Direct diversification of unmasked quinazolin-4(3*H*)-ones through orthogonal reactivity modulation

Jae Bin Lee, Mi Eun Kang, Joohee Kim, Chang Young Lee, Jung-Min Kee, Kyungjae Myung, Jang-Ung Park* and Sung You Hong*

Supplementary Information

Table of Contents

I. General Information	Page S2
II. Substrate Synthesis and Characterization	Page S2
III. Products Synthesis and Characterization	Page S4
III.1 Optimization for the Synthesis of 3a	Page S4
III.2 Procedure for the N-arylation	Page S8
III.3 Procedure for the Annuative π -Extension	Page S8
III.4 Procedure for the C–H Fluorination	Page S11
IV. Detection of Hg ²⁺ Using FET Sensors	Page S11
IV.1 Methods	Page S11
IV.2 Electronic Characteristics of FET for Other Metal Ions	Page S12
V. References	Page S12
VI. NMR Spectra	Page S13

I. General Information

All reagents were purchased from standard suppliers (Sigma-Aldrich, Alfa Aesar, or TCI) and were used without further purification. All reactions were performed in oven-dried Schlenk tubes (capacity, 10 mL). ¹H, ¹³C, and ¹⁹F NMR spectra were recorded in DMSO- d_6 or CDCl₃ on a Bruker Avance III HD (400 MHz for proton, 100 MHz for carbon, 376 MHz for fluorine). All chemical shifts are given on the δ -scale in ppm, and residual solvent peaks were used as references. High resolution mass spectrometry (HRMS) analyses were performed on a Thermo Scientific Q Exactive Plus Hybrid Quadrupole-Orbitrap mass spectrometer. Thin layer chromatography (TLC) was carried out on Merck Kieselgel 60 F₂₅₄ glass plates. Flash column chromatography was carried out using Merck Silica gel 60 silica.

II. Substrate Synthesis and Characterization

Substrates 1a-1p

General Procedure: Synthesis of 2-arylquinazolin-4(3H)-one (1a,1b,1d-1i,1k-1p)

2-Arylquinazolin-4(3*H*)-ones were prepared according to the previously reported method.^{S1} To a two-neck round bottom flask were added substituted 2-halobenzoic acid (8.55 mmol, 1.0 equiv) and benzamidine hydrochloride (12.77 mmol, 1.5 equiv) in DMF (20 mL). The reaction flask was evacuated, back-filled with nitrogen several times, and then vigorously stirred for 10 min. Cs_2CO_3 (17.03 mmol, 2.0 equiv) was added to the reaction mixture. After 15 min, Cul (1.70 mmol, 0.2 equiv) was subsequently added and stirred at room temperature for 12 h under a nitrogen atmosphere. After completion of the reaction, the reaction mixture was filtered. The solvent residue was concentrated *in vacuo* and the residue was purified by flash column chromatography.

Procedure for the synthesis of 2-(4-methoxyphenyl)quinazolin-4(3H)-one (1c)

2-(4-Methoxyphenyl)quinazolin-4(3*H*)-one was prepared according to the previously reported method.^{S2} To a round bottom flask were added anthranilamide (20 mmol, 1.0 equiv), 4-methoxybenzaldehyde (20 mmol, 1.0 equiv) and Cu₂O (0.6 mmol, 0.3 equiv) in DMA (60 mL), and stirred at 120 °C for 24 h under air. After completion of the reaction, the reaction mixture was filtered. The solvent residue was concentrated *in vacuo* and the residue was purified by flash column chromatography.

Procedure for the synthesis of 2-(4-fluorophenyl)quinazolin-4(3H)-one (1j)

2-(4-Fluorophenyl)quinazolin-4(3*H*)-one was prepared according to the previously reported method.^{S3} To a round bottom flask were added anthranilamide (20 mmol, 1.0 equiv), 4-fluorobenzyl alcohol (20 mmol, 1.0 equiv), and KOH (40 mmol, 2.0 equiv) in toluene (80 mL), and stirred at 90 °C for 20 h under air. After completion of the reaction, the solvent residue was concentrated *in vacuo* and the residue was purified by flash column chromatography.

*1a,^{S1} 1b,^{S4} 1c,^{S2} 1d,^{S5} 1e,^{S5} 1g,^{S6} 1h,^{S5} 1i,^{S6} 1j,^{S3} 1k,^{S5} 1l,^{S5} and 1m^{S5} have been reported.

