Supplementary Information

Efficient visible light-driven water oxidation catalysts based

on B-β-{BiW₈O₃₀} and unique 14-nuclear hetero-metal

sandwich unit

Lige Gong¹, Li Yu², Kai Yu^{*1}, Yong Ding^{*2}, Jinhua Lv¹, Chunmei Wang¹, Zhanhua Su¹, Baibin Zhou^{*1}

Contents

Experimental Section:

Materials and	physical measurements		3
Synthetic proc	edures		3
Crystallograph	y details		4
The	measurement	of	Quantum
Yield		4	
Photocatalytic			Water
Oxidation		5	

Supporting Figures:

Table	S1 The summary	of visible light	-driven water oxida	ation of POM	A-WOCs6
Table	S2 Crystallograph	nic parameters	for CoBiW-		
DMAP		10			
Table	S3 The selected b	ond lengths for	r CoBiW-DMAP.		10
Fig. Si	1 The XRD patter	n of CoBiW-D	MAP		
Fig.S2	The	FT-IR	spectrum	for	CoBiW-
	DMAP		13		
Fig. S.	3 TG curve of Co	BiW-DMAP			13
Fig.S4	ORTEP view of	the basic units	in CoBiW-DMAP	with 50% t	hermal
	ellipsoid				14
Fig.S5	The coordination	n environments	s of the Co1, Co2,	W7, Na1, N	a2, Na3, and
	Na4 atoms in Co	BiW-DMAP.			14
Fig.S6	6 The infinite 1-D ch	ain based on fou	rteen-nuclear units fo	r CoBiW-DN	ар15
Fig.S7	7 The infinite 2-D la	yer linked by Na	-O-Na liker for CoBi	W-DMAP	15
Fig.S8	The Coordination e	nvironment of {l	BiW ₈ } polyoxoanions	for CoBiW-I	DMAP16
Fig.S9	(a) The unique 2D	D mixed metal of	xide layer based on	14-nucler sand	dwich unit; (b)
	The 2D layer of	CoBiW-DMAP	based on $\{B-\beta-BiW\}$	₈ O ₃₀ } clusters	and 14-nucler
	sandwich units				16
Fig.S1	10 The schematic	view of the 3D	structure of CoBi	W-DMAP	16
Fig.S1	11 The X-ray pho	otoelectron spe	ectra (XPS) of Co	BiW-DMA	P before and

after the photocatalytic water oxidation reaction
Scheme S1. Photochemical water oxidation cycle in presence of CoBiW-DMAP,
photosensitizer, and electron acceptor
Fig.S12 UV-Vis diffuse reflectance spectrum of CoBiW-DMAP
Fig.S13 K-M function versus E(ev) curve of CoBiW-DMAP. The red dashed lines
are the tangents of the curves. The intersection value is the band gap19
Fig.S14 Cyclic voltammogram of 2.5×10 ⁻⁴ M CoBiW-DMAP in pure water19
Fig.S15 The band gap structures of Ni ₂₅ -POM, Fe ₁₁ -POM and CoBiW-DMAP20
Fig.S16 DLS curve of the solution obtained by re-distributing the POM-dye precipitate in
distilled water
Fig.S17 (a) and (b) SEM images of the precipitate formed from CoBiW-DMAP20
$Fig. S18 \ {\rm EDX} \ analysis \ of \ the \ ion-pairing \ salt \ precipitates \ obtained \ from \ the \ photocatalytic$
water oxidation solution of CoBiW-DMAP21
Fig.S19 Kinetics of O_2 formation in the photocatalytic system under various
pH conditions
Fig.S20 Kinetics of O ₂ formation in the photocatalytic system using different
concentrations of $Na_2S_2O_8$
Fig.S21 Kinetics of O ₂ formation in the photocatalytic system using different concentrations of [Ru(bpy) ₃]Cl ₂
Fig.S22 Kinetics of O ₂ formation for the first run and the second run. After completion of the
first run, 17.8 mg $Na_2S_2O_8$ was added to the second run
Fig.S23 The UV-Vis spectra of CoBiW-DMAP (0.5 mM) in sodium borate buffer (pH = 10, 9,
8, and 7.6) and phosphate buffer solutions ($pH = 6.4$)
Fig.S24 Time-dependent UV-Vis spectra of CoBiW-DMAP (0.5 mM) in the pH 9.0 sodium
borate buffer solution (80 mM) with $Na_2S_2O_8$ (5 mM)23
Fig.S25 O_2 evolution in the photocatalytic system using 4 μM of fresh (black) and 60 min
aged CoBiW-DMAP (red)
Fig.S26 FT-IR spectra of fresh (black curve) and the recycled CoBiW-DMAP (red curve)
obtained from the photocatalytic water oxidation solution using acetone24
Fig.S27 Kinetics of O ₂ formation in the photocatalytic system using fresh and recovered CoBiW-DMAP
Fig.28 Particle size distribution measured by DLS in a solution of CoBiW-DMAP (4.0 μ M),
$[Ru(bpy)_3](ClO_4)_2$ (1.0 mM), $Na_2S_2O_8$ (5.0 mM) in 80 mM, pH = 9.0 borate buffer
after 15 min of irradiation25
Table S4 Catalytic water oxidation activity of CoBiW-DMAP and Co^{2+} (aq) under various
рН26
Table S5 Inductively coupled plasma mass spectrometry for solution with CoBiW-DMAP
before and after the photocatalytic water oxidation reaction26
Fig.29 Kinetics of light-driven catalytic O ₂ evolution from water catalyzed by CoBiW-DMAP and Co(NO ₃) ₂
References

Materials and physical measurements

All reagents were purchased and used without further purification. Elemental analysis (H) was performed on a Perkin-Elmer 2400 CHN Elemental Analyzer. Na, Bi, Co and W were performed by a Leaman inductively coupled plasma (ICP) spectrometer. IR spectra were recorded in the range of 4000-400 cm⁻¹ on an Alpha Centaurt FT/IR Spectrophotometer with pressed KBr pellets. The X-ray powder diffraction data was collected on a Bruker AXS D8 Advance diffractometer using Cu-Ka radiation (λ =1.5418 Å) in the 2 θ range of 5 – 50° with a step size of 0.02°. TG analyses were performed on a Perkin-Elmer TGA7 instrument in flowing N2 at a heating rate of 10 °C/min. UV-vis-NIR absorption spectroscopy was measured with a Cary 500 spectrophotometer. Diffuse reflectivity spectra were collected on a finely ground sample with a Cary 500 spectrophotometer equipped with a 110 mm diameter integrating sphere and were measured from 200 to 800 nm using barium sulfate (BaSO₄) as a standard with 100% reflectance. The electrochemical measurement was carried out on a CHI 660 electrochemical workstation at room temperature (25–30 °C). X-ray photoelectron spectrum (XPS) analyses were performed on a VG ESCALAB MK II spectrometer with aMg Ka (1253.6 eV) achromatic X-ray source. The working electrode was a glassy carbon electrode. Platinum gauze was used as a counter electrode and Ag/AgCl as a reference electrode. Dynamic light scattering (DLS) measurements were carried out using a Zatasizer Nano 3600 instrument (Malvern Instruments Ltd.). Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were performed with a JEOL JSM 4800F scanning electron microscope.

