Supplementary Information

Equilibrium between inactive ready Ni-SI_r and active Ni-SI_a states of [NiFe] hydrogenase studied by utilizing Ni-SI_r-to-Ni-SI_a photoactivation

Hulin Tai,^{a,b} Liyang Xu,^a Koji Nishikawa,^c Yoshiki Higuchi^{b,c} and Shun Hirota^{a,b,*}

^aGraduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan, ^bCREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and ^cGraduate School of Life Science, University of Hyogo, 3-2-1 Koto kamigori-cho, Ako-gun, Hyogo 678-1297, Japan

*E-mail: hirota@ms.naist.jp; Fax: +81-743-72-6119; Phone: +81-743-72-6110

Contents

Experimental Section		p. S2
Fig. S1	Time-dependent after-minus-before difference FT-IR spectra at different temperatures (183–203 K) at pH 8.0.	p. S3
Fig. S2	Time-dependent after-minus-before difference FT-IR spectra at different temperatures (173–193 K) at pH 8.5.	p. S4
Fig. S3	Time-dependence of the IR intensity difference at the two vco band frequencies during the conversion of the Ni-SI _a state to Ni-SI _r state at pH 8.5.	p. S5
Fig. S4	Eyring plots for the conversion of the Ni-SI _a state to Ni-SI _r state at pH 8.0 and pH 8.5.	p. S6
Fig. S5	Time-dependent after-minus-before difference FT-IR spectra at different temperatures (208–228 K) at pD 8.0.	p. S7
Fig. S6	Time-dependence of the IR intensity difference at the two vco band frequencies during the conversion of the Ni-SI _a state to Ni-SI _r state at pD 8.0.	p. S8

Experimental Section

Preparation of [NiFe] hydrogenase

[NiFe] hydrogenase (H₂ase) was isolated from sulfate reducing bacterium *Desulfovibrio vulgaris* Miyazaki F (*Dv*MF), and purified as described previously.¹ The concentration of [NiFe] H₂ase was adjusted with its absorption at 400 nm using its absorption coefficient ($\varepsilon = 47 \text{ mM}^{-1}\text{cm}^{-1}$).²

FT-IR measurements

[NiFe] H₂ase (concentration, ~2.0 mM) in 100 mM Tris-HCl buffer (pH 8.0, pH 8.5, and pD 8.0 at 274 K) was degassed with a vacuum line, purged with 1 bar of H₂, and incubated at 310 K for 5.5 h to obtain the H₂-activated sample.³ The sample solution was further degassed with the vacuum line and purged with 1 bar of N₂.⁴ The Ni-SI_r state was obtained by partial oxidation of the H₂activated enzyme with an anaerobic addition of 5 equivalents of phenosafranine (Sigma-Aldrich) using a glove box (YSD-800L, UNICO, Tsukuba).⁵ The sample solution was transferred anaerobically into an infrared cell with CaF₂ windows in the glove box. FT-IR spectra were measured before, during, and after light irradiation at 173-228 K with a FT-IR spectrometer (FT-IR 6100V, JASCO, Tokyo) equipped with an MCT detector. A cryostat system (CoolSpeK IR USP-203IR-A, Unisoku, Hirakata) was used to control the temperature of the cell. The light irradiation spectra were measured 2-5 min after light-irradiation was started. Light irradiation of the sample was performed at 514.5 nm with an Ar⁺ laser (Model 2017, Spectra-Physics, Santa Clara). The laser power was adjusted to 3.3 W/cm² at the sample point. The corresponding buffer spectrum was collected as a reference spectrum and subtracted from the sample spectra. Spectral data were collected at 2- or 4-cm⁻¹ resolution. The spectra of 2- and 4-cm⁻¹ resolution required about 0.98 and 0.67 s, respectively, for each scan.

References

- 1 Y. Higuchi, H. Ogata, K. Miki, N. Yasuoka and T. Yagi, Structure, 1999, 7, 549-556.
- 2 T. Yagi, K. Kimura, H. Daidoji, F. Sakai and S. Tamura, J. Biochem., 1976, 79, 661-671.
- 3 H. Tai, K. Nishikawa, M. Suzuki, Y. Higuchi and S. Hirota, *Angew. Chem. Int. Ed.*, 2014, **53**, 13817-13820.
- 4 H. Tai, K. Nishikawa, S. Inoue, Y. Higuchi and S. Hirota, J. Phys. Chem. B, 2015, 119, 13668-13674.
- 5 H. Tai, L. Xu, S. Inoue, K. Nishikawa, Y. Higuchi and S. Hirota, *Phys. Chem. Chem. Phys.*, 2016, **18**, 22025-22030.

