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 Materials and Methods:

(tht)AuCl1, o-Bromotrifluoroacetanilide2, trifluoroacetanilide3 and the various propargylic amides4 were 

prepared according to previously reported procedures. Chloro(triphenylphosphine)gold was obtained from 

the reaction of (tht)AuCl with triphenylphopshine. O-bromoaniline, nBuLi (2.2M in hexane) and tBuLi 

(1.5M in pentane) were purchased from Oakwood Chemicals and Alfa Aesar and used as received. All 

preparations were carried out under an atmosphere of dry N2 employing either a glove box or standard 

Schlenk techniques. Solvents were dried by passing through an alumina column (CH2Cl2, pentane) or 

refluxing under N2 over Na/K (THF, Et2O). Ambient-temperature NMR spectra were recorded using a 

Varian Unity Inova 500 FT NMR (499.42 MHz for 1H, 125.58 MHz for 13C, 469.93 MHz for 19F, 202.17 

MHz for 31P) spectrometer. Chemical shifts (δ) are given in ppm and are referenced against residual 

solvent signals (1H, 13C) or external BF3· Et2O (19F), H3PO4 (31P). GC analysis was carried out using an 

Agilent GC System (6890 Series) Plus set up equipped with a Rxi-5ms fused silica column from 

RESTEK (length: 15 m length, id: 0.53 mm, film thickness: 0.50 µm). The column temperature was 

maintained at 50 °C for 2 min and raised to 250 °C at 25 °C/min. The final temperature (250 °C) was held 

for 10 min. The conductivity measurements were performed using a Mettler Toledo FiveGo conductivity 

probe. Elemental analyses were performed by Atlantic Microlab (Norcross, GA). 

 Crystallography:

The crystallographic measurements were performed at 110(2) K using a Bruker APEX-II CCD area 

detector diffractometer, with graphite-monochromated Mo Kα radiation (λ = 0.71069 Å) and ω scans with 

a 0.5° step in ω. A specimen of suitable size and quality was selected and mounted onto a nylon loop. The 

semiempirical method SADABS was applied for absorption correction. The structure was solved by direct 

methods, which successfully located most of the non-hydrogen atoms. The N-H atoms in 1 were located 

in the electron density map and refined anisotropically. All other hydrogen atoms were placed at 

calculated positions and refined using a riding model. Subsequent refinement on F2 using the 

SHELXTL/PC package28 (version 6.1) allowed location of the remaining non-hydrogen atoms. Data 

reduction and further calculations were performed using the Bruker Apex2 (2013) and SHELXTL 

program packages.



 SYNTHESIS:

Synthesis of 1:

NHCOCF3

PPh2

n-Butyllithium (2.2 M) in hexane (1.69 ml, 3.73 mmol) was added to a solution of o-

bromotrifluoroacetanilide (1.0 g, 3.73 mmol) in THF (20 mL) at -78ºC. After 1 h, t-butyllithium (1.5 M) 

in pentane (4.97 ml, 7.46 mmol) was added dropwise. The mixture was stirred at -78ºC for another hour, 

after which PPh2Cl (0.66 ml, 3.73 mmol) was added. The mixture was allowed to warm to room 

temperature and stirred overnight. The reaction mixture was quenched with an HCl solution (1M) in 

diethyl ether (10 ml). All volatiles were evaporated under vacuum and the resulting solid was extracted 

with pentane. The solvent was evaporated to afford the ligand as pale yellow solid. Yield: 974 mg, 70%. 

