Supplementary Information

A bodipy based hydroxylamine sensor

Adam C. Sedgwick, ${ }^{a}$ Robert S. L. Chapman, ${ }^{,}$Jordan E. Gardiner, ${ }^{a}$ Lucy R. Peacock, ${ }^{a}$ Gyoungmi Kim, ${ }^{b}$ Juyoung Yoon, ${ }^{b *}$ Steven D. Bulla* and Tony D. James ${ }^{a *}$

[^0]
Content

1. Fluorescence analysis
2. Experimental
3. NMR

1. Fluorescence analysis

Figure S1 - Time curve of the fluorescence intensity with Probe $1(0.5 \mu \mathrm{M})$, and various concentrations of hydroxylamine $(4,6,8$ and $12 \mu \mathrm{M})$. PBS Buffer, 1% DMSO, $\mathrm{pH}=7.4$. slit width ex $=5 \mathrm{~nm}$, em $=2.5 \mathrm{~nm} . \lambda_{\mathrm{ex}}=465 \mathrm{~nm} . \lambda_{\mathrm{em}}=510 \mathrm{~nm}$

Figure S2 - Overall selectivity of probe $\mathbf{1}(0.5 \mu \mathrm{M})$ with various hydroxylamines, amino acids, amines and sulphur containing compounds ($1-\mathrm{H}_{2} \mathrm{~S}(50 \mu \mathrm{M}, 15 \mathrm{~min}$), 2 - Hydroxylamine ($50 \mu \mathrm{M}, 15 \mathrm{~min}$), 3 - N -(Methyl)Hydroxylamine (50 $\mu \mathrm{M}, 15 \mathrm{~min}$), $4-N$-(Benzyl)Hydroxylamine ($50 \mu \mathrm{M}, 15 \mathrm{~min}$), $5-N$-(Propargyl)Hydroxylamine ($50 \mu \mathrm{M}, 15 \mathrm{~min}$), $6-N$ -(tert-Butyl)Hydroxylamine ($50 \mu \mathrm{M}, 15 \mathrm{~min}$), 7 - O-(Benzyl)Hydroxylamine ($50 \mu \mathrm{M}, 15 \mathrm{~min}$), 8 - GSH ($5 \mathrm{mM}, 30 \mathrm{~min}$), 9 Cysteine ($5 \mathrm{mM}, 30 \mathrm{~min}$), 10 - Methionine ($5 \mathrm{mM}, 30 \mathrm{~min}$), 11 - Lysine ($5 \mathrm{mM}, 30 \mathrm{~min}$), 12 - Serine ($5 \mathrm{mM}, 30 \mathrm{~min}$), 13 Histidine ($5 \mathrm{mM}, 30 \mathrm{~min}$), 14 - Tyrosine ($5 \mathrm{mM}, 30 \mathrm{~min}$), 15 - Arginine ($5 \mathrm{mM}, 30 \mathrm{~min}$), 16 - Proline ($5 \mathrm{mM}, 30 \mathrm{~min}$), 17 Glycine ($5 \mathrm{mM}, 30 \mathrm{~min}$), 18 - Glutamic acid ($5 \mathrm{mM}, 30 \mathrm{~min}$), 19 - Blank in PBS Buffer, $1 \% \mathrm{DMSO} \mathrm{pH}=7.4$. slit width ex $=5 \mathrm{~nm}, \mathrm{em}=2.5 \mathrm{~nm} . \lambda_{\mathrm{ex}}=465 \mathrm{~nm}, \lambda_{\mathrm{em}}=510 \mathrm{~nm}$.

Figure S3 - Fluorescence images of HeLa cells with $0,10,50,150 \mu \mathrm{M} \mathrm{NH} 2 \mathrm{OH}(30 \mathrm{~min})$ and washed with DPBS then incubated with $1 \mu \mathrm{M}$ of probe $\mathbf{1}(30 \mathrm{~min})$ obtained by confocal microscopy. $\lambda e x .473 \mathrm{~nm} / \lambda e x$ em. $490-590 \mathrm{~nm}$. Scale bar $20 \mu \mathrm{M}$.

