Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information

То

Two Synthetic Approaches for the Preparation of Tin(II) Dications

Mario Schleep, ^a Clarissa Hettich, ^a Daniel Kratzert, ^a Harald Scherer, ^a and Ingo Krossing ^a

^a Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.

Contents

Experimental Details Towards Assignment of 1	2
Quantum Chemical Calculations Towards the Coordination Number of Tin in dissolved [S	n(NC-Me) _n] ²⁺
(n = 6, 7, 8)	7
Experimental Details Towards Assignment of 2-4	46
Crystallographic details	49
Crystal data and structure refinement details for 1 and 4	49
Crystal data and structure refinement details for 2 and 3	50
Quantum chemical calculations	66
[Sn(MeCN) ₆] ²⁺	67
[Sn(MeCN) ₄] ²⁺	
[SnCp] ⁺	72
SnCp ₂	75
[SiCp*] ⁺	80
SiCp*2	82
[GeCp*] ⁺	86
GeCp*2	88
[SnCp*] ⁺	
SnCp*2	
[PbCp*] ⁺	
PbCp*2	100
dmap	104
[Si(dmap) ₄] ²⁺	107
[Ge(dmap) ₄] ²⁺	113
[Sn(dmap) ₄] ²⁺	119
[Pb(dmap) ₄] ²⁺	125
[Sn(PPh ₃) ₃] ²⁺	131
PPh ₃	139
[Sn(bipy) ₃] ²⁺	142
bipy	147
[Sn(py) ₄] ²⁺	148
Pyridine	152
[Sn(pyr) ₄] ²⁺	153
[Sn(pyr) ₂ (MeCN) ₄] ²⁺	156
Pyrazine	160
[Sn(mes) ₃] ²⁺	162
Mesitylene	167
[Sn(C ₇ H ₈) ₃] ²⁺	168
Toluene	172
Acetonitrile	174
References	174

Experimental Details Towards Assignment of 1

All manipulations were performed by using Schlenk or dry box techniques and argon atmosphere. $[NO][Al(OR^{F})_{4}]^{[1]}$ and $[SnCp][Al(OR^{F})_{4}]^{[2]}$ were synthesized according to literature procedures. 1,1,1,3,3,3-Hexafluoro-2-trifluoromethyl-2-propanol was dried with P₄O₁₀. All solvents were distilled prior to use. Pyrazine and PPh₃ were purchased from Acros and used without further purification, dmap was purchased from Sigma-Aldrich and purified by drying the dissolved dmap in toluene over CaH₂, filtration and distillation of dmap after removing toluene *in vacuo*. Tin powder (99.8 %, 2N8) was purchased from ABCR and used without further purification.

NMR spectra were recorded at room temperature on a Bruker Avance III HD 300 and a Bruker DSX500 spectrometer. Chemical shifts are given with respect to TMS for ¹H, CFCl₃ for ¹⁹F, Me₄Sn for ¹¹⁹Sn and 1.1 \bowtie Al(NO₃)₃ in D₂O for ²⁷Al.

FT-IR spectra were recorded on a BRUKER Alpha equipped with a Platinum ATR (diamond) unit in a glove box. For measurements and analysis OPUS 7.5 respectively OPUS 7.0 (both BRUKER Optic GmbH) were used. Raman spectra were recorded on a Bruker Vertex70 IR-spectrometer with the RAM II Raman module.

Due to the high fluorine content of the compounds, combustion analyses are notoriously unreliable and, therefore, we refrained using those for assessment of purity issues.

[Sn(MeCN)₆][Al(OR^F)₄]₂ (1): An excess of tin (0.358 g, 3.01 mmol, 1.50 eq) and [NO][Al(OR^F)₄] (2.00 g, 2.01 mmol) were filled into a Schlenk flask and while stirring, MeCN (5 mL) was added. The mixture was stirred overnight. After the excess tin powder had completely settled on the bottom of the flask, the solution was transferred into a fresh Schlenk flask. After removing the solvent in vacuo, 1 was obtained as off-white solid (1.86 g, 0.809 mmol, 81 %). ¹H-NMR (300.18 MHz, CD₃CN, 298 K): 1.96 ppm (s, 18 H, [Sn(H₃CCN)₆][Al(OR^F)₄]₂). ¹⁹F-NMR (282.45 MHz, CD₃CN, 298 K) –76.0 ppm (s, 72 F, [Sn(MeCN)₆][Al{OC(C**F**₃)₃}₄]₂). ¹¹⁹Sn-NMR (111.94 MHz, CD₃CN, 298 K): -1490 ppm (s, 1 Sn, ²⁷Al-NMR 298 K): $[Sn(MeCN)_6][Al(OR^F)_4]_2).$ (78.22 MHz, CD_3CN , 34.5 ppm (s, 2 Al, [Sn(MeCN)₆][**A**I(OR^F)₄]₂). IR (400-4000 cm⁻¹, Diamond ATR, corrected): 2949 (vw), 2320 (vw), 2305 (vw), 2291 (vw), 2272 (vw), 1352 (w), 1297 (w), 1273 (m), 1241 (s), 1211 (vs), 1166 (m), 1035 (vw), 969 (vs), 926 (vw), 831 (vw), 756 (vw), 726 (m), 571 (vw), 560 (vw), 536 (vw), 442 (vw), 402 (vw).

2

Figure S 1. ¹H-NMR spectrum (300.18 MHz) of 1 in CD₃CN at 298 K.

Figure S 2. 19 F-NMR spectrum (282.45 MHz) of 1 in CD₃CN at 298 K.

Figure S 3. ²⁷Al-NMR spectrum (78.22 MHz) of 1 in CD₃CN at 298 K.

Figure S 4. ¹¹⁹Sn-NMR spectrum (111.94 MHz) of **1** in CD₃CN at 298 K.

In the ¹¹⁹Sn MAS NMR spectrum (Figure S5) two ¹¹⁹Sn resonances are detected at -1270 ppm and -1277 ppm. This compares well to the findings from the crystal data where two different coordination environments of Sn^{2+} with six CH₃CN ligands were obtained. Quantum chemical calculations predict a chemical shift difference for these two coordination environments of 2 ppm in the ¹¹⁹Sn NMR, which is in good accordance with the experimental spectrum. However, the ¹¹⁹Sn chemical shift of -1490 ppm found for **1** in a solution of CD₃CN differs significantly from the chemical shifts detected in the solid state and cannot be explained by an exchange between these two environments in solution. In fact the main species in a solution of acetonitrile must exhibit a quite different coordination sphere for the Sn^{2+} cation. Again in quantum chemical calculations a highfield shift comparable to that observed in experiment could only be produced by a Sn^{2+} cation symmetrically coordinated with eight acetonitrile molecules. The energetics of the formation of such a complex allows for its existence and we therefore consider it to be the species predominant in a solution of **1** in acetonitrile.

Figure S5. ¹¹⁹Sn MAS NMR (186.5 MHz) spectra (Hahn echo) of **1** at rotation frequencies of 25 kHz (above) and 30 kHz (below). Rotational sidebands are marked by asterisk.

A new batch of material was prepared for the above solid state NMR-spectra, at its purity was investigated by IR and RAMAN spectroscopy in the crystalline state as well as an evacuated powder. The spectra suggest, that some MeCN was lost upon evacuation, but the nature of the anion was unchanged:

Figure S6. IR and RAMAN spectra in the crystalline state as well as of the evacuated powder of **1**. "trockengezogenes Pulver" indicates "evacuated powder" and "Kristalle" indicates "Crystals", which were isolated and only blown dry by a stream of inert argon gas.

IR_Crystals: v = 2953 (vw), 2920 (w), 2851 (vw), 2320 (vw), 2306 (vw), 2294 (vw), 2274 (vw), 1579 (vw), 1558 (vw), 1454 (vw), 1352 (w), 1297 (vw), 1273 (vw), 1240 (vw), 1207 (vs), 1165 (vw), 1036 (vw), 967 (vs), 927 (vw), 832 (w), 774 (vw), 756 (vw), 725 (vs), 571 (vw), 560 (w), 536 (m), 442 (m), 400 (vw), 390 (vw), 378 (vw).

IR_evacuated powder: v = 2951 (vw), 2320 (vw), 2304 (vw), 2273 (vw), 1352 (w), 1296 (vw), 1272 (vw), 1240 (vw), 1206 (vs), 1165 (vw), 1036 (vw), 967 (vs), 927 (vw), 832 (w), 756 (vw), 725 (vs), 571 (vw), 560 (w), 536 (m), 440 (m), 404 (vw), 379 (vw).

FT-Raman_Crystals: v = 2954 (vw), 2308 (vw), 2271 (vw), 1376 (vw), 1276 (vw), 798 (vw), 746 (vw), 538 (vw), 321 (vw), 88 (vs).

FT-Raman_evacuated powder: v = 2952 (w), 2317 (vw), 2306 (vw), 2275 (m), 1375 (vw), 1271 (vw), 1244 (vw), 1135 (vw), 973 (vw), 931 (vw), 798 (w), 746 (w), 562 (vw), 538 (vw), 405 (vw), 367 (vw), 322 (w), 288 (vw), 234 (vw), 171 (vw), 82 (vs).

Quantum Chemical Calculations Towards the Coordination Number

of Tin in dissolved $[Sn(NC-Me)_n]^{2+}$ (n = 6, 7, 8).

We have recorded MAS-NMR-spectra and, since they gave at first sight rather unexpected results, we augmented them with extensive DFT-calculations on the chemical shift of $[Sn(MeCN)_x]^{2+}$ (x = 6, 7, 8).

Astonishingly we learned, that most likely in solution an eightfold coordination prevails (calculated shift as well as thermodynamics), while the DFT calculations support two independent but closeby lines for the 3+3 and 2+2+2 coordinated $[Sn(MeCN)_6]^{2+}$ dications in the solid state.

BP86/SVP NMR Calculations	Sn-isotropic (ppm)	δ ¹¹⁹ Sn = (ppm)	$\Delta(\delta^{119}Sn)=$ (ppm) ^{a)}	E _{rel.} (kJ mol⁻¹)
Standard: SnMe ₄	2994	0	-	-
Octahedral Sn(NCMe) ₆ ²⁺	4223	-1228	78	18.6
2+2+2 Sn(NCMe) ₆ ²⁺	4146	-1152	2	2.3
3+3 Sn(NCMe) ₆ ²⁺	4144	-1150	0	0
C.N. 7: Sn(NCMe) ₇ ²⁺	4227	-1233	83	-
C.N. 8: Sn(NCMe) ₈ ²⁺	4315	-1321	171	-

^{a)} with respect to the 3+3 Sn(NCMe)₆²⁺ shift.

Also the thermodynamics of this formation is feasible:

		BP86/SDD	BP86/SVP
Reactions:	in kJ mol ^{–1}	$\Delta_{r} U$	$\Delta_{r} {\pmb{\mathcal{U}}}$
$Sn(NCMe)_7^{2+} + MeCN \rightarrow Sn(NCM)$	-41.4	-40.4	
$3+3 \text{ Sn}(\text{NCMe})_6^{2+} + \text{MeCN} \rightarrow \text{Sn}(\text{NCMe})_6^{2+}$	ICMe) ₇ 2+	-46.0	-42.0

Bonding within the 3+3 Minimum Structure: Orbitals and NPA / NBO Analyses

Drawings of the orbitals of the 3+3- and 2+2+2-complex are included below. They do **not** suggest heavy s-p-hybridization, but suggest rather s-p-separation.

Two views of the HOMO of 3+3 Sn(NC-Me)₆²⁺ at a cut off value of 0.02 $e^- Å^3$.

Two views of the HOMO of 2+2+2 Sn(NC-Me)₆²⁺ at a cut off value of 0.02 e^- Å³.

In addition, we have performed a NPA and NBO analysis. The main information is, that the formal $5s^2$ lone pair exists with a 1.90 e⁻ population, and that the 5p orbitals are populated by 0.22 to 0.27 e⁻:

[3+3]-Complex:

NATURAL POPULATIONS: Natural atomic orbital occupancies

NAO	Atom	#		Type (AO)	Occupancy
2	sn	1	s	Val(5s)	1.89708
10	sn	1	р	Val(5px)	0.26155
11	sn	1	p	Val(5py)	0.21895
12	sn	1	р	Val(5pz)	0.23487

[2+2+2]-Complex:

NATURAL POPULATIONS: Natural atomic orbital occupancies

NAO At	om #	Type (AO)	Occupancy
1 sn 3 sn 5 sn 7 sn	1 s 1 p 1 p 1 p 1 p	Val(5s) Val(5px) Val(5py) Val(5pz)	1.88702 0.22682 0.20332 0.27412

This is in agreement with the calculated NPA charge of +1.38 residing on Sn and calculated Wiberg / NAO bond orders of 0.23 / 0.26 for the shorter Sn-N-bonds and 0.16 / 0.18 for the longer Sn-N bonds (3+3]-complex; the respective values for the [2+2+2]-complex are: charge +1.40 on Sn, calculated Wiberg / NAO bond orders of 0.23 / 0.25 for the shorter Sn-N-bonds, 0.20 / 0.22 for the middle, and 0.14 / 0.16 for the longer Sn-N bonds).

Moreover, the analysis of the contribution to the individual bonds according to NBO is in agreement with the visualization in the orbitals: One has mainly s-p separation. Interestingly, in the stronger bonds, the orbital contributions are 97 % 5p on Sn, but in the weaker bonds, there is more 5s-contribution (19 %).

Bond orbital/ Coefficients/ Hybrids (Occupancy) _____ 1. (1.93127) BD (1)Sn 1 - N 2 (4.24%) 0.2059*Sn 1 s(**2.97**%)p32.66(**97.03**%) 0.1410 0.0991 0.1918 0.4005 -0.3916 -0.4137 0.6645 0.0834 (95.76%) 0.9786* N 2 s(51.58%)p 0.94(48.42%) -0.0004 0.7173 -0.0363 -0.0001 -0.1506 -0.0123 0.5338 0.0439 -0.4160 -0.0370 4. (1.92998) BD (1)Sn 1 - N 26 1 s(18.64%)p 4.37(81.36%) (2.29%) 0.1513*Sn 0.0193 0.4313 -0.1423 0.2581 0.6779 -0.3234 -0.0351 0.4017 (97.71%) 0.9885* N 26 s(51.33%)p 0.95(48.67%) -0.0005 0.7155 -0.0374 -0.0001 0.1709 0.0108 -0.6101 -0.0386 0.2886 0.0170

However, the contributions of tin orbitals to those bonds is very little (only 2 to 4 %).

Details to the Calculations Summarized above follow here:

A. Optimized Structures of Sn²⁺-Acetonitrile Complexes
 1. (3+3)-[Sn(NCMe)₆]²⁺ at BP86/SDD level:

Sn-N = 242 and 274 pm

1|1|UNPC-UNK|FOpt|RBP86|SDD|C12H18N6Sn1(2+)|PCUSER|28-May-2017|0||# RB P86/SDD Opt Test units=AU||[No Title]||2,1|Sn,0.4511556839,0.096582936 5,-0.2903196007|N,-0.6681992175,-1.947260304,0.3549001769|C,-1.0865463 94,-3.0321776589,0.5870200465|C,-1.6040693575,-4.3701573763,0.87429405 41|H,-2.6956305463,-4.3336856598,1.0379011501|H,-1.1254500626,-4.78025 24277,1.7810775002|H,-1.3972573795,-5.0500718377,0.0289513555|N,-1.858 0217582,0.7356557105,-0.6080384659|C,-2.9344052846,1.129186052,-0.9120 714556|C,-4.2631067701,1.6141253977,-1.2860998319|H,-4.2701332174,2.71 76068264,-1.3291608956|H,-5.0150903203,1.285748295,-0.5469819839|H,-4. 5491667596,1.2212800387,-2.2777743643|N,-0.1166424847,-1.0260868148,-2 .728518974|C,0.0714739308,-1.8486161736,-5.2486563805|H,1.1094715206,-1.7418573739,-5.6098116545|H,-0.5895789145,-1.2501218484,-5.8997829506 |H,-0.221753751,-2.9098640579,-5.3314606646|C,-0.0334226021,-1.3949712 048,-3.8578603631|N,-0.1783998076,0.6315505722,1.9807441165|C,-0.51390 5402,1.380435555,4.4991584222|H,-1.5889809299,1.4818953868,4.730437783 2|H,-0.0219472783,2.3528108254,4.6783358419|H,-0.0753772436,0.63268521 02,5.1833260999|C,-0.3281783987,0.9671318388,3.1080513537|N,0.61672359 7,2.8321770955,-0.2849567381|C,1.424787531,5.3279140045,-0.7103857841|

H,1.5276589056,5.5184029512,-1.7931655682|H,2.4039162358,5.5007619896, -0.2300800124|H,0.697530215,6.0470494356,-0.2944784132|C,0.9777583233, 3.9509974907,-0.4752785811|N,2.4006447303,-1.1792286402,1.1556614579|C ,4.7457676836,-2.134658543,1.962131898|H,5.4602121297,-2.1567985292,1. 1204953726|H,4.631316471,-3.1609797218,2.3527951656|H,5.1657144322,-1. 4994385508,2.7617072689|C,3.4511324903,-1.6077708896,1.5178936186||Ver sion=IA32W-G03RevD.01|State=1-A|HF=-799.4261425|RMSD=7.026e-009|RMSF=2 .255e-005|Thermal=0.|Dipol=-0.9177802,-0.1951498,0.593072|FG=C01 [X(C 12H18N6Sn1)]||@

NMR Calculations at the BP86/SVP level (NMR=GIAO):

1|1|UNPC-UNK|SP|RBP86|SVP|C12H18N6Sn1(2+)|PCUSER|28-May-2017|0||# RBP8 6/SVP NMR=GIAO geom=checkpoint||[No Title]||2,1|Sn,0,0.4511556839,0.09 65829365,-0.2903196007|N,0,-0.6681992175,-1.947260304,0.3549001769|C,0 ,-1.086546394,-3.0321776589,0.5870200465|C,0,-1.6040693575,-4.37015737 63,0.8742940541|H,0,-2.6956305463,-4.3336856598,1.0379011501|H,0,-1.12 54500626,-4.7802524277,1.7810775002|H,0,-1.3972573795,-5.0500718377,0. 0289513555|N,0,-1.8580217582,0.7356557105,-0.6080384659|C,0,-2.9344052 846,1.129186052,-0.9120714556|C,0,-4.2631067701,1.6141253977,-1.286099 8319|H,0,-4.2701332174,2.7176068264,-1.3291608956|H,0,-5.0150903203,1. 285748295,-0.5469819839|H,0,-4.5491667596,1.2212800387,-2.2777743643|N ,0,-0.1166424847,-1.0260868148,-2.728518974|C,0,0.0714739308,-1.848616 1736, -5.2486563805 | H, 0, 1.1094715206, -1.7418573739, -5.6098116545 | H, 0, -0 .5895789145,-1.2501218484,-5.8997829506|H,0,-0.221753751,-2.9098640579 -5.3314606646|C,0,-0.0334226021,-1.3949712048,-3.8578603631|N,0,-0.17 83998076,0.6315505722,1.9807441165|C,0,-0.513905402,1.380435555,4.4991 584222|H,0,-1.5889809299,1.4818953868,4.7304377832|H,0,-0.0219472783,2 .3528108254,4.6783358419|H,0,-0.0753772436,0.6326852102,5.1833260999|C ,0,-0.3281783987,0.9671318388,3.1080513537|N,0,0.616723597,2.832177095 5,-0.2849567381|C,0,1.424787531,5.3279140045,-0.7103857841|H,0,1.52765 89056,5.5184029512,-1.7931655682|H,0,2.4039162358,5.5007619896,-0.2300 800124|H,0,0.697530215,6.0470494356,-0.2944784132|C,0,0.9777583233,3.9 509974907,-0.4752785811|N,0,2.4006447303,-1.1792286402,1.1556614579|C, 0,4.7457676836,-2.134658543,1.962131898|H,0,5.4602121297,-2.1567985292 ,1.1204953726|H,0,4.631316471,-3.1609797218,2.3527951656|H,0,5.1657144 322,-1.4994385508,2.7617072689|C,0,3.4511324903,-1.6077708896,1.517893 6186||Version=IA32W-G03RevD.01|State=1-A|HF=-6820.7858354|RMSD=1.857e-009|Thermal=0.|Dipole=-1.0217259,-0.2166772,0.659915|PG=C01 [X(C12H18N 6Sn1)]||@

SCF GI	AO Magnetic s	hielding	f tensor	(ppm):		
1 S	n Isotropic	= 4144	.1560	Anisotro	opy =	183.2504
XX=	4083.1458	YX=	-0.0671	ZX=	0.319	99
XY=	-0.1338	YY= 40	83.0016	ZY=	0.531	.9
XZ=	0.3155	YZ=	0.5944	ZZ = 4	4266.320)7
Eig	envalues: 40	82.9478	4083.19	974 426	6.3230	
2 N	Isotropic	= 38	.5651	Anisotro	opy =	422.1585
XX=	-98.9055	YX= -	29.0374	ZX=	19.653	38
XY=	-28.9551	YY= 1	86.5450	ZY= ·	-196.178	34
XZ=	19.2110	YZ= -1	92.3282	ZZ =	28.055	59
Eig	envalues: -1	02.4978	-101.81	109 320	0.0042	
3 C	Isotropic	= 73	.0360	Anisotro	ору =	306.4370
XX=	-26.2276	YX= -	20.6504	ZX=	13.987	16
XY=	-20.7564	YY= 1	78.2513	ZY= ·	-139.696	56
XZ=	14.5365	YZ= -1	44.4890	ZZ =	67.084	13
Eig	envalues: -	29.9168	-28.30	026 27	7.3273	
4 C	Isotropic	= 188	.0724	Anisotro	ору =	31.7221
XX=	177.7766	YX=	-2.1385	ZX=	1.435	5
XY=	-2.1509	YY= 1	98.9530	ZY=	-14.590	0
XZ=	1.4941	YZ= -	14.8257	ZZ =	187.487	76
Eig	envalues: 1	77.4347	177.50	621 209	9.2204	
5 H	Isotropic	= 28	.8155	Anisotro	opy =	10.0991
XX=	25.6062	YX=	-0.6337	ZX=	-3.121	0
XY=	-0.0102	YY=	26.8604	ZY=	-2.714	19
XZ=	-3.6985	YZ=	-1.2270	ZZ =	33.979	99
Eig	envalues:	24.0300	26.80	683 35	5.5483	
6 H	Isotropic	= 28	.8053	Anisotro	opy =	9.9917
XX=	32.5134	YX=	-2.6792	ZX=	1.668	35
XY=	-4.1197	YY=	28.0366	ZY=	-2.811	.9
XZ=	2.6561	YZ=	-2.8290	ZZ =	25.865	58
Eig	envalues:	23.9257	27.02	236 35	5.4664	
7 H	Isotropic	= 28	.7856	Anisotro	ору =	9.9473
XX=	25.7580	YX=	2.7894	ZX=	1.852	20
XY=	3.5991	YY=	34.1450	ZY=	1.569	96

XZ= 1.4443 YZ= 0.0778 ZZ= 26.4537 Eigenvalues: 23.9603 26.9794 35.4171 8 N Isotropic = 38.5245 Anisotropy = 422.2027
 XX=
 139.8951
 YX=
 -109.7764
 ZX=
 -179.5147

 XY=
 -109.6678
 YY=
 -52.1201
 ZY=
 81.3987

 XZ=
 -175.8933
 YZ=
 79.8102
 ZZ=
 27.7985
 Eigenvalues: -102.5122 -101.9073 319.9930

 9 C
 Isotropic =
 73.0875
 Anisotropy =
 306.2849

 XX=
 144.8267
 YX=
 -78.5055
 ZX=
 -127.6689

 XY=
 -78.5962
 YY=
 7.4241
 ZY=
 57.9972

 XZ=
 -132.1379
 YZ=
 59.9530
 ZZ=
 67.0117

 Eigenvalues:
 -29.7848
 -28.2303
 277.2774

 10 C
 Isotropic =
 188.0654
 Anisotropy =
 3

 XX=
 195.4856
 YX=
 -8.1184
 ZX=
 -13.3340

 XY=
 -8.1242
 YY=
 181.2482
 ZY=
 6.0683

 XZ=
 -13.5672
 YZ=
 6.1709
 ZZ=
 187.4624

 Eigenvalues:
 177.4186
 177.5694
 209.2082

 31.7143 9.9698 11 H Isotropic = 28.7937 Anisotropy = XX= 27.1458 YX= -4.2788 ZX= -1.45 XX= 27.1458 YX= -4.2788 2A-XY= -3.0276 YY= 33.7911 ZY= -0.6804 XZ= -1.8846 YZ= 0.4544 ZZ= 25.4443 Eigenvalues: 23.8991 27.0418 35.4402 Testropic = 28.8151 Anisotropy = 10.1119 -4.2788 ZX= -1.4550 33.7911 ZY= -0.6804 $\begin{array}{rcl} & \text{Highrward} \\ 2 & \text{H} & \text{Isotropic} = & 28.8151 & \text{Anisotropy} = & 10.1112 \\ & \text{XX} = & 26.4764 & \text{YX} = & -1.1049 & \text{ZX} = & -1.7838 \\ & \text{XY} = & -1.1113 & \text{YY} = & 24.5501 & \text{ZY} = & 0.7797 \\ & \text{XZ} = & -0.2182 & \text{YZ} = & 0.0637 & \text{ZZ} = & 35.4188 \\ & \text{Eigenvalues:} & 24.0449 & 26.8439 & 35.5563 \\ & \text{Contropic} = & 28.7927 & \text{Anisotropy} = & 9.9684 \\ \end{array}$ 12 H Isotropic = 28.8151 Anisotropy = 13 H Isotropic = 28.7927 Anisotropy = XX= 34.5560 YX= 3.4029 ZX= -0.39

 XX=
 34.5560
 YX=
 3.4029
 ZX=
 -0.3986

 XY=
 2.1519
 YY=
 26.3692
 ZY=
 1.5567

 XZ=
 -1.5442
 YZ=
 1.1463
 ZZ=
 25.4530

 Eigenvalues:
 23.8943
 27.0455
 35.4383

 14
 N
 Isotropic
 17.9302
 Anisotropy
 45

 XX=
 89.9733
 YX=
 158.7628
 ZX=
 156.8589

 XY=
 158.8429
 YY=
 -19.1432
 ZY=
 111.8683

 XZ=
 162.8380
 YZ=
 116.1042
 ZZ=
 -17.0395
 450.5212 XI = 162.8380 YZ= 116.1042 ZZ= -1/.0395 Eigenvalues: -132.5111 -131.9760 318.2777 5 C Isotropic = 187.6646 Anisotropy = 30.3955 XX= 192.5494 YX= 10.7689 ZX= 10.9649 XY= 10.7949 YY= 185.1744 ZY= 7.8029 XZ= 10.5034 YZ= 7.5069 ZZ= 185.2702 Eigenvalues: 177.4655 177.6000 207.9283 C = Teotropic = 28.9730 Anisotropy = 9.7832 15 C

 16
 H
 Isotropic =
 28.9730
 Anisotropy =

 XX=
 26.5146
 YX=
 1.5379
 ZX=
 1.1770

 XY=
 1.2261
 YY=
 25.4606
 ZY=
 2.7146

 XZ=
 -0.4632
 YZ=
 1.7697
 ZZ=
 34.9437

 Eigenvalues:
 24.2369
 27.1869
 35.4951

 27.1869 35.4951 27.1869 35.4951 9.8243 Eigenvalues: 24.2369 27.1869 35.4951 17 H Isotropic = 29.0177 Anisotropy = 9.8243 XX= 35.0765 YX= -2.5477 ZX= 0.9133 XY= -1.0006 YY= 26.6436 ZY= 1.2921 XZ= 1.8942 YZ= 0.9551 ZZ= 25.3330 Eigenvalues: 24.2701 27.2158 35.5672 Tectropic = 29.0295 Anisotropy = 9.8438

 XX=
 26.7826
 YX=
 3.8318
 ZX=
 0.7517

 XY=
 2.5992
 YY=
 34.3159
 ZY=
 -1.9877

 XZ=
 1.3308
 YZ=
 -0.7429
 ZZ=
 25.9899

 Eigenvalues:
 24.2975
 27.1989
 35.5920

 19 C
 Isotropic =
 71.8639
 Anisotropy =
 311.5936

 xx=
 123.5325
 yx=
 110.4534
 Zx=
 114.9257

 xy=
 110.3523
 yy=
 47.5711
 Zy=
 81.9382

 xz=
 104.5652
 yz=
 74.6082
 zz=
 44.4880

 Eigenvalues:
 -32.8002
 -31.2012
 279.5929

 20 N Isotropic = 38.5955 Anisotropy = 422.1058 XX= 92.2802 YX= 137.6258 ZX= 160.6706 XY= 137.5398 YY= -4.1670 ZY= 114.0540 XZ= 157.4043 YZ= 111.8161 ZZ= 27.6732 XZ= 157.4043 YZ= 111.0101 22 Eigenvalues: -102.4946 -101.7183 319.9994 100 0442 Amisotropy = 31.7308 Eigenvalues: -102.4946 -101.7183 319.9994 21 C Isotropic = 188.0442 Anisotropy = 31.7308 XX= 191.9429 YX= 10.1748 ZX= 11.9656 XY= 10.1980 YY= 184.8081 ZY= 8.5081 XZ= 12.1629 YZ= 8.6107 ZZ= 187.3818 Eigenvalues: 177.3522 177.5825 209.1981 20 J Jostropic = 28.8158 Anisotropy = 10.0961

 22 H
 Isotropic =
 28.8158
 Anisotropy =
 1

 XX=
 26.5976
 YX=
 0.9511
 ZX=
 0.0616

 XY=
 0.3665
 YY=
 25.7152
 ZY=
 3.9849

 XZ=
 -1.4500
 YZ=
 3.4074
 ZZ=
 34.1346

 Eigenvalues:
 24.0320
 26.8688
 35.5466

 23 H Isotropic = 28.7852 Anisotropy = 9.9370

XX= 27.2235 YX= 4.8884 ZX= 0.1513 XY= 4.0497 YY= 32.7461 ZY= -2.3734 XZ= 0.9808 YZ= -1.0819 ZZ= 26.3858 Eigenvalues: 23.9546 26.9911 35.4098 24 н Isotropic = 28.8048 Anisotropy = 9.9897 33.5194 YX= -3.3599 ZX= 3.0338 XX= -1.9246 3.7320 XY=-1.9246YY=27.1199ZY=0.6897XZ=3.7320YZ=-0.0084ZZ=25.7750Eigenvalues:23.925727.024035.4646 Isotropic = 73.0400 Anisotropy = 25 C 306.3534 98.5417 ZX= 114.3500 XX= 110.6040 YX= 98.6446 YY= 41.6765 ZY= 118.3245 YZ= 83.9150 ZZ= 81.1692 66.8396 XY= X7 =Eigenvalues: -29.8530 -28.3026 277.2757 26 N Isotropic = 18.0439 Anisotropy = 450.4175
 XX=
 -129.5189
 YX=
 -32.5809
 ZX=
 18.6114

 XY=
 -32.5456
 YY=
 201.2767
 ZY=
 -191.0507

 XZ=
 19.3014
 YZ=
 -198.2833
 ZZ=
 -17.6263
 Eigenvalues: -132.6943 -131.4963 318.3222 Isotropic = 187.7045 Anisotropy = 3 177.7038 YX= -2.1916 ZX= 1.3709 27 C 30.4253 XX= XY= -2.2083 YY= 200.2095 ZY= -13.3712 XZ= 1.2654 YZ= -12.7567 ZZ= 185.2002 Eigenvalues: 177.4775 177.6481 207.9881

 Isotropic
 28.9826
 Anisotropy =

 29.7589
 YX=
 -0.2867
 ZX=
 4.7391

 -1.6616
 YY=
 27.5305
 ZY=
 -3.0101

 5.3963
 YZ=
 -1.8803
 ZZ=
 29.6582

 tvalues:
 24.2368
 27.1959
 35.5150

 28 H 9.7986 XX= XY= XZ= Eigenvalues: 29 Н Isotropic = 28.9840 Anisotropy = 9.7924
 YX=
 1.1308
 ZX=
 -3.72

 YY=
 28.2779
 ZY=
 -3.87

 YZ=
 -3.1171
 ZZ=
 28.56

 24.2359
 27.2039
 35.5123
 -3.7227 XX= 30.1098 YX= -3.8737 XY= 2.6210 XZ= -4.6340 28.5644 Eigenvalues: 30 H Isotropic = 29.0413 Anisotropy = 9.8714

 24.5894
 YX=
 -1.4202
 ZX=
 -0.6727

 -1.5313
 YY=
 34.5289
 ZY=
 3.4367

 -0.4356
 YZ=
 1.6301
 ZZ=
 28.0058

 values:
 24.3636
 27.1382
 35.6223

 XX= XY= XZ= Eigenvalues:

 31 C
 Isotropic =
 71.8940
 Anisotropy =
 311.5172

 XX=
 -28.9073
 YX=
 -22.5666
 ZX=
 13.6330

 XY=
 -22.5908
 YY=
 200.7391
 ZY=
 -140.0321

 XZ=
 12.4276
 YZ=
 -127.5092
 ZZ=
 43.8502

 Eigenvalues:
 -32.7840
 -31.1061
 279.5721

 32 N Isotropic = 17.9840 Anisotropy = 450.4488 33 C Isotropic = 187.6747 Anisotropy = 30.4007 196.3113 YX= -8.5899 ZX= -12.2680 -8.6058 YY= 181.4318 ZY= 5.6521 XX= XY= XZ= -11.7378 YZ= 5.3802 ZZ= 185.2809 Eigenvalues: 177.4953 177.5869 207.9418

 34 H
 Isotropic =
 28.9761
 Anisotropy =

 XX=
 27.0771
 YX=
 -1.1366
 ZX=
 -1.3165

 XY=
 -0.5836
 YY=
 25.4974
 ZY=
 3.5264

 XZ=
 0.4553
 YZ=
 3.0674
 ZZ=
 34.3538

 Eigenvalues:
 24.2391
 27.1879
 35.5014

 9.7879

 Signvalues:
 24.2391
 27.1879
 35.3014

 35
 H
 Isotropic =
 29.0357
 Anisotropy =

 XX=
 28.9351
 YX=
 -5.3698
 ZX=
 0.3368

 XY=
 -4.3209
 YY=
 31.6798
 ZY=
 -2.5905

 XZ=
 -0.7018
 YZ=
 -1.4849
 ZZ=
 26.4921

 Eigenvalues:
 24.3130
 27.1934
 35.6007

 9.8475 36 H Isotropic = 29.0111 Anisotropy = 9.8197 4.2570 ZX= -2.1915 28.2566 ZY= 0.5129 XX= 33.3356 YX= XY=2.6498YY=28.2566ZY=0.5129XZ=-2.8508YZ=-0.1681ZZ=25.4412Eigenvalues:24.262527.213335.5576Isotropic = 71.8621 Anisotropy = 31 161.5744 YX= -88.0975 ZX= -128.6308 -87.9699 YY= 9.0371 ZY= 58.6985 -117.0886 YZ= 53.4973 ZZ= 44.9747 37 C 311.5279 XX= XY= XZ= -117.0886 YZ= Eigenvalues: -32.7902 -31.1709 279.5473

2. (2+2+2)-[Sn(NCMe)₆]²⁺ at BP86/SDD level:

Sn-N = 240 (2x), 254 (2x) and 281 (2x) pm

1|1|UNPC-UNK|FOpt|RBP86|SDD|C12H18N6Sn1(2+)|PCUSER|27-May-2017|0||# RB P86/SDD Opt Test||[No Title]||2,1|Sn,5.9793350413,4.9079787676,4.39745 48636|N,7.768470247,3.4680462856,5.1091452822|N,3.9571619425,5.6624190 096,2.5931911079|N,4.6374373415,3.0168558194,5.4619750504|N,6.89152723 85,6.0031152423,6.8244079612|N,7.8912774672,5.8565241743,3.0063224792| N, 6.0703036052, 3.2785517271, 2.6323234146|C, 8.6605724506, 2.8516457485, 5 .5878312845|C,5.9982448618,2.5535933718,1.6973705407|C,8.6639821741,6. 5406253601,2.4165842378|C,7.0382510678,6.6866435806,7.7884787598|C,3.8 536549126,2.3429737133,6.0489636301|C,3.0550184394,6.2259577229,2.0576 856895|C,9.7612313512,2.0907156761,6.1790706797|C,5.9096552394,1.65876 1082,0.5435231666|C,9.6159229491,7.3835618284,1.6899719047|C,7.2164930 454,7.5305648825,8.9751741133|C,2.8876057678,1.5127098409,6.7716671092 |C,1.9434367186,6.9223137893,1.4006280725|H,9.5939263443,1.955396924,7 .2622669445|H,9.8393963926,1.0953423579,5.7072862574|H,10.7170743053,2 .6248319757,6.0350156161|H,5.2754646465,2.1080991533,-0.2409708028|H,6 .9134627036,1.4734907756,0.1220615699|H,5.4689241956,0.6908558467,0.84 10987292|H,9.9517758395,8.2199205681,2.328137106|H,10.4995507482,6.794 6940681,1.3869735178|H,9.1435499319,7.8014389407,0.7834661423|H,6.6801 733261,8.487565519,8.8500529938|H,6.8213580539,7.022015733,9.872026911 5|H,8.2869441477,7.7468702123,9.1375759802|H,2.0171422817,1.2903603042 ,6.129534599|H,3.3519711394,0.5587988414,7.0778795719|H,2.5319974623,2 .037676139,7.6758239178|H,1.0643254747,6.258683607,1.3243528166|H,1.65 69641452,7.8188834305,1.9779068285|H,2.2339170005,7.238217981,0.383341 9533||Version=IA32W-G03RevD.01|State=1-A|HF=-799.4259459|RMSD=6.834e-0 09|RMSF=2.355e-006|Thermal=0.|Dipole=0.5327957,-0.8609503,-0.3024154|P G=C01 [X(C12H18N6Sn1)]||@

NMR Calculations at the BP86/SVP level (NMR=GIAO):

1|1|UNPC-UNK|SP|RBP86|SVP|C12H18N6Sn1(2+)|PCUSER|27-May-2017|0||# RBP8 6/SVP NMR=GIAO Test||[No Title]||2,1|Sn,0,0.0001,-0.0025,-0.3362|N,0,1 .5065,0.0473,1.5371|N,0,-2.5796,-0.0517,-1.4572|N,0,-0.0361,2.4911,0.2 031 | N, 0, 2.5806, -0.0075, -1.4597 | N, 0, 0.0308, -2.476, 0.2733 | N, 0, -1.5023, 0. 0031,1.5405|C,0,2.3657,0.075,2.3531|C,0,-2.3573,0.0026,2.3613|C,0,0.04 2,-3.6646,0.284|C,0,3.4994,-0.0161,-2.2173|C,0,-0.0552,3.6794,0.1793|C ,0,-3.4947,-0.0708,-2.2191|C,0,3.4264,0.1098,3.36|C,0,-3.4124,0.0019,3 .3746|C,0,0.0557,-5.1289,0.297|C,0,4.6292,-0.0266,-3.1531|C,0,-0.0793, 5.1434,0.1499|C,0,-4.6198,-0.094,-3.1602|H,0,4.2041,0.8387,3.071|H,0,3 .0162,0.4028,4.3426|H,0,3.8956,-0.8852,3.4567|H,0,-4.3847,-0.247,2.913 9|H,0,-3.1926,-0.7441,4.1587|H,0,-3.4912,0.9967,3.8476|H,0,0.8281,-5.5 109,-0.3936|H,0,0.2746,-5.5036,1.3125|H,0,-0.9254,-5.5242,-0.0203|H,0, 4.2867,-0.3032,-4.1657|H,0,5.0977,0.9719,-3.2021|H,0,5.3918,-0.7564,-2 .8291 | H, 0, -1.1187, 5.5082, 0.0715 | H, 0, 0.3698, 5.555, 1.0709 | H, 0, 0.4909, 5.5 187,-0.7183|H,0,-5.2338,0.8169,-3.0492|H,0,-4.2503,-0.1432,-4.1995|H,0 ,-5.2603,-0.9738,-2.9737||Version=IA32W-G03RevD.01|State=1-A|HF=-6820. 7849486 | RMSD=1.480e-009 | Thermal=0. | Dipole=-0.0016557, 0.009973, 1.178008 |PG=C01 [X(C12H18N6Sn1)]||@