X-ray diffraction quality crystals were obtained by slow evaporation of a concentrated pentane solution. 
1H NMR (CDCl3, 499.42 MHz): 8.85 (bs, N-H), 8.12 (dd, J = 8.2, 4.4 Hz, 1H), 7.45 (td, 1H), 7.39 (td, 

6H), 7.31 (td, 4H), 7.19 (t, 1H), 7.03 (t, 1H). 13C NMR (CDCl3, 125.58 MHz): δ 154.75 (q, J = 37.3 Hz), 

138.16 (d, J = 17.7 Hz), 134.11 (d, J = 2.4 Hz), 133.76 (s), 133.61 (s), 133.42 (d, J = 5.4 Hz), 132.03 (d, J = 10.2 

Hz), 130.47 (s), 129.61 (s), 128.97 (d, J = 7.5 Hz), 128.20 (d, J = 12.1 Hz), 126.56 (d, J = 1.6 Hz), 122.21 (d, J = 1.6 

Hz), 115.65 (q, J = 289.1 Hz). 19F NMR (CDCl3, 469.93 MHz): -76.11 (s). 31P NMR (CDCl3, 202.17 MHz): 

-21.42 (s). ESI-/MS for [C20H14F3NOP]- : m/z calculated 372.08; found 372.0504. Elemental analysis (%) 

calculated for C20H15F3NOP: C, 64.35; H, 4.05; N, 3.75. Found: C, 63.52; H, 4.37; N, 3.73.

Synthesis of 2:

Au

PPh2NH
O

F3C

Cl

A solution of the ligand 1 (100 mg, 0.26 mmol) in THF (3 ml) was added dropwise to a suspension of 

(tht)AuCl (85.87 mg, 0.26 mmol) in THF (1 ml) at room temperature. It was left to stir for 2 h in a vessel 

protected from incident light. The reaction mixture was then layered with pentane. Over the course of 12 

h, the product precipitated as a white, light-sensitive solid. The white solid was isolated by filtration and 

washed with pentane. The product was obtained as a light sensitive white solid. Yield: 130 mg, 83%. 

Vapor diffusion of pentane in a THF solution afforded clear colorless crystals of 2.  1H NMR (CDCl3, 



499.42 MHz): δ 8.50 (s, 1H, N-H), 7.85 (dd, J = 7.8, 4.9 Hz, 1H), 7.66 (t, J = 7.8 Hz, 1H), 7.63 – 7.50 (m, 

10H), 7.33 (t, J = 7.7 Hz, 1H), 6.90 (ddd, J = 12.8, 7.8, 1.3 Hz, 1H). 13C NMR (CDCl3, 126 MHz). δ 

155.02 (q, J = 38.2 Hz), 136.35 (d, J = 6.3 Hz), 134.36 (d, J = 14.3 Hz), 133.51 (d, J = 7.1 Hz), 133.28 (d, J = 

2.0 Hz), 133.03 (d, J = 2.7 Hz), 129.84 (d, J = 12.4 Hz), 127.68 (d, J = 9.7 Hz), 126.95 (d, J = 5.4 Hz), 

125.80 (s), 125.28 (s), 122.82 (s), 122.34 (s), 115.24 (q, J = 289.1 Hz). 19F NMR (CDCl3, 469.93 MHz): δ 

-75.69 (s). 31P NMR (CDCl3, 202.17 MHz): δ 22.20 (s). ESI-/MS for [C20H14AuClF3NOP]- : m/z 

calculated 604.01; found 604.0068. Elemental analysis (%) calculated for C20H15AuClF3NOP: C, 39.66; 

H, 2.50; N, 2.31. Found: C, 38.65; H, 2.47; N, 2.20.

Synthesis of 3

Au P
Ph2

P
Ph2

Cl HNNH

O
F3C

O
CF3

A solution of the ligand 1 (400 mg, 1.07 mmol) in THF (4 ml) was added dropwise to a suspension of 

(tht)AuCl (171.75 mg, 0.535 mmol) in THF (1 ml) at room temperature inside the glovebox. It was left to 

stir for 2 h in a vessel protected from the incident light. The solution was concentrated. Addition of 

pentane led to the precipitation of the product which was recovered by filtration and washed with pentane. 