2. Experimental

Experimental

Ethyl 3-bromo-4-methylbenzoate

3-Bromo-4-methylbenzoic acid ($25 \mathrm{~g}, 116.3 \mathrm{mmol}$) was dissolved in EtOH (400 mL) and ${ }^{\text {Conc }} \mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$, the solution was then heated at reflux for 18 h . The reaction mixture was cooled to rt and the solvent was removed under reduced pressure. The residue was slowly quenched with saturated NaHCO_{3} solution and the aqueous layer was extracted three times with EtOAc. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford an orange oil, no further purification was required (quantitative yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) $\delta 8.19(\mathrm{~s}, \mathrm{Ar} H, 1 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{Ar} H, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{Ar} H, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.36\left(\mathrm{q}, \mathrm{COCH}_{2} \mathrm{CH}_{3}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.44\left(\mathrm{~s}, \mathrm{ArCH}_{3}, 3 \mathrm{H}\right), 1.39\left(\mathrm{t}, \mathrm{COCH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right.$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.75 \mathrm{MHz} \mathrm{CDCl}{ }_{3}\right) \delta 165.32,143.11,133.36,130.60,129.82,128.61$, 124.71, 61.15, 23.15, 14.28; I.R (thinfilm) v max (cm^{-1}): 1716.86 (C=O); HRMS (ESI): m/z calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2}$: requires: 264.9840 for $[\mathrm{M}+\mathrm{Na}]^{+}$; found: 264.9826

Ethyl 3-bromo-4-(hydroxymethyl)benzoate

A mixture of ethyl 3-bromo-4-methylbenzoate ($26.00 \mathrm{~g}, 106.95 \mathrm{mmol}$), NBS ($22.78 \mathrm{~g}, 128.34$ $\mathrm{mmol})$ and benzoyl peroxide ($2.6 \mathrm{~g}, 10.695 \mathrm{mmol}$) were suspended in $\mathrm{CCl}_{4}(300 \mathrm{~mL})$, the reaction mixture was then heated to reflux for 5 h . After cooling to rt , the solid by-products were removed by filtration and the filtrate was concentrated in vacuo. The residue was dissolved in EtOAc (200 mL) and the organic was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, brine (100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford the crude mixture which was predominantly the desired bromomethyl product and a small amount of undesired dibromoproduct. This was used directly in the next reaction without any further purification.
$\mathrm{CaCO}_{3}(32 \mathrm{~g}, 328 \mathrm{mmol})$ was added to a solution of bromomethyl product in $(150 \mathrm{~mL}) \mathrm{H}_{2} \mathrm{O}$ and $(150 \mathrm{~mL})$),4-dioxane, The mixture was then stirred at $100^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was then cooled to rt and the solid was filtered. The solvent was concentrated in vacuo to remove the 1,4-dioxane. The residue was diluted with $(400 \mathrm{~mL})$ EtOAc and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$, Brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford the crude material. The crude material was purified via column chromatography (5 to $20 \% \mathrm{EtOAc} /$ Pentane) to afford the title compound as a white solid ($7.5 \mathrm{~g}, 28.94 \mathrm{mmol}, 27 \%$). Mp. $71-73{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~s}, \mathrm{Ar} H, l \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{Ar} H, \mathrm{~J}=7.8 \mathrm{~Hz}, 1$ H), $7.60(\mathrm{~d}, \mathrm{ArH}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{OH}, 2 \mathrm{H}\right), 4.39\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3} J=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 2.14 (br. s., $\mathrm{CH}_{2} \mathrm{OH}, 1 \mathrm{H}$), $1.41\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125.75 \mathrm{MHz} \mathrm{CDCl}_{3}$) $\delta 165.21,144.57,133.46,131.14,128.67,128.03,121.78,64.64,61.37,14.28$; I.R (thinfilm) v $\max \left(\mathrm{cm}^{-1}\right)$: $3487.19(\mathrm{O}-\mathrm{H}), 1694.97(\mathrm{C}=\mathrm{O})$; HRMS (ESI): m/z calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3}$: requires: 256.9813 for [M-H];; found: 256.9808.