8-Nitro-2-phenylquinazolin-4(3*H*)-one (**1f**)

Yellowish solid; **ATR-FTIR** (cm⁻¹): 3167, 3120, 3076, 1670, 1602, 1566, 1528, 1479, 1365, 1287, 1156, 1060, 966, 889, 825, 766, 692; ¹**H NMR** (400 MHz, DMSO- d_6) δ 12.95 (s, 1H), 8.38 (d, J = 7.9, 1.4 Hz, 1H), 8.33 – 8.29 (m, 1H), 8.16 (d, J = 7.6 Hz, 2H), 7.68 – 7.54 (m, 4H); ¹³**C NMR** (100 MHz, DMSO- d_6) δ 161.38, 155.05, 147.10, 140.99, 132.64, 132.38, 130.15, 129.19, 129.00, 128.67, 128.59, 126.43,

122.97; **HRMS-ESI**: m/z [M+H]⁺ calcd for C₁₄H₁₀N₃O₃: 268.0717; found: 268.0713.

6,7-Dimethyl-2-phenylquinazolin-4(3H)-one (1n)

White solid; **ATR-FTIR** (cm⁻¹): 3048, 2969, 2917, 1666, 1623, 1602, 1566, 1490, 1456, 1349, 1306, 1292, 1193, 1163, 1027, 998, 940, 851, 837, 776, 694; ¹**H NMR** (400 MHz, DMSO- d_6) δ 12.36 (s, 1H), 8.15 (dt, J = 8.2, 1.8 Hz, 2H), 7.90 (s, 1H), 7.55 (dd, J = 5.2, 2.8 Hz, 4H), 2.39 (s, 3H), 2.37 (s, 3H); ¹³**C NMR** (100 MHz, DMSO- d_6) δ 162.49, 151.96, 147.65, 144.92, 136.32, 133.31, 131.63,

 $129.05,\ 128.03,\ 126.02,\ 119.21,\ 20.39,\ 19.77;\ \textbf{HRMS-ESI}:\ m/z\ [M+H]^+\ calcd\ for\ C_{16}H_{15}N_2O:\ 251.1179;\ found:\ 251.1174.$

7-Chloro-5-methyl-2-phenylquinazolin-4(3*H*)-one (**1o**)

White solid; **ATR-FTIR** (cm⁻¹): 3196, 3166, 3114, 2960, 2923, 2359, 1660, 1590, 1610, 1555, 1513, 1478, 1451, 1427, 1299, 1210, 1194, 1164, 1135, 1089, 1043, 986, 934, 890, 869, 849, 819, 777, 715, 693;¹**H NMR** (400 MHz, DMSO- d_6) δ 12.44 (s, 1H), 8.19 – 8.13 (m, 2H), 7.57 (dt, *J* = 15.9, 6.8 Hz, 4H), 7.35 (s, 1H), 2.80 (s, 3H); ¹³**C NMR** (100 MHz, DMSO- d_6) δ 162.92, 153.75, 151.87, 143.13,

138.37, 132.59, 132.12, 129.08, 128.89, 128.28, 125.08, 118.63, 22.68; **HRMS-ESI**: $m/z [M+H]^+$ calcd for $C_{15}H_{12}CIN_2O$: 271.0633; found: 271.0629.

7-Fluoro-5-methyl-2-phenylquinazolin-4(3*H*)-one (1p)

White solid; **ATR-FTIR** (cm⁻¹): 3167, 3093, 3066, 2962, 2924, 2360, 2341, 1656, 1596, 1565, 1482, 1451, 1409, 1384, 1343, 1306, 1194, 1155, 1123, 1101, 1042, 1001, 979, 930, 862, 835, 780, 695;¹**H NMR** (400 MHz, DMSO- d_6) δ 12.40 (s, 1H), 8.21 – 8.12 (m, 2H), 7.62 – 7.51 (m, 3H), 7.31 (dd, J = 9.6, 2.5 Hz, 1H), 7.18 (d, J = 9.8 Hz, 1H), 2.82 (s, 3H); ¹³**C NMR** (100 MHz, DMSO- d_6) δ 164.91 (d, J =

250.4 Hz), 162.77, 153.63, 152.98 (d, J = 13.4 Hz), 144.51 (d, J = 10.8 Hz), 132.60, 132.08, 129.07, 128.27, 117.20 (d, J = 22.9 Hz), 116.87, 110.94 (d, J = 20.8 Hz), 23.07; ¹⁹**F NMR** (376 MHz, DMSO- d_6) δ -105.88; **HRMS-ESI**: m/z [M+H]⁺ calcd for C₁₅H₁₂FN₂O: 255.0928; found: 255.0923.

