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Experimental Section
Material preparation 

Preparation of ZIF-67 nanocrystals: ZIF-67 was prepared according to a previously reported process.[1] In a typical synthesis 
procedure, 1 mmol cobalt nitrate hexahydrate and 4 mmol of 2-methylimidazole were added into 25.0 mL of methanol, respectively. 
After they were totally dissolved, the latter solution was added into the former under magnetic agitation for 1 min and then stood for 
24 h. The purple solid was collected after centrifugation, washed with methanol for several times, and dried at room temperature. 

Synthesis of MoS2/Co9S8/C: As-prepared ZIF-67 (50 mg) was dispersed into glucose solution (0.025 M) by sonication for 10 min, 
followed by the addition of Na2MoO4·2H2O (0.6 mmol) and thiourea (4 mmol). After 10-min stirring, the solution was transferred 
into a 50 mL Teflon-lined stainless steel autoclave and maintained at 200 °C for 24 h. After naturally cooling to room temperature, the 
black precipitate was collected by centrifugation, washed with ethanol and deionized water for several times, and vacuum-dried at 60 
°C overnight. The as-prepared cobalt-molybdenum precursor (donated as CoMo-precursor) sample was further annealed at 500 °C in 
argon atmosphere for 4 h with a ramping rate of 2 °C min-1 to obtain the highly crystalline sample. For comparison, pure Co9S8 and 
MoS2 samples were synthesized according to a similar route except the addition of Na2MoO4·2H2O and ZIF-67, respectively. To 
study the contribution of carbon sodium capacity, pure carbon was synthesized according to a similar route with glucose as starting 
material.

Material Characterization

The samples were characterized by field-emission scanning electron microscope (FESEM; JEOLJSM07600F) and transmission 
electron microscope (TEM; JEOL JEM-2100F). Element mapping was analyzed by EDX attached to the TEM instrument. The 
chemical composition and surface valance states were analyzed with an X-ray photoelectron spectrometer (XPS, VG Microtech 
ESCA2000). XRD patterns of the products were explored by A Rigaku D/MAX RINT-2000 X-Ray Diffractometer (XRD) with Cu Kα 
radiation at a voltage of 40 kV and a current of 40 mA. Thermogravimetric analysis (TGA) was performed with a ramp rate of 10 °C 
min-1 in air atmosphere.

Electrochemical measurements

The working electrode is made of active materials, conductivity agent (Carbon black), and binder (polyvinylidene fluoride) with a 
weight ratio of 8:1:1 and 1.0 M NaCF3SO3 in diethylene glycol dimethyl ether with 5% fluoroethylene carbonate (FEC) additive was 
used as the electrolyte. The mass loading of the electrode was controlled to between 1.3- 1.8 mg. Sodium metal was used as both the 
reference electrode and counter electrode. In an argon-filled glove box, the coin-type half cells were assembled and then tested in 
TOSCAT 3000 battery tester (TOSCAT 3000, Toyo Systems, Tokyo, Japan) within a voltage range from 0.01 to 3.0 V. Cyclic 
voltammetry measurements were conducted on an Autolab potentiostat/galvanostat (PGSTAT-72637) electrochemical workstation. 
Electrochemical Impedance Spectroscopy (EIS) for each sample was taken within a frequency range of 1 MHz to 10 mHz and with a 
voltage amplitude ∆V= 5 mV.
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Fig. S1 XRD pattern (a) and FESEM image (b) of ZIF 67 nanocrystals.

Fig. S2  (a) SEM images of CoMo-precursor, inset in (a) is the TEM image of CoMo-precursor; (b) XRD pattern of CoMo-precursor.
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Fig. S3 XRD pattern of MoS2/Co8S9/C nanoboxes.

Fig. S4 XPS spectrum of MoS2/Co8S9/C nanoboxes.
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Fig. S5 TG curve of MoS2/Co8S9/C nanoboxes.

Fig. S6 (a) XRD pattern and (b) SEM image of single-phased Co9S8; (c) XRD pattern and (d) SEM image of single-phased MoS2, 

inset in (d) is the TEM image of single-phased MoS2.

.
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Fig. S7 (a) Typical voltage profile, and (b) Cycling performance of carbon at a current density of 200 mA g-1.  

Fig. S8 (a) Typical voltage profile of MoS2/Co8S9/C nanoboxes between 0.01 and 3.0 V at the rate from 0.1 to 10 A g-1; (b) Cycling 

performance of MoS2/Co8S9/C nanoboxes at a current density of 1 A g-1.  
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Fig. S9 The Nyquist plots of single-phased Co9S8, single-phased MoS2 and MoS2/Co8S9/C nanoboxes electrode before cycling.

Fig. S10 (a) Ex situ XRD patterns of the MoS2/Co9S8/C nanoboxes after 1st discharge and (b) SEM image of the MoS2/Co9S8/C 
nanoboxes after 100 cycles.
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Table S1. Comparison of the electrochemical performance of MoS2/Co9S8/C nanobox with previously reported metal sulfides/mixed 

metal sulfides anode materials for NaIBs

Materials
Current density

[mA g-1]
Cycle Capacity[mAh g-1] Rate capability Reference

MoS2/C paper 80 100 286.0
205 mAh g-1 at 

1000 mA g-1
[2]

MoS2 nanosheets 40 100 386
251 mAh g-1 at 

320 mA g-1
[3]

MoS2/C tube 250 200 480
370 mAh g-1 at 

2500 mA g-1
[4]

MoS2/GR spheres 200 (1500) 50 (600) 480 (323)
234 mAh g-1 at 

10 A g-1
[5]

MoS2/GR 100 (1000) 50 (500) 340 (300)
230 mAh g-1 at 5 

A g-1
[6]

Co9S8/C sphere 500 50 404
326 mAh g-1 at 

1.5 A g-1
[7]

Co9S8/MWCNT 500 (2000) 80(80) 444 (373) - [8]

MoS2/TiO2 nanowires 20 100 191
48 mAh g-1 at

4 A g-1
[9]

MoS2/SnS nanocrystal 500 100 455
238 mAh g-1 at

7 A g-1
[10]

Ni3S2@MoS2 nanofiber 200 (5000) 100 (400) 602 (277)
283 mAh g-1 at

5 A g-1
[11]

MoS2/Co9S8 nanobox 500 (1000) 100 (150) 546 (461)
222 mAh g-1 at

10 A g-1

Current

work
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