Synthetic procedures

All common laboratory chemicals were reagent grade, purchased from commercial sources and used without further purification. $Bi(NO_3)_3 \cdot 5H_2O$ (0.228 g, 1.0 mmol), dissolved in 1 mL of 6M HCl was added to a solution of $Na_2WO_4 \cdot 2H_2O$ (3.300 g, 10.0 mmol) in 20 mL of deionized water, and the mixture was heated to 60 °C for about 10 min. Then, $Co(Ac)_2 \cdot 4H_2O$ (1.0 mmol) dissolved in 4 mL water and dmap(1.0mmol)were added to the clear solution. The pH value of the solution was adjusted to 6.7 at room temperature by the addition of 1M HCl (The title compound can be prepared in the range of pH from 6.2 to 7.8, and the crystal size and geometry are ideal when pH is controlled at 6.7). The mixture was kept 90 °C for about 1 h and then cooled to room temperature and filtered. The purple crystal was obtained after 22 days (Yield: 45.2% based on W). In addition, parallel experiment displays that no crystals could be obtained when organic ligands are absent from the reaction system. Thus, it is supposed that the ligand could be the necessary template to provide sites of hydrogen bonding and π - π stacking interactions for the isolation of compound. Elemental Analysis (EA). For (Hdmap)₂[{Na(H₂O)₂}₂{CoNa₂(H₂O)₉}₂{B-a-BiW₈O₃₀}₂{Na₂Co₂W₂(H₂O)₆}]•10H₂O(dmap=N-(4-Pyridyl)dimethylamine)(**CoBiW-DMAP**): Calcd for C, 2.69 N, 0.90; H, 1.58; Co, 3.95; Bi, 6.70; W, 59.38; Na, 3.08%. Found for C, 2.73 N, 0.84 ; H, 1.60; Co, 3.91; Bi, 6.86; W, 59.32; Na, 3.02%. EA for reisolated **CoBiW-DMAP** after photocatalytic reaction: C, 2.70% N, 0.85 %; H, 1.57%; Co, 3.86; Bi, 6.86; W, 59.25; Na, 3.17%

Crystallography details

Crystal data for **CoBiW-DMAP** with the size of $0.28 \times 0.28 \times 0.24$ mm was mounted on a glass fiber, and the data were collected at 293(2) K on Bruker APEX- II CCD detector with graphite monochromatic Mo K α radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods and refined by fullmatrix least-squares on F2 using the SHELX program.1 Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were fixed at the calculated positions. CCDC-1510425 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crytallographic Data Centre, 12, Union Road,Cambridge CB2 1EZ, UK; Fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk/.

The measurement of Quantum Yield

The quantum yields of O₂ evolution were determined for the photocatalytic water oxidation under the following conditions. A quartz flask containing a borate buffer solution (80 mM, pH 9.0, 15 mL) with **CoBiW-DMAP** (4 μ M), [Ru(bpy)₃]Cl₂ (1 mM) and Na₂S₂O₈ (5 mM) was irradiated by an interference filtered (Asahi spectra SV 490) from a LED source (420 < λ < 490 nm) described above. The photon flux of the incident light was determined using a Ray virtual radiation actinometer (FU 100, silicon ray detector, light spectrum, 400-700 nm; sensitivity, 10-50 μ V μ mol⁻¹ m⁻² s⁻¹), affording a value to be 1650 μ mol m⁻² s⁻¹.

Quantum Yield Calculation:

Initial O₂ formation rate = $0.044 \ \mu mol^{-1}s^{-1}$

Irradiation radius = 1 cm = 0.01 m

Photon flux = $\pi \times (0.01 \text{ m})^2 \times 1650 \text{ }\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1} = 0.518 \text{ }\mu\text{mol}\cdot\text{s}^{-1}$

 $\Phi_{QY(initial)} = 2 \times \frac{initial O_2 formation rate}{Photon flux} \times 100\%$

$$=\frac{2\times0.044\,\mathrm{umolgs^{-1}}}{0.518\,\mathrm{umolgs^{-1}}}\times100\%=17\%$$

Photocatalytic Water Oxidation

Photocatalytic water oxidation was performed as follows: the desired concentration of catalyst **CoBiW-DMAP** (0.5–8 μ M) was prepared by dissolving the appropriate amount of catalyst in a buffer solution (80 mM, pH 4.8–10.0 for borate buffer) containing [Ru(bpy)₃]Cl₂ (0.25-1.5 mM) and Na₂S₂O₈ (1.0-7.5 mM). The above solution was deaerated by purging with Ar gas for 5 min in a flask (28 mL) sealed with a rubber septum (the total volume of the reaction solution was 15 mL). The reaction was then started by irradiating the solution with a LED light source (light intensity 16 mW, beam diameter 2 cm) through a transmitting glass filter ($\lambda \ge 420$ nm) at room temperature. The spectrographic range of LED light is shown in the following picture. After each sampling time, 150 μ L of Ar was injected into the flask and then the same volume of gas sample in the headspace of the flask was withdrawn by a SGE gas-tight syringe and analyzed by gas chromatography (GC). The O₂ in the sampled gas was separated by passing through a 2 m \times 3 mm packed molecular sieve 5A column with an Ar carrier gas and quantified by a Thermal Conductivity Detector (TCD) (Shimadzu GC-9A). The total amount of evolved O2 was calculated based on the concentration of O2 in the headspace gas. Contamination of the head-space with air was corrected by measuring the N_2 concentration present in the head-space (from the N_2 peak in the GC traces). The solution pH was monitored after the reaction by a METTLER TOLEDO

FEP20 pH meter.

POM-WOCs	Reaction conditions	TON	TOF	Ref
$\alpha-K_6Na[\{Ru_3O_3(H_2O)Cl_2\}$	LED lamp (470nm), 50 µmol/L	23	0.7 s ⁻¹	[1]
(SiW ₉ O ₃₄)]	catalyst,1mmol/L[Ru(bpy) ₃]Cl ₂ ,5			
	mmol/L $Na_2S_2O_8$, 20 mmol/L			
	Na ₂ SiF ₆ buffer (pH 5.8)			
$\alpha - K_{11} Na_1 [Co_4(H_2O)_2]$	LED lamp (470 nm), 42 µmol/L	24 (20	0.4 s ⁻¹	[1]
(SiW ₉ O ₃₄) ₂]	catalyst,1mmol/L[Ru(bpy) ₃]Cl ₂ ,	µmol/	(42	
	5mmol/L Na $_2S_2O_8$, 20 mmol/L	L	µmol/L	
	Na ₂ SiF ₆ buffer (pH 5.8)	CAT)	CAT)	
[{Co ₄ (OH) ₃ (PO ₄)} ₄ (SiW ₉ O ₃₄)	in 20 mL of borate buffer	44.5	0.053	[2]
4] ³²⁻	solution (80 mM, pH 7.5-9.0),			
	and $Na_2S_2O_8$, [Ru(bpy) ₃]Cl ₂			
[(SiW ₉ O ₃₄) ₂ Co ₈ (OH) ₆ (H ₂ O) ₂	300 W Xe lamp equipped with a	128.1	0.12	[3]
$(CO_3)_3]^{16-a}$	long-pass filter (420 nm cutoff);			
	catalyst concentration (1mM),			
	$[Ru(bpy)_3]^{2+}$ (1.0 mM), Na ₂ S ₂ O ₈			
	(5.0 mM), sodium borate buffer			
	(80 mM, pH 8.0), total reaction			
	solution volume: 20 mL			
[Cu ₅ (OH) ₄ (H ₂ O) ₂ (A-a-	Conditions: LED lamp (\geq 420	91		[4]
SiW ₉ O ₃₃) ₂] ¹⁰⁻	nm); 5 mM catalyst, 1.0 mM			
	$[Ru(bpy)_3]Cl_2, 5.0mMNa_2S_2O_8,$			
	80mM sodium borate buffer			
	(initial pH 9.0), total reaction			
	volume is 15 mL.			
Na ₂₄ [Ni ₁₂ (OH) ₉ (CO ₃) ₃ (PO ₄)	[Ru(bpy) ₃] ²⁺ was used as	128.2	0.20s ⁻¹	[5]
(SiW ₉ O ₃₄) ₃]·56H ₂ O	photosensitizer,S ₂ O ₈ ²⁻ as			
	sacrificial electron acceptor			
Na ₂₅ [Ni ₁₃ (H ₂ O) ₃ (OH) ₉ (PO ₄) ₄	$Ru(bpy)_3]^{2+}$ was used as	147.6	$0.25s^{-1}$	[5]
(SiW ₉ O ₃₄) ₃]·50H ₂ O	photosensitizer, $S_2O_8^{2-}$ as			
	sacrificial electron acceptor			
Na ₅₀ [Ni ₂₅ (H ₂ O) ₂ OH) ₁₈ (CO ₃) ₂	$Ru(bpy)_{3}^{2+}$ was used as	204.5	0.34s ⁻¹	[5]
(PO ₄) ₆ (SiW ₉ O ₃₄) ₆]·85H ₂ O	photosensitizer, $S_2O_8^{2-}$ as			
	sacrificial electron acceptor			
$Na_{12}[\{Co^{II}_{7}As^{III}_{6}O_{9}(OH)_{6}\}$	300 W Xe lamp equipped with a	115.2	0.14	[6]