III. Products Synthesis and Characterization

III.1 Optimization for the Synthesis of 3a

Entry	Pd catalyst variations	Yield ⁱ	° (%)
		3a	3a'
1	-	37	-
2	$(PPh_3)_2PdCl_2$ instead of $Pd(OAc)_2$	-	-
3	PEPPSI-IPr instead of Pd(OAc) ₂	13	-
4	$Pd(TFA)_2$ instead of $Pd(OAc)_2$	17	-
5	PEPPSI-SIPr instead of Pd(OAc) ₂	28	-
6	30 mol% Pd(OAc) ₂ instead of 10 mol% Pd(OAc) ₂	49	0
7	40 mol% Pd(OAc) ₂ instead of 10 mol% Pd(OAc) ₂	73	3
8	50 mol% Pd(OAc) ₂ instead of 10 mol% Pd(OAc) ₂	82	5
9	70 mol% Pd(OAc) ₂ instead of 10 mol% Pd(OAc) ₂	77	8

^a The initial conditions: **1a** (0.09 mmol, 1.0 equiv), Ph₂IOTf (0.09 mmol, 1.0 equiv), Pd(OAc)₂ (10 mol%), KOAc (0.27 mmol, 3.0 equiv), DMF (2.0 mL), 130 °C, 12 h, air. ^b Yield determined by GC analysis using *n*-dodecane as an internal standard.

Table S2 Base screening^a

Entry	Base variations	Yield	^b (%)
	-	3a	3a'
1		82	5
2	CsOAc instead of KOAc	75	5
3	NaOAc instead of KOAc	68	8
4	K ₂ CO ₃ instead of KOAc	67	20
5	2.0 equiv KOAc instead of 3.0 equiv KOAc	70	6
6	2.5 equiv KOAc instead of 3.0 equiv KOAc	74	4

^a The initial conditions: **1a** (0.09 mmol, 1.0 equiv), Ph₂IOTf (0.09 mmol, 1.0 equiv), Pd(OAc)₂ (50 mol%), KOAc (0.27 mmol, 3.0 equiv), DMF (2.0 mL), 130 °C, 12 h, air. ^b
Yield determined by GC analysis using *n*-dodecane as an internal standard.

Table S3 Solvent and temperature screening^a

Entry	Solvent and temperature variations	Yield	d⁵ (%)
		3a	3a'
1		82	5
2	Toluene instead of DMF	37	2
3	DMSO instead of DMF	72	2
4	DMA instead of DMF	82	6
5	MeCN at 100 °C instead of DMF at 130 °C	17	-
6	DMC at 100 $^\circ\text{C}$ instead of DMF at 130 $^\circ\text{C}$	23	2
7	THF at 100 °C instead of DMF at 130 °C	20	1
8	Dioxane at 100 °C instead of DMF at 130 °C	-	-

 ^a The initial conditions: **1a** (0.09 mmol, 1.0 equiv), Ph₂IOTf (0.09 mmol, 1.0 equiv), Pd(OAc)₂ (50 mol%), KOAc (0.27 mmol, 3.0 equiv), DMF (2.0 mL), 130 °C, 12 h, air. ^b
Yield determined by GC analysis using *n*-dodecane as an internal standard.

Table S4 Oxidant screening^a

Ia	20 mol% Pd(OAc) ₂ Ph ₂ IOTf (1.0 equiv) Oxidant (1.0 equiv) DMF, 130 °C, 15 h, air 'initial conditions' 3a	O N Ph ^o 3a'	
Entry	Oxidant variations	Yiel	d ^b (%)
		3a	3a'
1°		82	5
2	Ag(OAc) ₂	31	-
3	Agl	17	-
4	AgCO ₃	12	-
5	AgNO ₃	10	-
6	Ag ₂ O	38	-
7	AgSbF ₆	13	-
8	AgTFA	74	1

^a The initial conditions: **1a** (0.09 mmol, 1.0 equiv), Ph₂IOTf (0.09 mmol, 1.0 equiv), Pd(OAc)₂ (20 mol%), oxidant (0.09 mmol, 1.0 equiv), KOAc (0.27 mmol, 3.0 equiv), DMF (2.0 mL), 130 °C, 15 h, air. ^b Yield determined by GC analysis using *n*-dodecane as an internal standard. ^c 50 mol% Pd(OAc)₂ for 12 h instead of 20 mol% Pd(OAc)₂ for 15 h.