SCF GIAO Magnetic shielding tensor (ppm): Isotropic = 4146.4616 Anisotropy = 1 Sn 126.5421 YX= -0.2703 ZX= 0.3117 XX= 4094.1156 -0.1909 YY= 4114.4491 0.4209 XY =7.Y =0.2402 YZ= 0.6094 ZZ =4230.8201 XZ =Eigenvalues: 4094.1124 4114.4495 4230.8230

2 N Isotropic = 39.3398 Anisotropy = 421.0053 XX= 121.9558 YX= 7.1063 ZX= 211.5501 XY= 7.1164 YY= -102.1400 ZY= 7.0055 XZ= 207.1716 YZ= 6.8188 ZZ= 98.2036 Eigenvalues: -102.3800 -99.6106 320.0100 2 N 3 N Isotropic = 16.0180 Anisotropy = 452.3684 XX= 132.9412 YX= 5.5596 ZX= 218.5835 XY= 5.5967 YY= -136.4730 ZY= 4.6218 XZ= 224.4426 YZ= 4.7003 ZZ= 51.5858 Eigenvalues: -136.5894 -132.9536 317.5969 4 N Isotropic = 30.0601 Anisotropy = 434.3586 XX= -115.4423 YX= -7.0785 ZX= 0.3386 XY= -6.9919 YY= 319.2354 ZY= -7.7995 XZ= 0.4136 YZ= -14.3455 ZZ= -113.6128 Eigenvalues: -115.5792 -113.8730 319.6325 5 N Isotropic = 15.8795 Anisotropy = 452.5389 XX= 134.9704 YX= -2.4602 ZX= -218.3082 XY= -2.5718 YY= -136.8525 ZY= 2.1031 XZ= -224.1219 YZ= 2.0580 ZZ= 49.5207 Eigenvalues: -136.8760 -133.0576 317.5721 6 N Isotropic = 30.3296 Anisotropy = 433.9939 -4.0856 ZX= 0.0918 319.6151 ZY= -4.7356 XX= -115.2524 YX= XY=-4.1412YY=319.6151ZY=-4.7356XZ=0.0151YZ=1.8380ZZ=-113.3739Eigenvalues:-115.2921-113.3779319.6589 7 N Isotropic = 39.3704 Anisotropy = 420.9282 XX= 119.6657 YX= 0.0738 ZX= -211.8164 0.1497 YY= -102.0478 ZY= -0.2036 XY= XZ= -207.5649 YZ= -0.1017 ZZ= 100.4932 Eigenvalues: -102.0484 -99.8297 319.9892 8 Č Isotropic = 72.8438 Anisotropy = 305.4206 XX= 129.6612 YX= 5.1167 ZX= 149.8261 XX= 129.6612 YX= 5.1167 ZX= 149.8261 XY= 5.1319 YY= -28.3484 ZY= 4.8444 XZ= 155.6240 YZ= 5.0182 ZZ= 117.2186 Eigenvalues: -29.4120 -28.5142 276.4575 9 C Isotropic = 72.8831 Anisotropy = 305.4244 XX= 128.1803 YX= 0.0938 ZX= -150.0355 XY= -0.0071 YY= -28.4974 ZY= -0.0164 YZ= 1142 ZZ= 1142 XZ= -155.6776 YZ= -0.1143 ZZ= 118.9664 Eigenvalues: -29.3529 -28.4971 276.4993 10 C Isotropic = 72.0102 Anisotropy = 308.9364 XX= -29.7878 YX= -2.9829 ZX= -0.0123 XY= -2.8920 YY= 277.8524 ZY= 0.7013 XZ= 0.0900 YZ= -11.1075 ZZ= -32.0340 Eigenvalues: -32.1214 -29.8158 277.9678

 Elgenvalues:
 -32.1214
 -29.0136
 277.9676

 11 C
 Isotropic =
 72.3589
 Anisotropy =
 313.9912

 XX=
 156.1981
 YX=
 -1.8071
 ZX=
 -159.5197

 XY=
 -1.6290
 YY=
 -31.2467
 ZY=
 1.3324

 XZ=
 -148.9142
 YZ=
 1.3768
 ZZ=
 92.1253

 Eigenvalues:
 -33.3482
 -31.2615
 281.6864

 12 C Isotropic = 72.0380 Anisotropy = 308.9565 XX= -29.7395 YX= -4.9136 ZX= 0.1338 XY= -4.9767 YY= 277.8833 ZY= -9.7171 XZ= -0.0639 YZ= 2.1473 ZZ= -32.0299 Eigenvalues: -32.0764 -29.8187 278.0090

 13
 C
 Isotropic =
 72.2878
 Anisotropy =
 313.9638

 XX=
 154.6803
 YX=
 3.9142
 ZX=
 159.8440

 XY=
 3.8533
 YY=
 -31.2449
 ZY=
 3.2741

 XZ=
 149.0659
 YZ=
 3.1094
 ZZ=
 93.4279

 Eigenvalues:
 -33.4079
 -31.3257
 281.5970

 14 C Isotropic = 188.0922 Anisotropy = 31.6601 XX= 194.0345 YX= 0.5596 ZX= 15.5854 XY= 0.5913 YY= 177.4120 ZY= 0.5411 XZ= 15.8860 YZ= 0.5312 ZZ= 192.8301 Eigenvalues: 177.3920 177.6856 209.1990 15 C Isotropic = 188.1014 Anisotropy = 31.6661 XX= 193.9614 YX= 0.0101 ZX= -15.6558 XY=0.0392YY=177.4065ZY=-0.0193XZ=-15.8539YZ=-0.0294ZZ=192.9364 Eigenvalues: 177.4065 177.6857 209.2121

16 C Isotropic = 187.9321 Anisotropy = 31.3297

 XX=
 177.4926
 YX=
 -0.3604
 ZX=
 -0.0445

 XY=
 -0.3119
 YY=
 208.8092
 ZY=
 -0.1143

 XZ=
 -0.0310
 YZ=
 -0.7340
 ZZ=
 177.4945

 Eigenvalues:
 177.4466
 177.5311
 208.8186

 17 C Isotropic = 187.6936 Anisotropy = 30.0896 XX= 195.6136 YX= -0.1870 ZX= -14.9685 XY=-0.2208YY=177.6622ZY=0.1405XZ=-14.5495YZ=0.1217ZZ=189.8051Eigenvalues:177.6353177.6922207.7533 18 C Isotropic = 187.9020 Anisotropy = 31.3118 177.4993 YX= -0.4628 ZX= 0.0065 XX= XY=-0.5103YY=208.7620ZY=-0.7956XZ=-0.0144YZ=-0.1395ZZ=177.4448Eigenvalues:177.4355177.4940208.7765

 Bigenvalues:
 9
 C
 Isotropic =
 187.7221
 Anisotropy =
 50.0750

 XX=
 195.4954
 YX=
 0.3721
 ZX=
 15.0145

 XY=
 0.3828
 YY=
 177.7616
 ZY=
 0.3094

 XZ=
 14.5851
 YZ=
 0.3072
 ZZ=
 189.9093

 Eigenvalues:
 177.6412
 177.7538
 207.7713

 C
 Testropic =
 28.7816
 Anisotropy =
 9.8699

 19 C Isotropic = 187.7221 Anisotropy = 30.0738 20 H Isotropic = 28.7816 Anisotropy = 20 H Isotropic = 28.7816 Anisotropy = 9.8699 XX= 32.1440 YX= 5.3250 ZX= 0.4388 XY= 4.4757 YY= 27.8095 ZY= -1.1827 XZ= 1.7028 YZ= -0.3328 ZZ= 26.3911 Eigenvalues: 23.9932 26.9900 35.3615 21 H Isotropic = 28.8179 Anisotropy = 10.1752 XX= 26.7934 YX= -0.3600 ZX= 0.6731 XY= -0.7198 YY= 24.6196 ZY= 2.3131 XZ= -0.9495 YZ= 2.6152 ZZ= 35.0408 Eigenvalues: 23.9786 26.8738 35.6014 22 H Isotropic = 28.7919 Anisotropy = 9.9543 Eigenvalues: 23.9786 26.8738 35.6014 22 H Isotropic = 28.7919 Anisotropy = 9.9543 XX= 28.7767 YX= -4.8265 ZX= 2.8944 XY= -3.6165 YY= 31.0773 ZY= -0.9750 XZ= 3.3346 YZ= -2.1281 ZZ= 26.5216 Eigenvalues: 24.0287 26.9188 35.4281 23 H Isotropic = 28.7808 Anisotropy = 9.8701 XX= 34.9523 YX= 2.1426 ZX= 1.3800 XY= 1.8449 YY= 24.3140 ZY= 0.7376 XZ= -0.3252 YZ= 0.4472 ZZ= 27.0761 Eigenvalues: 23.8771 27.1044 35.3609 24 H Isotropic = 28.8100 Anisotropy = 10.1192

 24 H
 Isotropic =
 28.8100
 Anisotropy =
 10.1192

 XX=
 26.2367
 YX=
 -0.0672
 ZX=
 -2.1198

 XY=
 -0.9403
 YY=
 28.0231
 ZY=
 -4.5001

 XZ=
 -0.9518
 YZ=
 -5.3643
 ZZ=
 32.1702

 Eigenvalues:
 23.9974
 26.8764
 35.5561

 26 H Isotropic = 28.8577 Anisotropy = 9.9228 26 H Isotropic = 28.8577 Anisotropy = 9.9228 XX= 28.4600 YX= -2.4815 ZX= -3.8985 XY= -3.8349 YY= 30.6542 ZY= 3.3254 XZ= -3.8577 YZ= 2.1114 ZZ= 27.4590 Eigenvalues: 24.0488 27.0515 35.4729 27 H Isotropic = 28.9032 Anisotropy = 9.9928 XX= 24.5363 YX= -0.7201 ZX= 1.6305 XY= -1.0966 YY= 30.5622 ZY= -4.9999 XZ= 1.6241 YZ= -3.2882 ZZ= 31.6112 Eigenvalues: 24.1800 26.9647 35.5651 28 H Isotropic = 28.8667 Anisotropy = 9.9132 28 H Isotropic = 28.8667 Anisotropy = 9.9132 XX=31.0706YX=3.1233ZX=2.2694XY=4.8438YY=30.7660ZY=1.5023XZ=2.2290YZ=0.9372ZZ=24.7634Eigenvalues:24.042927.081635.4755
 Ligenvalues:
 24.0429
 27.0816
 35.4755

 29 H
 Isotropic =
 29.0205
 Anisotropy =
 9.7364
 XX=27.1860YX=0.1925ZX=-1.3546XY=0.5998YY=24.8532ZY=2.0965XZ=0.5215YZ=2.4079ZZ=35.0221Eigenvalues:24.298727.251335.5114

 30
 H
 Isotropic =
 29.0540
 Anisotropy =
 9.7963

 XX=
 29.4816
 YX=
 4.9832
 ZX=
 -2.5140

 XY=
 3.5432
 YY=
 31.4801
 ZX=
 -0.5440

 XZ=
 -2.9747
 YZ=
 -1.6833
 ZZ=
 26.2003

 Bigenvalues:
 24.3521
 27.2251
 35.5849

 31
 H
 Isotropic =
 29.0676
 Anisotropy =
 9.8061

 XX=
 32.6260
 YX=
 -5.2138
 ZX=
 -0.0191

 XY=
 -4.1824
 YY=
 28.1955
 ZY=
 -1.5154

 XZ=
 -1.3340
 YZ=
 -0.6937
 ZZ=
 26.3812

 Eigenvalues:
 24.3789
 27.2189
 35.6050
 32
 H
 Isotropic =
 28.8750
 Anisotropy =
 9.9159

 XX=
 31.901
 YX=
 -3.2237
 ZX=
 0.6250
 YZ=
 0.6250

 XY=
 -5.0165
 YY=
 30.5231
 ZY=
 -0.4181
 YZ=
 2.9561

 XX=
 25.6283
 YX=
 1.4173
 ZX=

3. (octahedral)-[Sn(NCMe)₆]²⁺ at BP86/SDD level:

^{1|1|}UNPC-UNK|FOpt|RBP86|SDD|C12H18N6Sn1(2+)|PCUSER|27-May-2017|0||# RB P86/SDD Opt Test||[No Title]||2,1|Sn,5.9793350413,4.9079787676,4.39745 48636|N,7.768470247,3.4680462856,5.1091452822|N,3.9571619425,5.6624190 096,2.5931911079|N,4.6374373415,3.0168558194,5.4619750504|N,6.89152723 85,6.0031152423,6.8244079612 N,7.8912774672,5.8565241743,3.0063224792 | N,6.0703036052,3.2785517271,2.6323234146|C,8.6605724506,2.8516457485,5 .5878312845|C,5.9982448618,2.5535933718,1.6973705407|C,8.6639821741,6. 5406253601,2.4165842378|C,7.0382510678,6.6866435806,7.7884787598|C,3.8 536549126,2.3429737133,6.0489636301|C,3.0550184394,6.2259577229,2.0576 856895 [C, 9.7612313512, 2.0907156761, 6.1790706797 [C, 5.9096552394, 1.65876 1082,0.5435231666|C,9.6159229491,7.3835618284,1.6899719047|C,7.2164930 454,7.5305648825,8.9751741133|C,2.8876057678,1.5127098409,6.7716671092 |C,1.9434367186,6.9223137893,1.4006280725|H,9.5939263443,1.955396924,7 .2622669445|H,9.8393963926,1.0953423579,5.7072862574|H,10.7170743053,2 .6248319757,6.0350156161|H,5.2754646465,2.1080991533,-0.2409708028|H,6 .9134627036,1.4734907756,0.1220615699|H,5.4689241956,0.6908558467,0.84 10987292|H,9.9517758395,8.2199205681,2.328137106|H,10.4995507482,6.794 6940681,1.3869735178|H,9.1435499319,7.8014389407,0.7834661423|H,6.6801 733261,8.487565519,8.8500529938|H,6.8213580539,7.022015733,9.872026911 5|H,8.2869441477,7.7468702123,9.1375759802|H,2.0171422817,1.2903603042 ,6.129534599|H,3.3519711394,0.5587988414,7.0778795719|H,2.5319974623,2 .037676139,7.6758239178|H,1.0643254747,6.258683607,1.3243528166|H,1.65 69641452,7.8188834305,1.9779068285|H,2.2339170005,7.238217981,0.383341 9533||Version=IA32W-G03RevD.01|State=1-A|HF=-799.4259459|RMSD=6.834e-0 09|RMSF=2.355e-006|Thermal=0.|Dipole=0.5327957,-0.8609503,-0.3024154|P G=C01 [X(C12H18N6Sn1)]||@

NMR Calculations at the BP86/SVP level (NMR=GIAO):

1|1|UNPC-UNK|SP|RBP86|SVP|C12H18N6Sn1(2+)|PCUSER|27-May-2017|0||# RBP8 6/SVP NMR=GIAO Test||[No Title]||2,1|Sn,0,-0.0001,-0.0001,-0.0001|N,0, -1.8765,0.0483,-1.8415|N,0,1.875,-0.0521,1.8423|N,0,-1.7822,0.6062,1.8 356|N,0,-0.4609,-2.5585,0.3943|N,0,1.7883,-0.6025,-1.8311|N,0,0.4563,2 .5585,-0.3996|C,0,-2.7252,0.0696,-2.6735|C,0,0.662,3.7149,-0.5817|C,0, 2.5981,-0.8745,-2.6575|C,0,-0.6704,-3.715,0.5716|C,0,-2.5869,0.8812,2. 666|C,0,2.7226,-0.0761,2.6753|C,0,-3.7714,0.0958,-3.6989|C,0,0.9153,5. 1405,-0.8061|C,0,3.5966,-1.2098,-3.6761|C,0,-0.9288,-5.1406,0.7898|C,0 ,-3.5786,1.2206,3.6898|C,0,3.7674,-0.1061,3.702|H,0,-4.6519,-0.4799,-3 .3636|H,0,-4.086,1.135,-3.8999|H,0,-3.3986,-0.3472,-4.6391|H,0,1.6798, 5.5103,-0.1004|H,0,1.2762,5.3087,-1.836|H,0,-0.0111,5.7228,-0.6583|H,0 ,3.8203,-2.2908,-3.6531|H,0,3.2218,-0.9492,-4.6815|H,0,4.5325,-0.6527, -3.4941|H,0,-0.1012,-5.5978,1.3602|H,0,-1.8658,-5.2784,1.3574|H,0,-1.0 224,-5.666,-0.1769|H,0,-3.3461,2.2022,4.1389|H,0,-4.5884,1.2672,3.2456 |H,0,-3.5807,0.4593,4.4896|H,0,3.321,-0.0078,4.7072|H,0,4.3239,-1.0587 ,3.6556|H,0,4.4787,0.7247,3.5501||Version=IA32W-G03RevD.01|State=1-A|H F=-6820.7787488|RMSD=6.471e-009|Thermal=0.|Dipole=0.0002585,-0.0001909 ,0.0006879|PG=C01 [X(C12H18N6Sn1)]||@

SCF GIAO Magnetic shielding tensor (ppm): 1 Sn Isotropic = 4222.6031 Anisotropy = 0.4412 XX= 4222.5060 YX= -0.0714 ZX= 0.1299 XY= -0.1031 YY= 4222.8745 ZY= 0.0671 XZ= 0.1373 YZ= 0.0663 ZZ= 4222.4286 Eigenvalues: 4222.3084 4222.6036 4222.8972 2 N Isotropic = 27.6073 Anisotropy = 434.9032 XX= 103.8726 YX= -9.0257 ZX= 217.2570 -9.0393 YY= -116.9766 ZY= XY= -8.9270 217.2159 YZ= -8.9078 ZZ= 95.9260 XZ= Eigenvalues: -117.3974 -117.3234 317.5428 3 N Isotropic = 27.6282 Anisotropy = 434.8614 103.3187 YX= -9.7123 ZX= 217.1860 -9.7327 YY= -116.9110 ZY= -9.6518 217.1732 YZ= -9.6251 ZZ= 96.4768 XX= XY= XZ= Eigenvalues: -117.3768 -117.2745 317.5358 4 N Isotropic = 27.6793 Anisotropy = 434.8458 80.8613 YX= -69.0122 YY= -68.9597 ZX= -205.2585 XX=

 XY=
 -69.0122
 YY=
 -93.2487
 ZY=
 71.5047

 XZ=
 -205.3045
 YZ=
 71.4641
 ZZ=
 95.4254

 Eigenvalues: -117.2750 -117.2636 317.5765 5 N Isotropic = 27.6516 Anisotropy = 434.8649 XX= -102.1359 YX= 78.8928 ZX= -11.7323 XY= 78.9072 YY= 293.3919 ZY= -60.8405 XZ= -11.7316 YZ= -60.8154 ZZ= -108.3013 Eigenvalues: -117.3489 -117.2579 317.5615 Isotropic = 27.6777 Anisotropy = 434.8435 6 N 83.4485 YX= -68.7044 ZX= -205.6261 XX= XY= -68.6828 YY= -93.7818 ZY= 70.3523 XZ= -205.5777 YZ= 70.3571 ZZ= 93.3664 Eigenvalues: -117.2893 -117.2509 317.5734 7 N Isotropic = 27.6416 Anisotropy = 434.8792 XX= -102.7033 YX= 77.5246 ZX= -11.8349 77.5710 YY= 293.3906 ZY= -62.5284 -11.8514 YZ= -62.5757 ZZ= -107.7626 XY= XZ= Eigenvalues: -117.3598 -117.2765 317.5610 8 C Isotropic = 73.7641 Anisotropy = 316.7247 XX= 129.2903 YX= -6.5705 ZX= 158.1839 -6.5883 YY= -31.5397 ZY= -6.4936 158.2203 YZ= -6.4786 ZZ= 123.5417 XY =158.2203 XZ= Eigenvalues: -31.8287 -31.7928 284.9139 9 C Isotropic = 73.8150 Anisotropy = 316.6509 -21.0643 YX= 56.5036 ZX= -8.5975 XX= 56.4608YY=267.3164ZY=-45.5542-8.5823YZ=-45.5059ZZ=-24.8072 XY= XZ= Eigenvalues: -31.7451 -31.7256 284.9156 10 C Isotropic = 73.8285 Anisotropy = 316.6249 114.4149 YX= -50.0054 ZX= -149.6599 XX= XY= -50.0262 YY= -14.6132 ZY= 51.2391 XZ= -149.7390 YZ= 51.2491 ZZ= 121.6836 Eigenvalues: -31.7320 -31.6943 284.9117 11 C Isotropic = 73.8009 Anisotropy = 316.6684 XX= -20.7159 YX= 57.4366 ZX= -8.4923 XY= 57.4842 YY= 267.3077 ZY= -44.2824 -8.5125 YZ= -44.3435 ZZ= -25.1891 XZ =Eigenvalues: -31.7665 -31.7439 284.9132 12 C Isotropic = 73.8243 Anisotropy = 316.6304 XX= 112.5875 YX= -50.2575 ZX= -149.4971 XY= -50.2005 YY= -14.2654 ZY= 52.0132 XZ= -149.4370 YZ= 52.0477 ZZ= 123.1509 Eigenvalues: -31.7473 -31.6910 284.9113 Isotropic = 73.7691 Anisotropy = 316.7155 128.8837 YX= -7.1082 ZX= 158.1784 13 C XX =-7.0789 YY= -31.4924 ZY= -6.9740 XY =XZ= 158.1816 YZ= -7.0036 ZZ= 123.9161 Eigenvalues: -31.8078 -31.7976 284.9128 14 C Isotropic = 188.0249 Anisotropy = 30.9572

XX= 193.4386 YX= -0.6524 ZX= 15.4756 XY=-0.6661YY=177.7658ZY=-0.6699XZ=15.4807YZ=-0.6371ZZ=192.8702Eigenvalues:177.6734177.7382208.6630 15 C Isotropic = 188.0026 Anisotropy = 30.9644

 XX=
 178.7002
 YX=
 5.4901
 ZX=
 -0.8587

 XY=
 5.5196
 YY=
 206.9288
 ZY=
 -4.4540

 XZ=
 -0.8761
 YZ=
 -4.4606
 ZZ=
 178.3788

 Eigenvalues:
 177.6485
 177.7137
 208.6455

 16 C Isotropic = 187.9987 Anisotropy = 30.9641 191.9747 YX= -4.8998 ZX= -14.6448 XX= XX= 191.9747 YX= -4.8998 ZX= -14.6448 XY= -4.8550 YY= 179.3362 ZY= 4.9823 XZ= -14.6451 YZ= 5.0022 ZZ= 192.6854 Eigenvalues: 177.6726 177.6822 208.6415 17 C Isotropic = 188.0193 Anisotropy = 30.9489 XX= 178.7737 YX= 5.5494 ZX= -0.7770 XY= 5.6099 YY= 206.9433 ZY= -4.3416 XZ= -0.7955 YZ= -4.3519 ZZ= 178.3410 Eigenvalues: 177.6605 177.7456 208.6519 18 C Isotropic = 188.0011 Anisotropy = 30.9748 18 C Isotropic = 188.0011 Anisotropy = 30.9748
XX= 191.7926 YX= -4.8975 ZX= -14.6287
XY= -4.8917 YY= 179.3886 ZY= 5.0847
XZ= -14.6269 YZ= 5.1107 ZZ= 192.8222
Eigenvalues: 177.6566 177.6958 208.6510
19 C Isotropic = 188.0387 Anisotropy = 30.9337
XX= 193.4172 YX= -0.7010 ZX= 15.4380
XY= -0.7143 YY= 177.7599 ZY= -0.7056
XZ= 15.4610 YZ= -0.6781 ZZ= 192.9390
Eigenvalues: 177.7239 177.7310 208.6611
20 H Isotropic = 28.9416 Anisotropy = 9.8693 20 H Isotropic = 28.9416 Anisotropy = 9.8693

 XX=
 33.7281
 YX=
 4.3988
 ZX=
 -0.1912

 XY=
 3.6375
 YY=
 26.5028
 ZY=
 -1.2809

 XZ=
 1.3356
 YZ=
 -0.5923
 ZZ=
 26.5938

 Eigenvalues:
 24.2139
 27.0896
 35.5211

 21
 H
 Isotropic =
 28.9402
 Anisotropy =
 9.8815

 XX=
 27.6637
 YX=
 -3.9720
 ZX=
 3.0207

 XY=
 -2.6642
 YY=
 32.1608
 ZY=
 -1.8491

 XZ=
 3.1553
 YZ=
 -3.1338
 ZZ=
 26.9961

 Eigenvalues:
 24.1988
 27.0940
 35.5278

 22 H Isotropic = 28.9420 Anisotropy = 9.8759 22 H Isotropic = 28.9420 Anisotropy = 9.8759 XX= 26.7935 YX= -0.5930 ZX= 1.0460 XY= -1.1341 YY= 25.5832 ZY= 2.9706 XZ= -0.6104 YZ= 3.5717 ZZ= 34.4493 Eigenvalues: 24.2024 27.0977 35.5260 23 H Isotropic = 28.9415 Anisotropy = 9.8739 XX= 28.9656 YX= 3.1797 ZX= 4.0550 XY= 4.3964 YY= 30.1927 ZY= 2.6452 XZ= 3.6143 YZ= 1.3282 ZZ= 27.6661 Eigenvalues: 24.2011 27.0992 35.5240 24 H Isotropic = 28.9413 Anisotropy = 9.8735 XZ=3.014312-1.320222-27.0001Eigenvalues:24.201127.099235.524024HIsotropic =28.9413Anisotropy =9.8735XX=25.4782YX=1.4254ZX=-3.2499XY=2.0003YY=29.0172ZY=-4.0458XZ=-3.0089YZ=-2.3162ZZ=32.3283Eigenvalues:24.206027.094235.52369.8684XX=30.0528YX=-3.2255ZX=-1.0166XY=-5.0169YY=32.3599ZY=0.2856XZ=-0.8227YZ=-0.1290ZZ=24.4119Eigenvalues:24.205427.098735.52059.874526HIsotropic =28.9415Anisotropy =9.8745XX=26.9357YX=-3.9499ZX=-2.1056XY=-2.7279YY=33.5631ZY=0.8428XZ=-2.3866YZ=2.1911ZZ=26.3256Eigenvalues:24.199127.100935.52449.878427HIsotropic =28.9426Anisotropy =9.8784XX=26.6266YX=-1.0029ZX=-0.7686 $\begin{array}{rcl} & \text{Eigenvalues.} & 24.1991 & 27.1009 & 35.5244 \\ 27 & \text{H} & \text{Isotropic} = & 28.9426 & \text{Anisotropy} = \\ & \text{XX} = & 26.6266 & \text{YX} = & -1.0029 & \text{ZX} = & -0.7686 \\ & \text{XY} = & -1.1714 & \text{YY} = & 24.8078 & \text{ZY} = & -0.8081 \\ & \text{XZ} = & 0.9136 & \text{YZ} = & -1.5586 & \text{ZZ} = & 35.3933 \\ & \text{Eigenvalues:} & 24.2020 & 27.0976 & 35.5282 \\ \end{array}$ 28 H Isotropic = 28.9398 Anisotropy = 9.8650

XX= 34.2525 YX= 3.7309 ZX= -0.7980 XX=2.6811YY=26.2789ZY=1.2192XZ=-2.1924YZ=0.6214ZZ=26.2880Eigenvalues:24.205827.097135.5165 Eigenvalues: 24.2058 27.0971 35.5165 29 H Isotropic = 28.9428 Anisotropy = 9.8844 XX= 28.8681 YX= -2.0802 ZX= 3.0869 XY= -3.6614 YY= 31.1225 ZY= -3.7532 XZ= 3.4860 YZ= -2.8910 ZZ= 26.8377 Eigenvalues: 24.1969 27.0991 35.5324 30 H Isotropic = 28.9433 Anisotropy = 9.8705 XX= 31.1669 YX= 2.0696 ZX= -4.2370 XY= 3.6501 YY= 28.8402 ZY= -2.3371 XZ= -4.2929 YZ= -1.3914 ZZ= 26.8229 Eigenvalues: 24.2061 27.1002 35.5237 31 H Isotropic = 28.9391 Anisotropy = 9.8608 XX= 24.4763 YX= 1.4140 ZX= 0.9549 XY= 1.4105 YY= 31.6061 ZY= 5.0053 XZ= 0.6044 YZ= 3.1977 ZZ= 30.7348 Eigenvalues: 24.2068 27.0915 35.5190 32 H Isotropic = 28.9411 Anisotropy = 9.8665 YY= 26.0407 YY= 28.9411 Anisotropy = 9.8665 Eigenvalues: 24.2068 27.0915 35.5150 32 H Isotropic = 28.9411 Anisotropy = 9.8665 XX= 26.2407 YX= -0.3800 ZX= -1.8976 XY= 0.8963 YY= 31.9212 ZY= 4.4046 XZ= -1.0479 YZ= 5.4305 ZZ= 28.6614 Eigenvalues: 24.2050 27.0996 35.5188 22 W Isotropic = 28.9431 Anisotropy = 9.8715

 Bigenvalues:
 24.2030
 27.0050
 55.5100

 33 H
 Isotropic =
 28.9431
 Anisotropy =

 XX=
 35.2845
 YX=
 -1.3058
 ZX=
 1.5452

 XY=
 -1.6582
 YY=
 24.5049
 ZY=
 0.3296

 XZ=
 -0.2531
 YZ=
 0.5923
 ZZ=
 27.0398

 Eigenvalues:
 24.1999
 27.1053
 35.5241

 34 H Isotropic = 28.9403 Anisotropy = 9.8711

 34
 H
 Isotropic =
 28.9403
 Anisotropy =
 9.8711

 XX=
 26.2452
 YX=
 0.4630
 ZX=
 -3.3145

 XY=
 -0.4646
 YY=
 28.2401
 ZY=
 -3.4602

 XZ=
 -2.3649
 YZ=
 -4.7534
 ZZ=
 32.3355

 Eigenvalues:
 24.2039
 27.0958
 35.5210

 35
 H
 Isotropic =
 28.9395
 Anisotropy =
 9.8816

 XX=
 27.1032
 YX=
 -0.2632
 ZX=
 0.3848

 XY=
 -0.3642
 YY=
 24.2618
 ZY=
 0.5700

 XZ=
 -1.4370
 YZ=
 0.7474
 ZZ=
 35.4535

 Eigenvalues:
 24.1955
 27.0958
 35.5273

 36
 H
 Isotropic =
 28.9395
 Anisotropy =
 9.8780

 36 H Isotropic = 28.9395 Anisotropy = 9.8780

 36
 H
 Isotropic =
 28.9395
 Anisotropy =
 9.8780

 xx=
 29.5840
 YX=
 -5.3488
 ZX=
 2.0763

 xY=
 -4.1639
 YY=
 30.9242
 ZY=
 0.0060

 xZ=
 2.8224
 YZ=
 -1.1843
 ZZ=
 26.3103

 Eigenvalues:
 24.2054
 27.0883
 35.5248

 37
 H
 Isotropic =
 28.9435
 Anisotropy =
 9.8788

 xX=
 31.4901
 YX=
 5.4330
 ZX=
 1.4111

 XY=
 4.3522
 YY=
 29.0602
 ZY=
 -0.7509

 xZ=
 2.4927
 YZ=
 0.2692
 ZZ=
 26.2800

 Eigenvalues:
 24.2113
 27.0897
 35.5294

4. [Sn(NCMe)₇]²⁺ at BP86/SDD level:

Sn-N = 291 (2x), 270 (2x), 251 (2x) and 248 (1x) pm

Sn	0	-0.0043	-0.0232	-0.108
N	0	-1.6027	2.3894	-0.3105
Ν	0	1.5434	-0.3162	1.8534
Ν	0	-1.6073	-0.0741	1.8267
Ν	0	-0.1946	-2.4377	0.4371
Ν	0	-2.1093	-0.9016	-1.5458
Ν	0	1.9543	-1.2213	-1.535
Ν	0	1.9679	2.1071	-0.3015
С	0	-2.1346	3.4321	-0.5281
С	0	2.6632	3.0507	-0.5107
С	0	2.7651	-1.5571	-2.3375
С	0	-2.9557	-1.1204	-2.3519
С	0	-0.2836	-3.6087	0.6021
С	0	-2.4115	0.0616	2.6887
С	0	2.3561	-0.3015	2.7182
С	0	-2.7897	4.718	-0.7996
С	0	3.52	4.2144	-0.7719
С	0	3.7678	-1.9693	-3.3255
С	0	-4.0018	-1.3866	-3.3448
С	0	-0.394	-5.0551	0.8054
С	0	-3.4057	0.2288	3.7515
С	0	3.3605	-0.2841	3.7844
Н	0	-3.8871	4.6131	-0.7403
Н	0	-2.4708	5.4762	-0.0631
Н	0	-2.5271	5.0781	-1.8097
Н	0	4.5828	3.9158	-0.7897
Н	0	3.268	4.6669	-1.7469
Н	0	3.3843	4.9775	0.0143
Н	0	4.0924	-1.1028	-3.9279
Н	0	4.6518	-2.3977	-2.8214
Н	0	3.3482	-2.7311	-4.0056
H	0	-3.966	-0.6334	-4.1513
H	0	-3.8637	-2.3863	-3.7926
Н	0	-4.9991	-1.3487	-2.8725
H	0	0.3189	-5.3906	1.579
H	0	-1.4154	-5.3211	1.1296
Н	0	-0.172	-5.5924	-0.1333
Н	0	-3.294	1.2184	4.2284
Н	0	-4.4262	0.1515	3.3369
H	0	-3.2802	-0.5501	4.5239
Н	0	3.3668	0.6981	4.2888
H	0	3.1406	-1.0634	4.535
Н	0	4.3654	-0.4716	3.367

NMR Calculations at the BP86/SVP level (NMR=GIAO):

1|1|UNPC-UNK|SP|RBP86|SVP|C14H21N7Sn1(2+)|PCUSER|27-May-2017|0||# RBP8 6/SVP NMR=GIAO Test||[No Title]||2,1|Sn,0,-0.0043,-0.0232,-0.108|N,0,-1.6027,2.3894,-0.3105|N,0,1.5434,-0.3162,1.8534|N,0,-1.6073,-0.0741,1. 8267|N,0,-0.1946,-2.4377,0.4371|N,0,-2.1093,-0.9016,-1.5458|N,0,1.9543 ,-1.2213,-1.535|N,0,1.9679,2.1071,-0.3015|C,0,-2.1346,3.4321,-0.5281|C ,0,2.6632,3.0507,-0.5107|C,0,2.7651,-1.5571,-2.3375|C,0,-2.9557,-1.120 4,-2.3519|C,0,-0.2836,-3.6087,0.6021|C,0,-2.4115,0.0616,2.6887|C,0,2.3 561,-0.3015,2.7182|C,0,-2.7897,4.718,-0.7996|C,0,3.52,4.2144,-0.7719|C ,0,3.7678,-1.9693,-3.3255|C,0,-4.0018,-1.3866,-3.3448|C,0,-0.394,-5.05 51,0.8054|C,0,-3.4057,0.2288,3.7515|C,0,3.3605,-0.2841,3.7844|H,0,-3.8 871,4.6131,-0.7403|H,0,-2.4708,5.4762,-0.0631|H,0,-2.5271,5.0781,-1.80 97|H,0,4.5828,3.9158,-0.7897|H,0,3.268,4.6669,-1.7469|H,0,3.3843,4.977 5,0.0143|H,0,4.0924,-1.1028,-3.9279|H,0,4.6518,-2.3977,-2.8214|H,0,3.3 482,-2.7311,-4.0056|H,0,-3.966,-0.6334,-4.1513|H,0,-3.8637,-2.3863,-3. 7926|H,0,-4.9991,-1.3487,-2.8725|H,0,0.3189,-5.3906,1.579|H,0,-1.4154, -5.3211,1.1296|H,0,-0.172,-5.5924,-0.1333|H,0,-3.294,1.2184,4.2284|H,0 ,-4.4262,0.1515,3.3369|H,0,-3.2802,-0.5501,4.5239|H,0,3.3668,0.6981,4. 2888|H,0,3.1406,-1.0634,4.535|H,0,4.3654,-0.4716,3.367||Version=IA32W-G03RevD.01|State=1-A|HF=-6953.4525289|RMSD=5.075e-009|Thermal=0.|Dipol e=-0.0566024,-0.5634615,0.5244016|PG=C01 [X(C14H21N7Sn1)]||@

SCF GIAO Magnetic shielding tensor (ppm): 1 Sn Isotropic = 4227.2748 Anisotropy = 58.7576 XX= 4214.1819 YX= 0.8773 XY= 0.7649 YY= 4216.7249 0.8773 ZX= -2.6338 ZY= -25.9507 -2.6983 YZ= -29.2887 ZZ= 4250.9175 XZ =Eigenvalues: 4201.3120 4214.0658 4266.4465 2 N 8.9368 Anisotropy = 460.8293 Isotropic = -52.2946 YX= -179.5494 ZX= 36.4359 -181.1496 YY= 208.3833 ZY= -74.3758 XX= XY= -181.1496 37.2220 YZ= -75.1739 ZZ= -129.2784 XZ= Eigenvalues: -145.9053 -143.4407 316.1563 3 N Isotropic = 28.6457 Anisotropy = 435.1868 88.3753 YX= 4.6169 ZX= 218.2723 XX= 6.9419 YY= -115.9240 ZY= 4.5439 216.4994 YZ= 1.9003 ZZ= 113.4858 XY =XZ= Eigenvalues: -118.4474 -114.3857 318.7703 Isotropic = 28.8011 Anisotropy = 435.0223 4 N 83.6473 YX= -34.6220 ZX= -215.0091 XX=
 XY=
 -36.9378
 YY=
 -109.3953

 XZ=
 -214.0760
 YZ=
 33.9753
 ZY= 36.7519 ZZ= 112.1513 XZ= -214.0760 YZ= 33.9753 ZZ= 112.15 Eigenvalues: -118.3572 -114.0555 318.8159 5 N Isotropic = 29.4378 Anisotropy = 434.9555 XX= -113.1672 YX= 32.1979 ZX= -4.5279 YY= 308.7607 YZ= -58.0147 ZY= -59.9532 ZZ= -107.2802 32.2553 YY= XY =XZ= -4.3715 Eigenvalues: -115.6205 -115.4743 319.4081 Isotropic = 18.5402 Anisotropy = 448.8472 6 N 94.9152 YX= 58.7898 ZX= 215.9059 XX= 53.5690 57.4650 YY= -114.5355 ZY= XY= XZ= 219.5127 YZ= 56.0351 ZZ= 75.24 Eigenvalues: -132.9332 -129.2177 317.7717 75.2410 7 N Isotropic = 18.1894 Anisotropy = 449.2749 76.1860 YX= -86.3240 ZX= -206.3684 XX= XY= -84.9288 YY= -94.5813 ZY= 83.1115 XZ= -209.5587 YZ= 86.1784 ZZ =72.9636 Eigenvalues: -133.4080 -129.7297 317.7060 Isotropic = 8.6073 Anisotropy = 461.2332 8 N 12.4685 YX= 212.5771 ZX= -46.3714 XX= -65.0165 214.1629 YY= 144.2357 ZY= XY =-47.1755 YZ= -65.5993 XZ =ZZ= -130.8822 Eigenvalues: -146.2691 -144.0050 316.0962 9 C Isotropic = 74.5470 Anisotropy = 315.3471 33.5114 YX= -125.4110 ZX= 26.9337 XX= XY= -121.7833 YY= 210.7940 ZY= -51.0160 XZ= 25.4598 YZ= -49.5763 ZZ= -20.6645 Eigenvalues: -31.2736 -29.8638 284.7784 Isotropic = 74.5649 Anisotrop; 7° 0876 YX= 147.6803 ZX= -33.5694 7° - 44.3033 74.5649 Anisotropy = 315.4895 10 C XX =144.1671 YY= 167.0764 XY =-31.9983 YZ= -43.1768 XZ= ZZ =-21.4691 Eigenvalues: -31.2950 -29.9014 284.8913 11 C Isotropic = 73.9409 Anisotropy = 311.8648