Table S1 The summary of visible light-driven water oxidation of POM-WOCs($[Ru(bpy)_3]^{2+}$ wasused as photosensitizer, $S_2O_8^{2-}$ as sacrificial electron acceptor)

$(A-a-SiW_9O_{34})_2] \cdot 8H_2O$	long-pass filter (420 nm cutoff);			
	catalyst concentration(1mM),			
	$[Ru(bpy)_3]^{2+}$ (1.0 mM), Na ₂ S ₂ O ₈			
	(5.0 mM), sodium borate buffer			
	(80 mM, pH 8.0), total reaction			
	solution volume: 20 mL;			
$[Mn_2^{III}Mn^{IV}O_2(CH_2COO)_2(A-$	$[Ru(bpy)_{2}]^{2+}$ and $S_{2}O_{8}^{2-}$	5.2	0.0007 s ⁻¹	[7]
$(a-SiW_0O_{24})^{16-}$				L' J
$[\{R_{114}O_4(OH)_2(H_2O)_4\}-(\gamma-$	Conditions: Xe lamp 420-520	~3 5 ×	~8× 10 ⁻²	[8]
$SiW_{10}O_{22}O_{2}^{110}$	nm handpass filter 50 mW light	10^{2}	s ⁻¹	[~]
51 (100 36)2]	beam with a diameter of ~ 1.5 cm	10	5	
	focused on the reaction solution			
	1.0 mM [Pu(hpu)] ²⁺ 5.0 mM			
	No S Q $50 \text{ uM} = 1.20 \text{ mM}$			
	$Na_2S_2O_8$, 5.0 μ M 1, 20 mM			
	sodium phosphate burler (initial			
	pH 7.2), total reaction volume			
	8mL			501
$Cs_{10}[Ru_4(m-O)_4(m-O)]$	Surelite Continuum Surelite II		N/A	[9]
$OH_{2}(H_{2}O)_{4}(g-S_{1}W_{10}O_{36})_{2}$	Nd:YAG laser (excitation at 355			
	nm and 532nm, half-width 8 ns),			
	47.6 mM $[Ru(bpy)_3]^{2+}$, 5.0mM			
	Na ₂ S ₂ O ₈ , varying [cat.], 10mM			
	phosphate buffer (pH 7.0) or			
	TiO ₂ film sensitized with			
	$[Ru(bpy)_2(dpb)]^{2+}$			
$Cs_{10}[Ru_4(m-O)_4(m$	50 W halogen lamp ($l > 550$ nm),		TOF =	[10]
$OH_{2}(H_{2}O)_{4}(g-SiW_{10}O_{36})_{2}]$	60 mM catalyst, 0.1 mM		8×10 ⁻³ s ⁻¹	
	$[Ru{(m-dpp)Ru(bpy)_2}_3](PF_6)_8,$		@	
	10 mM $Na_2S_2O_8$ and 50 mM		60mM	
	Na ₂ SO ₄ ,10 mM KH ₂ PO ₄ buffer		catalyst	
	(pH 7.2)			
K ₁₀ [Co(H ₂ O) ₂ (g-	A LED light (≥420nm, 16mW),	313	3.2 s ⁻¹	[11]
$SiW_{10}O_{35})_{2}]\cdot 23H_{2}O$	$[Ru(bpy)_3]Cl_2$, $Na_2S_2O_8$, and			
	borate buffer (0.08m, pH 9.0)			
$Cs_5[Ru^{III}(H_2O)SiW_{11}O_{39}]$	0.3mM catalyst,6mM (NH ₄) ₂	20		[12]
	$[Ce^{IV}(NO_3)_6]$ in 0.1 M HNO ₃			
$K_{10,2}Na_{0,8}[\{Co_{4}(\mu -$	Xe lamp $(420 \sim 520 \text{ nm}).10$	80	0.1 s ⁻¹	[13]
$OH(H_2O)_3$ (Si ₂ W ₁₀ O ₇₀)]	ummol/L catalyst.1.0 mmol/L			
/(2 -)) (- 2 - 1) = 10)]	$[Ru(bpy)_3]Cl_2.5mmol/L Na_2S_2O_2$			
	25 mmol/L sodium			
	borate buffer (pH 9 0)			
[{B_	$0.5 \text{ mM} [\text{Ru}(\text{hnv})_2]^{2+} \text{ and } 10 \text{ mM}$	335	17s ⁻¹	[1]
$\begin{bmatrix} L \ P^{-} \\ S \ N \ W \\ O \\ (OU) \\ (U \\ O) \\ 124 - 1 \end{bmatrix}$	Na S O Conditions: >420 mm		1./ 5	[14]
$51112 W_{10} O_{36} (O11)_2 (\Pi_2 O)_{4}^{21}$	$13a_2S_2O_8$. Conditions. ≤ 420 nm			

