One-Pot Synthesis of Multicomponent (Mo, Co) Metal Sulfide/Carbon Nanoboxes

as anode materials for Improving Na-ion Storage

Juan Xiang, a and Taeseup Song a

^a Department of Energy Engineering, Hanyang University, Seoul 133-791, South Korea.

E-mail: tssong@hanyang.ac.kr

Experimental Section Material preparation

Preparation of ZIF-67 nanocrystals: ZIF-67 was prepared according to a previously reported process.^[1] In a typical synthesis procedure, 1 mmol cobalt nitrate hexahydrate and 4 mmol of 2-methylimidazole were added into 25.0 mL of methanol, respectively. After they were totally dissolved, the latter solution was added into the former under magnetic agitation for 1 min and then stood for 24 h. The purple solid was collected after centrifugation, washed with methanol for several times, and dried at room temperature.

Synthesis of $MoS_2/Co_9S_8/C$: As-prepared ZIF-67 (50 mg) was dispersed into glucose solution (0.025 M) by sonication for 10 min, followed by the addition of Na2MoO4·2H2O (0.6 mmol) and thiourea (4 mmol). After 10-min stirring, the solution was transferred into a 50 mL Teflon-lined stainless steel autoclave and maintained at 200 °C for 24 h. After naturally cooling to room temperature, the black precipitate was collected by centrifugation, washed with ethanol and deionized water for several times, and vacuum-dried at 60 °C overnight. The as-prepared cobalt-molybdenum precursor (donated as CoMo-precursor) sample was further annealed at 500 °C in argon atmosphere for 4 h with a ramping rate of 2 °C min⁻¹ to obtain the highly crystalline sample. For comparison, pure Co₉S₈ and MoS₂ samples were synthesized according to a similar route except the addition of Na2MoO4·2H2O and ZIF-67, respectively. To study the contribution of carbon sodium capacity, pure carbon was synthesized according to a similar route with glucose as starting material.

Material Characterization

The samples were characterized by field-emission scanning electron microscope (FESEM; JEOLJSM07600F) and transmission electron microscope (TEM; JEOL JEM-2100F). Element mapping was analyzed by EDX attached to the TEM instrument. The chemical composition and surface valance states were analyzed with an X-ray photoelectron spectrometer (XPS, VG Microtech ESCA2000). XRD patterns of the products were explored by A Rigaku D/MAX RINT-2000 X-Ray Diffractometer (XRD) with Cu Ka radiation at a voltage of 40 kV and a current of 40 mA. Thermogravimetric analysis (TGA) was performed with a ramp rate of 10 °C min⁻¹ in air atmosphere.

Electrochemical measurements

The working electrode is made of active materials, conductivity agent (Carbon black), and binder (polyvinylidene fluoride) with a weight ratio of 8:1:1 and 1.0 M NaCF₃SO₃ in diethylene glycol dimethyl ether with 5% fluoroethylene carbonate (FEC) additive was used as the electrolyte. The mass loading of the electrode was controlled to between 1.3- 1.8 mg. Sodium metal was used as both the reference electrode and counter electrode. In an argon-filled glove box, the coin-type half cells were assembled and then tested in TOSCAT 3000 battery tester (TOSCAT 3000, Toyo Systems, Tokyo, Japan) within a voltage range from 0.01 to 3.0 V. Cyclic voltammetry measurements were conducted on an Autolab potentiostat/galvanostat (PGSTAT-72637) electrochemical workstation. Electrochemical Impedance Spectroscopy (EIS) for each sample was taken within a frequency range of 1 MHz to 10 mHz and with a voltage amplitude $\Delta V= 5$ mV.

Fig. S1 XRD pattern (a) and FESEM image (b) of ZIF 67 nanocrystals.

Fig. S2 (a) SEM images of CoMo-precursor, inset in (a) is the TEM image of CoMo-precursor; (b) XRD pattern of CoMo-precursor.

Fig. S3 XRD pattern of $MoS_2/Co_8S_9/C$ nanoboxes.

Fig. S4 XPS spectrum of MoS₂/Co₈S₉/C nanoboxes.

Fig. S5 TG curve of MoS₂/Co₈S₉/C nanoboxes.

Fig. S6 (a) XRD pattern and (b) SEM image of single-phased Co_9S_8 ; (c) XRD pattern and (d) SEM image of single-phased MoS_2 , inset in (d) is the TEM image of single-phased MoS_2 .