Ethyl 3-bromo-4-(((tert-butyldimethylsilyl)oxy)methyl)benzoate

tert-Butyldimethylsilyl chloride ($4.6 \mathrm{~g}, 30.39 \mathrm{mmol}$) was added to a mixture of Ethyl 3-bromo-4-(hydroxymethyl)benzoate ($7.50 \mathrm{~g}, 28.94 \mathrm{mmol}$) and imidazole ($3 \mathrm{~g}, 43.41 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(200 \mathrm{~mL})$, the reaction was then stirred at rt for 16 h . The reaction mixture was partitioned with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$, brine (100 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo to afford the title compound as a clear oil $(9.47 \mathrm{~g}, 25.36 \mathrm{mmol}, 88 \%)$. No further purification was required. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17$ (s, $\mathrm{ArH}, 1 \mathrm{H}$), 8.02 (d, $\mathrm{ArH}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65 (d, ArH, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.77\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{OSi}, 2 \mathrm{H}\right), 4.38\left(\mathrm{q}, \mathrm{COCH}_{2} \mathrm{CH}_{3}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.40(\mathrm{t}$, $\left.\mathrm{COCH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.98\left(\mathrm{~s}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} 9 \mathrm{H}\right), 0.15\left(\mathrm{~s}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.40,145.44,133.06,130.52,128.48,127.24,120.58$, 64.62, 61.23, 25.91, 18.38, 14.31, -5.37; I.R (thinfilm) $v \max \left(\mathrm{~cm}^{-1}\right): 1722.22(\mathrm{C}=\mathrm{O})$; HRMS (FTMS +pNSI): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{BrO}_{3} \mathrm{Si}$: requires 373.0829 for $[\mathrm{M}+\mathrm{H}]^{+}$; found 373.0828.
(3-bromo-4-(((tert-butyldimethylsilyl)oxy)methyl)phenyl)methanol

A solution of ethyl 3-bromo-4-(hydroxymethyl)benzoate ($9.40 \mathrm{~g}, 25.18 \mathrm{mmol}$) in dry THF (250 mL) was cooled to $-78^{\circ} \mathrm{C}$ under N_{2} followed by the dropwise addition of $\mathrm{LiAlH}_{4}-1 \mathrm{M}$ in THF $(25 \mathrm{~mL}, 60.44 \mathrm{mmol})$. The reaction was allowed to warm to rt and stirred for a further 5 h before being quenched at $-78{ }^{\circ} \mathrm{C}$ with phosphate buffer. The quenched reaction mixture was immediately filtered through Celite ${ }^{\circledR}$ and the filtrate was concentrated in vacuo to afford the title compound as a clear oil. No further purification was required. ($5.15 \mathrm{~g}, 25.18 \mathrm{mmol}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.52$ (m, ArH, 2 H), $7.33-7.30(\mathrm{~m}, \mathrm{ArH}, 1 \mathrm{H}), 4.73$ (s, $\left.\mathrm{CH}_{2} \mathrm{OSi}, 2 \mathrm{H}\right), 4.66\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{OH}, 2 \mathrm{H}\right), 0.96\left(\mathrm{~s}, \mathrm{OSi}_{\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 0.13 \text { (} \mathrm{s} \text {, }}\right.$ $\left.\mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 6 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (125.75 MHz CDCl ${ }_{3}$) $\delta_{\mathrm{C}}: 141.12$, 139.91, 130.5, 127.67, 125.80, 121.08, 64.49, 64.38, 25.93, 18.39, -5.34; I.R (thinfilm) $v \max \left(\mathrm{~cm}^{-1}\right): 3340.73$ (br OH); HRMS (ESI): m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{BrO}_{2} \mathrm{Si}$: requires 329.0572 for [M-H]; found 329.0568.

A solution of (3-bromo-4-(((tert-butyldimethylsilyl)oxy)methyl)phenyl)methanol (5.00 g, $15.09 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was cautiously added to a mixture of PCC $(4.87 \mathrm{~g}, 22.64$ $\mathrm{mmol})$ and Celite ${ }^{\circledR}(3.63 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The reaction mixture was stirred at rt for 1 h before being filtered through Celite ${ }^{\circledR}$ and a silica pad (eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and then concentrated in vacuo to obtain the title compound as a clear oil. No further purification was necessary. ($3.60 \mathrm{~g}, 10.93 \mathrm{mmol}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.95(\mathrm{~s}, \mathrm{CHO}, 1 \mathrm{H}$), 8.01 (s, $\operatorname{ArH}, 1 \mathrm{H}$), 7.85 (dd, $J=1.5,7.9 \mathrm{~Hz}, \mathrm{ArH}, 1 \mathrm{H}), 7.76$ (d, $J=7.9 \mathrm{~Hz}, \mathrm{ArH}, 1 \mathrm{H}$), 4.77 (s, $\operatorname{ArCH} H_{2}, 2 \mathrm{H}$,), $0.98\left(\mathrm{~s}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 0.16\left(\mathrm{~s}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 6 \mathrm{H}\right.$), ; ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.7,147.4,136.4,132.8,128.9,127.9,121.5,64.7,25.9,18.4$, -5.4; I.R (thinfilm) $v \max \left(\mathrm{~cm}^{-1}\right)$: $1702.11(\mathrm{C}=\mathrm{O})$; Mass spec was not observed.