Table S5 Ligand screening^a

Entry	Ligand variations	Yield ^b (%)
1°		74
2	2,2'-Bipyridyl	2
3	Bathophenanthroline	1
4	XPhos	21
5	<i>t</i> BuXPhos	4
6	XantPhos	35
7	CyJohnPhos	43
8	BrettPhos	>99
9	Tricyclohexylphosphine	85
10	Triphenylphosphine	72

^a The initial conditions: **1a** (0.09 mmol, 1.0 equiv), Ph₂IOTf (0.11 mmol, 1.2 equiv), Pd(OAc)₂ (10 mol%), AgTFA (0.09 mmol, 1.0 equiv), ligand (40 mol%), KOAc (0.27 mmol, 3.0 equiv), DMF (2.0 mL), 130 °C, 24 h, air. ^b Yield determined by GC analysis using *n*-dodecane as an internal standard. ^c 20 mol% Pd(OAc)₂ and 1.0 equiv Ph₂IOTf are used for 15 h.

Table S6 Selected optimization conditions under an oxygen atmosphere^a

Entry	Reaction conditions	Yield ^b (%)
1	•	76
2	20 mol% Pd(OAc) ₂	78
3	20 mol% BrettPhos	63
4	20 mol% Pd(OAc) ₂ , 30 mol% BrettPhos, 1.1 equiv Ph ₂ IOTf and 4.0 equiv KOAc	97

^e The initial conditions: **1a** (0.09 mmol, 1.0 equiv), Ph₂IOTf (0.11 mmol, 1.2 equiv), Pd(OAc)₂ (10 mol%), BrettPhos (40 mol%), AgTFA (0.09 mmol, 1.0 equiv), KOAc (0.27 mmol, 3.0 equiv), DMF (2.0 mL), 130 °C, 24 h, O₂. ^{*b*} Isoated yield.

III.2 Procedure for the *N*-arylation (2a)

To a Schlenk tube were added 2-phenylquinazolin-4(3*H*)-one **1a** (0.09 mmol, 1.0 equiv), Ph_2IOTf (0.135 mmol, 1.5 equiv), Cul (0.009 mmol, 10 mol%), Na_2CO_3 (0.18 mmol, 2.0 equiv), Li-*t*-Yu-butyl-quinoline **L7** (0.036, 40 mol%) and DMF (2.0 mL). The resulting mixture was stirred at 130 °C for 24 h. The reaction was monitored by TLC or GC analysis. After completion of the reaction, the reaction mixture was concentrated *in vacuo* and purified by flash column chromatohraphy.

*2a^{S7} has been reported.

III.3 Procedure for the Annuative π -Extension (3)

To a Schlenk tube were added 2-arylquinazolin-4(3*H*)-one **1** (0.09 mmol, 1.0 equiv), Ar_2IOTf (0.10 mmol, 1.1 equiv), $Pd(OAc)_2$ (0.018 mmol, 20 mol%), BrettPhos (0.027 mmol, 30 mol%), KOAc (0.36 mmol, 4.0 equiv), AgTFA (0.09 mmol, 1.0 equiv) and DMF (2.0 mL). The resulting mixture was bubbled with oxygen for 5 min, and then stirred at 130 °C for 24 h under an O₂ atmosphere. The reaction was monitored by TLC or GC analysis. After completion of the reaction, the reaction mixture was concentrated *in vacuo* and purified by flash column chromatohraphy.

Scheme S1 Proposed mechanism of annulative π-extension: alternative Pd(II)/Pd(IV) manifold in cycle II.

*3a, S8 3c, S8 3d, S9 3e, S8 3h, S9 3j, S8 3l, S8 3q, S10 3r, S10 and 3s S10 have been reported.