XX= 115.9601 YX= -58.5114 ZX= -145.1015 XY=-62.5243YY=-4.5100ZY=63.3709XZ=-141.0294YZ=57.7361ZZ=110.3727Eigenvalues:-30.8436-29.1845281.8508 12 C Isotropic = 73.9552 Anisotropy = 311.8641 XX= 129.1245 YX= 39.3043 ZX= 152.7478 XY= 43.0273 YY= -18.9662 ZY= 42.3713 XZ= 147.7635 YZ= 37.5627 ZZ= 111.7073 Eigenvalues: -30.8036 -29.1954 281.8646 13 C Isotropic = 74.6012 Anisotropy = 305.5934 XX= -25.1838 YX= 22.6565 ZX= -3.1171 XY=22.5888YY=270.5580ZY=-41.2630XZ=-3.2941YZ=-43.6987ZZ=-21.5705 Eigenvalues: -27.6231 -26.9034 278.3301 14 C Isotropic = 74.0896 Anisotropy = 307.1255 XX= 112.4944 YX= -24.9579 ZX= -149.5994 XX=112.19441X=24.93792X=149.3934XY=-20.7738YY=-25.0679ZY=21.8034XZ=-152.5906YZ=26.8056ZZ=134.8422Eigenvalues:-28.7801-27.7911278.8399 Eigenvalues: -28.7801 -27.7911 278.8399 15 C Isotropic = 74.0086 Anisotropy = 307.1292 XX= 114.8475 YX= 3.7505 ZX= 150.8384 XY= -0.5108 YY= -28.7925 ZY= -0.7323 XZ= 155.1044 YZ= 3.9038 ZZ= 135.9707 Eigenvalues: -28.8209 -27.9148 278.7614 16 C Isotropic = 187.5221 Anisotropy = 29.1872 XX= 183.8469 YX= -11.4826 ZX= 2.4378 XY= -11.3150 YY= 200.1429 ZY= -4.7078 XZ= 2.3511 YZ= -4.6569 ZZ= 178.5765 Eigenvalues: 177.6023 177.9837 206.9802 17 C Isotropic = 187.5269 Anisotropy = 29.1634 17 C Isotropic = 187.5269 Anisotropy = 29.1634 XX=191.6095YX=-5.6951ZX=-13.9669XY=-5.9160YY=180.2666ZY=5.9654XZ=-13.6998YZ=5.6706ZZ=191.1009Eigenvalues:177.4979177.8221207.6569 19 C Isotropic = 187.7392 Anisotropy = 29.9798

 XX=
 192.9567
 YX=
 3.8378
 ZX=
 14.6457

 XY=
 4.0190
 YY=
 178.9202
 ZY=
 3.9240

 XZ=
 14.3746
 YZ=
 3.7338
 ZZ=
 191.3405

 Eigenvalues:
 177.5929
 177.8988
 207.7257

 20
 C
 Isotropic =
 187.9106
 Anisotropy =
 30.6874

 21 C Isotropic = 187.9332 Anisotropy = 30.6152

 XX=
 191.6493
 YX=
 -2.4671
 ZX=
 -15.0644

 XY=
 -2.2408
 YY=
 178.1615
 ZY=
 2.1335

 XZ=
 -15.1866
 YZ=
 2.4120
 ZZ=
 193.9888

 Eigenvalues:
 177.5290
 177.9273
 208.3434

 22 C
 Isotropic =
 187.9362
 Anisotropy =
 30.5896

 XX=
 191.9486
 YX=
 0.3932
 ZX=
 15.1537

 XY=
 0.1621
 YY=
 177.7252
 ZY=
 -0.1518

 XZ=
 15.3413
 YZ=
 0.1074
 ZZ=
 194.1347

 Eigenvalues:
 177.5207
 177.9585
 208.3293

 23 H Isotropic = 29.1469 Anisotropy = 9.7793 XX= 35.1361 YX= -1.0939 ZX= 0.0000 XY= -2.9692 YY= 27.7746 ZY= -0.6425 XZ= 0.3201 YZ= -0.6922 ZZ= 24.5300 Eigenvalues: 24.3899 27.3844 35.6665 Testropic = 29.1314 Anisotropy = 9.6008

 24
 H
 Isotropic =
 29.1314
 Anisotropy =

 XX=
 25.9140
 YX=
 -0.7655
 ZX=
 1.2499

 XY=
 0.4350
 YY=
 33.5096
 ZY=
 4.6161

 XZ=
 1.7662
 YZ=
 3.1279
 ZZ=
 27.9705

 Eigenvalues:
 24.5159
 27.3463
 35.5319

 25 H Isotropic = 29.1122 Anisotropy = 9.5393

XX= 25.7145 YX= -1.4103 ZX= -0.4770 XY= -0.6536 YY= 29.5033 ZY= -5.2542 XZ= -1.4392 YZ= -3.6879 ZZ= 32.1187 Eigenvalues: 24.5150 27.3498 35.4717 Eigenvalues: 24.5150 27.3498 35.4717 26 H Isotropic = 29.1459 Anisotropy = 9.7606 XX= 35.5368 YX= -0.3309 ZX= -0.6838 XY= 1.5692 YY= 27.3663 ZY= -0.5937 XZ= -0.9979 YZ= -0.4576 ZZ= 24.5347 Eigenvalues: 24.3932 27.3916 35.6529 27 H Isotropic = 29.1129 Anisotropy = 9.5383 XX= 26.2524 YX= 1.7876 ZX= -0.0129 XY= 0.8949 YY= 29.5082 ZY= -5.4637 XZ= 1.1672 YZ= -4.1386 ZZ= 31.5781 Eigenvalues: 24.4965 27.3704 35.4718 28 H Isotropic = 29.1352 Anisotropy = 9.6082 XX= 26.1075 YX= 2.2948 ZX= -0.1572 XY= 1.2120 YY= 32.7969 ZY= 4.9386 XZ= -0.9906 YZ= 3.5054 ZZ= 28.5011 Eigenvalues: 24.5378 27.3271 35.5407 29 H Isotropic = 29.0248 Anisotropy = 9.5971 VM 0.27602 CM Eigenvalues: 24.5378 27.3271 35.5407 29 H Isotropic = 29.0248 Anisotropy = 9.5971 XX= 27.6269 YX= 2.3557 ZX= -4.5113 XY= 1.0622 YY= 29.5504 ZY= -2.4857 XZ= -4.1572 YZ= -3.8921 ZZ= 29.8971 Eigenvalues: 24.1918 27.4598 35.4229 30 H Isotropic = 29.0393 Anisotropy = 9.8320 XX= 33.4614 YX= -4.3079 ZX= 1.6532 XY= -4.2850 YY= 26.4252 ZY= -0.8114 XZ= -0.0583 YZ= -0.0415 ZZ= 27.2311 Eigenvalues: 24.3895 27.1343 35.5939 31 H Isotropic = 29.0464 Anisotropy = 9.9133 31 H Isotropic = 29.0464 Anisotropy = 9.9133 XX=26.9793YX=0.3443ZX=-0.9851XY=1.5085YY=29.4364ZY=5.2530XZ=0.3811YZ=5.7875ZZ=30.7234Eigenvalues:24.230927.252935.6552

 32 H
 Isotropic =
 29.0159
 Anisotropy =
 9.6435

 XX=
 26.4652
 YX=
 -0.3435
 ZX=
 3.3035

 XY=
 0.6676
 YY=
 28.2446
 ZY=
 -3.4704

 XZ=
 2.1979
 YZ=
 -4.7028
 ZZ=
 32.3380

 Eigenvalues:
 24.2643
 27.73385
 35.4449

 Eigenvalues: 24.2643 27.3385 35.4449 33 H Isotropic = 29.0537 Anisotropy = 9.9418 XX= 26.5125 YX= 1.1134 ZX= 2.4460 XY= -0.2180 YY= 32.1554 ZY= 4.2376 XZ= 1.7023 YZ= 5.2647 ZZ= 28.4932 Eigenvalues: 24.2147 27.2648 35.6816 34 H Isotropic = 29.0358 Anisotropy = 9.7838 XX= 35.4662 YX= 0.3820 ZX= -1.6618 XY= 0.8075 YY= 24.5763 ZY= 0.5947 XZ= 0.1688 YZ= 0.6929 ZZ= 27.0648 Eigenvalues: 24.3678 27.1813 35.5583 35 H Isotropic = 28.9362 Anisotropy = 9.9715 XX= 27.6747 YX= -1.5815 ZX= 3.8405 XY= -2.8513 YY= 30.3207 ZY= -4.2082 XZ= 4.1173 YZ= -2.9719 ZZ= 28.8132 Eigenvalues: 24.1121 27.1127 35.5838 36 H Isotropic = 28.9327 Anisotropy = 9.9368 XX= 31.8588 YX= 2.7365 ZX= -2.5390 XY= 4.4517 YY= 29.8547 ZY= -2.0260 XZ= -2.7498 YZ= -1.5442 ZZ= 25.0847 Eigenvalues: 24.1061 27.1348 35.5573 37 H Isotropic = 28.9223 Anisotropy = 9.8202 XX= 24.4808 YX= -0.5006 ZX= -1.4135 XY= -0.9525 YY= 32.1189 ZY= 4.8879 XZ= -1.4770 YZ= 3.1381 ZZ= 30.1672 Eigenvalues: 24.1249 27.1729 35.4691 38 H Isotropic = 28.9218 Anisotropy = 9.7506 XX= 26.0119 YX= -1.0024 ZX= -2.5694 YX= 0.2119 YX= -1.0024 ZX= -2.5694 YX= 0.2119 YX= -1.0024 ZX= -2.5694 33 H Isotropic = 29.0537 Anisotropy = 9.9418 Elgenvalues:24.124927.172935.469138HIsotropic =28.9218Anisotropy =9.7506XX=26.0119YX=-1.0024ZX=-2.5694XY=0.2119YY=31.4834ZY=3.9992XZ=-1.8942YZ=5.2056ZZ=29.2701Eigenvalues:24.187327.155935.422239HIsotropic =28.9219Anisotropy =9.7566

XX=	35.4204	YX=	Ο.	3398	ZX=	1.0367	
XY=	0.0795	YY=	24.	2180	ZY=	0.3133	
XZ=	-0.7973	YZ=	Ο.	3137	ZZ =	27.1271	
Eigenva	lues:	24.1812		27.15	581	35.4262	
40 H	Isotropic	2 = 2	8.96	561	Anisot	cropy =	10.1283
XX=	26.1361	YX=	Ο.	0728	ZX=	-2.6243	
XY=	-0.8037	YY=	28.	3915	ZY=	-4.1274	
XZ=	-1.6027	YZ=	-5.	2145	ZZ =	32.3708	
Eigenva	lues:	24.1103	8	27.06	597	35.7184	
41 H	Isotropic	2 = 2	8.92	247	Anisot	cropy =	9.7516
XX=	26.1619	YX=	1.	5446	ZX=	3.0429)
XY=	0.3494	YY=	31.	0593	ZY=	3.7182	
XZ=	2.4890	YZ=	5.	0005	ZZ =	29.5530	
Eigenva	lues:	24.2095)	27.13	389	35.4258	
42 H	Isotropic	2 = 2	8.96	550	Anisot	cropy =	10.1495
XX=	26.2259	YX=	0.	1458	ZX=	2.0878	
XY=	1.0479	YY=	28.	5462	ZY=	-4.5143	
XZ=	0.9767	YZ=	-5.	4815	ZZ =	32.1229)
Eigenva	lues:	24.1086	5	27.05	552	35.7314	
43 Н	Isotropic	2 = 2	8.92	224	Anisot	cropy =	9.7271
XX=	35.1924	YX=	-1.	6362	ZX=	-1.0137	
XY=	-1.4216	YY=	24.	4081	ZY=	0.3459)
XZ=	0.8073	YZ=	0.	1257	ZZ =	27.1667	
Eigenva	lues:	24.1794		27.18	306	35.4071	

5. $[Sn(NCMe)_8]^{2+}$ at BP86/SDD level:

Sn-N = 272 pm (8x)

Sn	0	0.0009	-0.0009	-0.0016
Ν	0	2.3103	0.0101	-1.4412
Ν	0	-2.3124	-0.0106	-1.4401
N	0	0.0107	-2.31	-1.4415
N	0	-1.6195	-1.639	1.4429
N	0	1.6372	-1.623	1.4394
N	0	1.6236	1.6347	1.4432
N	0	-1.6355	1.6211	1.4465
N	0	-0.01	2.3123	-1.4402
С	0	3.2902	0.0175	-2.1135
С	0	-0.0171	3.2944	-2.1093
С	0	-2.3328	2.3103	2.1181
С	0	2.3149	2.3315	2.113
С	0	2.3362	-2.3142	2.1071
С	0	-2.3108	-2.3359	2.1126
С	0	0.0121	-3.2905	-2.1129
С	0	-3.2937	-0.012	-2.1105
С	0	4.5021	0.0261	-2.9415
С	0	-0.0254	4.5091	-2.9332

С	0	-3.195	3.1631	2.945
С	0	3.1696	3.1937	2.938
C	0	3.2003	-3.1694	2.9295
С	0	-3.1657	-3.1981	2.9373
С	0	0.0142	-4.5032	-2.9399
С	0	-4.5074	-0.014	-2.9359
Н	0	5.1082	0.924	-2.7286
Н	0	4.2365	0.0288	-4.0131
Н	0	5.1164	-0.8677	-2.7351
Н	0	-0.0275	4.2472	-4.0057
Н	0	-0.9235	5.1144	-2.7188
Н	0	0.8682	5.1229	-2.7243
Н	0	-2.9979	4.229	2.7358
Н	0	-4.2587	2.9562	2.7339
Н	0	-3.0079	2.9762	4.0169
Н	0	2.9684	4.2573	2.721
Н	0	2.9788	3.0129	4.0103
Н	0	4.2352	2.9903	2.7327
Н	0	4.2634	-2.9676	2.7106
Н	0	3.0216	-2.9797	4.0023
Н	0	2.9969	-4.2348	2.7236
Н	0	-4.2312	-2.9996	2.7269
Н	0	-2.9596	-4.2618	2.7253
Н	0	-2.9801	-3.0125	4.0097
Н	0	0.0126	-4.2386	-4.0117
Н	0	0.9117	-5.1111	-2.7305
H	0	-0.88	-5.1153	-2.729
Н	0	-5.1193	0.8802	-2.7243
Н	0	-4.2441	-0.0125	-4.0081
Н	0	-5.1151	-0.9115	-2.7258

NMR Calculations at the BP86/SVP level (NMR=GIAO):

1|1|UNPC-UNK|SP|RBP86|SVP|C16H24N8Sn1(2+)|PCUSER|27-May-2017|0||# RBP8 6/SVP NMR=GIAO Test||[No Title]||2,1|Sn,0,0.0009,-0.0009,-0.0016|N,0,2 .3103,0.0101,-1.4412|N,0,-2.3124,-0.0106,-1.4401|N,0,0.0107,-2.31,-1.4 415|N,0,-1.6195,-1.639,1.4429|N,0,1.6372,-1.623,1.4394|N,0,1.6236,1.63 47,1.4432|N,0,-1.6355,1.6211,1.4465|N,0,-0.01,2.3123,-1.4402|C,0,3.290 2,0.0175,-2.1135|C,0,-0.0171,3.2944,-2.1093|C,0,-2.3328,2.3103,2.1181| c,0,2.3149,2.3315,2.113|c,0,2.3362,-2.3142,2.1071|c,0,-2.3108,-2.3359, 2.1126|C,0,0.0121,-3.2905,-2.1129|C,0,-3.2937,-0.012,-2.1105|C,0,4.502 1,0.0261,-2.9415|C,0,-0.0254,4.5091,-2.9332|C,0,-3.195,3.1631,2.945|C, 0,3.1696,3.1937,2.938|C,0,3.2003,-3.1694,2.9295|C,0,-3.1657,-3.1981,2. 9373|C,0,0.0142,-4.5032,-2.9399|C,0,-4.5074,-0.014,-2.9359|H,0,5.1082, 0.924,-2.7286|H,0,4.2365,0.0288,-4.0131|H,0,5.1164,-0.8677,-2.7351|H,0 ,-0.0275,4.2472,-4.0057|H,0,-0.9235,5.1144,-2.7188|H,0,0.8682,5.1229,-2.7243|H,0,-2.9979,4.229,2.7358|H,0,-4.2587,2.9562,2.7339|H,0,-3.0079, 2.9762,4.0169|H,0,2.9684,4.2573,2.721|H,0,2.9788,3.0129,4.0103|H,0,4.2 352,2.9903,2.7327|H,0,4.2634,-2.9676,2.7106|H,0,3.0216,-2.9797,4.0023| H,0,2.9969,-4.2348,2.7236|H,0,-4.2312,-2.9996,2.7269|H,0,-2.9596,-4.26 18,2.7253|H,0,-2.9801,-3.0125,4.0097|H,0,0.0126,-4.2386,-4.0117|H,0,0. 9117,-5.1111,-2.7305|H,0,-0.88,-5.1153,-2.729|H,0,-5.1193,0.8802,-2.72 43|H,0,-4.2441,-0.0125,-4.0081|H,0,-5.1151,-0.9115,-2.7258||Version=IA 32W-G03RevD.01|State=1-A|HF=-7086.1186084|RMSD=8.029e-009|Thermal=0.|D ipole=0.0024181,-0.0024803,0.0064329|PG=C01 [X(C16H24N8Sn1)]||@

SCF GIAO	Magnetic shi	elding	tensor	(ppm):		
1 Sn	Isotropic =	4314.	9967	Anisotrop	oy =	27.6377
XX=	4305.7114 Y	X= -	0.0057	ZX=	-0.015	5
XY=	-0.0138 Y	Y= 430	5.8569	ZY=	0.018	9
XZ=	0.0377 Y	Z= -	0.0412	ZZ= 43	333.421	8
Eigen	values: 4305	.7107	4305.85	75 4333	4218	
2 N	Isotropic =	12.	7079	Anisotrop	oy =	456.4133
XX=	170.6651 Y	X=	0.9095	ZX= -2	212.702	2
XY=	0.9084 Y	Y= -13	7.8757	ZY=	-0.619	6
XZ=	-214.3751 Y	[Z= -	0.6220	ZZ =	5.334	2
Eigen	values: -140	.9814	-137.87	84 316	.9834	
3 N	Isotropic =	12.	5732	Anisotrop	oy =	456.5771
XX=	171.4518 Y	X= -	0.9215	ZX= 2	212.461	2
XY=	-0.9460 Y	Y= -13	8.0543	ZY=	-0.631	8
XZ=	214.1026 Y	Z= -	0.6173	ZZ =	4.321	9
Eigen	values: -141	.1814	-138.05	70 316	.9579	
4 N	Isotropic =	12.	7226	Anisotro	oy =	456.4140

XX= -137.8587 YX= 0.9233 ZX= 0.6257 XY= 0.9113 YY= 171.0500 ZY= 212.5705 XZ= 0.6197 YZ= 214.2219 ZZ= 4.9764 Eigenvalues: -140.9694 -137.8614 316.9985 5 N Isotropic = 12.7365 Anisotropy = 456.3980 XX= 17.1636 YX= 154.7585 ZX= -150.2231 XY= 154.7655 YY= 16.9198 ZY= -150.0976 XZ= -151.3320 YZ= -151.2002 ZZ= 4.1260 Eigenvalues: -141.0721 -137.7203 317.0018 6 N Isotropic = 12.7988 Anisotropy = 456.3295

 XX=
 17.8350
 YX=
 -12.7900
 Anisotropy =
 45

 XX=
 17.8350
 YX=
 -155.1497
 ZX=
 150.0515

 XY=
 -155.1665
 YY=
 17.2189
 ZY=
 -149.7594

 XZ=
 151.1586
 YZ=
 -150.8530
 ZZ=
 3.3425

 Eigenvalues: -140.9906 -137.6315 317.0185 7 N Isotropic = 12.7359 Anisotropy = 456.4051

 XX=
 17.1241
 YX=
 154.7296
 ZX=
 150.2211

 XY=
 154.7424
 YY=
 16.8951
 ZY=
 150.1217

 XZ=
 151.3504
 YZ=
 151.2327
 ZZ=
 4.1886

 Eigenvalues: -141.0718 -137.7264 317.0060 8 N Isotropic = 12.6259 Anisotropy = 45 XX= 16.9239 YX= -154.4189 ZX= -150.5994 456.5357 XY=-154.4198YY=16.1500ZY=150.2266XZ=-151.7226YZ=151.3473ZZ=4.8038 Eigenvalues: -141.2225 -137.8828 316.9830 9 N Isotropic = 12.5948 Anisotropy = XX= -138.0251 YX= -0.8166 ZX= 0.55 456.5545 XX= -138.0251 YX= -0.8166 ZX= 0.5532 XY= -0.8194 YY= 172.0002 ZY= -212.2523 XZ= 0.5565 YZ= -213.8712 ZZ= 3.8093 0.5532 Eigenvalues: -141.1528 -138.0272 316.9644 10 C Isotropic = 75.8902 Anisotropy = 311.4150 XX=184.4576YX=0.6329ZX=-146.0844XY=0.6011YY=-27.6925ZY=-0.4148XZ=-144.1249YZ=-0.4302ZZ=70.9056Eigenvalues:-28.1352-27.6943283.500211 C Isotropic = 75.9003 Anisotropy = 311.4756 -27.7096 YX= -0.5412 ZX= 0.3707 -0.5700 YY= 185.4260 ZY= -145.7066 0.3849 YZ= -143.8149 ZZ= 69.9844 XX= XY= XZ= Eigenvalues: -28.1389 -27.7110 283.5507

 12 C
 Isotropic =
 75.8905
 Anisotropy =
 311.3829

 XX=
 78.7301
 YX=
 -106.1946
 ZX=
 -103.3054

 XY=
 -106.2037
 YY=
 78.2017
 ZY=
 103.0532

 XZ=
 -101.9932
 YZ=
 101.7364
 ZZ=
 70.7396

 Eigenvalues: -28.0741 -27.7336 283.4791 13 C Isotropic = 75.9069 Anisotropy = 311.3198 XX= 78.8157 YX= 106.4355 ZX= 103.0671 XY= 106.4160 YY= 78.6413 ZY= 102.9717 XZ= 101.7410 YZ= 101.6722 ZZ= 70.2636 Eigenvalues: -28.0355 -27.6973 283.4535 14 C Isotropic = 75.8932 Anisotropy = 311.2975

 XX=
 79.2350
 YX=
 -106.7247
 ZX=
 102.9347

 XY=
 -106.7230
 YY=
 78.8025
 ZY=
 -102.7276

 XZ=
 101.6372
 YZ=
 -101.4324
 ZZ=
 69.6420

 Eigenvalues: -28.0401 -27.7053 283.4249

 15 C
 Isotropic =
 75.9081
 Anisotropy =
 311.3186

 XX=
 78.8295
 YX=
 106.4373
 ZX=
 -103.0407

 XY=
 106.4494
 YY=
 78.6648
 ZY=
 -102.9685

 XZ=
 -101.7432
 YZ=
 -101.6576
 ZZ=
 70.2299

 Eigenvalues: -28.0334 -27.6962 283.4538 16 C Isotropic = 75.8999 Anisotropy = 311,4018

 -27.6810
 YX=
 0.5956
 ZX=
 0.4103

 0.6391
 YY=
 184.7107
 ZY=
 145.9677

 0.4335
 YZ=
 144.0331
 ZZ=
 70.6700

 XX= XY= XZ= 0.4335 YZ= 144.0001 22 Eigenvalues: -28.1186 -27.6828 283.5011 75 0060 Amisotropy = 311.4891 Eigenvalue:Top in the image is a set of 17 C Isotropic = 75.8860 Anisotropy = Eigenvalues: -28.1598 -27.7270 205.5454 8 C Isotropic = 187.6423 Anisotropy = 2 XX= 197.8084 YX= 0.0542 ZX= -13.7180 XY= 0.0502 YY= 177.9945 ZY= -0.0350 XZ= -13.5952 YZ= -0.0379 ZZ= 187.1239 Eigenvalues: 177.8018 177.9943 207.1306 18 C
 19
 C
 Isotropic
 =
 187.6401
 Anisotropy
 =
 2

 XX=
 177.9947
 YX=
 -0.0447
 ZX=
 0.0317

 XY=
 -0.0484
 YY=
 197.8921
 ZY=
 -13.6783

 XZ=
 0.0343
 YZ=
 -13.5566
 ZZ=
 187.0336
 29.2240

Eigenvalues: 177.8030 177.9946 207.1228 Isotropic = 187.7052 Anisotropy = 2 187.9946 YX= -9.9007 ZX= -9.6928 29.1937 20 C XX= XY= -9.9042 YY= 187.9501 ZY= 9.6711 XZ= -9.6080 YZ= 9.5846 ZZ= 187.1708 Eigenvalues: 177.8780 178.0699 207.1676 -9.9042

 21
 C
 Isotropic =
 187.6988
 Anisotropy =
 2

 XX=
 187.9979
 YX=
 9.9284
 ZX=
 9.6689

 XY=
 9.9271
 YY=
 187.9818
 ZY=
 9.6649

 XZ=
 9.5904
 YZ=
 9.5749
 ZZ=
 187.1168

 Eigenvalues:
 177.8735
 178.0621
 207.1609

 29,1931

 2 C
 Isotropic
 =
 187.7067
 Anisotropy
 =
 2

 XX=
 188.0416
 YX=
 -9.9572
 ZX=
 9.6657

 XY=
 -9.9644
 YY=
 188.0117
 ZY=
 -9.6458

 XZ=
 9.5784
 YZ=
 -9.5656
 ZZ=
 187.0669

 Eigenvalues:
 177.8757
 178.0658
 207.1787

 22 C 29,2080 Eigenvalues: 1//.8/5/ 1/8.0058 20/.1/6/ 3 C Isotropic = 187.7050 Anisotropy = 2 XX= 188.0034 YX= 9.9275 ZX= -9.6671 XY= 9.9295 YY= 187.9941 ZY= -9.6653 XZ= -9.5841 YZ= -9.5780 ZZ= 187.1174 Eigenvalues: 177.8785 178.0702 207.1662 23 C 29.1918

 24
 C
 Isotropic =
 187.6414
 Anisotropy =
 2

 xx=
 177.9891
 YX=
 0.0487
 ZX=
 0.0341

 XY=
 0.0523
 YY=
 197.8363
 ZY=
 13.7116

 XZ=
 0.0367
 YZ=
 13.5899
 ZZ=
 187.0987

 Eigenvalues:
 177.7989
 177.9890
 207.1363

 29.2423 25 C Isotropic = 187.6391 Anisotropy = 29.2273 XX= 197.8567 YX= -0.0544 ZX= 13.6952 XY= -0.0516 YY= 177.9937 ZY= -0.0340 XZ= 13.5717 YZ= -0.0360 ZZ= 187.0669 Eigenvalues: 177.7998 177.9936 207.1240 26 H Isotropic = 29.1089 Anisotropy = 9.7242

 XX=
 31.4414
 YX=
 5.4274
 ZX=
 -1.0160

 XY=
 4.0665
 YY=
 30.0611
 ZY=
 1.2281

 XZ=
 -2.0011
 YZ=
 0.2906
 ZZ=
 25.8241

 Eigenvalues:
 24.3073
 27.4276
 35.5917

 27 H Isotropic = 29.1106 Anisotropy = 9.7233 XX=27.4724YX=0.0053ZX=-2.0858XY=-0.0016YY=24.4229ZY=-0.0397XZ=-0.1659YZ=-0.0391ZZ=35.4366Eigenvalues:24.422827.316335.5929

 28
 H
 Isotropic =
 29.1087
 Anisotropy =

 XX=
 31.4422
 YX=
 -5.4231
 ZX=
 -1.0551

 XY=
 -4.0553
 YY=
 30.0708
 ZY=
 -1.1961

 XZ=
 -2.0298
 YZ=
 -0.2589
 ZZ=
 25.8132

 Eigenvalues:
 24.3067
 27.4245
 35.5950

 9.72.94 29 H Isotropic = 29.1124 Anisotropy = XX= 24.4254 YX= 0.0010 ZX= 0.0 XY= -0.0050 YY= 27.4792 ZY= -2.1 9.7259

 XX=
 24.4254
 YX=
 0.0010
 ZX=
 0.0340

 XY=
 -0.0050
 YY=
 27.4792
 ZY=
 -2.1127

 XZ=
 0.0332
 YZ=
 -0.1926
 ZZ=
 35.4325

 Eigenvalues:
 24.4253
 27.3156
 35.5963

 30 H Isotropic = 29.1094 Anisotropy = 9.7210 XX= 30.0638 YX= -4.0601 ZX= -1.2396 XY= -5.4256 YY= 31.4483 ZY= -1.0005 XZ= -0.3054 YZ= -1.9866 ZZ= 25.8162 Eigenvalues: 24.3084 27.4298 35.5901 XX=

 31 H
 Isotropic =
 29.1090
 Anisotropy =

 XX=
 30.0686
 YX=
 4.0507
 ZX=
 1.2124

 XY=
 5.4218
 YY=
 31.4519
 ZY=
 -1.0330

 XZ=
 0.2791
 YZ=
 -2.0105
 ZZ=
 25.8064

 Eigenvalues:
 24.3077
 27.4264
 35.5929

 9.7259 32 H Isotropic = 29.1102 Anisotropy = 9.7332

 XX=
 26.0140
 YX=
 -1.3703
 ZX=
 -1.5812

 XY=
 -0.0090
 YY=
 35.5015
 ZY=
 -0.1124

 XZ=
 -1.6173
 YZ=
 1.2308
 ZZ=
 25.8149

 Eigenvalues:
 24.3117
 27.4198
 35.5989

 XX=

 33 H
 Isotropic =
 29.1103
 Anisotropy =

 XX=
 35.5028
 YX=
 -0.0071
 ZX=
 0.1265

 XY=
 -1.3662
 YY=
 26.0100
 ZY=
 1.5798

 XZ=
 -1.2194
 YZ=
 1.6178
 ZZ=
 25.8180

 Eigenvalues:
 24.3118
 27.4211
 35.5979

 9.7315 Eigenvalues: 24.3118 27.4211 35.5979 34 H Isotropic = 29.1074 Anisotropy = XX= 25.9411 YX= -1.5237 ZX= -1.4884 XY= -1.5253 YY= 25.9387 ZY= 1.4712 XZ= -0.1368 YZ= 0.1216 ZZ= 35.4424 Eigenvalues: 24.4154 27.3053 35.6015 35 H Isotropic = 29.1085 Anisotropy = XX= 26.0058 YX= 1.4174 ZX= 1.5728 9.7411 9.7316

XY= 0.0611 YY= 35.4995 ZY= -0.1817 XZ= 1.6234 YZ= 1.1658 ZZ= 25.8204 Eigenvalues: 24.3102 27.4191 35.5963 Isotropic = 29.1060 Anisotropy = 36 H 9.7421

 XX=
 25.900
 YX=
 1.5325
 ZX=
 1.4436

 XY=
 1.5190
 YY=
 25.9308
 ZY=
 1.5329

 XZ=
 0.0876
 YZ=
 0.1903
 ZZ=
 35.4376

 Eigenvalues:
 24.4139
 27.3033
 35.6007

 7
 H
 Isotropic =
 29.1078
 Anisotropy =
 9.7335

 37 H XX= 1.3251 XY= XZ =Eigenvalues: .38 H Isotropic = 29.1092 Anisotropy = 9.7333 XX =35.5035YX =-0.0613ZX =-0.1995XY =-1.4178YY =26.0081ZY =-1.5703XZ =1.1474YZ =-1.6237ZZ =25.8159Eigenvalues:24.309727.419735.5980Isotropic = 29.1063 Anisotropy = 39 H 9.7449 XX= XY= X7 =Eigenvalues: 40 H Isotropic = 29.1081 Anisotropy = 9.7338

 26.0277
 YX=
 -1.3329
 ZX=
 1.5845

 0.0374
 YY=
 35.5038
 ZY=
 0.0863

 1.6118
 YZ=
 -1.2466
 ZZ=
 25.7927

 values:
 24.3077
 27.4192
 35.5973

 XX= XY= XZ= Eigenvalues:

 41 H
 Isotropic =
 29.1079
 Anisotropy =

 xx=
 35.5012
 YX=
 0.0014
 ZX=
 0.1236

 XY=
 1.3641
 YY=
 26.0152
 ZY=
 -1.5800

 XZ=
 -1.2180
 YZ=
 -1.6166
 ZZ=
 25.8072

 Eigenvalues:
 24.3091
 27.4188
 35.5958

 9.7319

 42 H
 Isotropic =
 29.1086
 Anisotropy =

 42 H
 Isotropic =
 29.1086
 Anisotropy =

 xx=
 26.0118
 YX=
 1.3789
 ZX=
 -1.5780

 XY=
 0.0183
 YY=
 35.5031
 ZY=
 0.1374

 XZ=
 -1.6187
 YZ=
 -1.2050
 ZZ=
 25.8109

 Eigenvalues:
 24.3092
 27.4182
 35.5984

 9.7347

 43 H
 Isotropic =
 29.1061
 Anisotropy =

 xx=
 25.9403
 YX=
 1.5270
 ZX=
 -1.4832

 XY=
 1.5251
 YY=
 25.9398
 ZY=
 -1.4959

 XZ=
 -0.1328
 YZ=
 -0.1474
 ZZ=
 35.4383

 Eigenvalues:
 24.4140
 27.3029
 35.6015

 9.7431

 44
 H
 Isotropic =
 29.1119
 Anisotropy =

 XX=
 24.4240
 YX=
 0.0047
 ZX=
 0.0127

 XY=
 0.0065
 YY=
 27.4745
 ZY=
 2.0924

 XZ=
 0.0088
 YZ=
 0.1733
 ZZ=
 35.4373

 Eigenvalues:
 24.4240
 27.3164
 35.5954

 9.7252 45 H Isotropic = 29.1084 Anisotropy = XX= 30.0471 YX= -4.0575 ZX= 1.2129 XY= -5.4234 YY= 31.4630 ZY= 1.0332 XZ= 0.2788 YZ= 2.0138 ZZ= 25.8151 Eigenvalues: 24.3064 27.4240 35.5947 9.7295 46 H Isotropic = 29.1109 Anisotropy = XX= 30.0860 YX= 4.0624 ZX= -1.2 9.7234 XX =30.0860YX =4.0624ZX =-1.2179XY =5.4271YY =31.4262ZY =1.0295XZ =-0.2797YZ =2.0089ZZ =25.8203Eigenvalues:24.308927.430535.593147 H Isotropic = 29.1108 Anisotropy = XX= 31.4291 YX= -5.4259 ZX= 1.0 9.7214 X = 31.4291YX = -5.4259ZX = 1.0215XY = -4.0596YY = 30.0864ZY = 1.2232XZ = 2.0023YZ = 0.2857ZZ = 25.8168Eigenvalues:24.309927.430735.5917

 Elgenvalues:
 24.3099
 27.4307
 35.5917

 48
 H
 Isotropic =
 29.1115
 Anisotropy =

 XX=
 27.4769
 YX=
 -0.0068
 ZX=
 2.1031

 XY=
 -0.0051
 YY=
 24.4245
 ZY=
 -0.0121

 XZ=
 0.1822
 YZ=
 -0.0082
 ZZ=
 35.4330

 Eigenvalues:
 24.4245
 27.3161
 35.5939

 9.7236

 49 H
 Isotropic =
 29.1086
 Anisotropy =

 XX=
 31.4664
 YX=
 5.4218
 ZX=
 1.0251

 XY=
 4.0544
 YY=
 30.0475
 ZY=
 -1.2184

 XZ=
 2.0074
 YZ=
 -0.2849
 ZZ=
 25.8118

 Eigenvalues:
 24.3075
 27.4247
 35.5934

 9.7272

B. Auxilliary Calculations for NMR and Thermodynamics:

1. Me-CN at BP86/SVP level:

1|1|UNPC-UNK|SP|RBP86|SVP|C2H3N1|PCUSER|27-May-2017|0||# RBP86/SVP NMR =GIAO Test geom=check||[No Title]||0,1|N,0,-6.0821687538,1.0885890472, -0.0001081789|C,0,-5.0481441648,0.4915755983,-0.0000831251|C,0,-3.7736 834727,-0.2442923806,-0.000083893|H,0,-2.9230471494,0.459802467,-0.000 0075325|H,0,-3.6994337216,-0.8848311736,0.8963048298|H,0,-3.6993227377 ,-0.8847435583,-0.8965221003||Version=IA32W-G03RevD.01|State=1-A|HF=-1 32.6506995|RMSD=3.357e-009|Thermal=0.|Dipole=1.2858239,-0.7424027,0.00 00174|PG=C01 [X(C2H3N1)]||@

-	~		1 0015	4 5500
C	0	-0.1888	1.2245	-1.7533
Sn	0	0.0039	-0.0244	0.0348
С	0	-0.1979	1.2264	1.8206
С	0	-1.5688	-1.5476	0.0316
С	0	1.9703	-0.9977	0.0403
Н	0	-0.0929	0.6062	-2.6652
Н	0	0.6011	1.9983	-1.7673
Н	0	-1.174	1.7264	-1.7702
Н	0	-0.1038	0.6097	2.7336
Н	0	0.59	2.0022	1.8362
Н	0	-1.1844	1.7259	1.8331
Н	0	-1.4871	-2.1859	0.931
Н	0	-1.4806	-2.1888	-0.8651
Н	0	-2.5667	-1.0714	0.0273
Н	0	2.5465	-0.7053	-0.8569
Н	0	2.5431	-0.7018	0.9385
Н	0	1.8551	-2.0973	0.0422

2. SnMe₄ at BP86/SDD level (NMR Standard):

NMR Calculations at the BP86/SVP level (NMR=GIAO):

```
1|1|UNPC-UNK|SP|RBP86|SVP|C4H12Sn1|PCUSER|27-May-2017|0||# RBP86/SVP N
MR=GIAO Test||[No Title]||0,1|C,0,-0.1888,1.2245,-1.7533|Sn,0,0.0039,-
0.0244,0.0348|C,0,-0.1979,1.2264,1.8206|C,0,-1.5688,-1.5476,0.0316|C,0
,1.9703,-0.9977,0.0403|H,0,-0.0929,0.6062,-2.6652|H,0,0.6011,1.9983,-1
.7673|H,0,-1.174,1.7264,-1.7702|H,0,-0.1038,0.6097,2.7336|H,0,0.59,2.0
022,1.8362|H,0,-1.1844,1.7259,1.8331|H,0,-1.4871,-2.1859,0.931|H,0,-1.
4806,-2.1888,-0.8651|H,0,-2.5667,-1.0714,0.0273|H,0,2.5465,-0.7053,-0.
8569|H,0,2.5431,-0.7018,0.9385|H,0,1.8551,-2.0973,0.0422||Version=IA32
W-G03RevD.01|State=1-A|HF=-6184.7891236|RMSD=6.058e-009|Thermal=0.|Dip
ole=-0.0007217,-0.0005693,-0.0000225|PG=C01 [X(C4H12Sn1)]||@
```