	LED light (17 mW, beam			
	diameter ~0.4cm), 80mM sodium			
	borate buffer initial pH 9.0, total			
	solution volume15 mL.			
$[{Co_4(OH)_3(PO_4)}_4(GeW_0O_{34})]$	in 20 mL of borate buffer	38.75	15.5	[13]
J₁ ^{32−}	solution (80 mM pH $75-90$)		umol	L - J
/+]	and $Na_2S_2O_8$ [Ru(bpv) ₂]Cl ₂		pullor	
$C_{so}[(c-PW_{10}O_{2c})_{2}B_{14}O_{2c}(OH)]$	$\begin{array}{c} \text{ and } 1 (a_2 b_2 b_3) = 1 (a_1 b_2 b_3) = 1 \\ \text{ Xe lamp } 420 = 520 \text{ nm handnass} \end{array}$	120	5.1 mM	[15]
$(H_{2}O)_{1}$	filter 1.0 mM [Bu(bpy) ₂]Cl ₂ 5	120		
	mM Na S_2O_2 20 mM Na S_iF_2			
	huffer nH 5.8			
$N_{2} = [C_{0} + (H_{2}) + (g_{2} - PW_{2}) + 1]$	X_{e} lamp (120~170 nm) 5	224		[16]
	umol/L catalyst 1 0mmol/L			[10]
	[Ru(hny),]Cl. 5.0mmol/I			
	$N_2 S_2 O_2 = 80 \text{ mmol/L} \text{ sodium}$			
	$ha_2 S_2 O_8$, 80 mmol/L southing borate huffer (nH 8 0)			
	in 20 mL of boroto buffer	20.25	9.7	[16]
$[\{CO_4(OH)_3(FO_4)\}_4(FW_9O_{34})_4$	aslution (80 mM nH 75 0.0)	20.23	δ./μποι	
	solution (80 mM, pH 7.3–9.0),			
$[G_{1}(\mathbf{H},\mathbf{O}),(\mathbf{D}\mathbf{H},\mathbf{O}),\mathbf{h}]^{10}$	and $Na_2S_2O_8$, $[Ku(opy)_3]Cl_2$	TON		F1 77
$[CO_4(H_2O)_2(PW_9O_{34})_2]^{10}$	Conditions: 455 nm LED light	ION		[1/]
	(1/mW, beam diameter ~0.5)	= 302		
	cm), 5.0 mM Na ₂ S ₂ O ₈ , 1.0 mM	± 1		
	$[Ru(bpy)_3]Cl_2, 2.0\mu M$ Co ₄ POM			
	(blue), 2.0 μ M Co ₄ POM + 0.15			
	$\mu M Co(NO_3)_2$ (red), 0.15 μM			
	$Co(NO_3)_2$ (black) all in 120 mM			
	borate buffer, and $0.15 \mu M$			
	$Co(NO_3)_2$ (green) in 80 mM			
	borate buffer.			
$[{Co_4(OH)_3(PO_4)}_4(AsW_9O_{34})]$	in 20 mL of borate buffer	33.0	13.2	[16]
$)_4]^{28-}$	solution (80 mM, pH 7.5-9.0),		μmol	
	and $Na_2S_2O_8$, $[Ru(bpy)_3]Cl_2$			
$[Mn_{3}(H_{2}O)_{3}(SbW_{9}O_{33})_{2}]^{12}$	1.0 mM $[Ru(bpy)_3]Cl_2$ and 5.0	103	0.4 s ⁻¹	[18]
	mM Na ₂ S ₂ O ₈ . Conditions: >420			
	nm LED light (17 mW, beam			
	diameter ~0.4cm), 80mM sodium			
	borate buffer initial pH 9.0, total			
	solution volume15 mL.			
$[Fe_{11}(H_2O)_{14}(OH)_2(W_3O_{10})_2$	LED lamp (≥420 nm), 1.0 mM	1815	6.3 s ⁻¹	[19]
$(a-SbW_9O_{33})_6]^{27-}$	[Ru(bpy) ₃](ClO ₄) ₂ ,5.0mM	± 50		
	Na ₂ S ₂ O ₈ , 80 mM sodium borate			
	buffer (initial pH 10.0),			
[{Co(H ₂ O) ₃ } ₂ {CoBi ₂ W ₁₉ O ₆₆	[Ru(bpy) ₃] ²⁺ as photosensitizer	21	115 μM	[20]
$(OH)_4\}]^{10-}$	(PS) and $S_2O_8^{2-}$ as a sacrificial			

	electron acceptor in different			
	buffer media: NaOAc/HOAc (40			
	mM nH 4 7) NaPi (40 mM nH 7			
	and 8) and NacSiE/NaHCO			
	buffer(20 mM $nH 5.8$)			
Na II (Ca Di (a D	1000000000000000000000000000000000000	0.5		[21]
$Na_9H_5[C0_2B1_2(\alpha-B-$	$\chi e \ lamp (>400 \ nm), 10 \ \mu mol/L$	9.5		[21]
$[C_0 W_9 O_{34})_2]$	$catalyst, 1.0mmol/L[Ru(opy)_3]Cl_2$			
	,5mmol/LNa ₂ S ₂ O ₈ ,50mmol/L			
	sodium phosphate buffer (pH			
	7.4)			
$Na_{14}[Co_2Bi_2(\beta-B-CoW_9O_{34})_2]$	Xe lamp (>400 nm), 10 μ mol/L	30		[21]
	catalyst,1.0mmol/L[Ru(bpy) ₃]Cl ₂			
	,5mmol/L Na $_2$ S $_2$ O $_8$, 50 mmol/L			
	sodium phosphate buffer (pH			
	7.4)			
$K_7[Co^{III}Co^{II}(H_2O)W_{11}O_{39}]$	LED lamp, \geq 420 nm, 1.0 mmol/L	360 (1	$0.5 \mathrm{s}^{-1}$ (5	[22]
	[Ru(bpy) ₃]Cl ₂ ,5mmol/L	µmol/	µmol/L	
	$Na_2S_2O_8$, 80mmol/L sodium	L	CAT)	
	borate buffer (pH 8.0)	CAT)		
$(NH_4)_3[CoMo_6O_{24}H_6] \cdot 7H_2O$	300 W Xe lamp (400-490/800		TOF	[23]
	nm), 20 mM catalyst, 0.4 mM		initial =	
	$[Ru(bpy)_3](NO_3)_2,3mM Na_2S_2O_8,$		0.11 s ⁻¹	
	0.1 M borate buffer solution (pH			
	8.0)			
(NH ₄) ₆ [Co ₂ Mo ₁₀ O ₃₈ H ₄]·7H ₂ O	300 W Xe lamp (400-490/800		TOF	[23]
	nm), 10 mM catalyst, 0.4 mM		initial =	
	$[Ru(bpy)_3](NO_3)_2,3mM Na_2S_2O_8,$		0.16 s ⁻¹	
	0.1 M borate buffer solution (pH			
	8.0)			
$Na_{10}[C_{04}(H_2O)_2(VW_2O_{24})_2] \cdot 3$	1.0 mM [Ru(bnv) ₂]Cl ₂ and 5.0	~ 35	$> 1 \times 10^{3}$	[24]
5H ₂ O	mM Na ₂ S ₂ Ω_{\circ} Conditions: 455		s-1	[[~ ']
	nm LED light (17 mW beam			
	diameter ~0.4cm) 80mM sodium			
	borate huffer initial nU 0.0. total			
	solution volume 2.0 ml			
$[(V V V) \cap (OCU)]^{-}$	Solution volume 2.0 mL. $D_{10}(h_{10})^{2+} (2 \times 10^{-4} M) = 1 (6 \times 10^{-4} M)$			[25]
$[(v^{*}5v^{*}1)O_7(OCH_3)_{12}]$	$Ku(0py)_{3}^{-1}$ (2 × 10 $^{-1}$ MI), 1 (6 × 10 $^{-5}$ M) and N= 2 O (10 $^{-1}$ M)			[23]
	10° M), and Na ₂ S ₂ O ₈ (10 mM)			
	in 2mL of acetonitrile/phosphate			
	butter, and excitation at $\lambda = 450$			
	nm			
$[Mn_4V_4O_{17}(OAc)_3]^{3-}$	Ru(bpy) ₃ ²⁺ (2 × 10 ⁻⁴ M), 1 (6 ×	1150	1.75s ⁻¹	[26]
	10^{-5} M), and Na ₂ S ₂ O ₈ (10 mM)			
	in MeCN/H ₂ O (9:1)			
$[Co^{II}(Me_6tren)(OH_2)]^{2+}$	1.0 mM $[Ru(bpy)_3]Cl_2$ and 5.0	54		[27]