13-Methoxy-14H-quinazolino[3,2-f]phenanthridin-14-one (3b)

White solid (92%); **ATR-FTIR** (cm⁻¹): 3009, 2922, 2852, 2239, 1683, 1593, 1547, 1470, 1346, 1261, 1101, 1085, 1024, 914, 860, 810, 779, 747, 717; ¹**H NMR** (400 MHz, CDCl₃) δ 8.95 (dd, *J* = 8.1, 1.4 Hz, 1H), 8.91 – 8.86 (m, 1H), 8.26 – 8.17 (m, 2H), 7.70 (td, *J* = 8.2, 7.6, 6.3 Hz, 2H), 7.58 (ddd, *J* = 8.2, 7.1, 1.2 Hz, 1H), 7.45 (tdt, *J* = 8.2, 5.6, 2.9 Hz, 2H), 7.41 – 7.36 (m, 1H), 6.91 (dd, *J* = 8.3, 0.9 Hz, 1H),

4.07 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.11, 159.09, 147.71, 145.71, 133.74, 131.68, 131.18, 130.54, 127.41, 126.99, 126.92, 125.91, 125.13, 121.98, 121.93, 121.03, 120.74, 118.07, 109.67, 106.13, 55.38; **HRMS-ESI**: m/z [M+H]⁺ calcd for C₂₁H₁₅N₂O₂: 327.1128; found: 327.1123.

10-Nitro-14H-quinazolino[3,2-f]phenanthridin-14-one (3f)

Yellowish solid (89%); **ATR-FTIR** (cm⁻¹): 3081, 2959, 2923, 2854, 1732, 1693, 1597, 1550, 1523, 1447, 1362, 1335, 1258, 11522, 1018, 869, 799, 760, 738, 714; ¹**H NMR** (400 MHz, $CDCl_3$) δ 9.11 – 9.06 (m, 1H), 9.02 (dd, *J* = 8.2, 1.4 Hz, 1H), 8.65 (dd, *J* = 8.1, 1.5 Hz, 1H), 8.36 – 8.22 (m, 3H), 7.81 (ddd, *J* = 8.3,

7.1, 1.5 Hz, 1H), 7.65 (ddd, J = 8.2, 7.2, 1.2 Hz, 1H), 7.60 – 7.52 (m, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.39, 147.52, 144.56, 138.05, 132.33, 131.33, 131.09, 130.76, 128.27, 128.05, 127.77, 127.41, 126.18, 125.46, 123.70, 122.27, 122.23, 121.32, 121.11, 120.77; **HRMS-ESI**: m/z [M+H]⁺ calcd for C₂₀H₁₂N₃O₃: 342.0873; found: 342.0868.

11-Fluoro-14H-quinazolino[3,2-f]phenanthridin-14-one (3g)

White solid (91%); ATR-FTIR (cm⁻¹): 2922, 2852, 1686, 1597, 1552, 1474, 1451, 1335, 1281, 1149, 1089, 1041, 971, 858, 774, 764, 746, 715; ¹H NMR (400 MHz, CDCl₃) δ 9.08 (dd, *J* = 8.0, 1.8 Hz, 1H), 8.97 (dd, *J* = 8.1, 1.3 Hz, 1H), 8.41 (dd, *J* = 8.9, 6.1 Hz, 1H), 8.31 – 8.18 (m, 3H), 7.80 – 7.70 (m, 1H), 7.67 – 7.57 (m, 1H), 7.56 – 7.46 (m, 2H), 7.21 (td, *J* = 8.5, 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ

166.74 (d, J = 254.4 Hz), 162.22, 148.22 (d, J = 13.5 Hz), 147.54, 132.86, 132.52, 131.51, 130.22 (d, J = 10.8 Hz), 128.60, 128.35, 128.20, 126.83, 126.59, 123.09, 123.02, 122.17, 121.81, 117.50, 115.10 (d, J = 23.7 Hz), 111.90 (d, J = 21.7 Hz); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -103.10; **HRMS-ESI**: m/z [M+H]⁺ calcd for C₂₀H₁₂FN₂O: 315.0928; found: 315.0926.

13-Fluoro-14H-quinazolino[3,2-f]phenanthridin-14-one (3i)

White solid (64%); **ATR-FTIR** (cm⁻¹): 3076, 2926, 2853, 2360, 1674, 1603, 1553, 1482, 1453, 1359, 1291, 1242, 1152, 1108, 947, 833, 782, 743, 714; ¹**H NMR** (400 MHz, CDCl₃) δ 8.97 – 8.89 (m, 2H), 8.21 (dd, *J* = 9.9, 7.7 Hz, 2H), 7.77 – 7.68 (m, 2H), 7.58 (dt, *J* = 7.6, 3.5 Hz, 2H), 7.48 (ddd, *J* = 6.8, 4.5, 1.8 Hz, 2H), 7.12 (dd, *J* = 10.7, 8.1 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 161.38 (d, *J* = 266.2 Hz),

148.19, 147.15, 134.74 (d, J = 10.7 Hz), 132.52, 132.43, 131.56, 131.26, 128.55, 128.21, 128.16, 128.12, 127.55, 126.66, 126.58, 123.09, 122.96, 122.76 (d, J = 4.2 Hz), 121.89 (d, J = 14.6 Hz), 112.45 (d, J = 21.0 Hz); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.48; **HRMS-ESI**: m/z [M+H]⁺ calcd for C₂₀H₁₂FN₂O: 315.0928; found: 315.0925.