10-(3-bromo-4-(((tert-butyldimethylsilyl)oxy)methyl)phenyl)-5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo $\left[1,2-c: 2^{\prime}, 1{ }^{\prime}-f\right][1,3,2]$ diazaborinine

2,4-Dimethylpyrrole ($0.693 \mathrm{~g}, 7.29 \mathrm{mmol}$) was added to a solution of 3-bromo-4-(((tertbutyldimethylsilyl)oxy)methyl)benzaldehyde ($1.20 \mathrm{~g}, 3.65 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150$ mL) and stirred at rt for 16 h under a N_{2} environment. DDQ ($1.24 \mathrm{~g}, 5.48 \mathrm{mmol}$) was added to the reaction mixture and stirred for a further 2 h . The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ before the addition of DIPEA $(6.3 \mathrm{~mL})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(11.33 \mathrm{~mL})$, the reaction was then stirred for a further 16 hrs. The solid impurities were filtered through Celite ${ }^{\circledR}$, the filtrate was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford the crude material. The crude material was purified via column chromatography 10% ($\mathrm{EtOAc} /$ Pentane) to afford the title compound as a red gum ($0.81 \mathrm{~g}, 41 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) $\delta 7.69(\mathrm{~d}, \mathrm{Ar} H, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{Ar} H, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{Ar} H, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.00\left(\mathrm{~s},(\mathrm{Pyr})_{2}, 2 \mathrm{H}\right), 4.82\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{OSi}, 2 \mathrm{H}\right), 2.56\left(\mathrm{~s}, \mathrm{ArCH}_{3} 6 \mathrm{H}\right), 1.44\left(\mathrm{~s}, \mathrm{ArCH}_{3}\right.$, $6 \mathrm{H}), 0.99\left(\mathrm{~s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 0.17\left(\mathrm{~s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 6 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (125.75 MHz $\left.\mathrm{CDCl}_{3}\right) \delta 155.83,142.97,141.46,139.67,134.93,131.42,128.07,127.14,121.38,121.24$, 64.44, 25.92, 14.74, -5.31; I.R (thinfilm) $v \max \left(\mathrm{~cm}^{-1}\right)$: No presence of carbonyl stretch; HRMS (ESI): m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BBrF}_{2} \mathrm{~N}_{2} \mathrm{OSi}$: requires: 547.1763 for $[\mathrm{M}+\mathrm{H}]^{+}$, found: 547.1768. requires: 569.1582 for $[\mathrm{M}+\mathrm{Na}]^{+}$, found 569.1607.
(2-bromo-4-(5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2', ${ }^{\prime}$ $f][1,3,2]$ diazaborinin-10-yl)phenyl)methanol

TBAF - 1 M in THF ($2.1 \mathrm{~mL}, 2.08 \mathrm{mmol}$) was added dropwise to a solution of 10-(3-bromo-4-(((tert-butyldimethylsilyl)oxy)methyl)phenyl)-5,5-difluoro-1,3,7,9-tetramethyl-5H-414,514-dipyrrolo[1,2-c:2', 1^{\prime}-f][1,3,2]diazaborinine ($1.14 \mathrm{~g}, 2.08 \mathrm{mmol}$) and in THF (20 mL) at rt the reaction was then stirred for 30 min . The reaction mixture was quenched with saturated NaHCO_{3} solution and extracted EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo, the residue was then purified via column chromatography (40 to $60 \% \mathrm{EtOAc} /$ Pentane) to afford the title compound as an orange solid ($0.36 \mathrm{~g}, 40 \%$). Mp. 236-237 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, \mathrm{ArH}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (d, ArH, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, \mathrm{Ar} H, J=2.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.00\left(\mathrm{~s},(\mathrm{Pyr})_{2}, 2 \mathrm{H}\right), 4.86\left(\mathrm{~d}, \mathrm{CH}_{2} \mathrm{OH}\right.$, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.56\left(\mathrm{~s}, \mathrm{ArCH}_{3}, 6 \mathrm{H}\right), 1.44\left(\mathrm{~s}, \mathrm{ArCH}_{3}, 6 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (125.75 MHz CDCl 3) $\delta 156,142.88,140.77,139.23,135.80,131.99,131.22,128.99,127.46,122.54,121.47,64.63$, 14.75; I.R (thinfilm) v max $\left(\mathrm{cm}^{-1}\right): 3529.29(\mathrm{O}-\mathrm{H}) ;$ HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BBrF}_{2} \mathrm{~N}_{2} \mathrm{O}$: requires 433.0894 for $[\mathrm{M}+\mathrm{H}]^{+}$, found 433.0872.