	mM Na ₂ S ₂ O ₈ . Conditions: \geq 420			
	nm Xe lamp , 2 mL 100mM			
	borate buffer initial pH 9.0			
$[Co^{III}(Cp^*)(bpy)(OH_2)]^{2+}$	1.0 mM $[Ru(bpy)_3]^{2+}$ and 5.0	29		[27]
	mM Na ₂ S ₂ O ₈ . Conditions: \geq 420			
	nm Xe lamp , 2 mL 100mM			
	borate buffer initial pH 9.0			
Co(NO ₃) ₂	1.0 mM $[Ru(bpy)_3]^{2+}$ and 5.0	52		[27]
	mM Na ₂ S ₂ O ₈ . Conditions: \geq 420			
	nm Xe lamp , 2 mL 100mM			
	borate buffer initial pH 9.0			
$Co_4O_4(py)_4(Ac)_4$	[Ru(bpy) ₃] ²⁺ and S ₂ O ₈ ²⁻	40±2	0.02s ⁻¹	[28]
$[Co^{II}_4(dpy{OH}O)_4(OAc)_2]$	LED lamp, 470 nm, 1.0 mmol/L	20	0.24s ⁻¹	[29]
$(H_2 O)_2](ClO_4)_2$	$[Ru(bpy)_3]Cl_2, 5mmol/L$			
	$Na_2S_2O_8$, 80mmol/L sodium			
	borate buffer (pH 8.5)			

Table S2 Crystallographic parameters for CoBiW-DMAP.

Compound	CoBiW-DMAP
Formula	$C_7H_{20}Bi\ Co_2N_2Na_4O_{49}W_9$
Mr	2989.61
Crystal. size, mm ³	0.28 ×0.28×0.24
Crystal system	Monoclinic
Space group	C2/c
a, Å	43.399(17)
b, Å	18.242(7)
c, Å	17.078(7)
β, deg	103.322(5)
V (Å ³)	13157(9)
Ζ	8
D _{calcd} , Kg m ⁻³	3.019
μ (MoK α), mm ⁻¹	18.935
F(000), e	10520.0
θ range, deg/°	2.38-28.57
Reflections collected / unique/ Rint	16778 / 16421/ 0.0000
Data/restraints/parameters	16410 / 43 / 678
$R_1 / wR_2 \ [I \ge 2\sigma(I)]^a$	0.0641/ 0.1284
$R(F)/wR(F^2)^a$ (all refl.)	0.1099/ 0.1385
GoF (F ²) ^a	1.000
$\Delta \rho fin (max/min), e Å^{-3}$	1.097/-0.607

 $\overline{aR_1 = \sum ||F_0| - |F_C|| / \sum |F_0|; \ wR_2 = \sum [w(F_0^2 - F_C^2)^2] / \sum [w(F_0^2)^2]^{1/2}, \ w=[\sigma^2(F_0^2) + (0.484P)^2 + 24.2999P]^{-1}, \ where \ P=(Max(F_0^2, 0) + 2 \ F_C^2) / 3, \ GoF=[\sum w(F_0^2 - F_C^2)^2 / (n_{obs} - n_{param})]^{1/2}.$

Bi(1)-O(5)	2.086(14)	Bi(1)-O(14)	2.158(11)	Bi(1)-O(22)	2.124(12)
W(1)-O(2)	1.919(11)	W(1)-O(8)	1.774(12)	W(1)-O(12)	1.955(11)
W(1)-O(14)	2.248(12)	W(1)-O(20)	2.041(13)	W(1)-O(24)	1.722(13)
W(2)-O(3)	1.910(13)	W(2)-O(4)	1.899(13)	W(2)-O(5)	2.280(13)
W(2)-O(16)	1.884(12)	W(2)-O(21)	1.920(12)	W(2)-O(30)	1.727(13)
W(3)-O(3)	1.935(13)	W(3)-O(6)	1.812(12)	W(3)-O(12)	1.965(12)
W(3)-O(13)	2.000(12)	W(3)-O(14)	2.218(11)	W(3)-O(36)	1.736(12)
W(4)-O(4)	1.925(12)	W(4)-O(5)	2.348(13)	W(4)-O(10)	1.877(12)
W(4)-O(15)	1.983(13)	W(4)-O(17)	1.707(13)	W(4)-O(23)	1.857(13)
W(5)-O(9)	1.923(12)	W(5)-O(10)	1.975(13)	W(5)-O(11)	1.975(12)
W(5)-O(22)	2.244(11)	W(5)-O(29)	1.777(13)	W(5)-O(33)	1.744(13)
W(6)-O(2)	1.944(11)	W(6)-O(9)	1.967(11)	W(6)-O(18)	1.789(12)
W(6)-O(22)	2.179(12)	W(6)-O(25)	1.736(13)	W(6)-O(27)	1.973(13)
W(7)-O(5)	2.197(12)	W(7)-O(7)	1.764(13)	W(7)-O(19)	1.767(12)
W(7)-O(21)	2.063(14)	W(7)-O(23)	2.116(13)	W(7)-O(26)	1.771(12)
W(8)-O(1)	1.907(12)	W(8)-O(11)	1.936(12)	W(8)-O(15)	1.890(14)
W(8)-O(22)	2.242(13)	W(8)-O(27)	1.922(13)	W(8)-O(37)	1.716(14)
W(9)-O(1)	1.889(12)	W(9)-O(13)	1.908(12)	W(9)-O(14)	2.263(12)
W(9)-O(16)	1.955(13)	W(9)-O(20)	1.866(14)	W(9)-O(32)	1.709(13)
Co(1)-O(8)	2.097(12)	Co(1)-O(18)	2.035(13)	Co(1)-O(26)#1	2.024(13)
Co(1)-O(34)	2.103(13)	Co(1)-O(35)	2.191(14)	Co(1)-O(38)	2.120(15)
Co(1)#1- O(26)	2.024(13)	Co(2)-O(6)#1	2.035(12)	Co(2)-O(7)	2.041(13)
Co(2)-O(19)#1	2.021(14)	Co(2)-O(28)	2.190(13)	Co(2)-O(29)	2.050(13)
Co(2)-O(31)	2.128(15)	Co(2)#1- O(6)	2.034(12)	Co(2)#1- O(19)	2.021(14)
Na(1) - O(6)	2.443(17)	Na(1) - O(8)	2.417(15)	Na(1)-O(9)#3	2.427(14)
Na(1)-O(12)	2.762(16)	Na(1)-O(31)#1	2.530(16)	Na(1)-O(39)	2.363(19)
Na(1)#2-O(9)	2.427(14)	Na(1)#2-O(31)	2.530(16)	Na(2)-O(28)	2.437(18)
Na(2)-O(42)	2.44(2)	Na(2)-O(44)	2.325(17)	Na(2)-O(3)#1	2.541(14)
Na(2)-O(19)#1	2.660(16)	Na(2)-O(21)#1	2.576(15)	Na(2)-O(43)#1	2.58(2)
Na(2)#1-O(19)	2.660(16)	Na(2)#1-O(21)	2.576(15)	Na(2)#1-O(43)	2.58(2)
Na(3)-O(34)#3	2.373(18)	Na(3)-O(35)#3	2.511(19)	Na(3)-O(36)	2.383(17)
Na(3)-O(40)	2.35(3)	Na(3)-O(41)	2.43(3)	Na(3)-O(43)	2.30(2)
Na(3)#2-O(34)	2.373(18)	Na(3)#2-O(35)	2.511(19)	Na(3)#2-O(38)	2.477(18)
Na(4)-O(38)#2	2.477(18)	Na(4)-O(45)	2.36(2)	Na(4)-O(46)	2.48(2)
Na(4)-O(47)	2.35(2)	Na(4)-O(48)	2.46(2)		
O(5)-Bi(1)-O(14)	87.3(5)	O(5)-Bi(1)-O(22)	89.6(5)	O(22) -Bi(1)-O(14)	84.1(4)
O(24)-W(1)-O(2)	101.7(6)	O(24)-W(1)-O(8)	103.4(7)	O(24)-W(1)-O(12)	97.2(5)
O(24)-W(1)-O(14)	161.7(5)	O(24)-W(1)-O(20)	92.7(6)	O(30)-W(2)-O(3)	101.0(6)
O(30)-W(2)-O(4)	99.5(6)	O(30)-W(2)-O(5)	171.4(5)	O(30)-W(2)-O(16)	101.0(6)
O(30)-W(2)-O(21)	97.1(6)	O(36)-W(3)-O(3)	100.4(6)	O(36)-W(3)-O(6)	103.8(6)
O(36)-W(3)-O(12)	97.1(6)	O(36)-W(3)-O(13)	98.2(6)	O(24)-W(3)-O(14)	169.2(5)
O(17)-W(4)-O(4)	97.9(6)	O(17)-W(4)-O(5)	170.0(5)	O(17)-W(4)-O(10)	92.0(5)
O(17)-W(4)-O(15)	100.5(6)	O(17)-W(4)-O(23)	99.9(6)	O(33)-W(5)-O(9)	100.1(6)
O(33)-W(5)-O(10)	100.6(6)	O(33)-W(5)-O(11)	97.8(6)	O(33)-W(5)-O(22)	171.8(6)
O(33)-W(5)-O(29)	104.3(6)	O(25)-W(6)-O(2)	96.4(6)	O(25)-W(6)-O(9)	95.7(5)