13-Chloro-14*H*-quinazolino[3,2-*f*]phenanthridin-14-one (3k)

Yellowish solid (66%); **ATR-FTIR** (cm⁻¹): 3062, 2957, 2920, 2851, 1736, 1691, 1571, 1540, 1452, 1342, 1238, 1148, 1118, 1017, 965, 896, 862, 809, 769, 748, 718; ¹**H NMR** (400 MHz, CDCl₃) δ 8.97 (dd, *J* = 8.1, 1.4 Hz, 1H), 8.86 – 8.80 (m, 1H), 8.26 (ddd, *J* = 7.7, 5.0, 2.0 Hz, 2H), 7.79 – 7.71 (m, 2H), 7.68 –

7.60 (m, 2H), 7.55 – 7.48 (m, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.11, 147.64, 145.88, 133.56, 133.03, 132.78, 131.56, 131.40, 130.61, 127.61, 127.57, 127.19, 127.06, 125.58, 125.07, 122.14, 122.01, 120.88, 120.81, 116.93; **HRMS-ESI**: m/z [M+H]⁺ calcd for C₂₀H₁₂CIN₂O: 331.0633; found: 331.0628.

12-Bromo-14*H*-quinazolino[3,2-*f*]phenanthridin-14-one (**3m**)

Yellowish solid (78%); **ATR-FTIR** (cm⁻¹): 2921, 2852, 1734, 1679, 1599, 1552, 1469, 1449, 1341, 1288, 1259, 1147, 1093, 1017, 881, 761, 742, 714; ¹**H NMR** (400 MHz, CDCl₃) δ 9.11 (dd, *J* = 8.1, 1.7 Hz, 1H), 9.03 (dt, *J* = 8.2, 0.9 Hz, 1H), 8.43 (dd, *J* = 8.0, 1.1 Hz, 1H), 8.30 – 8.21 (m, 1H), 7.85 – 7.82 (m, 2H), 7.79 – 7.71 (m, 1H), 7.66 – 7.59 (m, 1H), 7.51 (ddd, *J* = 9.2, 6.0, 2.0 Hz, 3H); ¹³**C NMR** (100

MHz, CDCl₃) δ 162.99, 146.14, 134.55, 133.51, 133.08, 132.22, 131.35, 128.98, 128.56, 128.24, 128.14, 127.41, 127.17, 126.94, 126.49, 126.25, 123.12, 123.10, 122.18, 121.82; **HRMS-ESI**: m/z [M+H]⁺ calcd for C₂₀H₁₂BrN₂O: 375.0128; found: 375.0128.

11,12-Dimethyl-14*H*-quinazolino[3,2-*f*]phenanthridin-14-one (**3n**)

White solid (98%); **ATR-FTIR** (cm⁻¹): 2961, 2920, 2852, 2593, 2226, 1950, 1730, 1677, 1598, 1551, 1473, 1432, 1326, 1286, 1259, 1148, 1088, 1020, 870, 799, 766, 746, 716; ¹**H NMR** (400 MHz, CDCl₃) δ 9.11 (dd, *J* = 7.5, 1.2 Hz, 1H), 8.98 (ddd, *J* = 8.1, 1.5, 0.5 Hz, 1H), 8.26 – 8.20 (m, 2H), 8.16 (d, *J* = 1.0 Hz, 1H), 7.75 – 7.69 (m, 1H), 7.62 – 7.56 (m, 2H), 7.54 – 7.44 (m, 2H), 2.46 (s, 3H), 2.45

 $(s, 3H); \ensuremath{\,^{13}\text{C}}\ensuremath{\,\text{NMR}}\xspace(100\ensuremath{\,\text{MHz}}\xspace, \text{CDCI}_3)\ensuremath{\,^{\circ}}\begin{subarray}{c} 161.88, 144.91, 143.95, 143.56, 134.99, 132.25, 130.89, 130.16, 127.46, 127.03, 127.01, 126.45, 126.07, 125.27, 122.08, 122.03, 121.20, 120.97, 120.76, 117.67, 19.50, 18.83; \ensuremath{\,\text{HRMS-ESI:}}\ensuremath{\,\text{m/z}}\xspace[M+H]^+\ensuremath{\,\text{calcd}}\ensuremath{\,\text{for}}\ensuremath{\,^{\circ}}\xspace{1}\ens$