Calculating GIAO nuclear magnetic shielding tensors.						
SCF GIA	SCF GIAO Magnetic shielding tensor (ppm):					
1 C	Isotropic	; =	194.2818	Anisoti	copy =	6.4974
XX=	194.2665	YX=	-1.0486	ZX=	-1.0078	
XY=	-1.1501	YY=	192.5419	ZY=	3.4106	
XZ=	-1.1626	YZ=	3.3500	ZZ =	196.0369	
Eiger	nvalues: 1	90.44	43 193.78	376 19	98.6134	
2 Sn	Isotropic	: = 2	994.3842	Anisoti	copy =	8.3494
XX=	2983.9395	YX=	0.8887	ZX=	0.0903	
XY=	1.6818	YY=	2999.2637	ZY=	0.0201	
XZ=	0.1329	YZ=	-0.0122	ZZ =	2999.9493	
Eiger	nvalues: 29	83.83	17 2999.37	704 299	99.9504	
3 C	Isotropic	: =	194.2864	Anisoti	copy =	6.5010
XX=	194.2839	YX=	-1.0600	ZX=	1.0309	
XY=	-1.1477	YY=	192.4924	ZY=	-3.3759	
XZ=	1.1909	YZ=	-3.3174	ZZ =	196.0830	
Eigenvalues: 190.4497 193.7891 198.6204						

Isotropic = 194.2296 Anisotropy = 4 C 6.5431 194.7246 YX= 2.0521 ZX= -0.0197 2.1084 YY= 197.4722 ZY= -0.0483 XX= XY= XZ= -0.0216 YZ= -0.0381 ZZ= 190.49 Eigenvalues: 190.4917 193.6054 198.5916 -0.0216 YZ= 190.4920 9.4886 5 C Isotropic = 195.9229 Anisotropy =

 XX=
 202.1329
 YX=
 -1.0332
 ZX=
 -0.0252

 XY=
 -1.0525
 YY=
 192.8412
 ZY=
 0.0046

 XZ=
 -0.0261
 YZ=
 0.0060
 ZZ=
 192.7945

 Eigenvalues:
 192.7255
 192.7945
 202.2486

 XZ= -0.0201 12 Eigenvalues: 192.7255 192.7945 202.2486 6 H Isotropic = 31.2077 Anisotropy = 12.9682 XX= 26.2745 YX= -1.2391 ZX= 1.1167 XY= -1.0443 YY= 27.7945 ZY= -1.8788 XZ= 0.8071 YZ= -1.2843 ZZ= 39.5540 Eigenvalues: 25.6621 28.1077 39.8531 - 31 2072 Anisotropy = 12.9593 The intervalues:25.002125.107739.50317 HIsotropic =31.2072Anisotropy =1XX=27.0710YX=3.0715ZX=-0.0209XY=2.6522YY=37.3576ZY=4.7283XZ=-0.1014YZ=4.1734ZZ=29.1930Eigenvalues:25.655028.119939.84684.1734 22-28.1199 39.8468 28.1199 13.1012 8 H Isotropic = 31.2536 Anisotropy =

 An 3/.1035
 YX=
 -3.6863
 ZX=
 -4.0218

 XY=
 -3.3135
 YY=
 27.4507
 ZY=
 2.6086

 XZ=
 -3.3865
 YZ=
 2.5351
 ZZ=
 29.2066

 Eigenvalues:
 25.5420
 28.2310
 30.0007

 9
 H
 Isotropic

 2.5351 22-28.2310 39.9877 22.9697 XZ= -3.3000 12 Eigenvalues: 25.5420 28.2310 39.9877 9 H Isotropic = 31.2105 Anisotropy = 12.9697 XX= 26.2741 YX= -1.2459 ZX= -1.0456 XY= -1.0448 YY= 27.8160 ZY= 1.9735 XZ= -0.7361 YZ= 1.3814 ZZ= 39.5414 Eigenvalues: 25.6644 28.1101 39.8569 10 H Isotropic = 31.2074 Anisotropy = 12.9594 XX= 27.0549 YX= 3.0252 ZX= 0.0182 XY= 2.6050 YY= 37.3030 ZY= -4.8028 XZ= 0.0999 YZ= -4.2490 ZZ= 29.2644 Eigenvalues: 25.6559 28.1194 39.8471 11 H Isotropic = 31.2537 Anisotropy = 13.1009 10 H 11 Н

 XX=
 37.1571
 YX=
 -3.6430
 ZX=
 4.0179

 XY=
 -3.2757
 YY=
 27.3951
 ZY=
 -2.5711

 XZ=
 3.3778
 YZ=
 -2.4976
 ZZ=
 29.2089

 Eigenvalues:
 25.5405
 28.2329
 39.9876

 XX= 12 H Isotropic = 31.2074 Anisotropy = 12.9649

 Z H
 ISOTIOPIC =
 SI.2074
 Anisotropy I

 XX=
 26.5798
 YX=
 0.5729
 ZX=
 -1.1742

 XY=
 0.7916
 YY=
 35.2375
 ZY=
 5.8361

 XZ=
 -0.7633
 YZ=
 6.3482
 ZZ=
 31.8050

 Eigenvalues:
 25.6627
 28.1089
 39.8507

 XX= 13 н Isotropic = 31.2084 Anisotropy = 12.9659 XX =26.6012YX =0.5230ZX =1.2166XY =0.7430YY =35.1490ZY =-5.8699XZ =0.8057YZ =-6.3788ZZ =31.8750Eigenvalues:25.664928.108039.8523XX= 14 H Isotropic = 31.2532 Anisotropy = 13.0834 38.7058 YX= 4.0123 ZX= -0.0727 XX= XY=3.2729YY=29.5208ZY=-0.0282XZ=-0.0707YZ=-0.0312ZZ=25.5329Eigenvalues:25.532528.251639.9754-0.0282 15 H Isotropic = 31.1466 Anisotropy = 12,9775 XX= 34.8367 YX= 1.8328 ZX= 4.9840 XY= 2.1298 YY= 26.7938 ZY= 3.4131 XZ= 5.4948 YZ= 3.3568 ZZ= 31.8092 Eigenvalues: 25.0327 28.6087 39.7983 Isotropic = 31.1470 Anisotropy = 16 H 12.9774

 34.7744
 YX=
 1.7864
 ZX=
 -5.0111

 2.0808
 YY=
 26.7551
 ZY=
 -3.3967

 -5.5224
 YZ=
 -3.3385
 ZZ=
 31.9114

 values:
 25.0334
 28.6090
 39.7986

 XX= XY= X7 =Eigenvalues: 17 H Isotropic = 31.1439 Anisotropy = 12,9820 XX=33.0341XX=-5.1760ZX=-0.0111XY=-5.7720YY=35.3689ZY=-0.0117XZ=-0.0088YZ=-0.0134ZZ=25.0287Eigenvalues:25.028728.604539.7986

Nr	At	om		Natura	al Electr	on Co	nfiguı	ratio	on		
	1 2 3 4 5 6 7	sn n c h h h	[ecp-28] [core] [core] [core]	[core] 5 2 2 2 1 1 1	5s(1.90) 2s(1.50) 2s(0.88) 2s(1.15) 1s(0.71) 1s(0.71)	5p(2p(3s(2p(0.72) 3.92) 0.01) 3.59)	Зр(2р(0.01) 2.65)	3d (3p (0.01) 0.01)
1 1 1 1	8 9 10 11 12	n c c h h h	[core] [core] [core]	2 2 2 1 1 1	2s(1.50) 2s(0.88) 2s(1.15) 1s(0.71) 1s(0.71) 1s(0.71)	2p(3s(2p(3.92) 0.01) 3.59)	Зр(2р(0.01) 2.65)	3d (3p (0.01) 0.01)
1 1 1 1	L4 L5 L6 L7	n C h h	[core] [core]	2 2 1 1 1	2s(1.55) 2s(1.15) 1s(0.71) 1s(0.71)	2p(2p(3.86) 3.59)	3p (0.01)	3d (0.01)
	19 20 21 22 23 24	c n c h h h	[core] [core] [core]	2 2 2 1 1 1	2s(0.88) 2s(1.50) 2s(1.15) 1s(0.71) 1s(0.71) 1s(0.71)	3s(2p(2p(0.01) 3.92) 3.59)	2p(3p(2.70) 0.01)	3p(3d(0.01) 0.01)
	25 26 27 28 29	C n C h h h	[core] [core] [core]	2 2 2 1 1	2s(0.88) 2s(1.55) 2s(1.15) 1s(0.71) 1s(0.71)	3s(2p(2p(0.01) 3.86) 3.59)	2p(3p(2.65) 0.01)	3p(3d(0.01) 0.01)
	31 32 33 34 35 36	c n c h h h	[core] [core] [core]	2 2 2 1 1	2s (0.88) 2s (1.55) 2s (1.15) 2s (0.71) 1s (0.71)	3s(2p(2p(0.01) 3.86) 3.59)	2p(3p(2.70) 0.01)	3p(3d(0.01) 0.01)
-	37	С	[core]	2	2s(0.88)	3s(0.01)	2p (2.70)	Зр(0.01)

NATURAL POPULATIONS: Natural atomic orbital occupancies

NAO	Atom	#		Type (AO)	Occupancy
1	sn	1	s	Cor(4s)	1.99948
2	sn	1	s	Val(5s)	1.89708
3	sn	1	s	Ryd	0.00098
4	sn	1	s	Ryd	0.00002
5	sn	1	s	Ryd	0.00001
6	sn	1	s	Ryd	0.00000
7	sn	1	р	Cor(4px)	1.99970
8	sn	1	р	Cor(4py)	1.99970
9	sn	1	р	Cor(4pz)	1.99970
10	sn	1	р	Val(5px)	0.26155
11	sn	1	р	Val(5py)	0.21895
12	sn	1	р	Val(5pz)	0.23487
13	sn	1	р	Ryd	0.00136
14	sn	1	р	Ryd	0.00161
15	sn	1	р	Ryd	0.00150
16	sn	1	р	Ryd	0.00057
17	sn	1	р	Ryd	0.00056
18	sn	1	р	Ryd	0.00056
19	sn	1	р	Ryd	0.00000
20	sn	1	р	Ryd	0.00000
21	sn	1	р	Ryd	0.00000
22	sn	1	d	Cor(4dz2)	1.99925
23	sn	1	d	Cor(4dxz)	1.99942

$\begin{array}{c} 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ \end{array}$	sn sn sn sn sn sn sn sn sn sn sn sn sn s	1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d	Cor (4dyz) Cor (4dxy) Cor (4dx2-y2) Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	1.99944 1.99935 1.99932 0.00109 0.00080 0.00088 0.00102 0.00011 0.00016 0.00017 0.00015 0.00013 0.00038 0.00027 0.00039 0.00021 0.00031 0.00039
44 45 46	sn sn	1 f 1 f	Ryd Ryd Bud	0.00008
47	sn	1 f	Rvd	0.00004
48	sn	1 f	Ryd	0.00002
49	sn	1 f	Ryd	0.00008
50	sn	1 f	Ryd	0.00004
51	n	2 s	Cor(ls)	1.99914
52	n	2 s	Val(2s)	1.50028
53	n	2 s	Ryd	0.00414
54	n	2 s	Ryd	0.00006
55 56	n n	2 S 2 D	Kya Val (2px)	1 24649
57	n	2 p 2 p	Val(2px) Val(2pv)	1.45073
58	n	2 p 2 p	Val(2pz)	1.22253
59	n	2 p	Ryd	0.00258
60	n	2 p	Ryd	0.00677
61	n	2 p	Ryd	0.00182
62	n	2 p	Ryd	0.00004
63	n	2 p	Ryd	0.00016
64 65	n	2 p	Ryd Bud	0.00003
65 66	n n	2 d	Ryd Ryd	0.00142
67	n	2 d	Rvd	0.00231
68	n	2 d	Ryd	0.00297
69	n	2 d	Ryd	0.00349
70	n	2 d	Ryd	0.00002
71	n	2 d	Ryd	0.00001
72	n	2 d	Ryd	0.00002
13	n	2 a 2 a	Ryd Bwd	0.00004
74	n	2 a 2 f	Ryd	0.00003
76	n	2 f	Rvd	0.00012
77	n	2 f	Ryd	0.00017
78	n	2 f	Ryd	0.00012
79	n	2 f	Ryd	0.00015
80	n	2 f	Ryd	0.00027
81	n	2 f	Ryd	0.00029
82 83	C C	3 s 3 s	Cor(ls) Val(2s)	1.99934 0.87739
84	С	3 s	Ryd	0.00776
85	С	3 s	Ryd	0.00006
86	С	3 s	Ryd	0.00001
87	С	3 p	Val(2px)	0.84896
88	С	зр з~	val(2py)	0.95884
0 9 9 N	C	3 p 3 p	var(ZpZ) Rvd	0.03//0 0 00096
91	c	ур 3 р	Ryd	0.00798

92 c 93 c 94 c 95 c 96 c 97 c 98 c 99 c 100 c 101 c 102 c 103 c 104 c 105 c 106 c 107 c 108 c 109 c 110 c 110 c 111 c	3 p 9 p 9 p 9 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1	Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	0.00040 0.0008 0.00012 0.00006 0.00020 0.00010 0.00079 0.00064 0.00005 0.00004 0.00003 0.00002 0.00006 0.000031 0.00010 0.00010 0.00010 0.00057 0.00026 0.00036 0.00038 0.00073 1.99923
114 c 115 c 116 c 117 c 118 c 119 c 120 c 121 c 122 c 123 c 124 c 125 c 126 c 127 c 128 c 129 c 130 c 131 c 132 c 133 c 134 c 135 c 136 c 137 c 138 c 139 c 140 c 141 c 142 c 143 c	4 4 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Val(2s) Ryd Ryd Val(2px) Val(2py) Val(2py) Val(2pz) Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	1.14731 0.00014 0.00008 0.00000 1.24331 1.08969 1.25858 0.00039 0.00046 0.00038 0.00005 0.00024 0.0002 0.00125 0.00105 0.00050 0.00015 0.00001 0.00001 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00004 0.00016 0.00023 0.00005
144 h 145 h 146 h 147 h 148 h 149 h	5 s 5 s 5 p 5 p 5 p	Val(ls) Ryd Ryd Ryd Ryd Ryd	0.70855 0.00025 0.00007 0.00054 0.00009 0.00009
150 h 151 h 152 h 153 h 154 h 155 h	6 S 6 S 6 P 6 P 6 P	Val(1s) Ryd Ryd Ryd Ryd Ryd	0.70881 0.00025 0.00007 0.00017 0.00018 0.00038
156 h 157 h	7 s 7 s	Val(1s) Ryd	0.70878 0.00025

158 159 160 161	h h h h	7 s 7 p 7 p 7 p	Ryd Ryd Ryd Ryd	0.00007 0.00009 0.00028 0.00036
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192	n n n n n n n n n n n n n n n n n n n	8 s 8 s s 8 s s 8 8 p p p p p p p p p d d d d d d d d f f f f	Cor(1s) Val(2s) Ryd Ryd Ryd Val(2px) Val(2py) Val(2py) Val(2pz) Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	1.99914 1.50042 0.00415 0.00006 0.00000 1.44205 1.24325 1.23465 0.00749 0.00204 0.00163 0.00016 0.00004 0.00003 0.00140 0.00258 0.00284 0.00296 0.00284 0.00296 0.00002
193 194 195 196 197 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 220 221 222 223		9 s s s p p p p p p p d d d d d d d d f f f f f	Cor(1s) Val(2s) Ryd Ryd Ryd Val(2px) Val(2py) Val(2py) Val(2pz) Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	1.99934 0.87736 0.00776 0.00001 0.95313 0.84931 0.84295 0.00699 0.00128 0.00110 0.00014 0.00004 0.00004 0.00065 0.00004
224	С	10 s	Cor(ls)	1.99923

$\begin{array}{ccccc} 225 & c \\ 226 & c \\ 227 & c \\ 228 & c \\ 229 & c \\ 230 & c \\ 231 & c \\ 232 & c \\ 233 & c \\ 234 & c \\ 235 & c \\ 237 & c \\ 238 & c \\ 237 & c \\ 238 & c \\ 241 & c \\ 242 & c \\ 242 & c \\ 242 & c \\ 243 & c \\ 244 & c \\ 245 & c \\ 245 & c \\ 246 & c \\ 247 & c \\ 248 & c \\ 247 & c \\ 248 & c \\ 249 & c \\ 250 & c \\ 251 & c \\ 251 & c \\ 253 & c \\ 253 & c \\ 254 & c \\ 254 & c \\ 254 & c \\ 255 &$	10 s 10 s 10 s 10 p 10 p 10 p 10 p 10 p 10 p 10 p 10 p	Val (2s) Ryd Ryd Val (2px) Val (2py) Val (2py) Val (2pz) Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	1.14738 0.00014 0.00008 0.00000 1.10024 1.24234 1.24931 0.00047 0.00038 0.00037 0.00023 0.00004 0.00003 0.00112 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 0.00002 0.00002 0.00002 0.00002 0.000027
255 h	11 s	Val(1s)	0.70860
256 h	11 s	Ryd	0.00025
257 h	11 s	Ryd	0.00007
258 h	11 p	Ryd	0.00009
259 h	11 p	Ryd	0.00056
260 h	11 p	Ryd	0.00007
261 h	12 s	Val(1s)	0.70852
262 h	12 s	Ryd	0.00025
263 h	12 s	Ryd	0.00007
264 h	12 p	Ryd	0.00035
265 h	12 p	Ryd	0.00011
266 h	12 p	Ryd	0.00026
267 h	13 s	Val(ls)	0.70858
268 h	13 s	Ryd	0.00025
269 h	13 s	Ryd	0.00007
270 h	13 p	Ryd	0.00013
271 h	13 p	Ryd	0.00013
272 h	13 p	Ryd	0.00047
273 n 274 n 275 n 276 n 277 n 278 n 279 n 280 n 281 n 282 n 283 n 284 n 285 n 285 n 285 n 286 n 287 n 288 n 289 n 290 n	14 s 14 s 14 s 14 s 14 s 14 p 14 p 14 p 14 p 14 p 14 p 14 p 14 d 14 d	Cor(1s) Val(2s) Ryd Ryd Val(2px) Val(2py) Val(2pz) Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	1.99929 1.54573 0.00475 0.00005 1.18771 1.20960 1.45991 0.00098 0.00155 0.00494 0.00002 0.00003 0.00015 0.00015 0.00029 0.00299 0.00362 0.00037
291 n 292 n 293 n 294 n 295 n 296 n 297 n 298 n 299 n 300 n 301 n 302 n 303 n	14 d 14 d 14 d 14 d 14 d 14 f 14 f 14 f 14 f 14 f 14 f 14 f 14 f	Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	0.00031 0.00002 0.00001 0.00000 0.00000 0.00027 0.00022 0.00024 0.00006 0.00006 0.00000 0.00000
--	--	--	--
304 c 305 c 306 c 307 c 308 c 310 c 311 c 312 c 313 c 314 c 315 c 316 c 317 c 318 c 319 c 320 c 321 c 322 c 323 c 324 c 325 c 326 c 327 c 328 c 329 c 331 c 332 c 331 c 332 c 333 c	15 s 15 s 15 s 15 p 15 p 15 p 15 p 15 p 15 p 15 p 15 p	Cor(1s) Val(2s) Ryd Ryd Val(2px) Val(2py) Val(2py) Val(2pz) Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	1.99923 1.14538 0.00013 0.00007 0.00000 1.25955 1.24533 1.08734 0.00041 0.00041 0.00041 0.00045 0.00023 0.00023 0.00023 0.00149 0.00032 0.000119 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.000019 0.00017
335 h	16 s	Val(1s)	0.71461
336 h	16 s	Ryd	0.00027
337 h	16 s	Ryd	0.00007
338 h	16 p	Ryd	0.00051
339 h	16 p	Ryd	0.00008
340 h	16 p	Ryd	0.00015
341 h	17 s	Val(1s)	0.71471
342 h	17 s	Ryd	0.00028
343 h	17 s	Ryd	0.00007
344 h	17 p	Ryd	0.00024
345 h	17 p	Ryd	0.00020
346 h	17 p	Ryd	0.00029
347 h	18 s	Val(1s)	0.71492
348 h	18 s	Ryd	0.00028
349 h	18 s	Ryd	0.00007
350 h	18 p	Ryd	0.00009
351 h	18 p	Ryd	0.00053
352 h	18 p	Ryd	0.00010
353 с	19 s	Cor(ls)	1.99936
354 с	19 s	Val(2s)	0.88354
355 с	19 s	Ryd	0.00746

$\begin{array}{ccccccc} 3556 & c \\ 3577 & c \\ 3588 & c \\ 3599 & c \\ 3600 & c \\ 3611 & c \\ 3622 & c \\ 3632 & c \\ 3644 & c \\ 3655 & c \\ 3666 & c \\ 3677 & c \\ 3700 & c \\ 3711 & c \\ 3720 & c \\ 3771 & c \\ 3772 & c \\ 3773 & c \\ 3774 & c \\ 3775 & c \\ 3775 & c \\ 3776 & c \\ 3777 & c \\ 3778 & c \\ 3779 & c \\ 3790 & c \\ 3800 & c \\ 3811 & c \\ 3822 & c \\ 3833 & c \\ \end{array}$	19 s 19 s 19 p 19 p 19 p 19 p 19 p 19 p 19 p 19 p	Ryd Ryd Val(2px) Val(2py) Val(2pz) Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	0.00005 0.00001 0.85986 0.86827 0.96693 0.00068 0.00119 0.01061 0.00010 0.00010 0.00019 0.00069 0.00074 0.00074 0.00074 0.00070 0.00005 0.00005 0.00005 0.00003 0.00002 0.00003 0.00004 0.000128 0.00019 0.00018 0.00001
384 n 385 n 386 n 387 n 388 n 389 n 390 n 391 n 392 n 393 n 394 n 395 n 395 n 396 n 397 n 398 n 397 n 398 n 399 n 400 n 401 n 402 n 403 n 404 n 405 n 406 n 407 n 408 n 409 n 410 n 411 n 412 n 413 n 414 n	20 s 20 s 20 s 20 s 20 p 20 p 20 p 20 p 20 p 20 p 20 p 20 p	Cor(1s) Val(2s) Ryd Ryd Ryd Val(2px) Val(2py) Val(2pz) Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	1.99914 1.50037 0.00415 0.00006 0.00000 1.21793 1.23517 1.46694 0.00165 0.00185 0.00766 0.00002 0.00003 0.00017 0.00483 0.00217 0.00297 0.00297 0.00026 0.00025 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00000 0.00030 0.00030 0.00008 0.00000 0.00008 0.00000
415 c 416 c 417 c 418 c 419 c 420 c 421 c 422 c 423 c	21 s 21 s 21 s 21 s 21 s 21 p 21 p 21 p 21 p	Cor(1s) Val(2s) Ryd Ryd Val(2px) Val(2py) Val(2pz) Ryd	1.99923 1.14738 0.00014 0.00008 0.00000 1.26360 1.24842 1.07981 0.00038

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445		21 p 21 p 21 p 21 p 21 d 21 d 21 d 21 d 21 d 21 d 21 d 21 d	Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	0.00038 0.00048 0.0002 0.0003 0.00025 0.00152 0.00021 0.00064 0.00112 0.00017 0.00002 0.00003 0.00003 0.00001 0.00001 0.00002 0.00007 0.00021 0.00002 0.00037 0.00003
446 447 448 449 450 451	h h h h h	22 s 22 s 22 s 22 p 22 p 22 p	Val(ls) Ryd Ryd Ryd Ryd Ryd	0.70847 0.00025 0.00007 0.00051 0.00008 0.00013
452 453 454 455 456 457	h h h h h	23 s 23 s 23 s 23 p 23 p 23 p 23 p	Val(1s) Ryd Ryd Ryd Ryd Ryd	0.70860 0.00025 0.00007 0.00017 0.00045 0.00011
458 459 460 461 462 463	h h h h h	24 s 24 s 24 s 24 p 24 p 24 p	Val(1s) Ryd Ryd Ryd Ryd Ryd	0.70869 0.00025 0.00007 0.00015 0.00028 0.00030
$\begin{array}{r} 464\\ 465\\ 466\\ 467\\ 468\\ 469\\ 470\\ 471\\ 472\\ 473\\ 477\\ 473\\ 477\\ 476\\ 477\\ 478\\ 479\\ 480\\ 481\\ 482\\ 483\\ 484\\ 485\\ 486\\ 487\\ 488\\ 489\end{array}$	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	25 s 25 s 25 s 25 s 25 p 25 p 25 p 25 p 25 p 25 p 25 p 25 p	Cor (1s) Val (2s) Ryd Ryd Val (2px) Val (2py) Val (2pz) Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	1.99934 0.87738 0.00777 0.00006 0.00001 0.83354 0.96709 0.00025 0.00100 0.00813 0.00007 0.00005 0.00013 0.00069 0.00079 0.00076 0.00079 0.00076 0.00079 0.00076 0.00008 0.00010 0.00006 0.00001 0.00004 0.00004 0.00004 0.00004

490 491 492 493 494	с с с с с	25 f 25 f 25 f 25 f 25 f 25 f	Ryd Ryd Ryd Ryd Ryd	0.00105 0.00016 0.00017 0.00001 0.00001
495 496 497 498 499 500 501 502 503 504 505 507 508 507 508 509 510 512 513 514 515 516 517 518 519 520 521 522 523 524 525	n n n n n n n n n n n n n n n n n n n n	26 s 26 s 26 s 26 s 26 s 26 p 26 p 26 p 26 p 26 p 26 p 26 d 26 d 26 d 26 d 26 d 26 d 26 f 5 26 f 5 26 f 5 26 p 26 p 26 p 26 p 26 p 26 d 26 d 26 d 26 f 5 26 f 5 26 p 26 p 26 p 26 p 26 p 26 p 26 p 26 p	Cor(1s) Val(2s) Ryd Ryd Val(2px) Val(2py) Val(2py) Val(2pz) Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	1.99929 1.54588 0.00476 0.00005 1.21770 1.44677 1.19220 0.00113 0.00535 0.00097 0.0003 0.00014 0.00002 0.00181 0.00002 0.00412 0.00412 0.00412 0.00412 0.00412 0.00410 0.00001 0.00001 0.00001 0.00001 0.00003 0.00013 0.00013 0.00013 0.00013 0.00014
526 527 528 530 531 533 534 535 536 537 538 540 5412 5433 5445 5445 5445 5445 5445 5445 5445 5445 5445 5445 5445 5445 5555 5555		27 s 27 s 27 s 27 s 27 s 27 s 27 p 27 p 27 p 27 p 27 p 27 p 27 p 27 p	Cor(1s) Val(2s) Ryd Ryd Ryd Val(2px) Val(2py) Val(2py) Val(2pz) Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	1.99923 1.14538 0.00014 0.00007 0.00000 1.23916 1.09748 1.25596 0.00041 0.00045 0.00041 0.00022 0.00022 0.00134 0.00103 0.00035 0.00003 0.00001 0.00001 0.00002 0.00002 0.00002 0.00002 0.00002 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005

557 h 558 h 559 h 560 h 561 h 562 h	28 s 28 s 28 s 28 p 28 p 28 p 28 p	Val(1s) Ryd Ryd Ryd Ryd Ryd	0.71454 0.00027 0.00007 0.00009 0.00011 0.00054
563 h 564 h 565 h 566 h 567 h 568 h	29 s 29 s 29 s 29 p 29 p 29 p 29 p	Val(1s) Ryd Ryd Ryd Ryd Ryd Ryd	0.71470 0.00027 0.00007 0.00045 0.00011 0.00017
569 h 570 h 571 h 572 h 573 h 574 h	30 s 30 s 30 s 30 p 30 p 30 p	Val(ls) Ryd Ryd Ryd Ryd Ryd Ryd	0.71485 0.00029 0.00007 0.00026 0.00034 0.00012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 s 31 s 31 s 31 s 31 s 31 p 31 p 31 p 31 p 31 p 31 p 31 p 31 p	Cor (1s) Val (2s) Ryd Ryd Ryd Val (2px) Val (2py) Val (2py) Val (2pz) Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	1.99937 0.88345 0.00747 0.0005 0.0001 0.87217 0.96208 0.86143 0.00197 0.00974 0.00020 0.00020 0.00025 0.00025 0.00025 0.00025 0.00062 0.00067 0.00062 0.00062 0.00067 0.00003 0.00031 0.00031 0.00031 0.00031 0.00036 0.00036 0.00074
606 n 607 n 608 n 609 n 610 n 611 n 612 n 613 n 614 n 615 n 616 n 617 n 618 n 619 n 620 n 621 n	32 s 32 s 32 s 32 s 32 p 32 p 32 p 32 p 32 p 32 p 32 p 32 p	Cor(1s) Val(2s) Ryd Ryd Val(2px) Val(2py) Val(2pz) Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	1.99929 1.54561 0.00475 0.00005 1.43395 1.21816 1.20505 0.00401 0.00175 0.00173 0.00014 0.00003 0.00003 0.00181 0.00316 0.00047

623 n 624 n 625 n 626 n 627 n 628 n 629 n 630 n 631 n 632 n 633 n 633 n 635 n 636 n	32 d 32 d 32 d 32 d 32 d 32 d 32 d 32 f 32 f 32 f 32 f 32 f 32 f	Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	0.00381 0.00433 0.00001 0.00001 0.00001 0.00001 0.00008 0.00014 0.00003 0.00011 0.00011 0.00011 0.00021 0.00018
$\begin{array}{c} 637 \\ c \\ c \\ 638 \\ 639 \\ 640 \\ 641 \\ 642 \\ 644 \\ 642 \\ 644 \\ 645 \\ 644 \\ 645 \\ 646 \\ 647 \\ 648 \\ 649 \\ 650 \\ 651 \\ c \\ $	33 s 33 s 33 s 33 s 33 p 33 p 33 p 33 p	Cor (1s) Val (2s) Ryd Ryd Val (2px) Val (2py) Val (2py) Val (2pz) Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd Ryd	1.99923 1.14538 0.00013 0.00007 0.00000 1.10264 1.24038 1.24942 0.00044 0.00041 0.00021 0.00004 0.00003 0.00104 0.00072 0.00106 0.00072 0.00106 0.00072 0.00100 0.00001 0.00001 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002
668 h	34 s	Val(ls)	0.71456
669 h	34 s	Ryd	0.00027
670 h	34 s	Ryd	0.00007
671 h	34 p	Ryd	0.00030
672 h	34 p	Ryd	0.00008
673 h	34 p	Ryd	0.00036
674 h	35 s	Val(1s)	0.71481
675 h	35 s	Ryd	0.00028
676 h	35 s	Ryd	0.00007
677 h	35 p	Ryd	0.00009
678 h	35 p	Ryd	0.00051
679 h	35 p	Ryd	0.00013
680 h	36 s	Val(1s)	0.71466
681 h	36 s	Ryd	0.00028
682 h	36 s	Ryd	0.00007
683 h	36 p	Ryd	0.00017
684 h	36 p	Ryd	0.00022
685 h	36 p	Ryd	0.00033
686 c	37 s	Cor(ls)	1.99937
687 c	37 s	Val(2s)	0.88341

688	С	37 s	Ryd	0.00748
689	С	37 s	Ryd	0.00005
690	С	37 s	Ryd	0.00001
691	С	37 p	Val(2px)	0.95664
692	С	37 p	Val(2py)	0.87165
693	С	37 p	Val(2pz)	0.86707
694	С	37 p	Ryd	0.01006
695	С	37 p	Ryd	0.00148
696	С	37 p	Ryd	0.00095
697	С	37 p	Ryd	0.00017
698	С	37 p	Ryd	0.00010
699	С	37 p	Ryd	0.00011
700	С	37 d	Ryd	0.00023
701	С	37 d	Ryd	0.00070
702	С	37 d	Ryd	0.00014
703	С	37 d	Ryd	0.00063
704	С	37 d	Ryd	0.00062
705	С	37 d	Ryd	0.00004
706	С	37 d	Ryd	0.00003
707	С	37 d	Ryd	0.00004
708	С	37 d	Ryd	0.00002
709	С	37 d	Ryd	0.00005
710	С	37 f	Ryd	0.00034
711	С	37 f	Ryd	0.00053
712	С	37 f	Ryd	0.00009
713	С	37 f	Ryd	0.00036
714	С	37 f	Ryd	0.00044
715	С	37 f	Ryd	0.00070
716	С	37 f	Ryd	0.00091

Summary of Natural Population Analysis:

Natural Population

		Natural				
Atom	No	Charge	Core	Valence	Rydberg	Total
1	sn	1.37710	17.99534	2.61245	0.01511	20.62290
2	n	-0.44651	1.99914	5.42003	0.02734	7.44651
3	С	0.45436	1.99934	3.52295	0.02335	5.54564
4	С	-0.74559	1.99923	4.73890	0.00746	6.74559
5	h	0.29041	0.00000	0.70855	0.00105	0.70959
6	h	0.29015	0.00000	0.70881	0.00105	0.70985
7	h	0.29017	0.00000	0.70878	0.00105	0.70983
8	n	-0.44685	1.99914	5.42037	0.02734	7.44685
9	С	0.45453	1.99934	3.52276	0.02337	5.54547
10	С	-0.74598	1.99923	4.73928	0.00747	6.74598
11	h	0.29034	0.00000	0.70860	0.00105	0.70966
12	h	0.29045	0.00000	0.70852	0.00104	0.70955
13	h	0.29037	0.00000	0.70858	0.00105	0.70963
14	n	-0.42920	1.99929	5.40295	0.02696	7.42920
15	С	-0.74424	1.99923	4.73759	0.00742	6.74424
16	h	0.28431	0.00000	0.71461	0.00108	0.71569
17	h	0.28421	0.00000	0.71471	0.00108	0.71579
18	h	0.28400	0.00000	0.71492	0.00108	0.71600
19	С	0.39580	1.99936	3.57860	0.02624	5.60420
20	n	-0.44688	1.99914	5.42041	0.02733	7.44688
21	С	-0.74593	1.99923	4.73921	0.00749	6.74593
22	h	0.29049	0.00000	0.70847	0.00104	0.70951
23	h	0.29035	0.00000	0.70860	0.00105	0.70965
24	h	0.29026	0.00000	0.70869	0.00105	0.70974
25	С	0.45459	1.99934	3.52270	0.02338	5.54541
26	n	-0.42879	1.99929	5.40255	0.02695	7.42879
27	С	-0.74463	1.99923	4.73797	0.00743	6.74463
28	h	0.28439	0.00000	0.71454	0.00107	0.71561
29	h	0.28422	0.00000	0.71470	0.00108	0.71578
30	h	0.28407	0.00000	0.71485	0.00108	0.71593
31	С	0.39522	1.99937	3.57913	0.02629	5.60478
32	n	-0.42903	1.99929	5.40277	0.02697	7.42903
33	С	-0.74448	1.99923	4.73782	0.00743	6.74448
34	h	0.28436	0.00000	0.71456	0.00108	0.71564
35	h	0.28411	0.00000	0.71481	0.00108	0.71589

36 h 37 c		0.2842 0.395	270.00591.99)000 9937	0.71466 3.57877	5 7	0.00107 0.02628	0.71573 5.60441	
* Tota	- _ *	2.000	53.98	3212	97.62716	 5	0.39072	152.00000	
For all Core Valence Natural Natural	atoms: Minimal Rydberg	Basis Basis	53.98212 97.62716 151.60928 0.39072	2 (99.9 5 (99.6 8 (99.7 2 (0.2	9669% of 6195% of 7429% of 2571% of	54) 98) 152) 152)			
	1-+-:								
atomic p	populatio	ons from	total dens	n (n)	~ (d)		r(f)	$\mathcal{D}(\mathcal{A})$	
alom 1 am	CI	large	n(S)	n(p)	n (a)	017	n(L)	n(g)	
l sn	-	1.3//10	3.89/56	6.7200	53 IU.UU)21/	0.00254	0.00000	
2 n	-(J.44651	3.50362	3.931.	16 0.01	_058	0.00116	0.00000	
3 C	(J.45436	2.88456	2.655.	L/ 0.00)261	0.00330	0.00000	
4 C	-().74559	3.14676	3.593	L2 0.00)475	0.00095	0.00000	
5 h	(0.29041	0.70887	0.000	/3 0.00	0000	0.00000	0.00000	
6 h	(0.29015	0.70913	0.000	72 0.00	0000	0.00000	0.00000	
7 h	(0.29017	0.70910	0.000'	73 0.00	0000	0.00000	0.00000	
8 n	- (0.44685	3.50377	3.9313	34 0.01	.059	0.00115	0.00000	
9 C	(0.45453	2.88452	2.6550	0.00)262	0.00330	0.00000	
10 c	-(0.74598	3.14684	3.5934	12 0.00)476	0.00095	0.00000	
11 h	(0.29034	0.70893	0.000	73 0.00	0000	0.00000	0.00000	
12 h	().29045	0.70884	0.000	/2 0.00	0000	0.00000	0.00000	
13 h	(0.29037	0.70890	0.000	73 0.00	0000	0.00000	0.00000	
14 n	-(0.42920	3.54982	3.8648	39 0.01	.363	0.00086	0.00000	
15 c	-().74424	3.14482	3.593	75 0.00)472	0.00095	0.00000	
16 h	().28431	0.71495	0.000	/4 0.00	0000	0.00000	0.00000	
l/h	(0.28421	0./1506	0.000	/3 0.00	0000	0.00000	0.00000	
18 h	().28400	0.71528	0.000	/3 0.00	0000	0.00000	0.00000	
19 c	(0.39580	2.89041	2.7079	92 0.00)250	0.00337	0.00000	
20 n	-(J.44688	3.50372	3.9314	43 0.01	1058	0.00115	0.00000	
21 C	-(J.74593	3.14684	3.593	37 0.00)4/6	0.00095	0.00000	
22 h	(J.29049	0.70879	0.000		0000	0.00000	0.00000	
23 h	(J.29035	0.70893	0.000	/3 0.00	0000	0.00000	0.00000	
24 n 25 -	(J.29026	0.70902	0.000		0000	0.00000	0.00000	
25 C	(J.45459	2.88455	2.654		261	0.00331	0.00000	
26 n	-(J.42879	3.54997	3.8643		1365	0.00086	0.00000	
2/ C	-(J. 74463	3.14482	3.594.	13 0.00)4/2	0.00096	0.00000	
20 II 20 h	().20439	0.71400	0.000			0.00000	0.00000	
29 II 30 h	(20422	0.71505	0.000	73 0.00		0.00000	0.00000	
31 0	(39522	2 80034	2 708	57 0.00	1250	0.00000	0.00000	
32 n	- (1 12903	3 5/970	3 8649		363	0.00000	0.00000	
33 0	_ (71118	3 1// 81	3 5030		1474	0.00000	0.00000	
31 h	() 28/36	0 71/00	0 000		0000	0.00095	0.00000	
35 h	(),20430) 28/11	0.71490	0.000	74 0.00		0.00000	0.00000	
36 h	(28427	0.71501	0.000	72 0.00	0000	0.00000	0.00000	
37 C	(7.20427	2 89031	2 7083	72 0.00	1250	0.00000	0.00000	
5, 0			2.07031	2.1002		200	0.00007	0.00000	
======									
moments	s (from t	total de	nsity versu	is popul	lation an	nalysi	s)		
<charge< td=""><td>e> =</td><td></td><td>2.000000</td><td></td><td>2.000</td><td>0000</td><td></td><td></td><td></td></charge<>	e> =		2.000000		2.000	0000			
<x></x>	=		-0.302396		0.340	1319			
<y></y>	=		-0.0/1846		0.069	1/33			
<2 >	-		∪.⊥98454		-0.214	±∪∠J			

		electrost	tatic momen	.ts		
refere	ence point for	electrostatic r	noments:	0.00000	0.00000	0.00000
	nuc	elec	-> tot	al		
		charge				
	154.000000	-152.000000	2.000	000		
		dipole moment	 t 			
х	9.939566	-10.241961	-0.302	396		
y	3.163783	-3.235629	-0.071	846		
z	-6.832015	7.030469	0.198	454		
di	pole moment	= 0.3688 a.	.u. = 0	.9373 deby	<i>i</i> e	
		quadrupole mome	ent			
xx	2364.832474	-2393.289252	-28.456	778		
УУ	3045.149318	-3059.741347	-14.592	029		
ΖZ	2774.404167	-2794.374773	-19.970	606		
хy	-157.238497	153.993745	-3.244	752		
XZ	441.176892	-432.079584	9.097	308		
Уz	100.368640	-98.305949	2.062	691		
1/ ar	'3 trace= hisotropy=	-21.006471 20.957578				

Experimental Details Towards Assignment of 2-4

Crystals of [Sn(dmap)_4][Al(OR^F)_4]_2 (2): $[SnCp][Al(OR^F)_4]$ (0.205 g, 0.178 mmol) and dmap (0.044 g, 0.36 mmol, 2.0 eq) were filled into a Schlenk flask and while stirring CH_2Cl_2 (5 mL) was added. The mixture was stirred overnight and then stored at room temperature. After 8 weeks, crystals of **2** formed.