Table S3 The selected bond lengths for CoBiW-DMAP.

O(25)-W(6)-O(18)	105.0(7)	O(25)-W(6)-O(22)	167.5(6)	O(25)-W(6)-O(27)	97.7(7)
O(7)-W(7)-O(5)	80.1(6)	O(7)-W(7)-O(19)	96.9(6)	O(7)-W(7)-O(21)	154.2(6)
O(7)-W(7)-O(23)	90.9(6)	O(7)-W(7)-O(26)	102.8(6)	O(37)-W(8)-O(1)	98.7(6)
O(37)-W(8)-O(11)	98.1(6)	O(37)-W(8)-O(15)	102.7(7)	O(37)-W(8)-O(22)	170.7(6)
O(37)-W(8)-O(27)	100.4(7)	O(32)-W(9)-O(1)	98.8(6)	O(32)-W(9)-O(13)	99.0(6)
O(32)-W(9)-O(14)	173.4(6)	O(32)-W(9)-O(16)	101.0(7)	O(32)-W(9)-O(20)	101.5(6)
O(26)-Co(1)-O(8)	90.8(5)	O(26)-Co(1)-O(18)	97.9(6)	O(26)-Co(1)-O(34)	85.6(5)
O(26)-Co(1)-O(35)	167.0(6)	O(26)-Co(1)-O(38)	92.4(6)	O(19)-Co(2)-O(6)	89.5(5)
O(19)-Co(2)-O(7)	89.5(5)	O(19) -Co(2)-O(28)	95.1(5)	O(19) -Co(2)-O(29)	88.8(5)
O(19)-Co(2)-O(31)	175.5(5)	O(39)-Na(1)-O(6)	142.2(6)	O(39)-Na(1)-O(8)	106.2(6)
O(39)-Na(1)-O(9)	88.7(5)	O(39)-Na(1)-O(12)	153.5(6)	O(39)-Na(1)-	82.2(6)
O(44) -Na(2)-O(3)	144.8(6)	O(44) -Na(2)-O(21)	102.2(5)	O(44)-Na(2)-O(28)	78.1(6)
O(44)-Na(2)-O(42)	80.7(7)	O(44)-Na(2)-	110.2(6)	O(43) -Na(3)-O(34)	167.3(9)
O(43)-Na(3)-O(35)	97.0(7)	O(43)-Na(3)-O(36)	96.9(7)	O(43) -Na(3)-O(40)	93.3(9)
O(43)-Na(3)-O(41)	97.8(8)	O(47)-Na(4)-O(33)	91.4(8)	O(47)-Na(4)-	163.1(8)
O(47)-Na(4)-O(45)	108.1(8)	O(47)-Na(4)-O(46)	83.2(9)	O(47) -Na(4)-O(48)	84.6(9)

Fig. S1 The XRD pattern of **CoBiW-DMAP**. The phase purity of **CoBiW-DMAP** was confirmed by the well match of the experimental pattern (line in red) with the simulated one (line in black). The diffraction peaks of both simulated and experimental patterns match in the key positions, indicating the phase purity of the compound. The difference in intensity may be due to the preferred orientation of the powder samples.

Fig. S2 The FT-IR spectrum in the range 4000-500 cm⁻¹ for **CoBiW-DMAP**. Peaks at 515 cm⁻¹ and 933 cm⁻¹ can be attributed to v(W-Oa) and v(W=Od) vibrations. The characteristic peaks 809 cm⁻¹ and associated with v(W-Ob-W), and 677 cm⁻¹ attributed to v(W-Oc-W), respectively. In addition, bands in the 1217-1642 cm⁻¹ regions can be assigned to characteristic peaks of the dmap ligands.

Fig. S3 Thermal gravimetric analysis has been performed for the three compounds between 20 and 800 °C. The first weight loss of 2.95% in the temperature range of 60 - 280 °C corresponds to the release of all lattice water molecules, which is in accordance with the calculated value of 2.87 %. The second weight loss of 7.21 % in the temperature range of 280 - 550 °C are attributed to the loss of all dmap organic ligands in the **CoBiW-DMAP**. The value is close to the calculated value of 7.53%.

Fig. S4 ORTEP view of the basic units in CoBiW-DMAP with 50% thermal ellipsoid.

Fig. S5 The coordination environments of the Co1, Co2, W7, Na1, Na2, Na3, and Na4 atoms in CoBiW-DMAP.

Fig. S6 The infinite 1-D chain based on fourteen-nuclear units for CoBiW-DMAP.

Fig. S7 The infinite 2-D layer linked by Na-O-Na liker for CoBiW-DMAP.

Fig. S8 The Coordination environment of ${BiW_8}$ polyoxoanions for CoBiW-DMAP.

Fig. S9 (a) The unique 2D mixed metal oxide layer based on 14-nucler sandwich unit; (b) The 2D layer of CoBiW-DMAP based on $\{B-\beta-BiW_8O_{30}\}$ clusters and 14-nucler sandwich units.

Fig. S10 The schematic view of the 3D structure of CoBiW-DMAP.

