Supporting Information For

Facile synthesis of SiO_x/asphalt membrane for high performance

lithium-ion battery anode

Quan Xu,^{ab†} Jian-Kun Sun,^{ab†} Ge Li,^{ab} Jin-Yi Li,^{ab} Ya-Xia Yin^{ab*} and Yu-Guo Guo^{ab*}

^{a.} CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P.R. China.

^{b.} School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.

*Corresponding author: yxyin@iccas.ac.cn, ygguo@iccas.ac.cn.

[†] These authors contributed equally to this work.

Experimental section

Materials synthesis

Unless otherwise specified, all materials used in the experiment were of analytical grade, and were used without any pretreatment. SiO_x powders were purchased from Hengshui Chaofan New Energy Materials Co. Ltd. Emulsified asphalt was composed of asphalt (60 wt%), water and emulgator. The porous microspheres were synthesized through a combined process of ball-milling and spray drying. Firstly, SiO_x powders (150 g) and water (850 g) were added into ball mill, followed by ball milling 6 h under N₂ atmosphere and low temperature (10 °C) to fabricate nano-sized SiO_x particles. Then, the slurry was utilized to produce porous SiO_x particles by spray drying process. The detailed parameters were presented as follows: inlet temperature (190 °C), outlet temperate (100 °C), feeding speed (5 L h⁻¹) and rotate speed of nebulizer (30000 r min⁻¹). The obtained SiO_x microspheres (20 g) were dispersed in water (15 mL) and ethyl alcohol (10 mL) under stirring. Then the SiO_x aqueous was mixed with emulsified asphalt aqueous (17 g) to prepare SiO_x /asphalt composite. SiO_x /asphalt membrane was obtained by hot pressing SiO_x/asphalt composite at 80 °C. The resultant SiO_x/C@Ni binder-free anodes were fabricated by preforming SiO_x/asphalt membrane and nickel foam and high-temperature pyrolysis process. SiO_x/C composites were prepared by carbonizing SiO_x/asphalt membrane. All high-temperature pyrolysis process was performed under Ar atmosphere at 900 °C for 3h. SiO_x/C/G composites were composed of SiO_x/C and artificial graphite with the mass ratio of 7: 13. For comparison, SiO_x/G anodes with the mass ratio of 1: 3 presented the same reversible capacities with $SiO_x/C/G$ anodes.

Characterizations

The morphologies of all materials were investigated by a field-emission SEM (JEOL 6701F). XRD patterns were collecteded by a Rigaku D/max 2500 diffractometer using Cu Kα radiation. Raman spectra was obtained using a Digilab FTS3500 system. Thermogravimetric (TG) analysis was performed on a TA-Q60 instrument from 50 °C to 1000 °C at a heating rate of 5 °C min⁻¹ under air. The electrochemical performance of anodes was investigated using CR2032 coin cell, which was composed of Li foil as

the counter electrode, a celgard 2500 as separator, electrolyte (1M LiPF₆ in a mixture of ethylene carbonate (EC) diethyl carbonate (DEC) and dimethyl carbonate (DMC) (1:1:1, by volume) containing 5% fluoroethylene carbonate (FEC)) and the working electrode. For binder-free anodes, SiO_x/C@Ni was used as the working electrode. For other anodes, the working electrode was prepared through coating a homogeneous slurry consisting of active materials, Super P, sodium carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR) at a mass ratio of 90:5:2.5:2.5 on the C-coated copper foil, and then dried in a vacuum oven at 60 °C for 12 h. For SiO_x anodes, the mass ratio of active materials, Super P, CMC and SBR was 80:10:5:5. The mass loading of all active material was ~3 mg cm⁻². The charge and discharge measurements were performed between the voltage range of 0.005-2.0 V vs. Li⁺/Li.

Fig. S1 The high magnification SEM images of porous SiO_x microspheres.

Fig. S2 The high magnification SEM images of (a) $SiO_x/asphalt$ membrane and (b) binder-free $SiO_x/C@Ni$ after high temperature (900 °C) pyrolysis.

		Initial		Reversible		
	Mass	charge		capacity		
Sample	loading	capacity	ICE	(mA h g ⁻¹)	Capacity	Reference
	(mg cm ⁻²)	(mA h g ⁻¹)		after (X)	retention	
				cycles		
SiO _x /CNTs	1	687		453 (100)	66%	Ref. S1
SGF	2.4	477	62%	448 (500)	94%	Ref. S2
SiO _x	0.8	1087	62%	760 (400)	70%	Ref. S3
SiO _x /C	-	647	44%	540 (200)	83%	Ref. S4
SiO _x /C/G	3	600	85%	541 (600)	90%	Our work

Table S1. Summary of electrochemical performances of different SiO_x-based anodes.

[S1] H. Ming, J. Qiu, S. Zhang, M. Li, X. Zhu, L. Wang and J. Ming, *ChemElectroChem*, 2017, **4**, 1165-1171.

[S2] N. H. Yang, Y. S. Wu, J. Chou, H. C. Wu, N. L. Wu, J. Power Sources, 2015, 296, 314-317.

[S3] L. Sun, T. Su, L. Xu, M. Liu, H. B. Du, Chem. Commun., 2016, 52, 4341-4344.

[S4] Z. Sun, X. Wang, T. Cai, Z. Meng, W. Q. Han, RSC Adv., 2016, 6, 40799-40805.