Crystals of $[Sn(PPh_3)_2(MeCN)_5][Al(OR^F)_4]_2 \cdot MeCN$ (3): 1 (0.049 g, 0.021 mmol) and PPh₃ (0.018 g, 0.069 mmol, 3.3 eq) were filled into a Schlenk flask and while stirring MeCN (1.5 mL) was added. The mixture was stirred for another 1.5 h and then stored at -20 °C. After 4 days, crystals of **3** formed.

 $[Sn(pyr)_{2}(MeCN)_{4}][Al(OR^{F})_{4}]_{2}$ (4): 1 (2.222 g, 0.9665 mmol) and pyrazine (0.251 g, 3.13 mmol, 3.2 eq) were filled into a Schlenk flask and while stirring CH₂Cl₂ (20 mL) was added and stirred for about 60 h. The solvent was removed *in vacuo* and the remaining solid was washed twice with CH₂Cl₂ (2x3 mL) and dried *in vacuo* and by that, **4** was obtained as pale brown solid (1.528 g, 0.6427 mmol, 66 %). ¹H-NMR (300.18 MHz, CD₃CN, 298 K): 8.75 (s, 8 H, [Sn(C₄H₄N₂)₂(MeCN)₄][Al(OR^F)₄]₂), 1.96 ppm (s, 12 H, [Sn(pyr)₂(H₃CCN)₄][Al(OR^F)₄]₂). ¹⁹F-NMR (282.45 MHz, CD₃CN, 298 K) -76.0 ppm (s, 72 F, [Sn(pyr)₂(MeCN)₄][Al(OR^F)₄]₂). ¹¹⁹Sn-NMR (111.94 MHz, CD₃CN, 298 K): -1408 ppm (br, 1 Sn, [Sn(pyr)₂(MeCN)₄][Al(OR^F)₄]₂). ²⁷Al-NMR (78.22 MHz, CD₃CN, 298 K): 34.5 ppm (s, 2 Al, [Sn(pyr)₂(MeCN)₄][Al(OR^F)₄]₂). IR (400-4000 cm⁻¹, Diamond ATR, corrected): 2954 (vw), 2926 (vw), 2855 (vw), 2308 (vw), 2270 (vw), 2263 (vw), 1422 (vw), 1352 (vw), 1297 (w), 1273 (w), 1273 (w), 1266 (w), 1242 (m), 1214 (vs), 1170 (w), 1128 (vw), 1081 (vw), 1054 (vw), 1042 (vw), 969 (s), 832 (vw), 798 (vw), 755 (vw), 726 (w), 599 (vw), 587 (vw), 571 (vw), 560 (vw), 536 (vw), 438 (vw).

Figure S 7. ¹H-NMR spectrum (300.18 MHz) of 4 in CD₃CN at 298 K.

Figure S 8. ¹⁹F-NMR spectrum (282.45 MHz) of **4** in CD₃CN at 298 K.

Figure S 9. ¹¹⁹Sn-NMR spectrum (111.94 MHz) of **4** in CD₃CN at 298 K. We have checked the original data together with our NMR spectroscopist Dr. H. Scherer. The signal is real, but we refrained from Baseline and data manipulations.

Figure S 10. ²⁷Al-NMR spectrum (78.22 MHz) of 4 in CD₃CN at 298 K.

Crystallographic details

Single crystal X-ray crystallographic data were collected on a Bruker SMART APEXII Quazar with a CCD area detector and an INCOATEC 1st gen. Mo microsource. Structures were solved by SHELXT^[3] and refined by using SHELXL,^[3] ShelXle,^[4] and DSR.^[5] Graphics of the crystal structures were produced with Mercury CSD 3.8 and POV-Ray for Windows 3.7.0.

In **1**, six alkoxy-groups are disordered. The disorder was in both cases described by using two different positions and a respective free variable for the occupation. All equal 1,2 and 1,3 distances in the $OC(CF_3)_3$ -groups were restrained to be of similar length using SADI. The thermal parameters of the alkoxy-groups were made similar with SIMU and RIGU restraints.

In **4**, two alkoxy-groups are disordered. The disorder was in both cases described by using two different positions and a respective free variable for the occupation. All 1,2 and 1,3 distances in the $OC(CF_3)_3$ -groups were restrained using SADI. The thermal parameters of the alkoxy-groups were made similar with SIMU and RIGU.

Identification code	1	4
Empirical formula	$C_{88}H_{36}AI_4F_{144}N_{12}O_{16}Sn_2$	$C_{48}H_{20}AI_{2}F_{72}N_{8}O_{8}Sn$
Formula weight	4598.59	2377.37
Temperature/K	100(2)	100(2)
Wavelength/Å	0.71073	0.71073
Crystal system	Monoclinic	Triclinic
Space group	P21/c	PĪ
a/Å	26.8462(12)	14.2805(6)
b/Å	22.2195(10)	14.2903(6)
c/Å	27.4111(13)	20.9698(10)
α/°	90	82.129(3)
β/°	112.914(2)	83.435(3)
γ/°	90	63.201(2)
Volume/ų	15060.7(12)	3777.0(3)
Z	4	2
Density (calculated)/mg m ⁻³	2.028	2.090
Absorption coefficient/mm ⁻¹	0.593	0.596
F(000)	8896	2304
Crystal size/mm ³	0.22 x 0.15 x 0.10	0.30 x 0.05 x 0.05
θ range for data collection/°	0.823 to 26.608	0.982 to 28.909
	–33≤h≤31,	–19≤h≤19,
Index ranges	0≤k≤27,	–19≤k≤19,
	0≤l≤34	–27≤l≤28
Reflections collected	34439	94441
Independent reflections	34439	18917

Crystal data and structure refinement details for 1 and 4

	[<i>R</i> (int) = 0.0968]	[<i>R</i> (int) = 0.0648]
Goodness-of-fit on F ²	1.102	1.021
Final R indicas [1>2g(1)]	$R_1 = 0.0667,$	$R_1 = 0.0531,$
	$wR_2 = 0.1456$	$wR_2 = 0.1280$
R indicas (all data)	$R_1 = 0.0976,$	$R_1 = 0.0961$,
R mulces (an data)	$wR_2 = 0.1628$	$wR_2 = 0.1470$
Largest diff. peak and hole/e Å ⁻³	1.565 and –1.166	1.130 and -1.393
CCDC	1527811	1527816

Figure S 11. Molecular structure of **1**. Thermal ellipsoids are drawn at 50 % probability level. H atoms are omitted for clarity and the disorder of the OR^F groups is not shown. Sn, cadet blue; O, red; N, blue; F, green; C, grey; Al, pink.

Crystal data and structure refinement details for 2 and 3

Although the crystal of structure **2** looks like an ordinary single crystal, the reflections have a broad distribution in c direction. There is no sign of pseudo tetragonal twinning. Supposedly, this broad distribution is causing the high *R*-values of the refinement. The unusual thermal ellipsoids of some dmap ligands also indicate that there might be a (incommensurable) superstructure. Modelling of additional disorder is possible but has no positive effect on the *R*-value.

Figure S 12. Reciprocal lattice of 2 in the b^* , c^* plane. The lattice is contracted to a single point with the incommensurate tool of R-Latt in APEX3.

Identification code	2
Empirical formula	$C_{60}H_{40}Al_2F_{72}N_8O_8Sn$
Formula weight	2541.65
Temperature/K	100(2)
Wavelength/Å	0.71073
Crystal system	Orthorhombic
Space group	Pbca
a/Å	20.8860(6)
b/Å	22.0752(7)
c/Å	37.7998(12)
α/°	90
β/°	90
γ/°	90
Volume/ų	17428.1(9)
Z	8
Density (calculated)/mg m ⁻³	1.937
Absorption coefficient/mm ⁻¹	0.524
F(000)	9952
Crystal size/mm ³	0.30 x 0.30 x 0.30
θ range for data collection/°	1.077 to 27.103
	–26≤h≤26,
Index ranges	−28≤k≤28,
	-48≤l≤48
Reflections collected	580404
Independent reflections	19235 [<i>R</i> (int) = 0.0704]
Goodness-of-fit on F ²	1.191
Final R indices [I>2σ(I)]	$R_1 = 0.1616$, w $R_2 = 0.3387$
R indices (all data)	$R_1 = 0.1659$, w $R_2 = 0.3403$
Largest diff. peak and hole∕e Å⁻³	1.917 and -3.569

Atom	х	у	Z	U(eq)
0114	3244(19)	1620(19)	2551(8)	46(3)
C114	3487(11)	1693(11)	2875(7)	39(2)
C214	2972(12)	1691(13)	3171(8)	57(4)
F114	2736(18)	2259(15)	3183(11)	52(7)
F214	3238(18)	1540(20)	3482(8)	62(7)
F314	2514(17)	1290(20)	3097(13)	69(3)
C314	4004(12)	1205(12)	2952(8)	51(4)
F414	4310(19)	1050(20)	2654(9)	62(3)
F514	3718(19)	722(14)	3096(11)	64(7)
F614	4453(14)	1427(17)	3170(9)	40(6)
C414	3826(14)	2322(12)	2912(8)	59(5)
F714	4419(15)	2250(20)	2789(13)	73(8)
F814	3820(20)	2498(18)	3252(9)	55(7)
F914	3510(20)	2733(16)	2724(13)	65(3)
0113	2237(11)	2443(10)	2335(7)	40(5)
C113	1772(8)	2859(7)	2371(4)	39(4)
C213	2026(10)	3443(8)	2550(5)	49(4)
F113	2059(13)	3374(11)	2900(5)	55(6)
F213	1639(11)	3915(8)	2489(6)	47(5)
F313	2601(10)	3597(11)	2424(7)	60(6)
C313	1494(10)	3029(9)	2003(5)	49(5)
F413	1406(15)	2537(11)	1804(6)	60(6)
F513	1895(11)	3403(9)	1833(6)	50(5)
F613	926(11)	3307(13)	2033(8)	59(7)
C413	1229(9)	2596(8)	2604(5)	44(4)
F713	847(10)	2239(10)	2413(6)	52(5)
F813	868(10)	3040(9)	2736(6)	44(5)
F913	1446(11)	2261(11)	2872(6)	47(5)
0112	4089(10)	3413(16)	4526(9)	20(5)
C112	4681(8)	3440(6)	4384(4)	23(3)
C212	5169(8)	3225(8)	4667(4)	32(4)
F112	5247(8)	3652(8)	4916(4)	37(4)
F212	5750(8)	3116(11)	4535(7)	38(5)
F312	4960(12)	2717(9)	4821(6)	38(5)
C312	4720(9)	3018(7)	4056(4)	31(4)
F412	4220(11)	3104(10)	3845(6)	34(5)
F512	4739(8)	2436(6)	4156(4)	37(4)
F612	5254(12)	3121(14)	3870(9)	37(6)
C412	4855(8)	4094(7)	4272(4)	27(3)
F712	4581(8)	4252(9)	3965(4)	39(4)
F812	5484(8)	4175(13)	4226(6)	32(5)
F912	4667(12)	4494(10)	4517(6)	28(5)
018	2481(7)	2558(6)	2269(4)	30(3)
C18	2036(6)	2986(5)	2335(3)	35(3)
C28	2374(7)	3600(6)	2264(4)	39(3)
F18	2961(6)	3593(7)	2404(4)	52(3)
F28	2044(7)	4065(6)	2398(4)	48(3)
F38	2440(8)	3681(6)	1915(3)	51(4)
C38	1455(7)	2927(6)	2084(4)	39(3)

Table S 1. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³)for 2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	F48	1029(6)	2532(6)	2213(3)	46(3)
	F58	1638(7)	2719(7)	1766(3)	42(3)
	F68	1150(7)	3459(6)	2036(5)	50(4)
	C48	1817(6)	2966(6)	2726(3)	37(3)
	F78	1692(7)	2400(6)	2831(3)	42(3)
	F88	1287(6)	3285(6)	2787(3)	47(3)
	F98	2291(6)	3168(7)	2933(3)	47(3)
	0111	3134(3)	3902(3)	4098(2)	17(1)
	C111	2740(4)	A212(A)	3881(2)	19(2)
	C211	2607(5)	4212(4)	A022(2)	30(2)
	C211 E111	2007(3)	4801(4)	4022(2)	30(2) 40(2)
		21/3(4)	4040(4) 5225(4)	4205(2)	40(2)
	FZ11 F211	2302(3)	5225(4)	3773(2)	40(2)
	C211	514Z(4)	JIIJ(J)	4142(2)	57(Z) 24(2)
	C311	3005(4) 2215(2)	4258(4)	3313(Z) 2419(2)	24(Z) 28(1)
	F411	3315(3)	3/31(3)	3418(2)	28(1)
	F511	3544(3)	4662(3)	3521(2)	30(2)
	F611	2660(3)	4437(4)	3260(2)	34(2)
	C411	2096(4)	3866(4)	3842(2)	26(2)
	F/11	2182(3)	3359(3)	3655(2)	32(2)
	F811	1649(3)	4195(4)	3680(2)	40(2)
	F911	1862(3)	3713(3)	4161(2)	28(2)
	0110	2801(3)	3111(3)	4683(2)	17(1)
	C110	2678(4)	2509(4)	4707(2)	22(2)
	C210	3219(5)	2177(4)	4907(3)	34(2)
	F110	3724(4)	2082(3)	4700(2)	43(2)
	F210	3029(4)	1635(3)	5033(2)	47(2)
	F310	3411(5)	2499(4)	5188(2)	50(2)
	C310	2036(5)	2427(4)	4911(3)	36(2)
	F410	1599(4)	2825(4)	4794(2)	48(2)
	F510	2122(5)	2518(4)	5258(2)	52(2)
	F610	1786(4)	1874(3)	4868(2)	43(2)
	C410	2607(5)	2219(4)	4334(2)	28(2)
	F710	2047(4)	2358(3)	4190(2)	38(2)
	F810	2643(4)	1615(3)	4344(2)	39(2)
	F910	3063(4)	2426(3)	4119(2)	35(2)
	019	1970(5)	1343(5)	2294(4)	70(3)
	C19	1635(5)	824(5)	2261(3)	54(3)
	C29	1174(6)	755(7)	2578(3)	88(4)
	F19	1481(5)	857(9)	2880(3)	123(5)
	F29	932(6)	196(7)	2603(3)	108(4)
	F39	688(5)	1150(7)	2547(3)	113(4)
	C39	1247(5)	852(5)	1912(3)	45(3)
	F49	1634(5)	769(4)	1637(2)	54(2)
	F59	950(5)	1380(4)	1872(3)	60(2)
	F69	788(5)	432(4)	1894(2)	59(3)
	C49	2078(5)	262(5)	2247(3)	49(3)
	F79	2590(4)	366(5)	2044(3)	64(3)
	F89	1792(5)	-227(4)	2119(2)	60(3)
	F99	2302(4)	140(6)	2572(2)	78(3)
	017	3109(7)	1607(5)	1942(3)	77(4)
	C17	3409(5)	1737(4)	1637(3)	49(2)
	C27	2944(6)	1673(5)	1321(3)	53(3)
	F17	2830(4)	1092(4)	1247(2)	56(2)
-	11/	2030(4)	1002(4)	1277(3)	50(2)

E27	2176(5)	1024/4)	1026/2)	56(2)
FZ7	51/0(5) 2200(F)	1924(4)	1020(2)	50(2) 84(2)
F37	2390(5)	1934(5)	1400(4)	84(3)
C37	3669(6)	2390(5)	1652(3)	60(3)
F47	3920(8)	2517(5)	1969(3)	98(4)
F57	3206(5)	2799(4)	1589(2)	67(3)
F67	4121(5)	2492(4)	1410(2)	59(2)
C47	3970(6)	1286(5)	1601(3)	52(3)
F77	4452(6)	1424(5)	1821(3)	85(3)
F87	4203(4)	1281(4)	1275(2)	50(2)
F97	3782(5)	721(4)	1679(3)	63(3)
O16	2994(6)	1637(6)	2676(3)	46(3)
C16	3448(5)	1600(5)	2923(3)	39(2)
C26	3571(7)	2217(6)	3100(4)	54(3)
F16	3595(7)	2641(6)	2848(3)	65(3)
F26	4119(6)	2196(7)	3292(4)	78(4)
F36	3114(7)	2371(6)	3326(4)	69(4)
C36	3204(6)	1141(5)	3199(3)	43(3)
F46	3284(5)	573(4)	3091(3)	50(3)
F56	2588(5)	1232(7)	3267(4)	69(3)
F66	3518(6)	1171(6)	3509(3)	60(3)
C46	4090(5)	1363(6)	2764(3)	44(3)
F76	3948(6)	907(5)	2534(3)	62(3)
F86	4475(5)	1117(6)	3010(3)	51(3)
F96	4404(5)	1811(5)	2607(3)	57(3)
015	4065(8)	3378(13)	4537(7)	20(4)
C15	4665(7)	3404(6)	4405(3)	25(3)
C25	5049(7)	2871(6)	4567(4)	32(3)
F15	4916(10)	2819(8)	4911(4)	36(4)
F25	5681(6)	2931(8)	4529(6)	36(4)
F35	4876(7)	2348(6)	4414(4)	40(3)
C35	4655(7)	3355(7)	3995(4)	35(3)
F45	4527(7)	3892(7)	3844(4)	43(3)
F55	4218(10)	2949(9)	3897(5)	42(5)
F65	5223(10)	3173(12)	3870(7)	43(5)
C45	4981(7)	4010(7)	4516(4)	34(3)
E75	4572(10)	4469(9)	4459(6)	42(5)
F85	5514(7)	4132(11)	4331(5)	40(5)
F95	5151(7)	4005(8)	4951(5)	46(4)
N14	5000(5)	4005(0) 861(4)	5307(3)	36(2)
N24	5072(10)	1060(5)	4216(4)	92(5)
C1/	<i>11</i> 78 (8)	766(5)	5104(4)	51(3)
C14	4470(0)	212(6)	JI04(4)	51(3)
C24	4477(3)	072(5)	4745(4)	64(2)
C14	5584(0)	1070(6)	4370(4)	58(3)
C44	5504(5)	1019(6)	4779(3)	JO(J)
C54	4501(12)	1019(0)	2006(6)	43(3)
C04	4301(12)	1251(9)	3990(0) 4046(5)	107(6)
C74	5007(12)	1202(4)	4040(5)	107(0)
N13	5322(4)	1708(4)	5969(2)	21(2)
NZ3	5/19(4)	3543(4)	6U/2(2)	25(2)
C13	51/2(4)	2108(4)	5/11(2)	19(2)
C23	5293(4)	2/1/(4)	5/3/(3)	19(2)
643	5599(5)	2945(4)	6041(2)	21(2)
C43	5754(5)	2529(5)	6311(3)	25(2)

C53	5607(5)	1932(5)	6262(3)	21(2)
C63	5556(6)	3985(6)	5793(3)	33(3)
C73	6028(6)	3781(6)	6388(3)	37(3)
N12	5014(4)	750(4)	6565(2)	23(2)
N22	5013(4)	764(4)	7672(3)	35(2)
C12	4616(5)	1103(4)	6754(3)	27(2)
C22	4594(5)	1128(5)	7116(3)	30(2)
C32	5017(5)	764(5)	7315(3)	28(2)
C42	5438(5)	394(5)	7121(3)	25(2)
C52	5423(5)	413(5)	6762(3)	23(2)
C62	4574(7)	1170(7)	7859(4)	61(5)
C72	5428(5)	352(6)	7871(3)	32(3)
N11	4096(5)	822(4)	5955(2)	29(2)
N21	2143(4)	1018(4)	6129(2)	25(2)
C11	3778(5)	1318(5)	5840(3)	29(3)
C21	3137(5)	1392(5)	5891(3)	26(2)
C31	2773(5)	956(4)	6077(3)	22(2)
C41	3111(5)	441(5)	6189(3)	28(2)
C51	3755(5)	401(5)	6130(3)	31(2)
C61	1819(6)	1567(5)	6001(3)	33(3)
C71	1765(6)	554(6)	6303(3)	31(3)
Sn(01)	5157(1)	691(1)	5938(1)	25(1)
Al(02)	3298(1)	3671(1)	4525(1)	14(1)
Al(03)	2627(2)	1775(1)	2292(1)	16(1)
F(00E)	3831(4)	3754(4)	5318(2)	40(2)
F(00F)	3589(5)	4446(4)	5700(2)	42(2)
F(00L)	3202(5)	5504(4)	5401(2)	47(2)
O(00O)	3209(4)	4304(3)	4786(2)	22(2)
F(00P)	2552(5)	3743(4)	5402(2)	46(2)
F(00S)	3589(5)	5428(4)	4874(2)	50(2)
F(00V)	4249(4)	4639(4)	5270(2)	43(2)
F(00Z)	2315(4)	4652(4)	5558(2)	49(2)
F(011)	2562(5)	5420(4)	4959(2)	56(3)
F(013)	2035(4)	4316(5)	5038(2)	53(2)
C(02L)	3132(6)	4529(5)	5117(3)	22(2)
C(02O)	3710(6)	4341(6)	5353(3)	28(3)
C(031)	2507(7)	4316(7)	5282(3)	40(3)
C(03G)	3115(8)	5230(6)	5085(3)	38(3)

Figure S 13. Dimeric arrangement of the cations in 2. Thermal ellipsoids are drawn at 50 % probability level, H atoms are omitted for clarity. Sn, cadet blue; N, blue; C, grey.

The structure of **3** could be solved and refined, but not to satisfactory residuals. A very high residual density peak on each Tin atom remains. It is not describable by disorder although the phosphorus ligand would allow this movement, but the acetonitrile molecules also bound to the tin atoms forbid the disorder even if they are on the same occupancy as the second lower occupied part. The reflection images show also very weak reflections between the indexed reflections. Neither a refinement as supercell or as pseudo twin gave improved results.

Identification code	3
Empirical formula	$C_{160}H_{96}AI_4F_{144}N_{12}O_{16}P_4Sn_2$
Formula weight	5647.66
Temperature/K	100(2)
Wavelength/Å	0.71073
Crystal system	Triclinic
Space group	ΡĪ
a/Å	19.5545(12)
b/Å	19.9718(12)
c/Å	30.088(2)
α/°	102.847(4)
β/°	102.281(3)
γ/°	109.216(2)
Volume/ų	10283.2(12)
Z	2
Density (calculated)/mg m ⁻³	1.824
Absorption coefficient/mm ⁻¹	0.483
F(000)	5552
Crystal size/mm ³	0.40 x 0.20 x 0.15
θ range for data collection/°	1.138 to 25.610
	–23≤h≤23,
Index ranges	–24≤k≤24,
	–36≤l≤36
Reflections collected	245548
Independent reflections	37768 [<i>R</i> (int) = 0.0640]
Goodness-of-fit on F ²	1.834
Final R indices [I>2σ(I)]	$R_1 = 0.1441$, w $R_2 = 0.4086$
R indices (all data)	$R_1 = 0.1648$, w $R_2 = 0.4273$
Largest diff. peak and hole/e Å ⁻³	16.548 and -2.283

Table S 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for **3**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	х	У	Z	U(eq)
0118	219(3)	3667(4)	608(2)	24(1)
C118	-454(4)	3715(4)	615(3)	23(2)
C218	-658(4)	4129(4)	262(3)	26(2)
F118	-241(3)	4855(3)	442(2)	35(1)
F218	-1392(3)	4013(4)	141(2)	38(1)
F318	-497(3)	3883(3)	-145(2)	29(1)
C318	-1098(4)	2929(4)	465(3)	30(2)
F418	-858(3)	2491(3)	675(2)	36(1)

F518	-1306(3)	2608(3)	-10(2)	38(1)
F618	-1717(3)	2945(4)	574(2)	39(1)
C418	-394(5)	4163(4)	1125(3)	28(2)
F718	-477(3)	3739(3)	1414(2)	37(1)
F818	-922(3)	4452(4)	1118(2)	40(1)
F918	284(3)	4727(3)	1327(2)	32(1)
0117	759(3)	2494(3)	529(2)	22(1)
C117	770(4)	2032(4)	132(3)	24(2)
C217	342(5)	2135(4)	-329(3)	29(2)
F117	-408(3)	1832(3)	-413(2)	39(1)
F217	482(4)	1818(3)	-718(2)	39(1)
F317	538(3)	2853(3)	-283(2)	31(1)
C317	1598(4)	2155(5)	129(3)	30(2)
F417	2047(3)	2282(4)	566(2)	41(1)
F517	1905(3)	2752(3)	-4(2)	34(1)
F617	1626(4)	1573(4)	-173(2)	48(2)
C417	365(5)	1216(4)	127(3)	32(2)
F717	808(4)	1043(3)	446(2)	40(1)
F817	158(4)	708(3)	-297(2)	47(2)
F917	-265(3)	1135(3)	259(2)	40(1)
0116	4433(4)	1957(4)	-1358(2)	26(1)
C116	4009(5)	1896(4)	-1796(3)	26(2)
C216	4565(5)	2196(5)	-2069(3)	45(2)
E210	5130(<i>I</i>)	2250(5)	_1791(3)	43(2) 67(2)
F216	A22A(A)	2031(4)	-2456(2)	64(2)
F210	4234(4)	2311(J) 1724(E)	-2430(3)	50(2)
C216	4893(4) 2500(5)	1070(5)	-2200(3)	25(2)
C310 E416	227(2)	227(2)	-2080(3)	33(2)
F516	2850(4)	621(4)	-1948(2)	44(2) 50(2)
F616	2262(4)	021(4)	-2003(3)	50(2)
C416	3202(4)	2244(E)	-2331(2)	21(2)
C410 E716	21/15(2)	2344(3)	-1/41(3)	31(2) 20(1)
F916	3143(3)	2133(4)	-1421(2)	35(1) 45(2)
F016	2900(4)	2174(4)	-2133(2)	43(2)
0115	3912(4) 3691(4)	3007(3) 00E(2)	-1004(3)	33(Z) 37(1)
0115	2001(4)	995(5) ECQ(4)	-924(2)	27(1)
C115 C215	3223(3)	208(4) 192(4)	-727(3)	20(2)
C215	2084(5)	-182(4)	-1129(3)	35(2)
F115	2115(3)	-110(3)	-1421(2)	41(1) 46(2)
F215	2373(4)	-719(3)	-953(2)	40(2) 20(1)
F315	3075(3)	-410(3)	-1401(2)	39(1)
C315	3091(5)	399(5)	-310(3)	34(2)
F415	4293(3)	1024(3)	-32(2)	41(1) 45(2)
F515	3961(4)	-93(4)	-489(2)	45(2)
F615	3291(4)	135(4)	-43(2)	44(2)
C415	2723(4)	948(4)	-535(3)	28(2)
F/15	3118(3)	14/6(3)	-110(2)	32(1) 40(1)
F815	2121(3)	462(3)	-469(2)	40(1)
F915	2465(3)	1276(3)	-834(2)	36(1)
0114	4329(3)	2522(3)	-419(2)	25(1)
C114	4682(5)	3203(5)	-//(3)	29(2)
C214	4062(5)	3452(4)	67(3)	33(2)
F114	3489(4)	3286(4)	-324(2)	50(2)
F214	4323(3)	4172(3)	302(2)	39(1)

F314	3766(4)	3077(4)	338(2)	49(2)
C314	5198(5)	3171(5)	378(3)	37(2)
F414	5851(3)	3141(4)	325(3)	53(2)
F514	4856(4)	2558(4)	485(2)	51(2)
F614	5399(4)	3757(4)	767(2)	51(2)
C414	5173(5)	3788(4)	-267(3)	38(2)
F714	5584(4)	3513(4)	-494(3)	59(2)
F814	5655(4)	4427(4)	83(3)	57(2)
F914	4726(4)	3977(4)	-567(2)	56(2)
0112	5324(3)	1810(4)	-570(2)	26(1)
C112	5893(5)	1599(5)	-650(3)	27(2)
C212	6551(5)	2254(5)	-681(3)	35(2)
F112	6292(4)	2601(4)	-961(2)	46(2)
F212	7064(3)	2052(3)	-837(2)	40(1)
F312	6932(4)	2775(4)	-243(2)	60(2)
(312	6197(5)	1345(6)	-278(3)	52(2)
E/12	5684(5)	675(5)	_277(3)	$\frac{52(2)}{74(2)}$
F512	6258(5)	1708(5)	186(2)	74(2)
F612	6275(J)	1210(3)	102(2)	73(Z) 51(2)
F012	0073(4) E611(E)	1310(4) 040/E)	-192(2)	JI(Z)
C412	2011(2)	940(5)	-1129(3)	50(Z) 47(2)
F/1Z	4902(3)	400(3)	-1203(3)	47(Z) 40(2)
F812	6040(4) FCO2(4)	540(3)	-1124(3)	49(2)
F912	5603(4)	1201(4)	-1500(2)	49(2)
0113	4810(4)	6310(4)	4363(2)	31(2)
C113	5456(5)	6237(4)	4322(3)	25(2)
C213	6111(5)	/010(5)	4462(3)	36(2)
F113	5861(3)	7460(3)	4267(2)	44(2)
F213	6698(3)	6980(4)	4319(2)	46(2)
F313	6366(4)	/334(4)	4937(2)	48(2)
C313	5675(5)	5812(5)	4665(3)	31(2)
F413	5224(4)	5090(3)	4492(2)	43(1)
F513	5583(3)	6077(4)	5088(2)	39(1)
F613	6390(3)	5884(4)	4740(2)	44(2)
C413	5336(5)	5784(5)	3801(3)	30(2)
F713	4644(3)	5229(3)	3622(2)	40(1)
F813	5839(4)	5484(4)	3772(2)	45(2)
F913	5377(4)	6210(3)	3514(2)	39(1)
0111	1479(4)	9106(4)	5942(2)	30(1)
C111	1951(5)	9514(5)	5749(3)	31(2)
C211	2462(5)	9136(4)	5572(3)	29(2)
F111	2720(3)	8843(3)	5896(2)	38(1)
F211	3054(3)	9607(3)	5497(2)	43(2)
F311	2062(3)	8574(3)	5170(2)	37(1)
C311	1491(5)	9659(5)	5312(3)	40(2)
F411	1205(5)	10159(4)	5464(3)	57(2)
F511	899(4)	9034(4)	5041(2)	51(2)
F611	1898(4)	9892(4)	5035(2)	50(2)
C411	2465(5)	10285(5)	6128(3)	42(2)
F711	2083(4)	10544(3)	6385(2)	46(2)
F811	2788(4)	10802(4)	5936(3)	57(2)
F911	3035(4)	10226(4)	6425(2)	46(2)
0110	741(3)	8197(4)	6406(2)	25(1)
C110	1187(4)	8241(4)	6831(3)	25(2)
	· ·	• •		· · ·

C210	668(5)	7958(5)	7130(3)	39(2)
F110	370(4)	8449(4)	7286(2)	49(2)
F210	1021(4)	7830(4)	7507(2)	49(2)
F310	69(4)	7335(4)	6862(2)	52(2)
C310	1665(4)	7766(4)	6753(3)	29(2)
F410	1977(3)	7886(3)	6411(2)	36(1)
F510	1225(4)	7040(3)	6622(2)	48(2)
F610	2224(3)	7916(4)	7149(2)	42(2)
C410	1742(5)	9067(5)	7115(3)	34(2)
F710	2344(3)	9271(3)	6954(2)	39(1)
F810	2003(4)	9180(4)	7580(2)	51(2)
F910	1400(4)	9533(3)	7061(2)	45(2)
019	-196(11)	8288(13)	5624(9)	29(4)
C19	-750(9)	8532(8)	5690(5)	32(3)
C29	-966(8)	8880(8)	5300(5)	40(3)
E10	-480(9)	9576(8)	5394(6)	40(J) 55(Λ)
F20	-1646(9)	8910(11)	52/19(10)	JJ(4) 47(5)
F20	-965(18)	8510(11)	J24J(10) //272/2)	47(J) 52(5)
F39	-905(18)	70/1(13)	4072(0) 5629(5)	20(2)
C39	-1459(7)	7041(7)	5050(5)	39(3) 40(F)
F49	-1253(15)	7417(10)	5872(8)	49(5)
F59	-1807(8)	7428(9)	5182(4)	50(4)
F69	-1967(8)	8046(9)	5806(5)	45(4)
C49	-508(8)	9110(7)	6187(4)	37(3)
F79	-553(13)	8/83(11)	6524(6)	43(5)
F89	-933(9)	9512(9)	6209(5)	46(4)
F99	211(8)	9591(11)	6310(6)	41(4)
018	-126(12)	8401(14)	5611(10)	15(4)
C18	-688(9)	8630(8)	5680(5)	22(3)
C28	-1293(8)	8393(8)	5190(5)	30(3)
F18	-970(20)	8562(15)	4857(10)	44(6)
F28	-1801(11)	8704(12)	5192(12)	35(5)
F38	-1/00(9)	/663(/)	5039(5)	35(3)
C38	-1056(8)	8283(9)	6025(5)	29(3)
F48	-626(13)	8626(13)	6481(6)	34(5)
F58	-1157(17)	7571(10)	5937(9)	41(5)
F68	-1732(8)	8330(11)	6002(6)	38(4)
C48	-372(8)	9488(7)	5895(5)	27(3)
F78	296(9)	9741(14)	6232(8)	38(5)
F88	-840(10)	9736(10)	6075(6)	39(4)
F98	-231(10)	9807(9)	5565(5)	37(4)
017	900(20)	3370(20)	1416(10)	23(5)
C17	1113(11)	3144(11)	1795(7)	23(4)
C27	1976(10)	3314(10)	1932(7)	29(4)
F17	2210(20)	3176(19)	1551(11)	27(6)
F27	2170(20)	2914(14)	2201(9)	25(5)
F37	2400(13)	4027(10)	2189(9)	35(5)
C37	929(10)	3551(10)	2229(6)	27(4)
F47	183(10)	3288(14)	2165(9)	29(5)
F57	1124(18)	4278(13)	2283(15)	33(6)
F67	1276(11)	3499(12)	2639(6)	31(4)
C47	672(11)	2289(10)	1671(6)	30(4)
F77	-54(15)	2090(20)	1437(12)	39(7)
F87	715(17)	2073(14)	2060(7)	40(5)

F97	975(13)	1936(14)	1397(8)	33(5)
O16	1781(3)	3965(3)	801(2)	24(1)
C16	2257(4)	4658(4)	838(3)	22(2)
C26	2988(4)	4592(4)	734(3)	30(2)
F16	3202(3)	4142(3)	942(2)	34(1)
F26	3579(3)	5254(3)	888(2)	39(1)
F36	2849(3)	4309(3)	262(2)	35(1)
C36	1898(4)	4975(4)	472(3)	25(2)
F46	1401(3)	5225(3)	618(2)	35(1)
F56	1511(3)	4448(3)	50(2)	33(1)
F66	2413(3)	5536(3)	398(2)	36(1)
C46	2504(5)	5204(4)	1349(3)	31(2)
F76	1888(3)	5125(3)	1502(2)	36(1)
F86	2807(4)	5921(3)	1374(2)	38(1)
F96	2994(4)	5076(3)	1661(2)	41(1)
015	4310(4)	7521(3)	4496(2)	28(1)
C15	4383(5)	8014(4)	4905(3)	29(2)
C25	3583(5)	7931(5)	4953(3)	45(2)
E15	3112(4)	7838(5)	4530(3)	43(2) 64(2)
F25	3616(5)	8532(4)	5271(3)	67(2)
F35	3265(4)	7337(4)	5087(2)	51(2)
C35	4826(5)	7885(5)	53/7(2)	31(2)
E45	4820(J) 5569(3)	8137(A)	5/0/(3)	51(2)
F55	4608(4)	7170(2)	5210(2)	J1(2) /1(1)
FSS	4008(4)	7170(3) 922E(4)	5510(2)	41(1)
F03	4755(4)	8233(4) 8807(E)	3703(Z) 4900(2)	40(2)
C43 E75	4810(0) 5420(4)	8807(3)	4099(3)	49(2)
F73 EQE	5429(4)	0226(4)	4737(3) 5220(2)	04(2) 72(2)
FOS	JU62(J)	9520(4)	JSSU(2)	72(2) 65(2)
F93	4550(5)	6990(4)	4355(3)	24(2)
C14	5206(4) 2772(4)	5200(E)	4207(3)	34(Z) 26(2)
C14	2772(4) 2122(5)	5590(5)	4224(3)	20(2)
C24 E14	2597(2)	3049(3) 4775(2)	4371(3)	20(1)
F14 E24	3507(3)	4773(3)	4415(2)	39(1) 47(2)
F24	2005(4)	4510(4)	4002(2)	47(2)
F34	3337(3) 2076(F)	5571(5) 5409(F)	4994(2)	42(1) 27(2)
C34	2076(5)	5498(5)	4355(3)	37(2)
F44	1868(4)	5958(4)	4156(2)	46(Z)
F54	2244(3)	5784(4)	4833(2)	40(Z)
F04	1472(3)	4859(3)	4228(2)	47(Z) 25(2)
C44	2483(5)	4845(5)	3700(3)	33(Z)
F74	2003(4)	5017(4)	3416(2)	52(2)
F84	2139(4)	4138(3)	3683(2)	49(2)
F94	3072(4)	4900(4)	3534(2)	47(2)
013	3999(18)	6581(18)	3577(9)	25(5)
C13	3780(9)	6841(9)	3220(6)	25(3)
C23	39/3(8)	6483(8)	2780(5)	30(3)
F13	4/15(/)	6734(10)	2831(6)	35(4)
F23	3630(9)	6584(10)	2383(5)	37(4)
F33	3/52(13)	5748(10)	2690(11)	32(4)
C33	291/(8)	6668(8)	3087(5)	27(3)
F43	26/3(17)	6//3(14)	34/2(7)	38(2)
F23	2502(10)	5954(8)	2829(7)	38(4)
F63	2710(12)	/070(10)	2831(6)	29(4)