Fig. S7 (a) Typical voltage profile, and (b) Cycling performance of carbon at a current density of 200 mA g⁻¹.

Fig. S8 (a) Typical voltage profile of $MoS_2/Co_8S_9/C$ nanoboxes between 0.01 and 3.0 V at the rate from 0.1 to 10 A g⁻¹; (b) Cycling performance of $MoS_2/Co_8S_9/C$ nanoboxes at a current density of 1 A g⁻¹.

Fig. S9 The Nyquist plots of single-phased Co₉S₈, single-phased MoS₂ and MoS₂/Co₈S₉/C nanoboxes electrode before cycling.

Fig. S10 (a) *Ex situ* XRD patterns of the $MoS_2/Co_9S_8/C$ nanoboxes after 1st discharge and (b) SEM image of the $MoS_2/Co_9S_8/C$ nanoboxes after 100 cycles.

Table S1. Comparison of the electrochemical performance of $MoS_2/Co_9S_8/C$ nanobox with previously reported metal sulfides/mixedmetal sulfides anode materials for NaIBs

Materials	Current density [mA g ⁻¹]	Cycle	Capacity[mAh g ⁻¹]	Rate capability	Reference
MoS ₂ /C paper	80	100	286.0	205 mAh g ⁻¹ at 1000 mA g ⁻¹	[2]
MoS ₂ nanosheets	40	100	386	251 mAh g ⁻¹ at 320 mA g ⁻¹	[3]
MoS ₂ /C tube	250	200	480	370 mAh g ⁻¹ at 2500 mA g ⁻¹	[4]
MoS ₂ /GR spheres	200 (1500)	50 (600)	480 (323)	234 mAh g ⁻¹ at 10 A g ⁻¹	[5]
MoS ₂ /GR	100 (1000)	50 (500)	340 (300)	230 mAh g ⁻¹ at 5 A g ⁻¹	[6]
Co ₉ S ₈ /C sphere	500	50	404	326 mAh g ⁻¹ at 1.5 A g ⁻¹	[7]
Co ₉ S ₈ /MWCNT	500 (2000)	80(80)	444 (373)	-	[8]
MoS ₂ /TiO ₂ nanowires	20	100	191	48 mAh g ⁻¹ at 4 A g ⁻¹	[9]
MoS ₂ /SnS nanocrystal	500	100	455	238 mAh g ⁻¹ at 7 A g ⁻¹	[10]
$Ni_3S_2@MoS_2$ nanofiber	200 (5000)	100 (400)	602 (277)	283 mAh g ⁻¹ at 5 A g ⁻¹	[11]
MoS ₂ /Co ₉ S ₈ nanobox	500 (1000)	100 (150)	546 (461)	222 mAh g ⁻¹ at 10 A g ⁻¹	Current work

References

- 1. Z. Jiang, W. Lu, Z. Li, K. H. Ho, X. Li, X. Jiao, D. Chen, J. Mater. Chem. A, 2014, 2, 8603-8606.
- X. Xie, T. Makaryan, M. Zhao, K. L. Van Aken, Y. Gogotsi, G. Wang, *Adv. Energy Mater.* 2016, 6, 1502161.
- 3. D. Su, S. Dou, G. Wang, Adv. Energy Mater. 2015, 5, 1401205.
- 4. X. Zhang, X. Li, J. Liang, Y. Zhu, Y. Qian, Small 2016, 12, 2484-2491.
- 5. S. H. Choi, Y. N. Ko, J.-K. Lee, Y. C. Kang, Adv. Funct. Mater. 2015, 25, 1780-1788.
- 6. S. Kalluri, K. H. Seng, Z. Guo, A. Du, K. Konstantinov, H. K. Liu, S. X. Dou, Sci. Rep. 2015, 5, 11989.
- 7. Y. N. Ko, Y. C. Kang, Carbon 2015, 94, 85-90.
- 8. H. Zhou, J. Hu, Mater. Lett. 2017, 195, 26-30.
- 9. J.-Y. Liao, B. D. Luna, A. Manthiram, J. Mater. Chem. A 2016, 4, 801-806.
- 10. S. H. Choi, Y. C. Kang, ACS Appl. Mater. Interfaces 2015, 7, 24694-26702.
- 11. J. Wang, J. Liu, H. Yang, D. Chao, J. Yan, S. V. Savilov, J. Lin, Z. X. Shen, Nano Energy 2016, 20, 1-10.