(2-bromo-4-(5,5-difluoro-1,3,7,9-tetramethyl-5H-414,514-dipyrrolo[1,2-c:2',1'$\mathrm{f}][1,3,2]$ diazaborinin- 10 -yl) phenyl)methanol ($0.57 \mathrm{~g}, 1.32 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was poured cautiously into a solution of $\mathrm{PCC}(0.431 \mathrm{~g}, 2.00 \mathrm{mmol})$ and $\mathrm{MgSO}_{4}(0.550 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$. The reaction mixture was stirred for 1.5 h before being filtered through Celite ${ }^{\circledR}$ and a silica pad and then concentrated in vacuo to afford the title compound as a red solid in 43% yield $(0.245 \mathrm{~g}, 0.57 \mathrm{mmol})$. No purification was required. m.p. $217-219{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.44(\mathrm{~s}, \mathrm{CHO}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{Ar} H, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, \mathrm{Ar} H, 1 \mathrm{H}), 7.43$ (d, $\mathrm{ArH}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.03\left(\mathrm{~s},(\mathrm{Pyr} H)_{2}, 2 \mathrm{H}\right), 2.57\left(\mathrm{~s}, \mathrm{ArCH}_{3}, 6 \mathrm{H}\right), 1.45\left(\mathrm{~s}, \mathrm{ArCH}_{3}, 6 \mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR ($125.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.7,151.5,137.4,137.2,132.5,128.5,125.3,123.0,122.1$, 116.7, 9.5; I.R (thinfilm) v max $\left(\mathrm{cm}^{-1}\right): 1695.49$ (C=O); HRMS (EI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BBrF}_{2} \mathrm{~N}_{2} \mathrm{O}$: requires 429.0694 for $\left[\mathrm{M}^{+}\right]^{+}$, found 429.0697

Methyl(E)-3-(5-(5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2', $\mathbf{1}^{\prime}-$ $f[$ [1,3,2]diazaborinin-10-yl)-2-formylphenyl)acrylate

2-Bromo-4-(5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2',1'
$f][1,3,2]$ diazaborinin-10-yl)benzaldehyde ($0.24 \mathrm{~g}, 0.57 \mathrm{mmol}$) in anhydrous $\mathrm{MeCN}(5 \mathrm{~mL})$ was bubbled with argon for 30 min in a sealed tube before the addition of methyl acrylate (0.956 $\mathrm{mL}, 2.85 \mathrm{mmol}), \mathrm{P}(\mathrm{O}-\mathrm{Tol})_{3}\left(0.052 \mathrm{~g}, 0.171 \mathrm{mmol}^{2}\right), \mathrm{NEt}_{3}(0.07 \mathrm{~mL}, 0.86 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(0.019 \mathrm{~g}, 0.086 \mathrm{mmol})$. The tube was sealed and the reaction mixture was heated at $95^{\circ} \mathrm{C}$ for 16 h in a sealed vessel. The reaction was cooled to rt and diluted with diethyl ether (50 mL), filtered through Celite ${ }^{\circledR}$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford the crude material that was purified via column chromatography (20 to $40 \% \mathrm{EtOAc} /$ Pentane) to afford the title compound as a red gum ($0.15 \mathrm{~g}, 0.34 \mathrm{mmol}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.39(\mathrm{~s}, \mathrm{CHO}, 1 \mathrm{H})$, 8.56 (d, CHCHCOOMe, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.04 (d, $\mathrm{ArH}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.67-7.61$ (m, ArH, 1 H), 7.55 (dd, $\mathrm{Ar} H, J=1.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.39 (d, CHCHCOOMe, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~s}$, $\left.(\mathrm{PyrCH})_{2} 2 \mathrm{H}\right), 3.83(\mathrm{~s}, \mathrm{COOMe}, 3 \mathrm{H}), 2.57\left(\mathrm{~s}, \mathrm{ArCH}_{3}, 6 \mathrm{H}\right), 1.39\left(\mathrm{~s}, \mathrm{ArCH}_{3}, 6 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (125.75 MHz CDCl 3) $\delta: 190.9,166.22,156.65,142.48,139.98,137.45,133.92,132.85$, 129.82, 127.93, 123.76, 121.79, 52.04, 14.75; I.R (thinfilm) $v \max \left(\mathrm{~cm}^{-1}\right): 1687.6(\mathrm{C}=\mathrm{O})$; HRMS (ESI): m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$: requires 437.1848 for $[\mathrm{M}+\mathrm{H}]^{+}$, found 437.1885.

