, in DMSO-dg.
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Figure S21. 2D NOESY spectrum (400 MHz) of ligand RuL, in DMSO-dg.
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Figure S22. 'H NMR spectrum (500 MHz) of ligand Zn[RuL,] in CD;CN.
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Figure S23. 2D COSY spectrum (500 MHz) of ligand Zn[RuL,;] in CD;CN.
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Figure S24. 2D NOESY spectrum (500 MHz) of ligand Zn[RuL,] in CD;CN.
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Figure S25. 'H NMR spectrum (500 MHz) of ligand Fe[RuL,] in CD;CN.
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Figure S27. 2D NOESY spectrum (500 MHz) of ligand Fe[RuL,] in CD;CN.
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ESI-MS spectra data of of ligand and complex
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Figure S28. The ESI-MS spectrum of ligand 3.
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Figure S29. The ESI-MS spectrum of RuY,.
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Figure S30. The ESI-MS spectrum of RuL,.
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Figure S31. The ESI-MS spectrum of ligand Zn[RuL,].
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Figure S32. The ESI-MS spectrum of ligand Fe[RuL,].
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Figure S33. The ESI-MS spectrum of Zn,[RulL;].
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Figure S34. The ESI-MS spectrum of Fe,Zn,[RuL;],.
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Figure S35. Theoretical and measured isotope patterns for various charge states of Zny[RuL,],

(PF¢ , as counterion).
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Figure S36. Theoretical and measured isotope patterns for various charge states of Fe;Zn,|RulL;,]|,
(PF¢ , as counterion).



Molecular models

Figure S38. Energy-minimized structure of Fe,Zn,[RuL,;],.
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