Yield: 420 mg, 80%. Single crystals were obtained by slow diffusion of pentane into a THF solution of 

the complex. 1H NMR (499 MHz, cdcl3) δ 10.51 (s, 2H, N-H), 7.71 – 7.57 (m, 4H), 7.53 (dd, J = 11.5, 4.4 

Hz, 12H), 7.41 (t, J = 7.6 Hz, 8H), 7.33 (t, J = 7.6 Hz, 2H), 6.92 (bs, 2H). 13C NMR (126 MHz, cdcl3) δ 

156.33 (s), 156.02 (s), 137.65 (s), 134.25 (s), 133.73 (s), 132.74 (s), 132.05 (s), 129.76 (s), 129.38 (s), 

128.13 (s), 19F NMR (CDCl3, 469.93 MHz): δ -75.15 (s). 31P NMR (CDCl3, 202.17 MHz): δ 35.78 (bs). 

Elemental analysis (%) calculated for C40H30AuClF6N2O2P2: C, 49.07; H, 3.09; N, 2.86. Found: C, 48.21; 

H, 3.13; N, 2.75.

 Catalytic cyclization of propargylic amides in CH2Cl2:

5 mol% freshly prepared 2 (5 mg, 0.00825 mmol) was added to a solution of the appropriate propargylic 

amide (0.1650 mmol) in 2 mL CH2Cl2 in a 20 mL vial. The progress of the reaction was monitored by 

injecting an aliquot of 10 L in the GC spectrometer and the gas chromatogram was recorded for 18 min 

at 250°C.



 NMR Spectra:
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Figure S1. 1H NMR spectrum of 1 in CDCl3. Residual solvent peak is shown in the spectrum. a) CHCl3
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Figure S2. 13C NMR spectrum of 1 in CDCl3.
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Figure S3. 19F NMR spectrum of 1 in CDCl3.
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Figure S4. 31P NMR spectrum of 1 in CDCl3.
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Figure S 5. 1H NMR spectrum of 2 in CDCl3. Residual solvent peak is shown in the spectrum. a) CHCl3
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Figure S 6. 13C NMR spectrum of 2 in CDCl3.
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Figure S10. 1H NMR spectrum of 3 in CDCl3. Residual solvent peak is shown in the spectrum. a) CHCl3
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Figure S 13. 31P NMR spectrum of 3 in CDCl3.

 VARIABLE TEMPERATURE NMR

The VT 31P NMR of a 0.012 M solution of 2 in CD2Cl2 was recorded at -30°C, -20°C, -10°C, 0°C, 10°C, 
20°C, 30°C, 40°C and 50°C using a Varian Unity Inova 400 FT NMR (399.59 MHz for 1H, 100.45 MHz 
for 13C, 375.89 MHz for 19F, 161.74 MHz for 31P) spectrometer.
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Figure S14. Variable Temperature 31P NMR spectra of 2 in CD2Cl2.



 DETERMINATION OF RELATIVE RATE OF DIFFUSION OF 2 VIA PGSE EXPERIMENT 
IN CD2CL2 WITH 1,3,5-TRI-TERT-BUTYLBENZENE AS A REFERENCE

An NMR tube was charged with 13.2 mg (0.0218 mmol) of 2, 5.37 mg (0.0218 mmol) of 1,3,5-tri-tert-

butylbenzene (A) and 0.6 mL CD2Cl2. The resulting solution was subjected to Pulse Gradient Spin Echo 

measurements using a Varian Unity Inova 400MHz spectrometer. The gradient strength was incremented 

in 15 steps from 80 Dac to 2045 Dac. The relevant parameters for the experiment were: ms, 

ms, d1= 2s. The measurements were repeated after a three-fold and nine-fold dilution using the 

same experimental parameters.
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Figure S15. Left: Decay of NMR signal intensity with the progressive increase of the gradient strength. Right: Plot 
of ln(I/I0) vs G2 for the reference A (1,3,5-tri-tert-butylbenzene) and 2 in the same graph.