11-Chloro-13-methyl-14H-quinazolino[3,2-f]phenanthridin-14-one (30)

White solid (83%); **ATR-FTIR** (cm⁻¹): 3084, 2969, 2924, 1691, 1586,1573, 1547, 1443, 1341, 1322, 1281, 1149, 1029, 896, 857, 753, 744, 719; ¹**H NMR** (400 MHz, CDCl₃) δ 8.91 (dd, *J* = 8.1, 1.4 Hz, 1H), 8.84 – 8.79 (m, 1H), 8.28 – 8.18 (m, 2H), 7.73 (ddd, *J* = 8.2, 7.1, 1.4 Hz, 1H), 7.64 – 7.56 (m, 2H), 7.53 – 7.43 (m, 2H), 7.21 (dq, *J* = 1.8, 0.9 Hz, 1H), 2.92 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ

161.89, 147.56, 146.03, 142.00, 138.40, 131.53, 131.40, 130.51, 127.74, 127.55, 127.04, 126.98, 125.73, 125.39, 123.40, 122.15, 122.06, 120.78, 120.74, 116.81, 21.98; **HRMS-ESI**: m/z [M+H]⁺ calcd for $C_{21}H_{14}CIN_2O$: 345.0789; found: 345.0782.

11-Fluoro-13-methyl-14H-quinazolino[3,2-f]phenanthridin-14-one (3p)

White solid (99%); **ATR-FTIR** (cm⁻¹): 3077, 2960, 2926, 2852, 1734, 1694, 1594, 1555, 1451, 1333, 1290, 1258, 1143, 1113, 1030, 1004, 986, 855, 766, 715; ¹**H NMR** (400 MHz, CDCl₃) δ 8.94 (ddd, J = 8.1, 1.5, 0.5 Hz, 1H), 8.87 – 8.80 (m, 1H), 8.28 – 8.20 (m, 2H), 7.74 (ddd, J = 8.2, 7.2, 1.5 Hz, 1H), 7.60 (ddd, J = 8.2, 7.2, 1.2 Hz, 1H), 7.53 – 7.44 (m, 2H), 7.31 – 7.27 (m, 1H), 6.99 (ddg, J = 9.5, 2.6,

0.9 Hz, 1H), 2.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.37 (d, J = 253.5 Hz), 161.75, 148.93, 148.79, 146.03, 143.72 (d, J = 10.6 Hz), 131.57, 131.40, 130.56, 127.55, 127.02 (d, J = 8.0 Hz), 125.72, 125.33, 122.15, 122.05, 120.80, 116.04 (d, J = 23.0 Hz), 115.22, 115.20, 109.00 (d, J = 21.1 Hz), 22.38 (d, J = 1.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.72; **HRMS-ESI**: m/z [M+H]⁺ calcd for C₂₁H₁₄FN₂O: 329.1085; found: 329.1081.

III.4 Procedure for the C–H Fluorination (4a)

To a Schlenk tube were added 2-phenylquinazolin-4(3*H*)-one **1a** (0.09 mmol, 1.0 equiv), $Pd(OAc)_2$ (10 mol%), NFSI (0.27 mmol, 3.0 equiv) and DMF (2.0 mL). The resulting mixture was stirred at 150 °C for 12 h. The reaction was monitored by TLC or GC analysis. After the completion of the reaction, the reaction mixture was concentrated *in vacuo*, and purified by flash column chromatohraphy.

*4a^{S11} has been reported.

IV. Detection of Hg²⁺ Using FET Sensors

IV.1 Methods

Fabrication of Chemically-Modified Graphene FET

Photoresist was patterned on Si substrates with 300 nm thick SiO₂, and Cr/Au (3 nm/100 nm) electrodes were made by thermal evaporation. Then, graphene was transferred onto the Cr/Au electrodes and patterned by photolithography. Graphene film was dry-etched using oxygen reactive ion etching (RIE) plasma for channel. Graphene channel was surface modified by dip coating of **3a** (300 ppm) in MeOH/DCM (9:1, v/v) via the π - π stacking interaction.