5-(5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2', $1^{\prime}-$

 $f[1,3,2]$ diazaborinin-10-yl)-3-(2-methoxy-2-oxoethyl)-1H-isoindole 2-oxide

A solution of methyl(E)-3-(5-(5,5-difluoro-1,3,7,9-tetramethyl-5H-4 ${ }^{4}, 5 \lambda^{4}$-dipyrrolo[1,2c:2', $\left.1^{\prime}-f\right][1,3,2]$ diazaborinin-10-yl)-2-formylphenyl)acrylate ($0.07 \mathrm{~g}, 0.16 \mathrm{mmol}$) in THF (2 $\mathrm{mL})$ was cooled to $-20^{\circ} \mathrm{C}$ followed by the addition of $\mathrm{NH}_{2} \mathrm{OH}-50 \%$ in $\mathrm{H}_{2} \mathrm{O}(0.012 \mathrm{ml}, 0.24$ mmol). The reaction was stirred at $-20^{\circ} \mathrm{C}$ for 30 min then it was allowed to warm to rt for 30 min . The reaction mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{ml})$ and the combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford the title compound as a shiny red/green solid (quantitative yield). M.p $143-144{ }^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~d}, \mathrm{ArH}, J=6.8$ Hz, 1 H), 7.31 (dd, ArH, J= 1.5, 7.3 Hz, 1 H), 7.26 (s, ArH, 1 H), 6.00 (s, (PyrH) 2,2 H), 5.11 (s, $\mathrm{CH}_{2} \mathrm{COOMe}, 2 \mathrm{H}$), 3.91 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{NO}, 2 \mathrm{H}$), 3.70 (s, COOMe, 3 H), 2.55 (s, $\mathrm{ArCH}_{3}, 6 \mathrm{H}$), 1.41 (s, $\mathrm{ArCH}_{3}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125.75 MHz CDCl 3) $\delta 167.49,156.04,142.81,140.85,140.03$, $137.11,135.66,133.45,131.26,127.56,122.25,121.52,119.15,66.09,52.63,29.34,14.66$, 14.60; I.R (thinfilm) $v \max \left(\mathrm{~cm}^{-1}\right): 1738.03(\mathrm{C}=\mathrm{O})$; HRMS (ESI): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$: requires 452.20 for $[\mathrm{M}+\mathrm{H}]^{+}$, found 452.1969 .