According to the Stokes-Einstein equation (Eq. 2), the ratio of the slopes is inversely proportional to the 

ratio of the corresponding radii. The radius of 2 was determined from the ratio of slopes and the reported 

value of the radius of 1,3,5-tri-tert-butylbenzene.
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Figure S16. Plot of ln(I/I0) vs G2 for the reference A (1,3,5-tri-tert-butylbenzene) and 2 in the same graph for a 
three-fold dilution (left) and nine-fold dilution (right).
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 PGSE DATA FITTING 

The decrease in molecular volume observed upon dilution is interpreted as resulting from increased 

dissociation of the dimer (2)2 upon dilution.  In turn, the data can be used to estimate the association 

constant K as follows (2 × C0 = total concentration in 2, M = monomer or 2, D = dimer or (2)2):

  

Using this equation, rcalc was fitted against rPGSE by variation of K.  The fitting was performed manually 

affording K = 1020(±100) M-1.  The fitted data is presented in Table S1 along with corresponding 

volumes.  The graph shows the variation of the observed and fitted hydrodynamic radii as a function of 

concentration.



Table S1. Observed and calculated volumes and radii for 2

Total 

Concentration 

(M)

Vcalc rcalc V PGSE r PGSE

0.036 834.62333 5.84172 864.233 5.91

0.012 757.49588 5.655929 747.1255 5.63

0.04 673.4802 5.43858 648.3227 5.37
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Figure S17. Observed and fitted hydrodynamic radii of 2 in CD2Cl2 as a function of concentration.

 Conductivity Measurements.

The conductivity of solutions of 2 in CH2Cl2 at concentrations of 1.0 mM, 0.5mM and 0.1 mM were 

recorded. The conductivity of these solutions did not differ from that of pure CH2Cl2 (Conductivity = 0.00 

μS/cm) within experimental error. To assess the reliability of the measurement, CH2Cl2 solutions of 

tetrabutylammonium hexafluorophosphate (1:1 electrolyte) were prepared and their conductivity was 

measured under same conditions. At the same concentrations, the conductivity of TBAPF6 solutions was 

significantly higher than that observed for 2 indicating the non-electrolytic nature of 2.  Extrapolation to 

infinite dilutions using the data obtained for [TBAPF6] = 0.1, 0.5, 1 mM affords  = 115 S cm2 mol-1 

which is in good agreement with the literature value (109 S cm2 mol-1).5



Table S2. Conductivity of solutions of complex 2 and the reference electrolyte TBAPF6

Concentration of 2 

(mM)

Conductivity (μS/cm)

1 0.31

0.5 0.14

0.1 0.00

Concentration of TBAPF6 (mM) Conductivity (μS/cm) Molar Conductivity

(S cm2 mol-1)

100 1466.00 14.66

10 154.00 15.4

1 33.60 33.6

0.5 22.00 44

0.1 7.67 76.7

 LOW RESOLUTION MS-ESI-

2 (monomer)

1

Figure S 18. ESI-MS- spectra of the ligand 1 (top) and 2 (bottom). 



 CATALYSIS OF PROPARGYLIC AMIDES MONITORED BY GC:
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Figure S19. GC trace obtained for the cyclization of N-(prop-2-yn-1-yl)-benzamide catalyzed by 2 in CH2Cl2.
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Figure S20. GC trace obtained for the cyclization of N-(prop-2-yn-1-yl)-2-methylbenzamide catalyzed by 2 in 
CH2Cl2.
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Figure S21. GC trace obtained for the cyclization of N-(prop-2-yn-1-yl)-4-fluorobenzamide catalyzed by 2 in 
CH2Cl2.
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Figure S22. GC trace obtained for the cyclization of N-(prop-2-yn-1-yl)-4-methoxybenzamide catalyzed by 2 in 
CH2Cl2.
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Figure S23. 1H NMR spectrum of N-(prop-2-yn-1-yl)-4-fluorobenzamide after the completion of the catalysis.
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Figure S24. 1H NMR spectra obtained after 24h for the cyclization of propargylamides catalyzed by 2 in CH2Cl2.
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