Fabrication of Graphene-AgNW Hybrid Field-Effect Sensors and Integration with µ-Fluidic Channel

For making the µ-fluidic channel, SU-8 3050 negative photoresist was spin coated onto a bare Si wafer, followed by patterning by photolithography process. A mixture of Sylgard 184 silicone elastomer and curing agent (10:1 wt.%) was poured onto the Si wafer with the thickness of 5 mm and cured at 60 °C for 5 h. The cured PDMS was peeled from the master, and then input, output, and gate terminals were punched out of the PDMS with steel tubes. The Ag/AgCl reference electrode was inserted into the PDMS channel through the gate terminal.

Real-time Sensing of Hg²⁺ by Chemically-Modified Graphene-FET

The flow rate of all solutions in the μ -fluidic channel was 1.0 mL h⁻¹. For the real-time sensing, Hg(CN)₂ solution (100 ppm) and imidazole solution (aqueous, 20 mM) were consecutively injected in the μ -fluidic channel. A solution-gate characterization was conducted by sweeping Ag/AgCl reference electrode using a probe station (Keithley 4200-SCS semiconductor parametric analyzer). All devices were characterized at 0.1 V of drain bias.

Scheme S2 Reversible and real-time sensing of Hg²⁺ using chemically-modified graphene-FET.

IV.2 Electronic Characteristics of FET for Other Metal lons

Fig. S1 Transfer characteristics of solution-gated graphene field-effect sensors with **3a**-functionalization after flowing (a) Cu^{2+} solution, (b) Na^+ solution, (c) K^+ solution (V_D = 0.1 V). (d) Optical microscope image of fabricated graphene field-effect sensor. Scale bar, 500 µm. Concentration the solution: $Cu(OAc)_2$, NaCl, or KCl; 100 ppm.

Fig. S2 Transfer characteristics of solution-gated graphene field-effect sensors without **3a**-functionalization after flowing (a) Hg²⁺ solution, (b) Cu^{2+} solution, (c) Na⁺ solution, (d) K⁺ solution (V_D = 0.1 V).

V. References

- S1 X. Liu, H. Fu, Y. Jiang and Y. Zhao, Angew. Chem., Int. Ed., 2009, 48, 348.
- S2 D. Zhan, T. Li, H. Wei, W. Weng, K. Ghandi and Q. Zheng, RSC Adv., 2012, 3, 9325.
- S3 D. Qui, Y. Wang, D. Lu, L. Zhou and Q. Zeng, *Monatsh. Chem.*, 2015, **146**, 1343.
- S4 M. Hayakawa, H. Kaizawa, H. Moritomo, T. Koizumi, T. Ohishi, M. Okada, M. Ohta, S.-i. Tsukamoto, P. Parker, P.
- Workman and M. Waterfield, Bioorg. Med. Chem., 2006, 14, 6847.
- S5 F. -C. Jia, Z. -W. Zhou, C. Xu, Y. -D. Wu and A. -X. Wu, Org. Lett., 2016, 18, 2942.
- S6 F. Li, L. Lu and J. Ma, Org. Chem. Front., 2015, 2, 1589.
- S7 T. Kotipalli, V. Kavala, D. Janreddy, V. Bandi, C.-W. Kuo and C.-F. Yao, Eur. J. Org. Chem. 2016, 2016, 1182.
- S8 P. K. Gupta, N. Yadav, S. Jaiswal, M. Asad, R. Kant and K. Hajela, *Chem. Eur. J.*, 2015, **21**, 13210.
- S9 Y. Yu, Y. Yue, D. Wang, X. Li and C. Chen and J. Peng, Synthesis, 2016, 48, 3941.
- S10 B. Banerji, S. Bera, S. Chatterjee, S. K. Killi and S. Adhikary, Chem. Eur. J., 2016, 22, 3506.
- S11 R. Sharma, R. A. Vishwakarma and S. B. Bharate, Eur. J. Org. Chem., 2016, 2016, 5227.

VI. NMR Spectra

Fig. S3 1 H NMR (400 MHz, DMSO-*d*₆) of the compound 1f.

Fig. S4 $\,^{\rm 13}{\rm C}$ NMR (100 MHz, DMSO- $d_6)$ of the compound 1f.

Fig. S6 13 C NMR (100 MHz, DMSO- d_6) of the compound 1n.

Fig. S8 $\,^{13}\text{C}$ NMR (100 MHz, DMSO- $d_6)$ of the compound 10.

S17

Fig. S32 ¹³F NMR (376 MHz, CDCl₃) of the compound **3p**.