Fig. S1 Time-dependent after-minus-before difference FT-IR spectra of phenosafranine-oxidized DvMF [NiFe] H₂ase between the spectra after and before light irradiation at different temperatures at pH 8.0. The spectra were measured at (A) 203, (B) 198, (C) 193, (D) 188, and (E) 183 K, for (A) 0–0.25 to 10–10.25 min, average of 10 measurements, (B) 0–0.5 to 25–25.5 min, average of 4 measurements, (C) 0–1 to 64–65 min, average of 2 measurements, (D) 0–2 to 140–142 min, single measurement, and (E) 0–2 to 360–362 min, single measurement. The spectra were measured continuously without intervals. The spectra were collected at 4-cm⁻¹ resolution.

Fig. S2 Time-dependent after-minus-before difference FT-IR spectra of phenosafranine-oxidized DvMF [NiFe] H₂ase between the spectra after and before light irradiation at different temperatures at pH 8.5. The spectra were measured at (A) 193, (B) 188, (C) 183, (D) 178, and (E) 173 K, for (A) 0–0.25 to 10–10.25 min, average of 10 measurements, (B) 0–0.5 to 25–25.5 min, average of 4 measurements, (C) 0–1 to 70–71 min, average of 2 measurements, (D) 0–2 to 150–152 min, single measurement, and (E) 0–2 to 360–362 min, single measurement. The spectra were measured continuously without intervals for (A–D) and 1-min intervals for (E). The spectra were not accumulated during the intervals. The spectra were collected at 4-cm⁻¹ resolution.

Fig. S3 Time dependence of the IR intensity difference at the vco band frequencies during the conversion of the Ni-SI_a state to Ni-SI_r state for phenosafranine-oxidized DvMF [NiFe] H₂ase (vco(Ni-SI_r) minus vco(Ni-SI_a)) at 173 (black), 178 (purple), 183 (cyan), 188 (orange), and 193 K (green). The intensities were measured at pH 8.5.

Fig. S4 Reciprocal temperature dependence of the rate constants for the conversion of the Ni-SI_a state to Ni-SI_r state of DvMF [NiFe] H₂ase at pH 8.0 (black) and pH 8.5 (blue). The ln(k/T) values at different temperatures followed the Eyring equation, $\ln(k/T) = -\Delta H^{\ddagger}/(RT) + \Delta S^{\ddagger}/T + \ln(k_B/h)$, where T, ΔH^{\ddagger} , ΔS^{\ddagger} , R, k_B , and h represent the temperature, activation enthalpy, activation entropy, universal gas constant 8.3145 J K⁻¹ mol⁻¹, Boltzmann constant 1.3807 J K⁻¹, and Planck constant 6.6261 J s, respectively. The obtained ΔH^{\ddagger} and ΔS^{\ddagger} values are shown in the inset.

Fig. S5 Time-dependent after-minus-before difference FT-IR spectra of phenosafranine-oxidized DvMF [NiFe] H₂ase between the spectra after and before light irradiation at different temperatures at pD 8.0. The spectra were measured at (A) 228, (B) 223, (C) 218, (D) 213, and (E) 208 K for (A) 0–0.16 to 12–12.16 min, average of 15 measurements, (B) 0–0.5 to 30–30.5 min, average of 4 measurements, (C) 0–1 to 80–81 min, average of 2 measurements, (D) 0–2 to 180–182 min, single measurement, and (E) 0–2 to 358–360 min, single measurement. The spectra were measured continuously without intervals for (A–D) and 1-min intervals for (E). The spectra were not accumulated during the intervals. The spectra were collected at 4-cm⁻¹ resolution.

Fig. S6 Time dependence of the IR intensity difference at the vco band frequencies during the conversion of the Ni-SI_a state to Ni-SI_r state for phenosafranine-oxidized DvMF [NiFe] H₂ase (vco(Ni-SI_r) minus vco(Ni-SI_a)) at 208 (black), 213 (purple), 218 (cyan), 223 (orange), and 228 K (green). The intensities were measured at pD 8.0.