Fig. S11 The X-ray photoelectron spectra (XPS) of **CoBiW-DMAP** before and after the photocatalytic water oxidation reaction. (The Bi4 $f_{7/2}$ and Bi4 $f_{5/2}$ binding energies of 158.9 and 164.5 eV, the W4 $f_{7/2}$ and W4 $f_{5/2}$ binding energies of 34.9 and 37.3 eV, and the Co2 $p_{3/2}$ and Co2 $p_{1/2}$ binding energies of 780.2 and 800.3 eV for CoBiW-DMAP indicate that the oxidation state for Bi, W, and Co centers are +3, +6, and +2, respectively.)

Scheme S1. Photochemical water oxidation cycle in presence of CoBiW-DMAP, photosensitizer, and electron acceptor.

Fig.S12 UV-Vis diffuse reflectance spectrum of CoBiW-DMAP.

Fig.S13 K-M function versus E(ev) curve of **CoBiW-DMAP**. The red dashed lines are the tangents of the curves. The intersection value is the band gap.

Fig.S14 Cyclic voltammogram of 2.5×10^{-4} M **CoBiW-DMAP** in pure water (pH = 7.0) at a scan rate of 100mV/s. The working electrode was glassy carbon and the reference electrode was Ag/AgCl.

With Ag/AgCl electrode as reference electrode, relative to that NHE potential of 0.20 eV, the formula for calculating level: E_{HOMO} = -(eE^{ox}+4.5 +0.20) eV = -(eE^{ox}+4.70) eV E_{LUMO} = -(eE^{red}+4.5 +0.20) eV = -(eE^{red}+4.70) eV Eg=E_{HOMO}-E_{LUMO} E^{red}= -0.26 V E_{LUMO} = -(Ee^{red}+4.6+0.20) eV = -(-0.26+4.70) eV = -4.44 eV Eg = 1.97 eV E_{HOMO} = -(1.97+4.44) eV = -6.41 eV

Fig.S15 The band gap structures of Ni₂₅-POM , Fe₁₁-POM and CoBiW-DMAP. $\triangle E = HOMO$ ([Ru(bpy)₃]³⁺)-HOMO(POMs).

Fig.S16 DLS curve of the solution obtained by re-distributing the POM-dye precipitate in distilled water.

Fig.S17 (a) and (b) SEM images of the precipitate formed from CoBiW-DMAP

Fig.S18 EDX analysis of the ion-pairing salt precipitates obtained from the photocatalytic water oxidation solution of **CoBiW-DMAP**.

Fig. S19 Kinetics of O₂ formation in the photocatalytic system under various pH conditions. Conditions: LED lamp ($\lambda \ge 420$ nm), 1.0 mM [Ru(bpy)₃]Cl₂, 5.0 mM Na₂S₂O₈, 4 μ M **CoBiW-DMAP**, total reaction volume is 15 mL.

Fig. S20 Kinetics of O₂ formation in the photocatalytic system using different concentrations of Na₂S₂O₈. Conditions: LED lamp ($\lambda \ge 420$ nm), 1.0 mM [Ru(bpy)₃]Cl₂, 4 μ M **CoBiW-DMAP**, 80 mM sodium borate buffer (initial pH 9.0), total reaction volume is 15 mL.

Fig. S21 Kinetics of O₂ formation in the photocatalytic system using different concentrations of $[Ru(bpy)_3]Cl_2$. Conditions: LED lamp ($\lambda \ge 420$ nm), 5.0 mM Na₂S₂O₈, 4 μ M CoBiW-DMAP, 80 mM sodium borate buffer (initial pH 9.0), total reaction volume is 15 mL.

Fig. S22 Kinetics of O₂ formation for the first run and the second run. After completion of the first run, 17.8 mg Na₂S₂O₈ was added to the second run. Conditions: LED lamp ($\lambda \ge 420$ nm), 1.0 mM [Ru(bpy)₃]Cl₂, 5.0 mM Na₂S₂O₈, 4 μ M CoBiW-DMAP, 80 mM sodium borate buffer (initial pH 9.0), total reaction volume is 15 mL.

Fig. S23 The UV-Vis spectra of **CoBiW-DMAP** (0.5 mM) in sodium borate buffer (pH = 10, 9, 8, and 7.6) and phosphate buffer solutions (pH = 6.4).

Fig. S24 Time-dependent UV-Vis spectra of CoBiW-DMAP (0.5 mM) in the pH 9.0 sodium borate buffer solution (80 mM) with $Na_2S_2O_8$ (5 mM).

Fig. S25 O₂ evolution in the photocatalytic system using 4 μ M of fresh (black) and 60 min aged **CoBiW-DMAP** (red). Conditions: LED lamp ($\lambda \ge 420$ nm), 1.0 mM [Ru(bpy)₃]Cl₂, 5.0 mM Na₂S₂O₈, 80 mM sodium borate buffer (initial pH 9.0), total reaction volume is 15 mL.

Fig. S26 FT-IR spectra of fresh (black curve) and the recycled CoBiW-DMAP (red curve) obtained from the photocatalytic water oxidation solution using acetone.

Fig. 27. Kinetics of O₂ formation in the photocatalytic system using fresh and recovered **CoBiW-DMAP**. Conditions: LED lamp ($\lambda \ge 420$ nm), 1.0 mM [Ru(bpy)₃]Cl₂, 5.0 mM Na₂S₂O₈, 4 μ M **CoBiW-DMAP**, 80 mM sodium borate buffer (initial pH 9.0), total reaction volume is 15 mL.

Fig. S28. Particle size distribution measured by DLS in a solution of **CoBiW-DMAP** (4.0 μ M), [Ru(bpy)₃](ClO₄)₂ (1.0 mM), Na₂S₂O₈ (5.0 mM) in 80 mM, pH = 9.0 borate buffer after 15 min of irradiation.

		Complex			O_2		
Entry	Complex	concentrat	pН	TON	yield	pH after the	buffer (mM)
		ion			(%)	photocatalysis	
		(µM)					
1	CoBiW-DMAP	4	9.0	206	16.4	8.8	$80 \; \mathrm{NaB_{i}}$
2	CoBiW-	4	9.0	142	22.7	8.3	80 NaB _i
	DMAP*						
3	CoBiW-DMAP	2	9.0	363	29.1	8.7	$80 \ \mathrm{NaB_{i}}$
4	CoBiW-DMAP	2	8.0	307	24.5	5.8	$80 \; \mathrm{NaB_{i}}$
5	CoBiW-DMAP	2	7.6	253	20.3	3.9	120 NaB _i
6	CoBiW-DMAP	2	6.4	113	9.1	5.0	100NaP _i
7	$Co(NO_3)_2$	2	9.0	538	43.1	8.6	$80 \ \mathrm{NaB_{i}}$
8	$Co(NO_3)_2$	2	8.0	402	32.2	2.9	$80 \ \mathrm{NaB_{i}}$
9	$Co(NO_3)_2$	2	7.6	54	4.3	2.7	120 NaB _i
10	Co(NO ₃) ₂	2	6.4	0.47	0.04	5.2	100NaP _i

Table S4 Catalytic water oxidation activity of CoBiW-DMAP and Co2+ (aq) under various pH

Conditions: LED light (16 mW, \geq 420 nm, beam diameter 2 cm), [Ru(bpy)₃]Cl₂ (1.0 mM), Na₂S₂O₈ (5.0 mM), 15 mL total solution volume, all stock solutions prepared in DI water. *Catalyst reusability test: 17.8 mg Na₂S₂O₈ was added for the second run.