To a solution of Methyl(E)-3-(5-(5,5-difluoro-1,3,7,9-tetramethyl-5H-4 4 4,5 54 -dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-10-yl)-2-formylphenyl)acrylate ($20 \mathrm{mg}, 0.046 \mathrm{mmol}$) in $5: 1$ THF:H2O (3 mL) was added N-methylhydroxylamine hydrochloride ($3.8 \mathrm{mg}, 0.046 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(012 \mu \mathrm{~L}, 0.092 \mathrm{mmol})$. The reaction was left to stir at room temperature for 2 h . The crude mixture was then taken up in DCM and water and separated. The aqueous layer was washed with DCM ($3 \times 20 \mathrm{~mL}$), the combined organics were dried (MgSO 4), and the solvent was removed under vacuum to yield the title compound as a shiny red oil in 92% yield (20.5 $\mathrm{mg}, 0.042 \mathrm{mmol}$) as a mixture of diastereomers. Major Diastereomer: ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.47$ (dd, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H$), 7.22 (ddd, $J=11.0,7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar} H), 7.10(\mathrm{dd}, J=20.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 5.98(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Pyr} H), 5.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOH})$, $4.37\left(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{OCH}_{3}\right), 3.11(\mathrm{dd}, J=15.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $2.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.55\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.51(\mathrm{dd}, J=15.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHCH}_{\mathrm{a}} H_{\mathrm{b}}$), $1.43-1.35\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) δ 172.47, $156.11,142.80,138.90,135.37,135.25,131.43,128.44,127.39,125.87,124.79,121.54,93.69$, 60.11, 52.23, 42.06, 33.50, 30.48, 14.85, 14.73, 14.54. Minor Diastereomer: ${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.47$ (dd, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H$), 7.22 (ddd, $J=11.0,7.8,1.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar} H$), 7.10 (dd, $J=20.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 5.98(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Pyr} H), 5.90(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CHOH}), 4.22\left(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{OCH}_{3}\right), 2.95(\mathrm{dd}, J=16.9,4.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $2.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.55\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.51(\mathrm{dd}, J=15.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHCH}_{\mathrm{a}} H_{\mathrm{b}}$), $1.42\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) δ 172.47, $155.79,143.21,140.70,136.69,129.14,127.57,126.91,125.66,124.79,121.39,93.97,62.03$, 52.11, 43.31, 34.38, 29.85, 14.92, 14.76, 14.75. I.R (thinfilm) $v \max \left(\mathrm{~cm}^{-1}\right): 3456(\mathrm{OH}), 1732$ ($\mathrm{C}=\mathrm{O}$); HRMS (ESI): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$: requires 484.2218 for $[\mathrm{M}+\mathrm{H}]^{+}$, found 484.2252, $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$: requires 482.2073 for [$\left.\mathrm{M}-\mathrm{H}\right]^{-}$, found 482.2076 .

tert-Butyl ((tert-butoxycarbonyl)oxy)(prop-2-yn-1-yl)carbamate

Propargyl bromide (80% solution in $\mathrm{PhMe}, 0.23 \mathrm{~mL}, 2.07 \mathrm{mmol}$) was added to a mixture of N,O-dibochydroxlamine ($0.435 \mathrm{~g}, 1.86 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.343 \mathrm{~g}, 2.48 \mathrm{mmol})$ in DMF (15 $\mathrm{mL})$. The reaction mixture was stirred for 16 h before the addition of $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organics were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in-vacuo to afford the title compound as a colourless oil ($0.304 \mathrm{~g}, 1.12 \mathrm{mmol}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.33$ (br. s., $\mathrm{NCH}_{2} \mathrm{CCH}, 2 \mathrm{H}$), $2.28\left(\mathrm{t}, J=2.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CCH}, 1 \mathrm{H}\right.$), 1.54 (s , $\mathrm{BOC}, 9 \mathrm{H}), 1.50(\mathrm{~s}, \mathrm{BOC}, 9 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR data matches the data reported in the literature. ${ }^{1}$

N-(Prop-2-yn-1-yl)hydroxylammonium chloride

tert-Butyl ((tert-butoxycarbonyl)oxy)(prop-2-yn-1-yl)carbamate ($0.304 \mathrm{~g}, 1.12 \mathrm{mmol}$) was dissolved in EtOAc (10 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. ${ }^{\text {Conc. }} \mathrm{HCl}(5 \mathrm{~mL})$ was added dropwise and the reaction mixture was stirred for 2 h . The solvent was then removed in-vacuo to afford the title compound as a brown solid (quant. Yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d $_{6}$) $\delta 11.90$ (br. s., $H_{2} \mathrm{~N}(\mathrm{OH}) \mathrm{CH}_{2}, 2 \mathrm{H}$), 11.11 (br. s., $\mathrm{H}_{2} \mathrm{~N}(\mathrm{OH}) \mathrm{CH}_{2}, 1 \mathrm{H}$), 4.04 (d, $J=2.6 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CCH}, 2 \mathrm{H}$), $3.67\left(\mathrm{t}, J=2.5 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CCH}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 79.7,74.2 ;$ I.R (thinfilm) $v \max \left(\mathrm{~cm}^{-1}\right)$: $3094.6(\mathrm{Br}, \mathrm{O}-\mathrm{H})$; HRMS (FTMS): m/z calculated for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{ON}$: requires 72.0444 for $[\mathrm{M}-\mathrm{Cl}]^{+}$, found 72.0443.