C43 4224(9)	7698(8)	3368(5)	35(4)
F73 3939(11)	8055(9)	3661(6)	45(4)
F83 4162(14)	7963(14)	2999(7)	40(5)
F93 4962(11)	7933(18)	3603(9)	46(6)
012 949(11)	3434(10)	1417(5)	20(3)
C12 1148(6)	3187(6)	1786(4)	18(2)
C22 1598(6)	3879(6)	2245(4)	29(2)
F12 2299(6)	4221(6)	2235(5)	35(3)
F22 1650(7)	3713(6)	2649(3)	37(2)
F32 1278(9)	4376(7)	2257(7)	35(3)
C32 424(6)	2677(6)	1866(4)	31(3)
F42 -71(8)	2202(12)	1447(6)	42(4)
F52 65(7)	3065(7)	2057(5)	41(3)
F62 580(7)	2278(7)	2148(4)	37(3)
C42 1653(6)	2745(6)	1706(4)	23(2)
E72 1253(6)	2041(6)	1434(4)	35(3)
F82 2069(10)	2710(7)	2109(4)	29(3)
F92 2133(11)	3049(9)	1483(6)	29(3)
011 3969(16)	6580(15)	1483(0) 3597(8)	23(3)
C11 3303(10)	6050(13)	2246(6)	27(4)
C11 3702(8) 2222(8)	620E(8)	3240(0) 3774(E)	27(3)
CZI 5555(6) E11 267E(12)		2774(5)	42(5)
FII 50/5(15)	6/26(11)	2741(10)	55(0)
F21 3285(9)	6426(10)	2389(5)	55(4)
F31 2628(8)	5810(8)	2765(7)	50(4)
C31 3222(7)	7248(7)	3349(4)	32(3)
F41 3596(8)	/941(/)	3656(5)	44(3)
F51 2760(13)	6901(11)	3568(6)	38(2)
F61 2803(11)) 7298(8)	2959(5)	35(4)
	7427(8)	3203(5)	42(3)
F/1 4947(11)	/846(15)	3646(6)	50(5)
F81 4336(11)) /8/5(12)	2968(7)	41(4)
F91 4847(8)	7064(8)	2989(6)	49(4)
Sn(1) 2413(1)	5286(1)	-2438(1)	24(1)
Sn(2) 7822(1)	9991(1)	7680(1)	31(1)
P(003) 8866(1)	11270(1)	7524(1)	19(1)
P(004) 1418(1)	3794(1)	-2474(1)	19(1)
P(005) 6330(1)	8789(1)	7454(1)	18(1)
P(006) 3811(1)	6375(1)	-2452(1)	19(1)
Al(07) 931(1)	3397(1)	841(1)	16(1)
Al(08) 703(2)	8299(2)	5848(1)	20(1)
Al(09) 4096(1)	6612(1)	4177(1)	18(1)
AI(0A) 4446(2)	1825(1)	-810(1)	20(1)
F(01A) 1639(4)	6862(4)	5290(3)	53(2)
C(1A) 3915(5)	7866(5)	-2192(3)	22(2)
C(1G) 5329(5)	6730(5)	-1901(3)	21(2)
C(1H) 4812(5)	8425(5)	6896(3)	20(2)
C(1I) 6217(5)	7302(5)	7176(3)	21(2)
C(1J) 4043(5)	7317(6)	-1572(3)	26(2)
C(1L) 7154(5)	8600(5)	8237(3)	25(2)
C(1M) 10392(5)	11644(5)	8082(3)	26(2)
O(01Y) 757(3)	7561(3)	5460(2)	26(1)
N(046) 2715(5)	4631(5)	-3110(3)	34(2)
N(049) 3381(4)	5006(5)	-1991(3)	31(2)

N(04E) 2526(6) 5741(6) -1470(4) 48(2) N(04N) 7496(5) 9685(5) 6837(3) 39(2) C(04Q) 11027(6) 11472(6) 8203(4) 30(2) C(04Q) 11027(6) 11472(6) 8203(4) 30(2) C(04W) 6202(5) 7914(5) 7040(3) 19(2) C(04W) 1344(5) 223(5) -3381(3) 26(2) C(04W) 6134(5) 7886(5) 6564(3) 21(2) C(050) 9759(5) 11148(5) 7682(3) 20(2) C(053) 5452(5) 8919(5) 7294(3) 20(2) C(054) 8739(5) 11418(5) 6942(3) 20(2) C(055) -735(5) 3599(5) -3141(4) 28(2) C(056) 5962(5) 6566(5) -1775(3) 26(2) C(056) 5962(5) 6566(5) -1775(3) 26(2) C(056) 1544(5) 3656(5) -175(3) 26(2) C(056) 1596(5)					
N(04N) 7496(5) 9685(5) 6837(3) 39(2) C(04P) 8964(5) 12119(5) 7949(3) 19(2) C(04R) 8936(5) 12746(5) 7825(3) 22(2) C(04W) 6202(5) 7914(5) 7040(3) 19(2) C(04W) 1344(5) 2318(5) -2782(3) 26(2) C(04W) 1144(5) 2923(5) -3381(3) 26(2) C(04W) 6134(5) 7886(5) 6564(3) 21(2) C(050) 9759(5) 11148(5) 7842(3) 20(2) C(053) 5452(5) 8919(5) 7294(3) 20(2) C(056) 5962(5) 6566(5) -1775(3) 26(2) C(056) 5962(5) 6566(5) -1775(3) 26(2) C(056) 5962(5) 6566(5) -1775(3) 26(2) C(056) 5962(5) 6565(5) -1886(3) 21(2) C(056) 1299(5) 2302(3) 23(2) C(056) 1229(5) -3029(3)	N(04E)	2526(6)	5741(6)	-1470(4)	48(2)
C(04P) 8964(5) 12119(5) 7949(3) 19(2) C(04Q) 11027(6) 11472(6) 8203(4) 30(2) C(04W) 6202(5) 7914(5) 7040(3) 19(2) C(04W) 1344(5) 2318(5) -2782(3) 26(2) C(04W) 1184(5) 292(5) -3381(3) 26(2) C(04W) 6134(5) 7886(5) 6564(3) 21(2) C(050) 9759(5) 11148(5) 7682(3) 20(2) C(053) 5452(5) 8919(5) 7294(3) 20(2) C(054) 8739(5) 11418(5) 6942(3) 20(2) C(055) -735(5) 3599(5) -3141(4) 28(2) C(055) 5962(5) 6565(5) -1775(3) 20(2) C(055) 6565(5) -1886(3) 21(2) C(055) 1299(5) 2940(5) -2902(3) 23(2) C(055) 1299(5) 250(5) -1886(3) 21(2) C(055) 1209(5) 750(5)	N(04N)	7496(5)	9685(5)	6837(3)	39(2)
C(04Q) 11027(6) 11472(6) 8203(4) 30(2) C(04R) 8936(5) 12746(5) 7825(3) 22(2) C(04W) 6202(5) 7914(5) 7782(3) 26(2) C(04W) 1344(5) 2233(5) -3381(3) 26(2) C(04W) 6134(5) 7886(5) 6564(3) 21(2) C(050) 9759(5) 11148(5) 7882(3) 21(2) C(051) 5452(5) 8919(5) 7294(3) 21(2) C(055) -735(5) 3599(5) -3141(4) 28(2) C(055) 5962(5) 6566(5) -1775(3) 26(2) C(056) 5962(5) 6566(5) -1775(3) 26(2) C(058) 6478(5) 8681(5) 8047(3) 20(2) C(056) 1299(5) 2940(5) -3059(3) 21(2) C(057) 114(6) 3570(5) -1886(3) 21(2) C(056) 2200(5) 3570(5) -1886(3) 26(2) C(057) 112(5)	C(04P)	8964(5)	12119(5)	7949(3)	19(2)
C(04R) 8936(5) 12746(5) 7825(3) 22(2) C(04V) 6202(5) 7914(5) 7040(3) 19(2) C(04W) 1344(5) 2318(5) -2782(3) 26(2) C(04X) 1184(5) 7886(5) 6564(3) 21(2) C(050) 9759(5) 11148(5) 7682(3) 24(2) C(053) 5452(5) 8919(5) 7294(3) 21(2) C(054) 8739(5) 131418(5) 6942(3) 20(2) C(055) -735(5) 3599(5) -3141(4) 28(2) C(056) 5962(5) 656(5) -1775(3) 26(2) C(056) 5962(5) 656(5) -1775(3) 26(2) C(056) 6478(5) 8681(5) 8047(3) 20(2) C(056) 1299(5) 2940(5) -202(3) 23(2) C(057) -12(5) 3420(5) -3029(3) 23(2) C(056) 2200(5) 3570(5) -1688(3) 26(2) C(057) 4171(6)	C(04Q)	11027(6)	11472(6)	8203(4)	30(2)
C(04V) 6202(5) 7914(5) 7040(3) 19(2) C(04W) 1344(5) 2318(5) -2782(3) 26(2) C(04V) 6134(5) 7986(5) 6564(3) 21(2) C(050) 9759(5) 11148(5) 7682(3) 21(2) C(052) 8998(5) 12105(5) 8416(3) 24(2) C(053) 5452(5) 8919(5) 7294(3) 21(2) C(054) 8739(5) 11418(5) 6942(3) 20(2) C(055) -735(5) 3599(5) -3141(4) 28(2) C(056) 5962(5) 6566(5) -775(3) 26(2) C(056) 5962(5) 6566(5) -775(3) 20(2) C(057) 1544(5) 3656(5) -1886(3) 21(2) C(056) 1299(5) 2940(5) -2902(3) 23(2) C(057) -112(5) 3420(5) -3029(3) 27(2) C(056) 2200(5) 3570(5) -1688(3) 26(2) C(057) 4511(5)	C(04R)	8936(5)	12746(5)	7825(3)	22(2)
C(04W) 1344(5) 2318(5) -2782(3) 26(2) C(04X) 1184(5) 2923(5) -3381(3) 26(2) C(04Y) 6134(5) 7886(5) 6564(3) 21(2) C(050) 9759(5) 11148(5) 7824(3) 21(2) C(051) 8739(5) 11418(5) 6942(3) 20(2) C(055) -735(5) 3599(5) -3141(4) 28(2) C(055) -735(5) 3599(5) -3141(4) 28(2) C(056) 5962(5) 6566(5) -1775(3) 26(2) C(056) 6478(5) 8681(5) 8047(3) 20(2) C(05C) 6062(6) 7229(6) 6229(3) 30(2) C(05C) 1544(5) 3656(5) -1886(3) 21(2) C(05C) 1299(5) 2940(5) -202(3) 23(2) C(05C) 1299(5) 450(5) -329(3) 26(2) C(05C) 2200(5) 3570(5) -1688(3) 26(2) C(05C) 239(5)	C(04V)	6202(5)	7914(5)	7040(3)	19(2)
C(04X) 1184(5) 2923(5) -3381(3) 26(2) C(04Y) 6134(5) 7886(5) 6564(3) 21(2) C(050) 9759(5) 11148(5) 7682(3) 24(2) C(053) 5452(5) 8919(5) 7294(3) 21(2) C(054) 8739(5) 11418(5) 6942(3) 20(2) C(055) -735(5) 3599(5) -3141(4) 28(2) C(056) 5962(5) 6566(5) -1775(3) 26(2) C(056) 5962(5) 6566(5) -1775(3) 20(2) C(056) 3657(5) 6449(5) -3059(3) 22(2) C(056) 1544(5) 3656(5) -1886(3) 21(2) C(057) -112(5) 3420(5) -3029(3) 23(2) C(056) 2200(5) 3570(5) -1688(3) 26(2) C(057) -112(5) 3420(5) -3029(3) 27(2) C(056) 2200(5) 3570(5) -263(3) 27(2) C(057) 4571(5)	C(04W)	1344(5)	2318(5)	-2782(3)	26(2)
C(04Y) 6134(5) 7886(5) 6564(3) 21(2) C(050) 9759(5) 11148(5) 7682(3) 21(2) C(052) 8998(5) 12105(5) 8416(3) 24(2) C(053) 5452(5) 8919(5) 7294(3) 21(2) C(054) 8739(5) 11418(5) 6942(3) 20(2) C(055) -735(5) 3599(5) -3141(4) 28(2) C(056) 5962(5) 6566(5) -1775(3) 20(2) C(058) 6478(5) 8681(5) 8047(3) 20(2) C(05C) 6062(6) 7229(6) 6229(3) 30(2) C(05C) 1299(5) 2940(5) -3029(3) 23(2) C(05F) 1299(5) 2940(5) -3029(3) 27(2) C(05K) 299(5) 4511(5) -326(3) 27(2) C(05K) 2599(5) 4511(5) -3263(3) 20(2) C(05K) 2599(5) 4511(5) -3263(3) 20(2) C(05K) 2599(5)	C(04X)	1184(5)	2923(5)	-3381(3)	26(2)
C(05) 9759(5) 11148(5) 7682(3) 21(2) C(052) 8998(5) 12105(5) 8416(3) 24(2) C(053) 5452(5) 8919(5) 7294(3) 21(2) C(054) 8739(5) 11418(5) 6942(3) 20(2) C(055) -735(5) 3599(5) -3141(4) 28(2) C(056) 5962(5) 6566(5) -1775(3) 26(2) C(056) 6478(5) 8681(5) 8047(3) 20(2) C(055) 1544(5) 3656(5) -1886(3) 21(2) C(056) 2290(5) 2540(5) -202(3) 23(2) C(056) 2200(5) 3570(5) -1688(3) 26(2) C(056) 2200(5) 3570(5) -3249(3) 27(2) C(051) 2965(5) 6503(5) -3249(3) 27(2) C(051) 2395(5) 7257(5) -2053(3) 20(2) C(051) 3953(5) 7257(5) -2053(3) 20(2) C(051) 4531(5)	C(04Y)	6134(5)	7886(5)	6564(3)	21(2)
C(052) 8998(5) 12105(5) 84416(3) 24(2) C(053) 5452(5) 8919(5) 7294(3) 21(2) C(054) 8739(5) 11418(5) 6942(3) 20(2) C(055) -735(5) 3599(5) -3141(4) 28(2) C(056) 5962(5) 6566(5) -1775(3) 26(2) C(05A) 3657(5) 6449(5) -3059(3) 22(2) C(05B) 6478(5) 8681(5) 8047(3) 20(2) C(05C) 6062(6) 7229(6) 6229(3) 30(2) C(05F) -112(5) 3420(5) -3029(3) 23(2) C(05F) -112(5) 3420(5) -3029(3) 27(2) C(05G) 2200(5) 3570(5) -1688(3) 26(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05K) 2599(5) 4511(5) -3506(3) 30(2) C(05C) 8061(5) 11490(5) 6741(3) 26(2) C(05C) 806(15)	C(050)	9759(5)	11148(5)	7682(3)	21(2)
C(052) 5452(5) 8319(5) 724(3) 21(2) C(053) 5452(5) 8319(5) 7141(4) 28(2) C(054) 8739(5) 11418(5) 6942(3) 20(2) C(055) -735(5) 3599(5) -3141(4) 28(2) C(056) 5962(5) 6566(5) -1775(3) 26(2) C(056) 6627(5) 6449(5) -3059(3) 22(2) C(055) 6062(6) 7229(6) 6229(3) 30(2) C(055) 1299(5) 2940(5) -3029(3) 23(2) C(056) 1209(5) 3570(5) -1688(3) 26(2) C(057) 112(5) 3420(5) -3029(3) 23(2) C(056) 2200(5) 3570(5) -1688(3) 26(2) C(057) 2965(5) 6503(5) -3249(3) 27(2) C(051) 2995(5) 7257(5) -2053(3) 20(2) C(051) 3953(5) 7257(5) -2053(3) 20(2) C(051) 4678(5)	C(052)	8998(5)	12105(5)	8416(3)	24(2)
C(054) 8739(5) 11418(5) 6942(3) 20(2) C(055) -735(5) 3599(5) -3141(4) 28(2) C(056) 5962(5) 6566(5) -1775(3) 26(2) C(056) 6478(5) 8681(5) 8047(3) 20(2) C(05C) 6062(6) 7229(6) 6229(3) 30(2) C(05C) 6062(6) 7229(6) 6229(3) 23(2) C(05F) 1129(5) 2940(5) -2902(3) 23(2) C(05F) -112(5) 3420(5) -3029(3) 23(2) C(05G) 2200(5) 3570(5) -1688(3) 26(2) C(05H) 4171(6) 8597(6) 6784(4) 29(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05D) 8061(5) 11490(5) 6741(3) 26(2) C(05D) 8061(5) 11490(5) 6741(3) 26(2) C(05D) 8061(5) 11490(5) 6741(3) 26(2) C(05D) 8093(6)	C(053)	5452(5)	8919(5)	7294(3)	21(2)
C(055) -735(5) 3599(5) -3141(4) 28(2) C(056) 5962(5) 6566(5) -1775(3) 26(2) C(05A) 3657(5) 6449(5) -3059(3) 22(2) C(05B) 6478(5) 8681(5) 8047(3) 20(2) C(05C) 6062(6) 7229(6) 6229(3) 30(2) C(05D) 1544(5) 3556(5) -1886(3) 21(2) C(05F) -112(5) 3420(5) -3029(3) 23(2) C(05F) -112(5) 3420(5) -3029(3) 23(2) C(05G) 2200(5) 3570(5) -1688(3) 26(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05K) 2599(5) 4511(5) -3506(3) 23(2) C(05N) 523(5) 3917(5) -2633(3) 20(2) C(05C) 8061(5) 11490(5) 6741(3) 26(2) C(05C) 8061(5) 11490(5) 6741(3) 26(2) C(05C) 6090(6)	C(054)	8739(5)	11418(5)	6942(3)	20(2)
C(055) 155(5) 157(1) 26(2) C(056) 3657(5) 6449(5) -3059(3) 22(2) C(05B) 6478(5) 8681(5) 8047(3) 20(2) C(05C) 6062(6) 7229(6) 6229(3) 30(2) C(05C) 1544(5) 3656(5) -1783(3) 23(2) C(05F) 1299(5) 2940(5) -3029(3) 23(2) C(05G) 2200(5) 3570(5) -1688(3) 26(2) C(05H) 4171(6) 8597(6) 6784(4) 29(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05C) 8051(5) 11490(5) 6741(3) 26(2) C(05C) 8093(6) 13342(5) 8630(3) 30(2) C(05C) 8933(6) 13342(5) 8630(3) 30(2) C(05C) 4678(5) 6237(5) -2292(3) 21(2) C(05C) 4678(5) 637(5)	C(055)	-735(5)	3599(5)	-3141(4)	28(2)
C(050) 3557(5) 6449(5) -3059(3) 22(2) C(05A) 3657(5) 6449(5) -3059(3) 22(2) C(05B) 6478(5) 8681(5) 8047(3) 20(2) C(05C) 6062(6) 7229(6) 6229(3) 30(2) C(05D) 1544(5) 3656(5) -1886(3) 21(2) C(05F) -112(5) 3420(5) -3029(3) 23(2) C(05G) 2200(5) 3570(5) -1688(3) 26(2) C(05H) 4171(6) 8597(6) 6784(4) 29(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05K) 253(5) 3917(5) -2033(3) 20(2) C(05C) 8061(5) 11490(5) 6741(3) 26(2) C(05C) 893(6) 13342(5) 8630(3) 30(2) C(05C) 893(6) 13342(5) 8630(3) 30(2) C(05C) 4137(5)	C(056)	5962(5)	6566(5)	-1775(3)	26(2)
C(05R) 5057(5) 5457(5) 5457(5) 202) C(05B) 6478(5) 8681(5) 8047(3) 20(2) C(05C) 6062(6) 7229(6) 6229(3) 30(2) C(05D) 1544(5) 3656(5) -1886(3) 21(2) C(05F) -112(5) 3420(5) -3029(3) 23(2) C(05G) 2200(5) 3570(5) -1688(3) 26(2) C(05H) 4171(6) 8597(6) 6784(4) 29(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05C) 8933(6) 13342(5) 8630(3) 30(2) C(05C) 8061(5) 11490(5) 6741(3) 26(2) C(05C) 8933(6) 13342(5) 8630(3) 30(2) C(05C) 8993(6) 13342(5) 8630(3) 30(2) C(05C) 8936(5) 13355(5) 8170(3) 25(2) C(05T) 4678(5)	C(05A)	3657(5)	6449(5)	-3059(3)	20(2)
C(05B) 007(3) 2007(3) 2007(2) C(05C) 6062(6) 7229(6) 6229(3) 30(2) C(05D) 1544(5) 3656(5) -1886(3) 21(2) C(05E) 1299(5) 2940(5) -2902(3) 23(2) C(05F) -112(5) 3420(5) -3029(3) 23(2) C(05G) 2200(5) 3570(5) -1688(3) 26(2) C(05G) 2200(5) 3570(5) -1688(3) 26(2) C(05H) 4171(6) 8597(6) 6784(4) 29(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05K) 2599(5) 4511(5) -3506(3) 20(2) C(05K) 523(5) 3917(5) -2633(3) 23(2) C(05C) 8061(5) 11490(5) 6741(3) 26(2) C(05C) 893(6) 13342(5) 8630(3) 30(2) C(05C) 4678(5) 6237(5) -2292(3) 21(2) C(05T) 4678(5) 6389(5)	C(05R)	6478(5)	8681(5)	-3033(3) 8047(2)	22(2)
C(05C) 5062(6) 7229(6) 6229(3) 50(2) C(05D) 1544(5) 3656(5) -1886(3) 21(2) C(05F) -112(5) 3420(5) -2902(3) 23(2) C(05G) 2200(5) 3570(5) -1688(3) 26(2) C(05H) 4171(6) 8597(6) 6784(4) 29(2) C(05L) 2955(5) 6503(5) -3249(3) 27(2) C(05L) 3953(5) 7257(5) -2053(3) 20(2) C(05L) 3953(5) 7257(5) -2633(3) 20(2) C(05C) 8061(5) 11490(5) 6741(3) 26(2) C(05C) 8061(5) 13342(5) 8630(3) 30(2) C(05C) 6906(6) 6237(5) -2292(3) 21(2) C(05T) 4678(5)		6062(6)	2001(J)	6047(5)	20(2)
C(05D) 1344(5) 3656(3) -1886(3) 21(2) C(05E) 1299(5) 2940(5) -2902(3) 23(2) C(05F) -112(5) 3420(5) -3029(3) 23(2) C(05G) 2200(5) 3570(5) -1688(3) 26(2) C(05H) 4171(6) 8597(6) 6784(4) 29(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05K) 2599(5) 4511(5) -2633(3) 20(2) C(05K) 523(5) 3917(5) -2633(3) 30(2) C(05C) 8061(5) 11490(5) 6741(3) 26(2) C(05C) 8093(6) 13342(5) 8630(3) 30(2) C(05C) 8093(6) 13342(5) 8630(3) 30(2) C(05C) 6090(6) 6629(6) 6380(4) 31(2) C(05C) 6090(6) 6629(5) 6840(3) 28(2) C(05X) 8950(5)		0002(0) 1544(5)	7229(0)	0229(3)	50(Z) 21(2)
C(05E) 1129(5) 2940(5) -2902(3) 23(2) C(05F) -112(5) 3420(5) -3029(3) 23(2) C(05G) 2200(5) 3570(5) -1688(3) 26(2) C(05H) 4171(6) 8597(6) 6784(4) 29(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05C) 3953(5) 7257(5) -2053(3) 20(2) C(05C) 8061(5) 11490(5) 6741(3) 26(2) C(05C) 8993(6) 13342(5) 8630(3) 30(2) C(05C) 8993(6) 13342(5) 8630(3) 30(2) C(05C) 8993(6) 6337(5) -2292(3) 21(2) C(05T) 4678(5) 6237(5) -2292(3) 21(2) C(05U) 6090(6) 6629(6) 6380(4) 31(2) N(05V) 7511(7) 10559(6) 8553(4) 54(3) C(05X) 8950(5) 13355(5) 8170(3) 28(2) C(05C) 6164(5)		1044(5)	3030(5)	-1880(3)	21(2)
C(05F) -112(5) 3420(5) -3029(3) 23(2) C(05G) 2200(5) 3570(5) -1688(3) 26(2) C(05H) 4171(6) 8597(6) 6784(4) 29(2) C(05J) 2965(5) 6503(5) -3249(3) 27(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05L) 3953(5) 7257(5) -2053(3) 20(2) C(05O) 8061(5) 11490(5) 6741(3) 26(2) C(05C) 8093(6) 13342(5) 8630(3) 30(2) C(05C) 8093(6) 13342(5) 8630(3) 30(2) C(05C) 8093(6) 13342(5) 8630(3) 30(2) C(05C) 6090(6) 6629(6) 6380(4) 31(2) N(05V) 7511(7) 10559(6) 8553(4) 54(3) C(05C) 6164(5) 6660(5) 6840(3) 28(2) C(05C) 6164(5) 6660(5) 6840(3) 28(2) C(060) 4141(6) 7977(6) -1236(4) 33(2) C(061) 4771(5)	C(05E)	1299(5)	2940(5)	-2902(3)	23(2)
C(05G) 2200(5) 3570(5) -1688(3) 26(2) C(05H) 4171(6) 8597(6) 6784(4) 29(2) C(05J) 2965(5) 6503(5) -3249(3) 27(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05L) 3953(5) 7257(5) -2053(3) 23(2) C(05D) 8061(5) 11490(5) 6741(3) 26(2) C(05C0) 8061(5) 11490(5) 6741(3) 26(2) C(05C1) 4678(5) 6237(5) -2292(3) 21(2) C(05T1) 4678(5) 6237(5) -2292(3) 21(2) C(05U) 6090(6) 6629(6) 6380(4) 31(2) N(05V) 7511(7) 10559(6) 8553(4) 54(3) C(05Z) 6164(5) 6660(5) 6840(3) 28(2) C(06D) 4141(6) 7977(6) -1236(4) 33(2) C(06D) 4141(6) 7977(5) -238(4) 31(2) C(06C1) 4771(5) 9734(6) -2482(4) 32(2) C(06C3) 5403(6)	C(05F)	-112(5)	3420(5)	-3029(3)	23(2)
C(05H) 4171(b) 8597(b) 6784(4) 29(2) C(05J) 2965(5) 6503(5) -3249(3) 27(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05L) 3953(5) 7257(5) -2053(3) 20(2) C(05N) 523(5) 3917(5) -2633(3) 23(2) C(05Q) 8061(5) 11490(5) 6741(3) 26(2) C(05R) 4137(5) 6389(5) -3320(3) 24(2) C(05T) 4678(5) 6237(5) -2292(3) 21(2) C(05U) 6090(6) 6629(6) 6380(4) 31(2) N(05V) 7511(7) 10559(6) 8553(4) 54(3) C(05X) 8950(5) 13355(5) 8170(3) 25(2) C(05Y) 9033(6) 12728(5) 8766(3) 28(2) C(05C) 6164(5) 6660(5) 6840(3) 28(2) C(060) 4141(6) 7977(6) -1236(4) 33(2) C(061) 4771(5) 9734(5) 7555(3) 22(2) C(063) 5417(5)	C(05G)	2200(5)	3570(5)	-1688(3)	26(2)
C(05J) 2965(5) 6503(5) -3249(3) 27(2) C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05L) 3953(5) 7257(5) -2053(3) 20(2) C(05N) 523(5) 3917(5) -2633(3) 23(2) C(05O) 8061(5) 11490(5) 6741(3) 26(2) C(05C) 8993(6) 13342(5) 8630(3) 30(2) C(05T) 4678(5) 6237(5) -2292(3) 21(2) C(05T) 4678(5) 6237(5) -2292(3) 21(2) C(05U) 6090(6) 6629(6) 6380(4) 31(2) N(05V) 7511(7) 10559(6) 8553(4) 54(3) C(05X) 8950(5) 13355(5) 8170(3) 25(2) C(05Y) 9033(6) 12728(5) 8766(3) 28(2) C(05C) 6164(5) 6660(5) 6840(3) 28(2) C(060) 4141(6) 7977(6) -1236(4) 33(2) C(061) 477(5)	C(05H)	41/1(6)	8597(6)	6784(4)	29(2)
C(05K) 2599(5) 4511(5) -3506(3) 28(2) C(05L) 3953(5) 7257(5) -2053(3) 20(2) C(05N) 523(5) 3917(5) -2633(3) 23(2) C(05O) 8061(5) 11490(5) 6741(3) 26(2) C(05Q) 8993(6) 13342(5) 8630(3) 30(2) C(05R) 4137(5) 6389(5) -3320(3) 24(2) C(05T) 4678(5) 6237(5) -2292(3) 21(2) C(05U) 6090(6) 6629(6) 6380(4) 31(2) N(05V) 7511(7) 10559(6) 8553(4) 54(3) C(05X) 8950(5) 13355(5) 8170(3) 25(2) C(05Y) 9033(6) 12728(5) 8766(3) 28(2) C(05C) 6164(5) 6660(5) 6840(3) 28(2) C(061) 4771(5) 9723(6) 7438(4) 29(2) C(062) 1109(6) 2277(6) -3734(4) 35(2) C(064) 4712(6)	C(05J)	2965(5)	6503(5)	-3249(3)	27(2)
C(05L) 3953(5) 7257(5) -2053(3) 20(2) C(05N) 523(5) 3917(5) -2633(3) 23(2) C(05O) 8061(5) 11490(5) 6741(3) 26(2) C(05Q) 8993(6) 13342(5) 8630(3) 30(2) C(05R) 4137(5) 6389(5) -3320(3) 24(2) C(05T) 4678(5) 6237(5) -2292(3) 21(2) C(05U) 6090(6) 6629(6) 6380(4) 31(2) N(05V) 7511(7) 10559(6) 8553(4) 54(3) C(05X) 8950(5) 13355(5) 8170(3) 25(2) C(05Y) 9033(6) 12728(5) 8766(3) 28(2) C(05C) 6164(5) 6660(5) 6840(3) 28(2) C(060) 4141(6) 7977(6) -1236(4) 33(2) C(061) 4771(5) 9723(6) 7438(4) 29(2) C(062) 1109(6) 2277(6) -3734(4) 35(2) C(064) 4712(6)	C(05K)	2599(5)	4511(5)	-3506(3)	28(2)
C(05N) 523(5) 3917(5) -2633(3) 23(2) C(05O) 8061(5) 11490(5) 6741(3) 26(2) C(05Q) 8993(6) 13342(5) 8630(3) 30(2) C(05R) 4137(5) 6389(5) -3320(3) 24(2) C(05T) 4678(5) 6237(5) -2292(3) 21(2) C(05U) 6090(6) 6629(6) 6380(4) 31(2) N(05V) 7511(7) 10559(6) 8553(4) 54(3) C(05X) 8950(5) 13355(5) 8170(3) 25(2) C(05Y) 9033(6) 12728(5) 8766(3) 28(2) C(05C) 6164(5) 6660(5) 6840(3) 28(2) C(060) 4141(6) 7977(6) -1236(4) 33(2) C(061) 4771(5) 9723(6) 7438(4) 29(2) C(062) 1109(6) 2277(6) -3734(4) 35(2) C(063) 5417(5) 9578(5) 7555(3) 22(2) C(064) 4712(6)	C(05L)	3953(5)	7257(5)	-2053(3)	20(2)
C(050)8061(5)11490(5)6741(3)26(2)C(05Q)8993(6)13342(5)8630(3)30(2)C(05R)4137(5)6389(5)-3320(3)24(2)C(05T)4678(5)6237(5)-2292(3)21(2)C(05U)6090(6)6629(6)6380(4)31(2)N(05V)7511(7)10559(6)8553(4)54(3)C(05X)8950(5)13355(5)8170(3)25(2)C(05Y)9033(6)12728(5)8766(3)28(2)C(05Z)6164(5)6660(5)6840(3)28(2)C(060)4141(6)7977(6)-1236(4)33(2)C(061)4771(5)9723(6)7438(4)29(2)C(062)1109(6)2277(6)-3734(4)35(2)C(063)5417(5)9578(5)7555(3)22(2)C(064)4712(6)5573(5)-2547(3)27(2)C(065)-123(6)4746(6)-2483(4)31(2)C(066)5340(6)5403(6)-2432(4)32(2)C(067)1180(6)3600(5)-1175(3)30(2)C(068)9066(6)11447(5)6213(3)32(2)C(068)9066(6)11447(5)6213(3)32(2)C(064)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06B)1031(5)3668(C(05N)	523(5)	3917(5)	-2633(3)	23(2)
C(05Q)8993(6)13342(5)8630(3)30(2)C(05R)4137(5)6389(5)-3320(3)24(2)C(05T)4678(5)6237(5)-2292(3)21(2)C(05U)6090(6)6629(6)6380(4)31(2)N(05V)7511(7)10559(6)8553(4)54(3)C(05X)8950(5)13355(5)8170(3)25(2)C(05Y)9033(6)12728(5)8766(3)28(2)C(05Z)6164(5)6660(5)6840(3)28(2)C(060)4141(6)7977(6)-1236(4)33(2)C(061)4771(5)9723(6)7438(4)29(2)C(062)1109(6)2277(6)-3734(4)35(2)C(063)5417(5)9578(5)7555(3)22(2)C(064)4712(6)5573(5)-2547(3)27(2)C(065)-123(6)4746(6)-2483(4)31(2)C(066)5340(6)5403(6)-2432(4)32(2)C(066)5340(6)5403(6)-2432(4)32(2)C(067)1180(6)3600(5)-1175(3)30(2)C(068)9066(6)11447(5)6213(3)32(2)C(068)9066(6)11447(5)6213(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(C(05O)	8061(5)	11490(5)	6741(3)	26(2)
C(05R)4137(5)6389(5)-3320(3)24(2)C(05T)4678(5)6237(5)-2292(3)21(2)C(05U)6090(6)6629(6)6380(4)31(2)N(05V)7511(7)10559(6)8553(4)54(3)C(05X)8950(5)13355(5)8170(3)25(2)C(05Y)9033(6)12728(5)8766(3)28(2)C(05Z)6164(5)6660(5)6840(3)28(2)C(060)4141(6)7977(6)-1236(4)33(2)C(061)4771(5)9723(6)7438(4)29(2)C(062)1109(6)2277(6)-3734(4)35(2)C(063)5417(5)9578(5)7555(3)22(2)C(064)4712(6)5573(5)-2547(3)27(2)C(065)-123(6)4746(6)-2483(4)31(2)C(066)5340(6)5403(6)-2432(4)32(2)C(067)1180(6)3600(5)-1175(3)30(2)C(068)9066(6)11447(5)6213(3)32(2)C(068)9066(6)11447(5)6213(3)32(2)C(064)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06K)6186(6)8712(5	C(05Q)	8993(6)	13342(5)	8630(3)	30(2)
C(05T)4678(5)6237(5)-2292(3)21(2)C(05U)6090(6)6629(6)6380(4)31(2)N(05V)7511(7)10559(6)8553(4)54(3)C(05X)8950(5)13355(5)8170(3)25(2)C(05Y)9033(6)12728(5)8766(3)28(2)C(05Z)6164(5)6660(5)6840(3)28(2)C(060)4141(6)7977(6)-1236(4)33(2)C(061)4771(5)9723(6)7438(4)29(2)C(062)1109(6)2277(6)-3734(4)35(2)C(063)5417(5)9578(5)7555(3)22(2)C(064)4712(6)5573(5)-2547(3)27(2)C(065)-123(6)4746(6)-2483(4)31(2)C(066)5340(6)5403(6)-2432(4)32(2)C(067)1180(6)3600(5)-1175(3)30(2)C(068)9066(6)11447(5)6213(3)32(2)C(068)9066(6)11447(5)6213(3)32(2)C(064)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(05R)	4137(5)	6389(5)	-3320(3)	24(2)
C(05U)6090(6)6629(6)6380(4)31(2)N(05V)7511(7)10559(6)8553(4)54(3)C(05X)8950(5)13355(5)8170(3)25(2)C(05Y)9033(6)12728(5)8766(3)28(2)C(05Z)6164(5)6660(5)6840(3)28(2)C(060)4141(6)7977(6)-1236(4)33(2)C(061)4771(5)9723(6)7438(4)29(2)C(062)1109(6)2277(6)-3734(4)35(2)C(063)5417(5)9578(5)7555(3)22(2)C(064)4712(6)5573(5)-2547(3)27(2)C(065)-123(6)4746(6)-2483(4)31(2)C(066)5340(6)5403(6)-2432(4)32(2)C(066)5340(6)5403(6)-2432(4)32(2)C(067)1180(6)3600(5)-1175(3)30(2)C(068)9066(6)11447(5)6213(3)32(2)C(064)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(05T)	4678(5)	6237(5)	-2292(3)	21(2)
N(05V) 7511(7) 10559(6) 8553(4) 54(3) C(05X) 8950(5) 13355(5) 8170(3) 25(2) C(05Y) 9033(6) 12728(5) 8766(3) 28(2) C(05Z) 6164(5) 6660(5) 6840(3) 28(2) C(060) 4141(6) 7977(6) -1236(4) 33(2) C(061) 4771(5) 9723(6) 7438(4) 29(2) C(062) 1109(6) 2277(6) -3734(4) 35(2) C(063) 5417(5) 9578(5) 7555(3) 22(2) C(064) 4712(6) 5573(5) -2547(3) 27(2) C(065) -123(6) 4746(6) -2483(4) 31(2) C(066) 5340(6) 5403(6) -2432(4) 32(2) C(066) 5340(6) 5403(6) -2432(4) 32(2) C(067) 1180(6) 3600(5) -1175(3) 30(2) C(068) 9066(6) 11447(5) 6213(3) 32(2) C(066A) 3941(6)	C(05U)	6090(6)	6629(6)	6380(4)	31(2)
C(05X)8950(5)13355(5)8170(3)25(2)C(05Y)9033(6)12728(5)8766(3)28(2)C(05Z)6164(5)6660(5)6840(3)28(2)C(060)4141(6)7977(6)-1236(4)33(2)C(061)4771(5)9723(6)7438(4)29(2)C(062)1109(6)2277(6)-3734(4)35(2)C(063)5417(5)9578(5)7555(3)22(2)C(064)4712(6)5573(5)-2547(3)27(2)C(065)-123(6)4746(6)-2483(4)31(2)C(066)5340(6)5403(6)-2432(4)32(2)C(067)1180(6)3600(5)-1175(3)30(2)C(068)9066(6)11447(5)6213(3)32(2)C(068)9066(6)11447(5)6213(3)32(2)C(064)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06H)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	N(05V)	7511(7)	10559(6)	8553(4)	54(3)
C(05Y)9033(6)12728(5)8766(3)28(2)C(05Z)6164(5)6660(5)6840(3)28(2)C(060)4141(6)7977(6)-1236(4)33(2)C(061)4771(5)9723(6)7438(4)29(2)C(062)1109(6)2277(6)-3734(4)35(2)C(063)5417(5)9578(5)7555(3)22(2)C(064)4712(6)5573(5)-2547(3)27(2)C(065)-123(6)4746(6)-2483(4)31(2)C(066)5340(6)5403(6)-2432(4)32(2)C(066)5340(6)3600(5)-1175(3)30(2)C(067)1180(6)3600(5)-1175(3)30(2)C(068)9066(6)11447(5)6213(3)32(2)C(068)9066(6)11447(5)6213(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(05X)	8950(5)	13355(5)	8170(3)	25(2)
C(05Z)6164(5)6660(5)6840(3)28(2)C(060)4141(6)7977(6)-1236(4)33(2)C(061)4771(5)9723(6)7438(4)29(2)C(062)1109(6)2277(6)-3734(4)35(2)C(063)5417(5)9578(5)7555(3)22(2)C(064)4712(6)5573(5)-2547(3)27(2)C(065)-123(6)4746(6)-2483(4)31(2)C(066)5340(6)5403(6)-2432(4)32(2)C(067)1180(6)3600(5)-1175(3)30(2)C(068)9066(6)11447(5)6213(3)32(2)C(069)2537(5)5642(6)-1116(4)34(2)C(06A)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(05Y)	9033(6)	12728(5)	8766(3)	28(2)
C(060)4141(6)7977(6)-1236(4)33(2)C(061)4771(5)9723(6)7438(4)29(2)C(062)1109(6)2277(6)-3734(4)35(2)C(063)5417(5)9578(5)7555(3)22(2)C(064)4712(6)5573(5)-2547(3)27(2)C(065)-123(6)4746(6)-2483(4)31(2)C(066)5340(6)5403(6)-2432(4)32(2)C(067)1180(6)3600(5)-1175(3)30(2)C(068)9066(6)11447(5)6213(3)32(2)C(069)2537(5)5642(6)-1116(4)34(2)C(06A)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(05Z)	6164(5)	6660(5)	6840(3)	28(2)
C(061)4771(5)9723(6)7438(4)29(2)C(062)1109(6)2277(6)-3734(4)35(2)C(063)5417(5)9578(5)7555(3)22(2)C(064)4712(6)5573(5)-2547(3)27(2)C(065)-123(6)4746(6)-2483(4)31(2)C(066)5340(6)5403(6)-2432(4)32(2)C(067)1180(6)3600(5)-1175(3)30(2)C(068)9066(6)11447(5)6213(3)32(2)C(069)2537(5)5642(6)-1116(4)34(2)C(06A)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(060)	4141(6)	7977(6)	-1236(4)	33(2)
C(062)1109(6)2277(6)-3734(4)35(2)C(063)5417(5)9578(5)7555(3)22(2)C(064)4712(6)5573(5)-2547(3)27(2)C(065)-123(6)4746(6)-2483(4)31(2)C(066)5340(6)5403(6)-2432(4)32(2)C(067)1180(6)3600(5)-1175(3)30(2)C(067)1180(6)3600(5)-1175(3)30(2)C(068)9066(6)11447(5)6213(3)32(2)C(069)2537(5)5642(6)-1116(4)34(2)C(06A)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(061)	4771(5)	9723(6)	7438(4)	29(2)
C(063)5417(5)9578(5)7555(3)22(2)C(064)4712(6)5573(5)-2547(3)27(2)C(065)-123(6)4746(6)-2483(4)31(2)C(066)5340(6)5403(6)-2432(4)32(2)C(067)1180(6)3600(5)-1175(3)30(2)C(068)9066(6)11447(5)6213(3)32(2)C(069)2537(5)5642(6)-1116(4)34(2)C(064)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(062)	1109(6)	2277(6)	-3734(4)	35(2)
C(064)4712(6)5573(5)-2547(3)27(2)C(065)-123(6)4746(6)-2483(4)31(2)C(066)5340(6)5403(6)-2432(4)32(2)C(067)1180(6)3600(5)-1175(3)30(2)C(068)9066(6)11447(5)6213(3)32(2)C(069)2537(5)5642(6)-1116(4)34(2)C(06A)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(063)	5417(5)	9578(5)	7555(3)	22(2)
C(065)-123(6)4746(6)-2483(4)31(2)C(066)5340(6)5403(6)-2432(4)32(2)C(067)1180(6)3600(5)-1175(3)30(2)C(068)9066(6)11447(5)6213(3)32(2)C(069)2537(5)5642(6)-1116(4)34(2)C(06A)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(064)	4712(6)	5573(5)	-2547(3)	27(2)
C(066)5340(6)5403(6)-2432(4)32(2)C(067)1180(6)3600(5)-1175(3)30(2)C(068)9066(6)11447(5)6213(3)32(2)C(069)2537(5)5642(6)-1116(4)34(2)C(06A)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(065)	-123(6)	4746(6)	-2483(4)	31(2)
C(067)1180(6)3600(5)-1175(3)30(2)C(068)9066(6)11447(5)6213(3)32(2)C(069)2537(5)5642(6)-1116(4)34(2)C(06A)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(066)	5340(6)	5403(6)	-2432(4)	32(2)
C(068)9066(6)11447(5)6213(3)32(2)C(069)2537(5)5642(6)-1116(4)34(2)C(06A)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(067)	1180(6)	3600(5)	-1175(3)	30(2)
C(069)2537(5)5642(6)-1116(4)34(2)C(06A)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(068)	9066(6)	11447(5)	6213(3)	32(2)
C(06A)3941(6)6405(5)-3800(3)29(2)N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(069)	2537(5)	5642(6)	-1116(4)	34(2)
N(06B)8194(6)8800(6)7323(4)47(2)C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(06A)	3941(6)	6405(5)	-3800(3)	29(2)
C(06C)4157(6)9234(6)7051(4)33(2)C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	N(06B)	8194(6)	8800(6)	7323(4)	47(2)
C(06E)7336(5)8568(5)8704(3)27(2)C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(06C)	4157(6)	9234(6)	7051(4)	33(2)
C(06I)1031(5)3668(5)-1631(3)25(2)C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(06E)	7336(5)	8568(5)	8704(3)	27(2)
C(06K)6186(6)8712(5)8785(3)28(2)C(06M)4094(6)8553(6)-1391(3)30(2)	C(06I)	1031(5)	3668(5)	-1631(3)	25(2)
C(06M) 4094(6) 8553(6) -1391(3) 30(2)	С(06К)	6186(6)	8712(5)	8785(3)	28(2)
	C(06M)	4094(6)	8553(6)	-1391(3)	30(2)