Table S5 Inductively coupled plasma mass spectrometry for solution with **CoBiW-DMAP** before and after the photocatalytic water oxidation reaction (Conditions: **CoBiW-DMAP** (4 μ M), [Ru(bpy)₃]²⁺ (1 mM), Na₂S₂O₈ (5 mM) in a 80 mM sodium borate buffer solution 15 mL

Entry	Aged time (min)	Reaction time (min)	Concentration of catalysts (uM)	Elements	Co/W after extraction (uM)
1	60	0	4	Со	0
				W	0
2	0	30	4	Со	0.12
				W	0.26

Fig. S29. Kinetics of light-driven catalytic O₂ evolution from water catalyzed by **CoBiW-DMAP** and Co(NO₃)₂. Conditions: LED lamp ($\lambda \ge 420$ nm), 1.0 mM [Ru(bpy)₃]Cl₂, 5.0 mM Na₂S₂O₈, 80 mM sodium borate buffer (initial pH 9.0), total reaction volume is 15 mL. 4.0 μ M CoBiW-DMAP(black), 4.0 μ M CoBiW-DMAP+0.12 μ M Co(NO₃)₂ (red), 0.12 μ M Co(NO₃)₂ (green), residual solution after the first run followed by extraction using a toluene solution of THpANO₃ (blue).

References

[1] P. -E. Car, M. Guttentag, K. K. Baldridge, R. Alberto, Patzke, G. R. Green Chem. 2012, 14, 1680-1688.

[2] X. -B. Han, Z. -M. Zhang, T. Zhang, Y. -G. Li, W. -B. Lin, W. -S You, Z. -M. Su, E. -B. Wang, J. Am. Chem. Soc. 2014, **136**, 5359–5366.

[3] J. Wei, Y. -Y. Feng, P. -P. Zhou, Y. Liu, J. -Y. Xu, R. Xiang, Y. Ding, C. -C. Zhao, L. -Y. Fan, C. -W. Hu, *ChemSusChem*, 2015, 8, 2630–2634.

[4] L. Yu, X.-Q. Du, Y. Ding, H. -L. Chena, P. -P. Zhou, Chem. Commun., 2015,51, 17443.

[5] X. -B. Han, Y. -G. Li, Z. -M. Zhang, H. -Q. Tan, Y. Lu, E. -B. Wang, J. Am. Chem. Soc. 2015, 137, 5486–5493.

[6] W. -C. Chen, X. -L. Wang, C. Qin, K. -Z. Shao, Z. -M. Su , E. -B. Wang, *Chem. Commun.*, 2016, **52**, 9514.

[7] R. Al-Oweini, A. Sartorel, B. S. Bassil, M. Natali, S. Berardi, F. Scandola, U. Kortz, M. Bonchio, *Angew. Chem. Int. Ed.*, 2014, **126**, 11364–11367.

[8] Y. V. Geletii, Z. -Q Huang, Y. Hou, D. G. Musaev, T. -Q. Lian, C. L. Hill, J. AM. CHEM. SOC. 2009, 131, 7522-7523.

[9] M. Orlandi, R. Argazzi, A. Sartorel, M. Carraro, G. Scorrano, M. Bonchio and F. Scandola, *Chem. Commun.*, 2010, **46**, 3152-3154.

[10] F. Puntoriero, G. L. Ganga, A. Sartorel, M. Carraro, G. Scorrano, M. Bonchio and S. Campagna, *Chem. Commun.*, 2010, **46**,4725-4227.

[11] R. Xiang, Y. Ding, J. -W. Zhao, Chem. Asian J. 2014, 9, 3228-3237.

[12] G. Zhu, E. N. Glass, C. Zhao, H. Lv,; J. W. Vickers, I. Geletii, D. G. Musaev, J. Song, C. L.

Hill, Dalton Trans. 2012, 41, 13043.

[13] G. Zhu, Y. V. Geletii, P. Kogerler, H.Schilder, J. Song, S. Lense, C. Zhao, K. I. Hardcastle, D. G. Musaev, C. L. Hill, *Dalton Trans*. 2012, 41, 2084-2090.

[14] L. Yu, Y. Ding, M. Zheng, H. Chen and J. Zhao, Chem. Commun., 2016, 52, 14494.

[15] C. Besson, Z. -Q. Huang, Y. V. Geletii, S. Lense, K. I. Hardcastle, D. G. Musaev, T. -Q. Lian, A. Proustac, C. L. Hill. *Chem. Commun.*, 2010, **46**, 2784-2786.

[16] Z. Huang, Z. Luo, Y. V. Geletii, J. W. Vickers, Q. Yin, D. Wu, Y. Hou, Y. Ding, J. Song, D. G. Musaev, C. L. Hill, T. Lian, *J.Am. Chem. Soc.* 2011, 133, 2068-2071.

[17] J. W. Vickers, H. -J. Lv, J. M. Sumliner, G. -B. Zhu, Z. Luo, D. G. Musaev, Y. V. Geletii, C. L. Hill, J. Am. Chem. Soc. 2013, 135, 14110–14118.

[18] L. Yu, Y. Ding and M. Zheng, Appl. Catal., B, 2017, 209, 45.

[19] X. -Q. Du, Y. Ding, F. -Y. Song, B. -C Ma, J. -W Zhao, J. Song, *Chem. Commun.*, 2015, **51**, 13925-3928.

[20] F. Evangelisti, P. -E. Car, O. Blacque, G. R. Patzke. Catal. Sci. Technol. 2013, 3, 3117-3129.

[21] D. Guo, S. Teng, Z. Liu, W. You, L. Zhang, J. Clust. Sci. 2012, 24, 549.

[22] F. Song, Y. Ding, B. Ma, C.Wang, Q. Wang, X. Du, S. Fu, J. Song, *Energy Environ. Sci.* 2013, **6**, 1170.–1184.

[23] S. Tanaka, M. Annaka and K. Sakai, Chem. Commun., 2012, 48, 1653-1655.

[24] H. -J. Lv, J. Song, Y. V. Geletii, J. W. Vickers, J. M. Sumliner, D. G. Musaev, P. Kögerler, P.
F. Zhuk, J. Bacsa, G. -B. Zhu, C. L. Hill, *J. Am. Chem. Soc.* 2014, **136**, 9268-9271.

[25] M. -P. Santoni, G. L. Ganga, V. M. Nardo, M. Natali, F. Puntoriero, F. Scandola, S. Campagna, J. Am. Chem. Soc. 2014, **136**, 8189-8192.

[26] B. Schwarz, J. Forster, M. K. Goetz, D. Yücel, C. Berger, T. Jacob, C. Streb, *Angew.Chem. Int. Ed.*, 2016, **55**, 6329-6333

[27] D. Hong, J. Jung, J. Park, Y. Yamada, T. Suenobu, Y. -M. Lee, W. Nam and S. Fukuzumi, *Energy Environ. Sci.*, 2012, **5**, 7606.

[28] G. C. Dismukes, N. S. McCool, D. M. Robinson and J. E. Sheats, J. Am. Chem. Soc., 2011,133,11446

[29] F. Y.Song, R. Moré, M. Schilling, G. Smolentsev, N. Azzaroli, T. Fox, S. Luber and G. R. Patzke, *J. Am. Chem. Soc.*, 2017, 139, 14198-14208