3. NMR

Ethyl 3-bromo-4-methylbenzoate ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Ethyl 3-bromo-4-methylbenzoate ($125.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Ethyl 3-bromo-4-(hydroxymethyl)benzoate ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Ethyl 3-bromo-4-(hydroxymethyl)benzoate ($125.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Ethyl 3-bromo-4-(((tert-butyldimethylsilyl)oxy)methyl)benzoate (500 MHz, CDCl_{3})

Ethyl 3-bromo-4-(((tert-butyldimethylsilyl)oxy)methyl)benzoate (125.5 MHz, CDCl_{3})

(3-bromo-4-(((tert-butyldimethylsilyl)oxy)methyl)phenyl)methanol (500 MHz, CDCl_{3})

(3-bromo-4-(((tert-butyldimethylsilyl)oxy)methyl)phenyl)methanol (125.5 MHz, CDCl_{3})

3-bromo-4-(((tert-butyldimethylsilyl)oxy)methyl)benzaldehyde ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3-bromo-4-(((tert-butyldimethylsilyl)oxy)methyl)benzaldehyde (75.5 MHz, CDCl_{3})

10-(3-bromo-4-(((tert-butyldimethylsilyl)oxy)methyl)phenyl)-5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo $\left[1,2-c: 2^{2}, 1^{\prime}\right.$ $f][\mathbf{1 , 3 , 2}]$ diazaborinine $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

10-(3-bromo-4-(((tert-butyldimethylsilyl)oxy)methyl)phenyl)-5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo $\left[1,2-c: 2^{\prime}, 1^{\prime}-\right.$ $f][\mathbf{1 , 3 , 2}]$ diazaborinine ($125.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(2-bromo-4-(5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2', $\left.1^{\prime}-f\right][1,3,2]$ diazaborinin-10-yl)phenyl)methanol (500 MHz, CDCl_{3})

(2-bromo-4-(5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2', $\left.\mathbf{1}^{\prime}-f\right][1,3,2]$ diazaborinin-10-yl)phenyl)methanol (125.5 MHz, CDCl_{3})

2-bromo-4-(5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-10-yl)benzaldehyde (300 MHz, CDCl_{3})

2-bromo-4-(5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2', $\left.\mathbf{1}^{\prime}-f\right][1,3,2]$ diazaborinin-10-yl)benzaldehyde ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Methyl(E)-3-(5-(5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2', $\left.\mathbf{1}^{\prime}-f\right][1,3,2]$ diazaborinin-10-yl)-2-formylphenyl)acrylate ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Methyl(E)-3-(5-(5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2', $1^{\prime}-f f[1,3,2]$ diazaborinin-10-yl)-2-formylphenyl)acrylate (125.5 MHz, CDCl_{3})

5-(5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo $1,2-\mathrm{c}: 2^{\prime}, 1^{\prime}-f[11,3,2]$ diazaborinin-10-yl)-3-(2-methoxy-2-oxoethyl)-1H-isoindole 2oxide $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5-(5,5-difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2', $1^{\prime}-f f[1,3,2]$ diazaborinin-10-yl)-3-(2-methoxy-2-oxoethyl)-1H-isoindole 2oxide
(125.5 MHz, CDCl_{3})

5,5-difluoro-10-(1-hydroxy-3-(2-methoxy-2-oxoethyl)-2-methyl-2-oxidoisoindolin-5-yl)-1,3,7,9-tetramethyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5,5-difluoro-10-(1-hydroxy-3-(2-methoxy-2-oxoethyl)-2-methyl-2-oxidoisoindolin-5-yl)-1,3,7,9-tetramethyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

tert-Butyl ((tert-butoxycarbonyl)oxy)(prop-2-yn-1-yl)carbamate (300 MHz, CDCl_{3})

N-(Prop-2-yn-1-yl)hydroxylammonium chloride (300 MHz, DMSO-d6)

1. R. P. Temming, L. Eggermont, M. B. van Eldijk, J. C. M. van Hest and F. L. van Delft, Org. Biomol. Chem. 2013, 11, 2772-2779.

[^0]: ${ }^{\text {a }}$ Department of Chemistry, University of Bath, BA2 7AY, UK. Email: S.D.Bull@bath.ac.uk, T.D.James@bath.ac.uk
 ${ }^{\text {b }}$ Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea. E-mail: jyoon@ewha.ac.kr.