C(06N)	5977(6)	5906(5)	-2046(4)	29(2)
C(06O)	10406(6)	10313(6)	7546(4)	36(2)
C(06P)	9230(5)	11380(5)	6669(3)	26(2)
C(06Q)	398(6)	6878(5)	5127(4)	33(2)
C(06R)	3990(5)	8510(5)	-1868(3)	25(2)
C(06T)	7906(6)	11558(6)	6297(4)	36(2)
C(06U)	7407(6)	9623(6)	6432(4)	38(2)
C(06V)	513(5)	4586(5)	-2361(3)	25(2)
C(06X)	1149(5)	1669(5)	-3599(3)	30(2)
C(071)	1255(5)	1693(6)	-3127(3)	30(2)
C(073)	5993(5)	8738(5)	8310(3)	25(2)
C(073)	5555(5) 7727(6)	10562(6)	80510(3)	20(2)
C(077)	760(6)	10303(0)	0951(4)	22(2)
C(078)	-769(0)	4250(0) 10486(F)	-20/0(4)	52(2) 28(2)
C(079)	9766(6)	10486(5)	7427(4)	28(2)
C(07F)	2778(6)	0510(0)	-3/21(3)	34(2)
C(07H)	2355(6)	3492(5)	-1232(4)	34(2)
C(07I)	11034(6)	10823(6)	7936(4)	33(2)
C(07L)	3258(6)	6452(6)	-3995(3)	35(2)
C(07R)	3199(7)	2431(6)	-3331(4)	49(3)
N(07U)	1253(6)	4948(6)	-3340(4)	53(3)
C(07W)	8411(6)	11544(6)	6020(4)	37(2)
C(07X)	6858(6)	8631(5)	8981(3)	31(2)
C(07Y)	3888(6)	4930(6)	-1791(4)	29(2)
C(080)	4568(6)	4843(6)	-1527(4)	35(2)
C(082)	2541(6)	5525(6)	-663(4)	36(2)
C(083)	1836(6)	3515(5)	-976(3)	33(2)
C(084)	8168(6)	8242(6)	7113(4)	37(2)
C(087)	2418(7)	4367(7)	-4021(4)	46(3)
C(088)	7285(6)	9564(6)	5941(4)	41(3)
C(08B)	747(6)	5113(6)	-3440(4)	37(2)
C(08D)	1896(7)	6976(6)	-2020(5)	46(3)
C(08F)	2019(7)	7563(7)	-1597(4)	46(3)
C(08G)	8148(7)	7521(6)	6852(4)	43(3)
C(08N)	3474(7)	3140(6)	-2931(4)	45(3)
C(08O)	7982(7)	10568(7)	9424(4)	51(3)
C(08U)	4781(6)	10243(7)	6262(5)	46(3)
C(08W)	-374(7)	-47(8)	-1387(5)	53(3)
C(08X)	5549(7)	10232(8)	6359(4)	53(3)
C(087)	147(7)	5345(8)	-3551(5)	53(3)
N(091)	3693(9)	3674(7)	-2631(4)	77(4)
N(092)	-883(8)	102(10)	-1446(5)	92(5)
C(094)	931(7)	6/36/6)	5197(5)	J2(J) /(2)
C(094)	1/7(10)	6020(7)	J134(J)	49(2)
C(090)	1914(10)	6920(7)	4052(4) 2261(F)	04(5) 100(c)
N(098)	1814(11)	0530(8)	-2301(5)	100(6)
C(099)	297(8)	-252(9)	-1305(5)	61(3)
C(09A)	-359(8)	6412(7)	5207(5)	60(3)
N(09B)	6128(7)	10224(9)	6409(5)	/9(4)
F(12I)	924(6)	/105(5)	4526(3)	92(3)
F(13I)	-271(5)	6322(4)	4294(2)	65(2)
F(14I)	70(7)	7504(5)	4594(3)	101(3)
F(15I)	727(4)	5857(4)	4796(3)	56(2)
F(16I)	858(6)	6190(5)	5587(3)	84(3)
F(17I)	-613(4)	5698(4)	4987(3)	61(2)

F(18I)	-932(5)	6619(5)	5027(4)	89(3)
F(19I)	-310(5)	6559(5)	5661(3)	76(2)
N(4)	7124(5)	10747(5)	7556(3)	37(2)
C(5)	7011(5)	11283(6)	7718(4)	29(2)
C(6)	6887(7)	11926(7)	7946(5)	46(3)

Quantum chemical calculations

RI-DFT^[6] calculations were performed using TURBOMOLE with the def-SV(P) basis set^[7] and the BP86 functional.^[8] The structure of all compounds was optimized in the highest possible symmetry, and the AOFORCE module^[9] was used for frequency analysis to verify that a minimum structure was found.

Compound	scf energy in Ha	FREEH energy in kJ mol ⁻¹	FREEH entropy in kJ mol ⁻¹ K ⁻¹	symmetry	grid
[Sn(MeCN) ₆] ²⁺	-798.9973673565	788.81	1.06018	C1	m4
[Sn(MeCN) ₄] ²⁺	-533.6104126954	525.28	0.74324	C ₁	m4
[SnCp]⁺	-196.5909988394	225.09	0.31142	C _{5v}	m3
[SnCp]⁺	-196.5910007758	225.06	0.31140	C_{5v}	m4
[SnCp]⁺	-196.5910019806	225.06	0.31139	<i>C</i> _{5v}	m5
SnCp ₂	-390.2294453744	446.34	0.46946	C_{2v}	m3
SnCp ₂	-390.2294375904	446.35	0.46958	C_{2v}	m4
SnCp ₂	-390.2294404350	446.37	0.46849	C_{2v}	m5
[SiCp*]⁺	-679.0522806654	599.51	0.46063	<i>C</i> _{5v}	m4
SiCp* ₂	-1069.1118380710	1190.99	0.78479	<i>C</i> ₂	m4
[GeCp*]⁺	-2466.6703413790	597.82	0.46876	<i>C</i> _{5v}	m3
GeCp* ₂	-2856.7327156550	1189.85	0.79912	<i>C</i> ₂	m3
[SnCp*]⁺	-393.0660474076	596.63	0.47572	<i>C</i> _{5v}	m3
SnCp* ₂	-783.1308610327	1188.97	0.79118	<i>C</i> ₂	m3
[PbCp*]⁺	-393.1223661609	596.14	0.48358	<i>C</i> _{5v}	m3
PbCp* ₂	-783.1823255534	1188.12	0.79869	<i>C</i> ₂	m3
dmap	-382.0092380830	432.60	0.37746	C_{2v}	m3
dmap	-382.0091908487	432.32	0.37946	C_{2v}	m4
[Si(dmap) ₄] ²⁺	-1817.1723376240	1774.50	1.06149	<i>C</i> ₁	m4
[Ge(dmap) ₄] ²⁺	-3604.7797763750	1772.47	1.09044	<i>C</i> ₁	m3
[Sn(dmap) ₄] ²⁺	-1531.1823293770	1771.24	1.12262	<i>C</i> ₁	m3
[Pb(dmap) ₄] ²⁺	-1531.2330891060	1771.17	1.13659	<i>C</i> ₁	m3
[Sn(PPh ₃) ₃] ²⁺	-3110.5537647700	2242.66	1.30328	<i>C</i> ₁	m3
PPh₃	-1035.8150092950	736.42	0.55178	C₃	m3
[Sn(bipy)₃] ²⁺	-1488.3292388510	1302.31	0.90234	<i>C</i> ₁	m3
bipy	-495.0784117433	423.69	0.38562	C _{2h}	m3
[Sn(py) ₄] ²⁺	-995.5449933171	983.41	0.75904	<i>C</i> ₁	m5
pyridine	-248.1218832667	236.09	0.28393	C_{2v}	m5
[Sn(pyr) ₄] ²⁺	-1059.5811034010	856.63	0.76905	<i>C</i> ₁	m3
$[Sn(pyr)_2(MeCN)_4]^{2+}$	-1061.9922830330	954.56	1.03512	<i>C</i> ₁	m4
pyrazine	-264.1472446515	205.45	0.27705	D _{2h}	m3
pyrazine	-264.1472268346	205.42	0.27703	D _{2h}	m4
[Sn(mes)₃] ²⁺	-1052.8576457580	1489.15	0.92151	<i>C</i> ₁	m4
mesitylene	-349.9612642343	487.82	0.42135	C _{3h}	m4
[Sn(C ₇ H ₈) ₃] ²⁺	-817.0835292267	1046.69	0.73663	<i>C</i> ₁	m3
toluene	-271.3827411380	340.25	0.34513	Cs	m3

Table S 3. Summary of calculated thermodynamic data.

[Sn(MeCN)₆]²⁺

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory (grid m4).

•	,		1 10 1
1.01464751617236	0.22570082077185	-0.66229468620062	sn
-1.20814930441499	-3.63402003371583	0.63339109136137	n
-1.99429626975736	-5.64698564730789	1.07155793166353	С
-2.98121938608327	-8.14814649380564	1.62268255237933	С
-5.04394803776993	-8.04502086597663	2.00854850348129	h
-2.01471742788493	-8.95092760860742	3.30636341780262	h
-2.66132605742326	-9.42410054604859	-0.01555320710428	h
-3.44384315240002	1.39589960955338	-1.17294230488289	n
-5.44822064764128	2.12465673112305	-1.73290835876325	С
-7.94740878751381	3.02697584295513	-2.42086705635341	С
-7.96475892496471	5.12710158775696	-2.47668384246148	h
-9.36661666643855	2.37392310933225	-1.01622044208304	h
-8.48132121867863	2.29347276768403	-4.31574763220341	h
-0.39340275840806	-2.01471771566482	-5.13776928779388	n
0.08511106755887	-3.53316037404832	-9.83823477800267	С
2.06204130329786	-3.25278104094430	-10.49069967950897	h
-1.19816384282801	-2.43908678117267	-11.09097724690770	h
-0.39410439736364	-5.57197497945923	-9.99825729787245	h
-0.17859784817808	-2.69053638133511	-7.23284365950501	С
-0.29652366495133	1.19546012645298	3.67841253123989	n
-0.95478987476114	2.57528907922894	8.38616118215558	С
-3.00533699307479	2.75372663645820	8.80679838848687	h
-0.02860016449941	4.42946353769652	8.73064744482439	h
-0.11761443624709	1.14817002637493	9.68081679352810	h
-0.58551333652286	1.81223069167020	5.77550868926555	С
1.02945105682785	5.41820273851447	-0.44075054973530	n
2.65356045943182	10.03222039273217	-1.27848213505422	С
2.92648520148331	10.34107141493625	-3.33842762828905	h
4.48849785242580	10.34244690184594	-0.30395380642979	h
1.26479178473382	11.43678944570632	-0.56423046097262	h
1.75507903009310	7.47378354315906	-0.81544259855701	С
4.45548516665033	-2.29260450747665	2.30868216082056	n
8.89628465094468	-4.01700121292627	3.69981712030703	С
10.23315777240934	-3.96242083349572	2.08034562486619	h
8.73101398759784	-6.00072788326993	4.37025167428205	h
9.67720121963966	-2.84227222486396	5.25639075395321	h
6.43566512853860	-3.06009987383360	2.92691079826366	С

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory, grid m4).

mode	symmetry	wave number	IR intensity	select	ion rules
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	а	9.22	0.00472	YES	YES
8	а	10.77	0.06525	YES	YES
9	а	11.25	0.01652	YES	YES

10	а	14.90	0.26427	YES	YES
11	а	16.20	0.36234	YES	YES
12	а	16.54	0.14071	YES	YES
13	а	17.38	0.05505	YES	YES
14	а	18.31	0.05454	YES	YES
15	а	23.27	0.00353	YES	YES
16	a	25.29	2,90538	YES	YES
17	a	27 19	1 49051	VES	VES
18	2	27.13	1.18866	VES	VES
10	a	27.32	6 68508	VES	VES
19	a	21.40	6 46442	VES	VES
20	a	24.12	0.40445	TES VEC	TES VES
21	d	54.12	8.10507	TES VEC	TES VEC
22	a	53.99	0.00358	YES	YES
23	а	57.43	0.39035	YES	YES
24	а	57.63	0.39304	YES	YES
25	а	66.00	1.09592	YES	YES
26	а	66.41	1.01006	YES	YES
27	а	88.31	0.35223	YES	YES
28	а	88.69	0.39600	YES	YES
29	а	90.33	7.79662	YES	YES
30	а	113.15	0.00451	YES	YES
31	а	133.90	1.76874	YES	YES
32	а	140.62	12.47030	YES	YES
33	а	141.19	13.80032	YES	YES
34	а	154.46	16.25246	YES	YES
35	а	154.75	15.51424	YES	YES
36	а	160.64	22.62058	YES	YES
37	а	172.56	109.82646	YES	YES
38	a	172.69	109.41281	YES	YES
39	a	245.84	55.81622	YES	YES
40	a	385.43	0.02681	VES	VES
40	a	385.66	0.02001	VES	VES
41	2	385.86	0.16740	VES	VES
42	a	202.00	0.10740	VES	TL3 VES
43	a	207.25	0.80328		TES VES
44	d	387.74	0.51000	TES	YES
45	a	388.32	0.13157	YES	YES
40	а	391.61	0.32831	YES	YES
47	а	391.70	0.48/81	YES	YES
48	а	392.19	9.93297	YES	YES
49	а	392.56	11.32973	YES	YES
50	а	393.65	0.83604	YES	YES
51	а	399.81	13.98210	YES	YES
52	а	937.54	12.54935	YES	YES
53	а	937.60	12.66346	YES	YES
54	а	940.04	6.50324	YES	YES
55	а	949.81	13.88432	YES	YES
56	а	949.86	13.90806	YES	YES
57	а	954.51	14.19129	YES	YES
58	а	1010.66	0.13272	YES	YES
59	а	1011.04	13.39278	YES	YES
60	а	1011.47	5.25083	YES	YES
61	a	1011.54	8.64468	YES	YES
62	a	1011 83	1,61073	VES	YES
02	u	1011.03	1.010/3	123	125

63	а	1012.21	14.12333	YES	YES
64	а	1013.28	6.42332	YES	YES
65	а	1013.41	9.41827	YES	YES
66	а	1013.66	7.81757	YES	YES
67	а	1014.25	9.49948	YES	YES
68	а	1014.41	3.82740	YES	YES
69	а	1014.59	10.31303	YES	YES
70	а	1346.22	9.08797	YES	YES
71	а	1346.43	8.96790	YES	YES
72	а	1346.94	12.50630	YES	YES
73	а	1348.95	8.16000	YES	YES
74	а	1349.08	8.13085	YES	YES
75	а	1349.46	4.72473	YES	YES
76	а	1390.06	1.05964	YES	YES
77	а	1390.33	33.15513	YES	YES
78	а	1390.44	0.30958	YES	YES
79	а	1390.65	38.58475	YES	YES
80	а	1390.77	29.56713	YES	YES
81	а	1390.95	16.61667	YES	YES
82	а	1394.79	7.46173	YES	YES
83	а	1394.84	26.88086	YES	YES
84	а	1395.02	29.75900	YES	YES
85	а	1395.08	16.73647	YES	YES
86	a	1395.19	18.13211	YES	YES
87	a	1395.35	22.70355	YES	YES
88	a	2294.93	146.06858	YES	YES
89	a	2295.06	147.51970	YES	YES
90	a	2297.35	116,10224	YES	YES
91	a	2323.70	187,81523	YES	YES
92	a	2323.92	187.05952	YES	YES
93	a	2327.91	162,22702	YES	YES
94	a	2960.21	13,44184	YES	YES
95	a	2960.33	13,66006	YES	YES
96	a	2960.48	15.56028	YES	YES
97	a	2960 73	9 39128	YES	YES
98	a	2960.80	9 38044	YES	YES
99	a	2960.88	3 63547	YES	YES
100	a	3057 17	6 25310	YES	YES
101	a	3057.40	6 02327	YES	YES
102	a	3057.46	6 54674	YES	YES
103	a	3057.90	8 77169	YES	YES
104	a	3058.08	8 41867	VES	VES
105	a	3058.22	5 76368	VES	VES
106	a	3058 32	6,88702	YES	VES
107	а а	3058 40	6 60340	YES	YES
108	а а	3058 52	9 76643	YES	YES
109	a	3058 69	9 82514	VES	VFS
110	u a	3058.76	5 29582	VES	VES
111	a 2	3058.70	12 71/65	VES	VES
111	a	2020.04	12.71400	I L J	I L J

[Sn(MeCN)₄]²⁺

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory (grid m4).

2.91059351718369	1.20718454951449	-0.22490657491130	sn
1.13670490545037	-2.64841541716135	0.96005616204170	n
0.62010099628725	-4.69391198425105	1.61071412460143	С
-0.03814596068502	-7.22478575128085	2.41569847894480	С
-2.08675170882457	-7.32125711569589	2.88047055430422	h
1.07649519769569	-7.74564359461437	4.12141732096590	h
0.38220118541456	-8.59894949393777	0.88064425270472	h
-1.19929962208343	2.62082785725570	-0.94976611809772	n
-3.08480311505767	3.66903357802580	-1.41942337295454	С
-5.43048725489163	4.95400472849666	-1.99610182740936	С
-5.14241463889745	7.03598734323840	-1.91479357419937	h
-6.90875241736324	4.41297174920790	-0.60195363502347	h
-6.08258864134880	4.42996479963456	-3.92512669740521	h
2.02554114952934	-0.70770754008262	-4.41686451593752	n
2.59706755576893	-2.16289306808312	-9.11648429887510	С
4.58743728140103	-1.86589851355193	-9.72589402767224	h
1.32951621890139	-1.05320333565467	-10.37357779055009	h
2.12560206671524	-4.20281878418894	-9.30217259875521	h
2.28698283596102	-1.35472603287904	-6.51553350713803	С
1.50124309999021	2.17026240965385	4.14544260532426	n
1.47570178467693	3.85497826476620	8.80278799168406	С
-0.50140637456626	4.15092604333943	9.45190416692054	h
2.51147991179119	5.68129931770182	8.91395184788664	h
2.41142297440967	2.46772921415202	10.07527346495314	h
1.49655905254155	2.92504077639469	6.22423756859767	С

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory, grid m4).

mode	symmetry	wave number	IR intensity	selection rules	
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	а	7.18	0.01086	YES	YES
8	а	13.08	0.01209	YES	YES
9	а	19.56	0.03973	YES	YES
10	а	21.37	0.01995	YES	YES
11	а	23.35	0.13456	YES	YES
12	а	28.53	4.04288	YES	YES
13	а	35.63	0.01412	YES	YES
14	а	38.04	3.91923	YES	YES
15	а	38.34	11.69687	YES	YES
16	а	79.02	0.00514	YES	YES
17	а	79.47	0.19386	YES	YES
18	а	86.86	7.72226	YES	YES
19	а	105.47	1.67598	YES	YES
20	а	115.00	8.77472	YES	YES
21	а	146.58	9.31282	YES	YES
22	а	149.97	10.83587	YES	YES
23	а	163.30	0.00118	YES	YES
24	а	191.09	3.20096	YES	YES

25	а	191.77	125.59615	YES	YES
26	а	219.06	38.71397	YES	YES
27	а	260.49	52.19242	YES	YES
28	а	394.20	0.24544	YES	YES
29	а	394.68	0.21567	YES	YES
30	а	395.91	0.35290	YES	YES
31	а	398.94	2.37028	YES	YES
32	а	400.89	0.10474	YES	YES
33	а	402.08	0.36669	YES	YES
34	а	404.18	18.02154	YES	YES
35	a	410.56	18,19865	YES	YES
36	a	946.02	29 08291	YES	YES
37	a	949 30	0.01012	VES	VES
38	и Э	958 36	17 78288	VES	VES
30	a	958.30	1/./0200	VES	VES
39	a	1002.00	6 9/509	VES	VES
40	a	1003.88	0.04500	TES VEC	
41	a	1004.40	11.97576	YES	YES
42	а	1004.93	3.84375	YES	YES
43	а	1005.29	16.35359	YES	YES
44	а	1006.45	12.154/1	YES	YES
45	а	1006.91	13.05670	YES	YES
46	а	1008.25	11.11672	YES	YES
47	а	1008.29	10.12497	YES	YES
48	а	1339.35	20.22016	YES	YES
49	а	1339.61	12.63953	YES	YES
50	а	1342.32	25.61630	YES	YES
51	а	1342.55	0.19412	YES	YES
52	а	1378.19	17.90874	YES	YES
53	а	1378.44	27.59986	YES	YES
54	а	1378.63	9.65406	YES	YES
55	а	1378.89	33.90302	YES	YES
56	а	1383.11	19.72809	YES	YES
57	а	1383.13	28.56138	YES	YES
58	а	1383.21	28.41890	YES	YES
59	а	1383.65	22.54780	YES	YES
60	а	2294.39	533.37507	YES	YES
61	а	2297.54	18.70481	YES	YES
62	а	2312.41	420.71811	YES	YES
63	а	2316.97	184.03909	YES	YES
64	а	2952.78	51.46226	YES	YES
65	a	2953.04	22.55649	YES	YES
66	a	2955.01	55 23632	YES	YES
67	a	2955.15	4 14529	VES	YES
68	a	3051.04	20 16773	VES	VES
60	u 2	2051.04	20.10775	VES	VES
70	a	3021.71	10 6/0/6	VEC	VEC
70	a	2022.07	17.04040	TES	VEC
/ L 7 2	d	3U33.23	16 96452		IES VEC
72	a	3053.34	10.80452	TES	1ES
/3	а	3053.61	19.681//	YES	YES
/4	а	3055.35	15.35098	YES	YES
/5	а	3055.60	14.60699	YES	YES

[SnCp]⁺

Optimized atomic coordinates	[Bohr units]. (RI-)BP86(D3BJ)/	/def-SV(P) lev	el of theory.
------------------------------	-----------------	-----------------	----------------	---------------

3.55112979413013	-2.58004681790247	-0.42289127286991	h	
3.55112979413013	2.58004681790247	-0.42289127286991	h	
1.87086817930654	-1.35926529655815	-0.34872226984974	С	
1.87086817930654	1.35926529655815	-0.34872226984974	С	
0.00000000000000	0.000000000000000	3.85806771359804	sn	
-1.35641088289529	-4.17460344393221	-0.42289127286991	h	
-0.71460805602445	-2.19933744955930	-0.34872226984974	С	
-0.71460805602445	2.19933744955930	-0.34872226984974	С	
-2.31252024656414	0.000000000000000	-0.34872226984974	С	
-1.35641088289529	4.17460344393221	-0.42289127286991	h	
-4.38943782246968	0.000000000000000	-0.42289127286991	h	

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory).

mode	symmetry	wave	IR intensity	selection rules			
		[cm ⁻¹]	[km mol⁻¹]	IR	RAMAN		
7	a1	215.20	12.07641	YES	YES		
8	e1	231.92	0.73787	YES	YES		
9	e1	231.92	0.73787	YES	YES		
10	e2	570.07	0.00000	NO	YES		
11	e2	570.07	0.00000	NO	YES		
12	e2	817.49	0.00000	NO	YES		
13	e2	817.49	0.00000	NO	YES		
14	a1	821.71	155.80532	YES	YES		
15	e1	830.89	0.36566	YES	YES		
16	e1	830.89	0.36566	YES	YES		
17	e2	906.46	0.00000	NO	YES		
18	e2	906.46	0.00000	NO	YES		
19	e1	996.65	10.29031	YES	YES		
20	e1	996.65	10.29031	YES	YES		
21	e2	1049.47	0.00000	NO	YES		
22	e2	1049.47	0.00000	NO	YES		
23	al	1100.11	17.50824	YES	YES		
24	a2	1244.41	0.00000	NO	NO		
25	e2	1351.65	0.00000	NO	YES		
26	e2	1351.65	0.00000	NO	YES		
27	e1	1416.50	25.83464	YES	YES		
28	e1	1416.50	25.83464	YES	YES		
29	e2	3155.45	0.00000	NO	YES		
30	e2	3155.45	0.00000	NO	YES		
31	e1	3166.80	28.33362	YES	YES		
32	e1	3166.80	28.33362	YES	YES		
33	a1	3175.55	0.09617	YES	YES		
Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory (grid m4).							
---	-------------------	-------------------	----	--	--	--	--
3.55132434436863	-2.58018816692456	-0.42300389015083	h				
3.55132434436863	2.58018816692456	-0.42300389015083	h				
1.87101305252046	-1.35937055310924	-0.34862075722051	С				
1.87101305252046	1.35937055310924	-0.34862075722051	С				
0.000000000000000	-0.00000000000000	3.85812323685776	sn				
-1.35648519447388	-4.17483215145424	-0.42300389015083	h				
-0.71466339266813	-2.19950775823650	-0.34862075722051	С				
-0.71466339266813	2.19950775823650	-0.34862075722051	С				
-2.31269931970468	0.000000000000000	-0.34862075722051	С				
-1.35648519447388	4.17483215145424	-0.42300389015083	h				
-4.38967829978950	0.000000000000000	-0.42300389015083	h				

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory (grid m4)

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory, grid m4).

mode	symmetry	wave number	IR intensity	selection rules	
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	a1	215.50	12.03740	YES	YES
8	e1	232.13	0.73303	YES	YES
9	e1	232.13	0.73303	YES	YES
10	e2	570.05	0.00000	NO	YES
11	e2	570.05	0.00000	NO	YES
12	e2	818.26	0.00000	NO	YES
13	e2	818.26	0.00000	NO	YES
14	a1	821.33	156.09523	YES	YES
15	e1	830.37	0.37163	YES	YES
16	e1	830.37	0.37163	YES	YES
17	e2	905.91	0.00000	NO	YES
18	e2	905.91	0.00000	NO	YES
19	e1	996.37	10.30456	YES	YES
20	e1	996.37	10.30456	YES	YES
21	e2	1049.19	0.00000	NO	YES
22	e2	1049.19	0.00000	NO	YES
23	a1	1100.06	17.64022	YES	YES
24	a2	1243.85	0.00000	NO	NO
25	e2	1351.55	0.00000	NO	YES
26	e2	1351.55	0.00000	NO	YES
27	e1	1416.15	25.83786	YES	YES
28	e1	1416.15	25.83786	YES	YES
29	e2	3155.20	0.00000	NO	YES
30	e2	3155.20	0.00000	NO	YES
31	e1	3166.53	28.30576	YES	YES
32	e1	3166.53	28.30576	YES	YES
33	a1	3175.28	0.09734	YES	YES

Optimized atomic co	ordinates [Bohr units]. (RI-)BP	86(D3BJ)/def-SV(P) level of theo	ory (grid m5).	
3.55136871990126	-2.58022040763621	-0.42293165705950	h	
3.55136871990126	2.58022040763621	-0.42293165705950	h	
1.87106050036550	-1.35940502598652	-0.34874570051491	С	
1.87106050036550	1.35940502598652	-0.34874570051491	С	
-0.00000000000000	0.000000000000000	3.85838678787199	sn	
-1.35650214441908	-4.17488431802151	-0.42293165705950	h	
-0.71468151613223	-2.19956353652364	-0.34874570051491	С	
-0.71468151613223	2.19956353652364	-0.34874570051491	С	
-2.31275796846652	0.000000000000000	-0.34874570051491	С	
-1.35650214441908	4.17488431802151	-0.42293165705950	h	
-4.38973315096435	0.0000000000000000	-0.42293165705950	h	

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory (grid m5).

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory, grid m5).

mode	symmetry	wave number	IR intensity	selection rules	
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	a1	215.62	12.06256	YES	YES
8	e1	232.17	0.73251	YES	YES
9	e1	232.17	0.73251	YES	YES
10	e2	570.08	0.00000	NO	YES
11	e2	570.08	0.00000	NO	YES
12	e2	818.32	0.00000	NO	YES
13	e2	818.32	0.00000	NO	YES
14	a1	821.38	155.93495	YES	YES
15	e1	830.40	0.37041	YES	YES
16	e1	830.40	0.37041	YES	YES
17	e2	905.92	0.00000	NO	YES
18	e2	905.92	0.00000	NO	YES
19	e1	996.34	10.30179	YES	YES
20	e1	996.34	10.30179	YES	YES
21	e2	1049.19	0.00000	NO	YES
22	e2	1049.19	0.00000	NO	YES
23	a1	1099.95	17.52117	YES	YES
24	a2	1243.92	0.00000	NO	NO
25	e2	1351.40	0.00000	NO	YES
26	e2	1351.40	0.00000	NO	YES
27	e1	1416.00	25.82554	YES	YES
28	e1	1416.00	25.82554	YES	YES
29	e2	3155.26	0.00000	NO	YES
30	e2	3155.26	0.00000	NO	YES
31	e1	3166.58	28.31537	YES	YES
32	e1	3166.58	28.31537	YES	YES
33	a1	3175.33	0.09518	YES	YES

SnCp₂

n	sn	1.13567940840445	0.000000000000000	0.0000000000000000000000000000000000000
с	С	-1.79173173769937	1.35748606348403	4.00117320281477
с	С	-1.79173173769937	-1.35748606348403	4.00117320281477
с	С	0.62191244057796	-2.18424490383775	4.91534655272326
с	С	2.09713591065016	0.000000000000000	5.47655338033423
с	С	0.62191244057796	2.18424490383775	4.91534655272326
с	С	-1.79173173769937	1.35748606348403	-4.00117320281477
с	С	-1.79173173769937	-1.35748606348403	-4.00117320281477
с	С	0.62191244057796	-2.18424490383775	-4.91534655272326
с	С	2.09713591065016	0.000000000000000	-5.47655338033423
с	С	0.62191244057796	2.18424490383775	-4.91534655272326
h	h	4.04119117550216	0.000000000000000	-6.20908177053388
h	h	1.21205527595193	-4.15990675232116	-5.17147826990381
h	h	-3.39531937400778	-2.57825306597651	-3.49522449202987
h	h	1.21205527595193	4.15990675232116	-5.17147826990381
h	h	-3.39531937400778	2.57825306597651	-3.49522449202987
h	h	1.21205527595193	4.15990675232116	5.17147826990381
h	h	4.04119117550216	0.000000000000000	6.20908177053388
h	h	1.21205527595193	-4.15990675232116	5.17147826990381
h	h	-3.39531937400778	-2.57825306597651	3.49522449202987
h	h	-3.39531937400778	2.57825306597651	3.49522449202987

mode	symmetry	wave number	IR intensity	selecti	on rules
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	a2	9.95	0.00000	NO	YES
8	b2	11.08	0.12029	YES	YES
9	a1	33.70	0.36890	YES	YES
10	a1	143.69	3.12841	YES	YES
11	b2	152.69	4.34929	YES	YES
12	b1	196.42	16.94840	YES	YES
13	a2	206.55	0.00000	NO	YES
14	b1	221.98	113.34776	YES	YES
15	a1	326.49	1.59685	YES	YES
16	a2	568.95	0.00000	NO	YES
17	b2	578.69	0.05338	YES	YES
18	b1	590.36	0.05309	YES	YES
19	a1	593.88	0.03652	YES	YES
20	a1	744.67	0.65996	YES	YES
21	b2	747.24	2.34132	YES	YES
22	b1	748.89	147.32406	YES	YES
23	a2	754.80	0.00000	NO	YES
24	b1	758.65	246.95276	YES	YES
25	a1	767.88	34.90111	YES	YES
26	a2	817.61	0.00000	NO	YES
27	b2	821.34	0.10206	YES	YES
28	b1	822.46	0.88125	YES	YES

29	a1	825.33	0.03828	YES	YES
30	a2	843.73	0.00000	NO	YES
31	b2	854.20	0.15225	YES	YES
32	b1	865.62	0.01348	YES	YES
33	a1	869.36	0.17190	YES	YES
34	b2	995.02	25.58128	YES	YES
35	a2	995.06	0.00000	NO	YES
36	b1	996.48	10.78563	YES	YES
37	a1	997.16	22.05067	YES	YES
38	b1	1036.59	1.44544	YES	YES
39	a2	1038.32	0.00000	NO	YES
40	a1	1042.21	0.33095	YES	YES
41	b2	1043.31	0.27510	YES	YES
42	b1	1123.57	19.38402	YES	YES
43	a1	1130.26	0.45805	YES	YES
44	a2	1241.45	0.00000	NO	YES
45	b2	1241.60	0.00206	YES	YES
46	a2	1350.70	0.00000	NO	YES
47	b1	1356.29	1.31805	YES	YES
48	a1	1367.97	0.04960	YES	YES
49	b2	1371.48	0.03962	YES	YES
50	b2	1426.19	10.27891	YES	YES
51	a1	1430.04	7.71023	YES	YES
52	a2	1432.30	0.00000	NO	YES
53	b1	1434.26	1.45739	YES	YES
54	b1	3129.27	0.00041	YES	YES
55	a1	3129.44	0.16787	YES	YES
56	a2	3129.48	0.00000	NO	YES
57	b2	3129.93	0.45507	YES	YES
58	a2	3145.22	0.00000	NO	YES
59	b2	3145.44	12.01070	YES	YES
60	b1	3146.03	1.10893	YES	YES
61	a1	3146.41	10.03264	YES	YES
62	b1	3157.40	18.09795	YES	YES
63	a1	3158.05	0.06088	YES	YES

optimized atomic co				
0.000000000000000	0.000000000000000	1.13636630636963	sn	
4.00073359299039	1.35762371946920	-1.79168523133046	С	
4.00073359299039	-1.35762371946920	-1.79168523133046	С	
4.91543056268125	-2.18431648166515	0.62203406942195	С	
5.47655121648959	0.00000000000000	2.09728657003280	С	
4.91543056268125	2.18431648166515	0.62203406942195	С	
-4.00073359299039	1.35762371946920	-1.79168523133046	С	
-4.00073359299039	-1.35762371946920	-1.79168523133046	С	
-4.91543056268125	-2.18431648166515	0.62203406942195	С	
-5.47655121648959	0.0000000000000	2.09728657003280	С	
-4.91543056268125	2.18431648166515	0.62203406942195	С	
-6.21114054610822	0.0000000000000	4.04075250386233	h	
-5.17223774054751	-4.16009943231423	1.21159906987899	h	
-3.49357288125337	-2.57820227990279	-3.39505902151045	h	
-5.17223774054751	4.16009943231423	1.21159906987899	h	

_					
	-3.49357288125337	2.57820227990279	-3.39505902151045	h	
	5.17223774054751	4.16009943231423	1.21159906987899	h	
	6.21114054610822	0.00000000000000	4.04075250386233	h	
	5.17223774054751	-4.16009943231423	1.21159906987899	h	
	3.49357288125337	-2.57820227990279	-3.39505902151045	h	
	3.49357288125337	2.57820227990279	-3.39505902151045	h	

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory, grid m4).

mode	symmetry	wave	IR intensity	selecti	on rules
		number	[lum mol ⁻¹]	ID	
7	- 2				
/	a2	9.99	0.00000	NU	YES
8	DZ = 1	10.58	0.11991	YES	YES
9	al	34.61	0.37514	YES	YES
10	81 62	143.98	3.12445	YES	YES
11	D2	152.25	4.35606	YES	YES
12	10	196.63	16.71192	YES	YES
13	az	206.21	0.00000	NU	YES
14	01	221.86	113.43112	YES	YES
15	al	326.54	1.59106	YES	YES
16	a2	568.85	0.00000	NO	YES
17	D2	578.69	0.05321	YES	YES
18	b1	590.15	0.05299	YES	YES
19	al	593.67	0.03589	YES	YES
20	a1	745.43	0.48322	YES	YES
21	b2	/48.03	2.23684	YES	YES
22	b1	749.91	131.91926	YES	YES
23	a2	755.19	0.00000	NO	YES
24	b1	758.11	261.49953	YES	YES
25	al	768.26	35.53596	YES	YES
26	a2	817.82	0.00000	NO	YES
27	b2	821.48	0.10595	YES	YES
28	b1	822.84	1.07808	YES	YES
29	a1	825.70	0.02292	YES	YES
30	a2	843.69	0.00000	NO	YES
31	b2	854.47	0.14933	YES	YES
32	b1	866.42	0.02947	YES	YES
33	a1	870.16	0.16895	YES	YES
34	b2	995.37	25.64926	YES	YES
35	a2	995.44	0.00000	NO	YES
36	b1	996.54	11.18015	YES	YES
37	a1	997.18	21.86202	YES	YES
38	b1	1037.05	1.28220	YES	YES
39	a2	1038.35	0.00000	NO	YES
40	a1	1042.77	0.31908	YES	YES
41	b2	1043.36	0.26485	YES	YES
42	b1	1123.12	19.43093	YES	YES
43	a1	1129.81	0.44823	YES	YES
44	a2	1241.86	0.00000	NO	YES
45	b2	1242.01	0.00485	YES	YES
46	a2	1350.10	0.00000	NO	YES
47	b1	1356.24	1.39306	YES	YES

48	a1	1367.87	0.03582	YES	YES
49	b2	1370.86	0.04141	YES	YES
50	b2	1425.99	10.41810	YES	YES
51	a1	1429.64	7.66082	YES	YES
52	a2	1432.08	0.00000	NO	YES
53	b1	1433.84	1.39732	YES	YES
54	b1	3128.95	0.00743	YES	YES
55	a1	3129.12	0.22765	YES	YES
56	a2	3129.46	0.00000	NO	YES
57	b2	3129.91	0.44827	YES	YES
58	a2	3145.19	0.00000	NO	YES
59	b2	3145.41	12.04615	YES	YES
60	b1	3145.68	1.29955	YES	YES
61	a1	3146.05	9.96200	YES	YES
62	b1	3157.20	17.96351	YES	YES
63	al	3157.86	0.08306	YES	YES

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory (grid m5).

0.00000000000000	0.000000000000000	1.16471751137363	sn	
3.98032941872348	1.35759063747613	-1.78811021903165	С	
3.98032941872348	-1.35759063747613	-1.78811021903165	С	
4.91277021594499	-2.18422318469052	0.61900456022481	С	
5.48462927681130	0.000000000000000	2.09004210993084	С	
4.91277021594499	2.18422318469052	0.61900456022481	С	
-3.98032941872348	1.35759063747613	-1.78811021903165	С	
-3.98032941872348	-1.35759063747613	-1.78811021903165	С	
-4.91277021594499	-2.18422318469052	0.61900456022481	С	
-5.48462927681130	0.000000000000000	2.09004210993084	С	
-4.91277021594499	2.18422318469052	0.61900456022481	С	
-6.23298334464205	0.000000000000000	4.02821652508946	h	
-5.17362716771443	-4.16012261651534	1.20643060631122	h	
-3.46128812518984	-2.57814415283901	-3.38763364285791	h	
-5.17362716771443	4.16012261651534	1.20643060631122	h	
-3.46128812518984	2.57814415283901	-3.38763364285791	h	
5.17362716771443	4.16012261651534	1.20643060631122	h	
6.23298334464205	0.000000000000000	4.02821652508946	h	
5.17362716771443	-4.16012261651534	1.20643060631122	h	
3.46128812518984	-2.57814415283901	-3.38763364285791	h	
3.46128812518984	2.57814415283901	-3.38763364285791	h	

mode	symmetry	wave number	IR intensity	select	ion rules
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	b2	10.90	0.12213	YES	YES
8	a2	11.06	0.00000	NO	YES
9	a1	35.22	0.39312	YES	YES
10	a1	143.25	3.09042	YES	YES
11	b2	151.46	4.35890	YES	YES
12	b1	195.63	15.62966	YES	YES

13	a2	205.42	0.00000	NO	YES
14	b1	221.36	114.24608	YES	YES
15	a1	327.16	1.63175	YES	YES
16	a2	568.63	0.00000	NO	YES
17	b2	578.60	0.05594	YES	YES
18	b1	590.19	0.05567	YES	YES
19	a1	593.74	0.03709	YES	YES
20	a1	745.31	0.74626	YES	YES
21	b2	748.37	2.24974	YES	YES
22	b1	749.46	128.90529	YES	YES
23	a2	755.39	0.00000	NO	YES
24	b1	758.82	262,44556	YES	YES
25	a1	769.05	36 74703	YES	YES
26	a2	817.95	0 00000	NO	YES
20	h2	821 57	0 10482	VES	YES
27	52 h1	822.89	1 20746	VES	VES
20	21	825.72	0.01673	VES	VES
20	a1 22	8/2 06	0.01075	NO	VES
30 21	az 62	043.90 9EE 01	0.00000	NO	TES VES
51 22	UZ h1	866.25	0.14059		TES VES
5Z 22	D1 01	860.00	0.05210		TES VES
33	d1 b2	809.99	0.15872	TES VES	TES VES
34	02	995.40	25.65671	YES	YES
35	az	995.45	0.00000	NU	YES
36	DI	996.65	11.56428	YES	YES
37	al	997.34	21.67843	YES	YES
38	b1	1037.20	1.32316	YES	YES
39	a2	1038.32	0.00000	NO	YES
40	a1	1042.92	0.32368	YES	YES
41	b2	1043.31	0.26073	YES	YES
42	b1	1123.07	19.39662	YES	YES
43	a1	1129.77	0.46842	YES	YES
44	a2	1241.96	0.00000	NO	YES
45	b2	1242.11	0.00541	YES	YES
46	a2	1350.09	0.00000	NO	YES
47	b1	1356.36	1.52110	YES	YES
48	a1	1367.91	0.02981	YES	YES
49	b2	1370.93	0.03869	YES	YES
50	b2	1425.90	10.43423	YES	YES
51	a1	1429.82	7.55811	YES	YES
52	a2	1431.99	0.00000	NO	YES
53	b1	1433.92	1.41618	YES	YES
54	b1	3128.97	0.00483	YES	YES
55	a1	3129.14	0.22614	YES	YES
56	a2	3129.61	0.00000	NO	YES
57	b2	3130.07	0.49887	YES	YES
58	a2	3145.20	0.00000	NO	YES
59	b2	3145.43	12.01227	YES	YES
60	b1	3145.86	1.43922	YES	YES
61	a1	3146.24	9.86884	YES	YES
62	b1	3157.29	17.78936	YES	YES
63	a1	3157.97	0.10930	YES	YES
	~-	0 _ 0 , 10 ,	0.20000	0	5

[SiCp*]⁺

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory (grid m4).

1.88374005874903	-1.36861726438849	0.03610289782238	С
1.88374005874903	1.36861726438849	0.03610289782238	C
-0.71952467647241	2.21446925137048	0.03610289782238	C
-2.32843076455324	0.0000000000000000	0.03610289782238	С
-0.71952467647241	-2.21446925137048	0.03610289782238	С
4.17471724748427	-3.03310962269479	0.11535685153878	С
5.83270876344744	-2.13849600952490	-0.80140503763372	h
3.83623669607477	-4.88640406778232	-0.80140503763372	h
4.69094608045320	-3.40817182402931	2.12045795576977	h
4.17471724748427	3.03310962269479	0.11535685153878	C
4.69094608045320	3.40817182402931	2.12045795576977	h
3.83623669607477	4.88640406778232	-0.80140503763372	h
5.83270876344744	2.13849600952490	-0.80140503763372	h
-1.59460009511857	4.90767446112455	0.11535685153878	C
-3.46178409638362	5.15845980618012	-0.80140503763372	h
-0.23142443378490	6.20806728647473	-0.80140503763372	h
-1.79178196334002	5.51453785077916	2.12045795576977	h
-5.16023430473136	0.000000000000000	0.11535685153878	C
-5.97573692935369	-1.69830057796282	-0.80140503763372	h
-5.97573692935369	1.69830057796282	-0.80140503763372	h
-5.79832823422636	0.000000000000000	2.12045795576977	h
-1.59460009511857	-4.90767446112455	0.11535685153878	C
-1.79178196334002	-5.51453785077916	2.12045795576977	h
-0.23142443378490	-6.20806728647473	-0.80140503763372	h
-3.46178409638362	-5.15845980618012	-0.80140503763372	h
0.0000000000000000000000000000000000000	0.0000000000000000	-3.34553814934719	si

mode	symmetry	wave number	IR intensity	selecti	on rules
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	a2	102.77	0.00000	NO	NO
8	e2	105.62	0.00000	NO	YES
9	e2	105.62	0.00000	NO	YES
10	e1	108.07	0.72035	YES	YES
11	e1	108.07	0.72035	YES	YES
12	e2	146.75	0.00000	NO	YES
13	e2	146.75	0.00000	NO	YES
14	a1	193.37	1.64552	YES	YES
15	e1	210.95	0.00986	YES	YES
16	e1	210.95	0.00986	YES	YES
17	e1	293.81	0.15254	YES	YES
18	e1	293.81	0.15254	YES	YES
19	e2	293.84	0.00000	NO	YES
20	e2	293.84	0.00000	NO	YES
21	e1	425.96	0.03632	YES	YES
22	e1	425.96	0.03632	YES	YES
23	a1	518.52	67.26104	YES	YES

24	e2	537.68	0.00000	NO	YES
25	e2	537.68	0.00000	NO	YES
26	a2	546.28	0.00000	NO	NO
27	e2	569.20	0.00000	NO	YES
28	e2	569.20	0.00000	NO	YES
29	a1	588.65	0.96738	YES	YES
30	e1	799.99	4.06368	YES	YES
31	e1	799 99	4 06368	YES	YES
32	£1 ₽2	937.04	0.00000	NO	VES
32	e2 e2	937.04	0.00000	NO	VES
24	62	1005 22	0.00000	NO	VES
54 25	ez	1005.52	0.00000	NO	
35	ez	1005.32	0.00000	NU	YES
36	el	1006.96	12.83560	YES	YES
37	el	1006.96	12.83560	YES	YES
38	al	1013.24	1.03346	YES	YES
39	e1	1059.83	6.86700	YES	YES
40	e1	1059.83	6.86700	YES	YES
41	a2	1086.40	0.00000	NO	NO
42	e2	1164.24	0.00000	NO	YES
43	e2	1164.24	0.00000	NO	YES
44	e2	1355.03	0.00000	NO	YES
45	e2	1355.03	0.00000	NO	YES
46	e1	1368.03	16.45902	YES	YES
47	e1	1368.03	16.45902	YES	YES
48	a1	1371.31	0.00745	YES	YES
49	e2	1391.81	0.00000	NO	YES
50	e2	1391.81	0.00000	NO	YES
51	e1	1402 13	7 85250	YES	VES
52	<u>د</u> 1	1/02.13	7.85250	VES	VES
52	-2	1402.13	7.83230	NO	NO
55	dZ	1410.70			NO
54	a1 02	1415.07	0,00000	TES	
55	ez	1410.33	0.00000	NO	YES
56	ez	1416.33	0.00000	NO	YES
57	el	1425.23	1.33097	YES	YES
58	el	1425.23	1.33097	YES	YES
59	a1	1446.20	34.45957	YES	YES
60	e2	1455.72	0.00000	NO	YES
61	e2	1455.72	0.00000	NO	YES
62	e1	1475.35	61.33244	YES	YES
63	e1	1475.35	61.33244	YES	YES
64	e2	2960.18	0.00000	NO	YES
65	e2	2960.18	0.00000	NO	YES
66	e1	2960.61	1.11059	YES	YES
67	e1	2960.61	1.11059	YES	YES
68	a1	2960.67	0.19660	YES	YES
69	e1	3043.52	4.10005	YES	YES
70	e1	3043 52	4,10005	YES	YES
70	a1	3043 81	0 85125	VES	VFS
72	۵ <u>۲</u>	3043.01	0.00000	NO	VEC
72	e2	2043.02	0.00000		VEC
75	e∠ 22	2072 60	0.00000		
/4 75	d∠ _1	30/3.00			
/5	ет	3074.45	3.18805	TES	YES
76	el	3074.45	3.18805	YES	YES

77	e2	3074.62	0.00000	NO	YES
78	e2	3074.62	0.00000	NO	YES

SiCp*₂

-0.0000000000000	0.000000000000000	0.60064159744937	si
3.56997820992079	3.18823435432834	0.18831618040088	С
3.30585374305319	1.67816208652128	-2.06495009779351	С
4.05773106645518	-0.87152105865827	-1.44731875856223	С
4.78797965073809	-0.91015227177953	1.17177062533563	С
4.49311890658113	1.58656315183237	2.16903571158999	С
-4.78797965073809	0.91015227177953	1.17177062533563	С
-4.05773106645518	0.87152105865827	-1.44731875856223	С
-3.30585374305319	-1.67816208652128	-2.06495009779351	С
-3.56997820992079	-3.18823435432834	0.18831618040088	С
-4.49311890658113	-1.58656315183237	2.16903571158999	С
-3.00988274445229	-5.96379205631220	0.39533755701823	С
-2.65659613763779	-2.65841495267709	-4.64935300252049	С
-4.24176562769335	3.05809435697865	-3.25011859639156	С
-4.98285271897739	-2.38013212332523	4.85095836403234	С
-5.68500344830043	3.19826088568097	2.59258525345765	С
4.98285271897739	2.38013212332523	4.85095836403234	С
5.68500344830043	-3.19826088568097	2.59258525345765	С
4.24176562769335	-3.05809435697865	-3.25011859639156	С
2.65659613763779	2.65841495267709	-4.64935300252049	С
3.00988274445229	5.96379205631220	0.39533755701823	С
1.50829164391669	6.55669836246415	-0.94836573165883	h
4.71211817624198	7.13462077199758	-0.02622499457740	h
2.36860910173568	6.48763187462885	2.32586010231297	h
1.33152387971819	4.28309178591585	-4.55954372755029	h
1.76712820857524	1.18493854237001	-5.85034782372405	h
4.38077194901229	3.32245596208046	-5.66499881240090	h
3.10145263346264	-2.73734629703511	-4.98001225049150	h
3.57654909703527	-4.85325572681559	-2.38120235590756	h
6.23231625394301	-3.37662842211189	-3.86673544972429	h
4.84380159433476	-4.96490241264271	1.82863867117654	h
5.19214687265190	-3.09601871576475	4.63206122489258	h
7.77946159846267	-3.41435273581911	2.47654938152817	h
3.70567227701839	3.93778143935784	5.44807820245433	h
6.95765021161332	3.07065556691588	5.11326146147804	h
4.70612064390493	0.79082018223466	6.19639806690046	h
-4.84380159433476	4.96490241264271	1.82863867117654	h
-5.19214687265190	3.09601871576475	4.63206122489258	h
-7.77946159846267	3.41435273581911	2.47654938152817	h
-3.57654909703527	4.85325572681559	-2.38120235590756	h
-6.23231625394301	3.37662842211189	-3.86673544972429	h
-3.10145263346264	2.73734629703511	-4.98001225049150	h
-1.76712820857524	-1.18493854237001	-5.85034782372405	h
-4.38077194901229	-3.32245596208046	-5.66499881240090	h

-				
	-1.33152387971819	-4.28309178591585	-4.55954372755029	h
	-1.50829164391669	-6.55669836246415	-0.94836573165883	h
	-4.71211817624198	-7.13462077199758	-0.02622499457740	h
	-2.36860910173568	-6.48763187462885	2.32586010231297	h
	-4.70612064390493	-0.79082018223466	6.19639806690046	h
	-3.70567227701839	-3.93778143935784	5.44807820245433	h
	-6.95765021161332	-3.07065556691588	5.11326146147804	h

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory, grid m4).

mode	symmetry	wave number	IR intensity	selecti	on rules
		[cm ⁻¹]	[km mol⁻¹]	IR	RAMAN
7	b	14.31	0.17740	YES	YES
8	а	19.94	0.00000	YES	YES
9	а	43.30	0.01899	YES	YES
10	b	45.65	0.02664	YES	YES
11	а	55.34	0.15812	YES	YES
12	а	83.17	0.01072	YES	YES
13	b	83.23	0.26077	YES	YES
14	b	87.65	0.83801	YES	YES
15	а	88.58	0.02751	YES	YES
16	b	90.51	0.16110	YES	YES
17	а	92.40	0.04496	YES	YES
18	а	112.61	0.27319	YES	YES
19	b	121.28	0.12280	YES	YES
20	а	130.87	0.00222	YES	YES
21	b	131.89	0.14300	YES	YES
22	а	139.92	0.00119	YES	YES
23	b	141.00	0.00979	YES	YES
24	а	156.50	0.00656	YES	YES
25	b	169.98	1.31971	YES	YES
26	а	176.84	0.01146	YES	YES
27	b	181.80	0.01706	YES	YES
28	b	195.39	0.36934	YES	YES
29	а	212.68	0.00497	YES	YES
30	а	277.36	0.02122	YES	YES
31	b	278.36	2.57728	YES	YES
32	b	280.41	5.35478	YES	YES
33	а	283.84	0.52400	YES	YES
34	а	285.20	1.07619	YES	YES
35	b	288.21	0.20101	YES	YES
36	а	289.06	0.00371	YES	YES
37	b	290.01	0.14890	YES	YES
38	b	309.58	5.36074	YES	YES
39	а	317.94	1.70082	YES	YES
40	b	346.15	620.02148	YES	YES
41	а	386.36	0.01472	YES	YES
42	b	387.33	7.57514	YES	YES
43	а	456.57	3.67539	YES	YES
44	а	517.14	0.31777	YES	YES
45	b	524.19	0.48609	YES	YES

46	b	541.45	0.30603	YES	YES
47	а	542.56	0.00361	YES	YES
48	b	545.09	0.02803	YES	YES
49	а	545.52	0.00937	YES	YES
50	а	558.79	0.16808	YES	YES
51	b	563.96	0.57348	YES	YES
52	b	589.84	0.45201	YES	YES
53	b	592.21	7.42698	YES	YES
54	a	593.05	0.70217	YES	YES
55	a	595.05	0 13074	YES	YES
56	a	802.26	4 12289	VES	YES
57	u h	803 52	5 29250	VES	VES
59	b	805.32	1 288/7	VES	VES
50	D D	805.47	1.20047	VES	VES
59	a	007.49	0.00281	VES	VES
61	a	952.50	0.00944	TES VES	TES VEC
61	D k	955.50	0.04665	TES VES	
62	a	937.40	0.43543	YES	YES
63	a	938.34	0.58556	YES	YES
64	d	1005.75	14.94317	YES	YES
65	а	1006.84	9.43352	YES	YES
66	a	1007.87	2.95283	YES	YES
67	b	1008.32	4.89128	YES	YES
68	b	1015.44	0.18195	YES	YES
69	а	1016.32	0.02491	YES	YES
70	b	1017.35	0.16989	YES	YES
71	а	1021.45	0.89504	YES	YES
72	b	1021.74	0.00024	YES	YES
73	а	1022.58	2.46200	YES	YES
74	b	1056.97	6.63631	YES	YES
75	а	1057.12	3.70925	YES	YES
76	b	1058.57	2.37524	YES	YES
77	а	1058.86	0.00499	YES	YES
78	b	1085.44	0.09544	YES	YES
79	а	1086.60	0.09258	YES	YES
80	а	1160.81	0.01152	YES	YES
81	b	1163.60	0.17853	YES	YES
82	b	1172.31	0.15189	YES	YES
83	а	1173.38	0.19991	YES	YES
84	b	1351.91	0.33388	YES	YES
85	а	1352.04	0.02233	YES	YES
86	а	1355.35	0.00403	YES	YES
87	b	1355.67	0.12318	YES	YES
88	b	1360 12	2 16516	YES	YES
89	a	1360.12	0.02039	YES	YES
90	а b	1364 45	2 75506	VES	YES
91	b	1365 24	20 62983	VES	VES
97	2	1265.24	1 67076	VES	VFS
02	a 2	1272 55	1.07070	VES	VEC
93	a	1205 26	0.00304	VEC	VEC
54 0E	a h	120.CCCT 1207 70	0.17039		
32	U k	1200 44	0.37010		
90 07	u	1401 02	0.37900		IES VEC
97	a	1401.03	0.89830	TES	1ES
98	а	1411.01	0.24882	YES	YES

99	b	1413.30	12.35448	YES	YES
100	b	1413.83	3.98856	YES	YES
101	а	1414.03	16.98177	YES	YES
102	b	1416.24	2.85012	YES	YES
103	а	1417.07	2.45740	YES	YES
104	b	1418.10	5.44236	YES	YES
105	a	1418.60	0.01959	VES	VES
105	a b	1/21 / 2	2 00977	VES	VES
100	ы С	1421.40	1 50259	VES	VES
107	d b	1422.05	1.50256		TES VEC
108	d	1422.00	12.03969	YES	TES VEC
109	d	1423.89	0.02120	YES	YES
110	а	1425.74	0.05556	YES	YES
111	b	1428.15	94.31502	YES	YES
112	b	1429.92	5.10696	YES	YES
113	а	1432.75	5.46974	YES	YES
114	b	1449.99	1.58285	YES	YES
115	а	1451.89	0.02069	YES	YES
116	b	1456.73	0.64486	YES	YES
117	а	1457.78	0.07221	YES	YES
118	b	1459.20	0.10334	YES	YES
119	а	1463.86	0.10182	YES	YES
120	b	1488.83	23.01006	YES	YES
121	а	1493.31	0.01381	YES	YES
122	а	1496.36	21.66162	YES	YES
123	b	1499.43	0.06199	YES	YES
124	~ a	2922 72	4 36492	VES	VES
125	a b	2922.72	75 32633	VES	VES
125	b	2022.70	FA A2212	VES	VES
120	U	2923.21	0.01096	TES VES	TES VEC
127	d	2923.29	9.01086	YES	YES
128	D	2923.92	96.08734	YES	YES
129	a	2924.46	112.76909	YES	YES
130	b	2925.70	84.541/1	YES	YES
131	а	2925.70	5.29375	YES	YES
132	b	2927.10	38.82976	YES	YES
133	а	2928.18	52.74286	YES	YES
134	а	2993.65	2.06496	YES	YES
135	b	2993.70	28.43848	YES	YES
136	b	2995.10	16.93920	YES	YES
137	а	2995.69	11.62215	YES	YES
138	а	2996.21	0.31992	YES	YES
139	b	2996.70	4.90078	YES	YES
140	b	2997.36	2.31117	YES	YES
141	а	2997.68	0.07242	YES	YES
142	b	3003.76	14.22236	YES	YES
143	~ A	3004 13	0.56859	YES	YES
144	2	3028 02	2 21374	VES	YES
1/5	h	3020.02	22 00860	VEC	VEC
1/6	5	2020.03	0.04002	VEC	VEC
140	d L	2029.14	0.04902		
14/	D	3029.23	4.97708	YES	YES
148	D	3029.59	8.10193	YES	YES
149	a	3029.73	44.11218	YES	YES
150	b	3039.98	28.85727	YES	YES
151	а	3041.12	5.08971	YES	YES

152	а	3043.94	15.23864	YES	YES
153	b	3044.43	2.18467	YES	YES

[GeCp*]⁺

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory.

1.88561667494726	-1.36998070586524	-0.02666191985208	С
1.88561667494726	1.36998070586524	-0.02666191985208	С
-0.72024148007629	2.21667534602153	-0.02666191985208	С
-2.33075038974192	0.00000000000000	-0.02666191985208	С
-0.72024148007629	-2.21667534602153	-0.02666191985208	С
4.17415139259936	-3.03269850505624	0.12972130414793	С
5.85421473893462	-2.15403653813535	-0.76324479695881	h
3.85766232898258	-4.90205517846648	-0.76324479695881	h
4.64873257949892	-3.37750192033002	2.15122868548650	h
4.17415139259936	3.03269850505624	0.12972130414793	С
4.64873257949892	3.37750192033002	2.15122868548650	h
3.85766232898258	4.90205517846648	-0.76324479695881	h
5.85421473893462	2.15403653813535	-0.76324479695881	h
-1.59438395778526	4.90700925881198	0.12972130414793	С
-3.47004830250331	5.18367325315509	-0.76324479695881	h
-0.23955864288039	6.23332297204331	-0.76324479695881	h
-1.77565784075961	5.46491290416202	2.15122868548650	h
-5.15953486962822	0.000000000000000	0.12972130414793	С
-6.00227012253350	-1.69836892144290	-0.76324479695881	h
-6.00227012253350	1.69836892144290	-0.76324479695881	h
-5.74614947747861	0.000000000000000	2.15122868548650	h
-1.59438395778526	-4.90700925881198	0.12972130414793	С
-1.77565784075961	-5.46491290416202	2.15122868548650	h
-0.23955864288039	-6.23332297204331	-0.76324479695881	h
-3.47004830250331	-5.18367325315509	-0.76324479695881	h
0.000000000000000	0.0000000000000000	-3.63899237929764	ge

mode	symmetry	wave number	IR intensity	select	ion rules
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	e2	120.46	0.00000	NO	YES
8	e2	120.46	0.00000	NO	YES
9	a2	120.67	0.00000	NO	NO
10	e1	123.16	0.78480	YES	YES
11	e1	123.16	0.78480	YES	YES
12	e2	144.33	0.00000	NO	YES
13	e2	144.33	0.00000	NO	YES
14	e1	157.93	0.02083	YES	YES
15	e1	157.93	0.02083	YES	YES
16	a1	162.77	1.08474	YES	YES
17	e1	283.79	0.22992	YES	YES
18	e1	283.79	0.22992	YES	YES

19	e2	287.81	0.00000	NO	YES
20	e2	287.81	0.00000	NO	YES
21	a1	394.80	39.86515	YES	YES
22	e1	410.42	0.00407	YES	YES
23	e1	410.42	0.00407	YES	YES
24	e2	534.39	0.00000	NO	YES
25	e2	534.39	0.00000	NO	YES
26	a2	542.06	0.00000	NO	NO
20	۵2 ۵2	585.40	0.00000	NO	VES
27	e2	585.40	0.00000	NO	VES
20	21	587.40	0.00000	VES	VES
20	a1 01	706 10	2 65402	VES	VES
21	e1 01	790.10	2 65402	TL3 VES	VES
21	el	790.10	5.05405	TES	
32	ez	931.40	0.00000	NO	TES VEC
33	ez	931.40	0.00000	NO	YES
34	el	1003.77	14.57987	YES	YES
35	el	1003.77	14.57987	YES	YES
36	e2	1005.29	0.00000	NO	YES
37	e2	1005.29	0.00000	NO	YES
38	a1	1008.09	2.95800	YES	YES
39	e1	1057.94	6.65094	YES	YES
40	e1	1057.94	6.65094	YES	YES
41	a2	1084.67	0.00000	NO	NO
42	e2	1161.03	0.00000	NO	YES
43	e2	1161.03	0.00000	NO	YES
44	e2	1350.13	0.00000	NO	YES
45	e2	1350.13	0.00000	NO	YES
46	e1	1364.07	13.94846	YES	YES
47	e1	1364.07	13.94846	YES	YES
48	a1	1367.34	0.41238	YES	YES
49	e2	1389.36	0.00000	NO	YES
50	e2	1389.36	0.00000	NO	YES
51	e1	1400.62	6.10172	YES	YES
52	e1	1400.62	6.10172	YES	YES
53	a2	1409.84	0.00000	NO	NO
54	a1	1413.33	57.86464	YES	YES
55	e2	1415.88	0.00000	NO	YES
56	e2	1415.88	0.00000	NO	YES
57	e1	1424.66	1.53532	YES	YES
58	e1	1424.66	1.53532	YES	YES
59	a1	1443.58	33.87733	YES	YES
60	e2	1451.56	0.00000	NO	YES
61	e2	1451 56	0.00000	NO	YES
62	e1	1470 94	62 20955	YES	YES
63	<u>د1</u>	1470 94	62 20955	VES	VES
64	<u>م</u> ۲	2956.02	02.20555	NO	VES
65	<u>د</u> ک م۲	200.02	0.00000	NO	VES
66	CZ	2930.02	2 07062	VEC	VEC
67	C1	2330.41	2.07003	TES	TES
07	e1	2930.41	2.07003		
00	d1	2320.52	0.05284		
09 70	ei	3038.35	4.41812	TES	1ES
70	ei	3038.35	4.41812	YES	YES
/1	a1	3038.60	0.62062	YES	YES

72	e2	3038.68	0.00000	NO	YES
73	e2	3038.68	0.00000	NO	YES
74	a2	3068.66	0.00000	NO	NO
75	e1	3069.61	4.39387	YES	YES
76	e1	3069.61	4.39387	YES	YES
77	e2	3070.03	0.00000	NO	YES
78	e2	3070.03	0.00000	NO	YES

GeCp*₂

0.000000000000000	0.000000000000000	0.68217262847368	ge
3.69409542655607	3.21714732964714	0.16564722047286	С
3.42002042647806	1.69940403483667	-2.08269771341234	С
4.17250421835812	-0.84973342340187	-1.46215738562548	С
4.91339956891145	-0.88409319419050	1.15684668035045	С
4.62227789023659	1.61793298733352	2.15004848099152	С
-4.91339956891145	0.88409319419050	1.15684668035045	С
-4.17250421835812	0.84973342340187	-1.46215738562548	С
-3.42002042647806	-1.69940403483667	-2.08269771341234	С
-3.69409542655607	-3.21714732964714	0.16564722047286	С
-4.62227789023659	-1.61793298733352	2.15004848099152	С
-3.18994366641013	-6.00602877030204	0.34959974773192	С
-2.73790059226558	-2.66688429349701	-4.66500304648269	С
-4.35083132730882	3.03537692035204	-3.26887985788274	С
-5.19012672233202	-2.43342163220483	4.81110115589197	С
-5.87387035288868	3.15391457094756	2.56761051475634	С
5.19012672233202	2.43342163220483	4.81110115589197	С
5.87387035288868	-3.15391457094756	2.56761051475634	С
4.35083132730882	-3.03537692035204	-3.26887985788274	С
2.73790059226558	2.66688429349701	-4.66500304648269	С
3.18994366641013	6.00602877030204	0.34959974773192	С
1.67294176840446	6.61366128658393	-0.97070333961789	h
4.90495773165638	7.13941055775725	-0.12280636911704	h
2.60133589640913	6.56947713924010	2.28569570085201	h
1.39364343245315	4.27619875892335	-4.56721850656509	h
1.85278919589347	1.17882866687478	-5.85238386025599	h
4.44217851137409	3.35089976718799	-5.70174223632974	h
3.13769346378122	-2.75106228223870	-4.95623022327172	h
3.76826145447919	-4.84616527315020	-2.37464644230242	h
6.32439548942789	-3.30236656139041	-3.96155815647164	h
5.06184855349159	-4.93997580092832	1.81657406448482	h
5.40728260997917	-3.06153965394786	4.61378008447036	h
7.97115485406988	-3.32813142860083	2.42589020358794	h
3.95156696492276	4.01530128819635	5.42569129545338	h
7.18024290855093	3.10006496863271	5.01556916520566	h
4.92944334788841	0.86366814722498	6.18267666982003	h
-5.06184855349159	4.93997580092832	1.81657406448482	h
-5.40728260997917	3.06153965394786	4.61378008447036	h
-7.97115485406988	3.32813142860083	2.42589020358794	h

-3.768261454479194.84616527315020-2.37464644230242h-6.324395489427893.30236656139041-3.96155815647164h-3.137693463781222.75106228223870-4.95623022327172h-1.85278919589347-1.17882866687478-5.85238386025599h-4.44217851137409-3.35089976718797-5.70174223632974h-1.39364343245315-4.27619875892335-4.56721850656509h-1.67294176840447-6.61366128658393-0.97070333961789h-4.90495773165638-7.13941055775725-0.12280636911704h-2.60133589640913-6.569477139240102.28569570085201h-4.92944334788841-0.863668147224986.18267666982003h-3.95156696492276-4.015301288196355.42569129545338h-7.18024290855093-3.100064968632715.01556916520566h				
-6.324395489427893.30236656139041-3.96155815647164h-3.137693463781222.75106228223870-4.95623022327172h-1.85278919589347-1.17882866687478-5.85238386025599h-4.44217851137409-3.35089976718797-5.70174223632974h-1.39364343245315-4.27619875892335-4.56721850656509h-1.67294176840447-6.61366128658393-0.97070333961789h-4.90495773165638-7.13941055775725-0.12280636911704h-2.60133589640913-6.569477139240102.28569570085201h-4.92944334788841-0.863668147224986.18267666982003h-3.95156696492276-4.015301288196355.42569129545338h-7.18024290855093-3.100064968632715.01556916520566h	-3.76826145447919	4.84616527315020	-2.37464644230242	h
-3.137693463781222.75106228223870-4.95623022327172h-1.85278919589347-1.17882866687478-5.85238386025599h-4.44217851137409-3.35089976718797-5.70174223632974h-1.39364343245315-4.27619875892335-4.56721850656509h-1.67294176840447-6.61366128658393-0.97070333961789h-4.90495773165638-7.13941055775725-0.12280636911704h-2.60133589640913-6.569477139240102.28569570085201h-4.92944334788841-0.863668147224986.18267666982003h-3.95156696492276-4.015301288196355.42569129545338h-7.18024290855093-3.100064968632715.01556916520566h	-6.32439548942789	3.30236656139041	-3.96155815647164	h
-1.85278919589347-1.17882866687478-5.85238386025599h-4.44217851137409-3.35089976718797-5.70174223632974h-1.39364343245315-4.27619875892335-4.56721850656509h-1.67294176840447-6.61366128658393-0.97070333961789h-4.90495773165638-7.13941055775725-0.12280636911704h-2.60133589640913-6.569477139240102.28569570085201h-4.92944334788841-0.863668147224986.18267666982003h-3.95156696492276-4.015301288196355.42569129545338h-7.18024290855093-3.100064968632715.01556916520566h	-3.13769346378122	2.75106228223870	-4.95623022327172	h
-4.44217851137409-3.35089976718797-5.70174223632974h-1.39364343245315-4.27619875892335-4.56721850656509h-1.67294176840447-6.61366128658393-0.97070333961789h-4.90495773165638-7.13941055775725-0.12280636911704h-2.60133589640913-6.569477139240102.28569570085201h-4.92944334788841-0.863668147224986.18267666982003h-3.95156696492276-4.015301288196355.42569129545338h-7.18024290855093-3.100064968632715.01556916520566h	-1.85278919589347	-1.17882866687478	-5.85238386025599	h
-1.39364343245315-4.27619875892335-4.56721850656509h-1.67294176840447-6.61366128658393-0.97070333961789h-4.90495773165638-7.13941055775725-0.12280636911704h-2.60133589640913-6.569477139240102.28569570085201h-4.92944334788841-0.863668147224986.18267666982003h-3.95156696492276-4.015301288196355.42569129545338h-7.18024290855093-3.100064968632715.01556916520566h	-4.44217851137409	-3.35089976718797	-5.70174223632974	h
-1.67294176840447-6.61366128658393-0.97070333961789h-4.90495773165638-7.13941055775725-0.12280636911704h-2.60133589640913-6.569477139240102.28569570085201h-4.92944334788841-0.863668147224986.18267666982003h-3.95156696492276-4.015301288196355.42569129545338h-7.18024290855093-3.100064968632715.01556916520566h	-1.39364343245315	-4.27619875892335	-4.56721850656509	h
-4.90495773165638-7.13941055775725-0.12280636911704h-2.60133589640913-6.569477139240102.28569570085201h-4.92944334788841-0.863668147224986.18267666982003h-3.95156696492276-4.015301288196355.42569129545338h-7.18024290855093-3.100064968632715.01556916520566h	-1.67294176840447	-6.61366128658393	-0.97070333961789	h
-2.60133589640913-6.569477139240102.28569570085201h-4.92944334788841-0.863668147224986.18267666982003h-3.95156696492276-4.015301288196355.42569129545338h-7.18024290855093-3.100064968632715.01556916520566h	-4.90495773165638	-7.13941055775725	-0.12280636911704	h
-4.92944334788841-0.863668147224986.18267666982003h-3.95156696492276-4.015301288196355.42569129545338h-7.18024290855093-3.100064968632715.01556916520566h	-2.60133589640913	-6.56947713924010	2.28569570085201	h
-3.95156696492276 -4.01530128819635 5.42569129545338 h -7.18024290855093 -3.10006496863271 5.01556916520566 h	-4.92944334788841	-0.86366814722498	6.18267666982003	h
-7.18024290855093 -3.10006496863271 5.01556916520566 h	-3.95156696492276	-4.01530128819635	5.42569129545338	h
	 -7.18024290855093	-3.10006496863271	5.01556916520566	h

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory).

mode	symmetry	wave number	IR intensity	selection rules	
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	b	7.08	0.04810	YES	YES
8	а	24.45	0.00095	YES	YES
9	а	48.08	0.00001	YES	YES
10	b	51.06	0.01539	YES	YES
11	а	51.99	0.09297	YES	YES
12	b	75.42	0.01353	YES	YES
13	а	77.05	0.01284	YES	YES
14	b	87.32	0.52508	YES	YES
15	а	93.14	0.01453	YES	YES
16	а	96.61	0.10842	YES	YES
17	b	100.69	0.02057	YES	YES
18	а	104.66	0.38286	YES	YES
19	b	121.30	0.04466	YES	YES
20	а	127.21	0.04400	YES	YES
21	b	127.77	0.52090	YES	YES
22	b	137.81	0.18692	YES	YES
23	а	141.08	0.00033	YES	YES
24	b	141.98	0.29525	YES	YES
25	а	142.17	0.00025	YES	YES
26	b	149.78	5.78497	YES	YES
27	а	170.15	0.02481	YES	YES
28	b	173.73	0.03942	YES	YES
29	а	174.84	0.02106	YES	YES
30	b	275.77	138.45568	YES	YES
31	b	277.64	2.74330	YES	YES
32	а	279.46	0.13852	YES	YES
33	а	281.32	1.28407	YES	YES
34	b	285.14	116.45834	YES	YES
35	а	286.74	0.30283	YES	YES
36	а	287.01	0.00239	YES	YES
37	b	287.79	101.75620	YES	YES
38	b	290.01	1.82038	YES	YES
39	b	312.41	2.54018	YES	YES
40	а	315.80	0.85916	YES	YES

41 b 383.24 8.61065 YE 42 a 383.49 0.00016 YE 43 a 397.29 3.23935 YE	S YES S YES
42a383.490.00016YE43a397.293.23935YE	S YES
43 a 397.29 3.23935 YE	
	S YES
44 a 528.66 0.03803 YE	S YES
45 b 532.33 0.19074 YE	S YES
46 b 540.81 0.10371 YE	S YES
47 a 541 72 0 00137 VE	S YES
48 b 546.52 0.02205 VE	S VES
	s ves
45 a 547.00 0.00888 IL	S VES
50 a 575.05 0.14140 IL	
51 5 575.52 0.50620 $10.5075.52$	
52 D 590.51 0.21064 1E.	
53 a 592.61 0.00472 YE	S YES
54 D 604.23 0.36524 YE	S YES
55 a 607.40 0.47901 YE	S YES
56 a 802.05 3.86648 YE	S YES
57 b 802.61 5.56033 YES	S YES
58 b 805.36 0.35284 YES	S YES
59 a 806.33 0.09154 YE	S YES
60 a 929.93 0.00009 YES	S YES
61 b 933.85 0.04751 YES	S YES
62 b 936.47 0.29941 YES	S YES
63 a 938.55 0.37135 YES	S YES
64 b 1005.67 18.24780 YES	S YES
65 a 1006.43 12.64014 YE	S YES
66 b 1007.55 6.56532 YE	S YES
67 a 1007.75 1.29283 YE	S YES
68 b 1015.44 1.05365 YE	S YES
69 a 1017.93 0.15410 YE	S YES
70 b 1018.69 0.03760 YE	S YES
71 a 1019.33 3.57886 YE	S YES
72 a 1022.60 0.00784 YE	S YES
73 b 1022.69 0.01089 VE	S YES
74 a 1056.16 4.11562 VE	S VES
75 b 1056.02 5.48803 VE	S VES
75 b 1050.52 5.40005 FE	s ves
77 a 1036.95 0.00519 ft.	
81 D 1161.11 0.24054 YE	S YES
82 b 11/0.29 0.10097 YE	S YES
83 a 11/1.50 0.1/145 YE	S YES
84 b 1351.11 0.70325 YES	S YES
85 a 1352.28 0.00569 YES	S YES
86 a 1354.76 0.00017 YES	S YES
87 b 1356.57 0.05461 YES	S YES
88 b 1360.98 5.42432 YES	S YES
89 a 1361.76 0.02826 YES	S YES
90 b 1364.12 7.28868 YES	S YES
91 a 1365.56 1.09316 YES	S YES
92 b 1365.93 24.61327 YE	S YES
93 a 1372.24 0.03443 YE	S YES

94 a 1392.06 0.11980 YES YES 95 b 1396.74 0.06153 YES YES 96 b 1396.74 0.44743 YES YES 97 a 1397.18 0.39563 YES YES 98 a 1411.92 1.83224 YES YES 99 b 1412.61 8.8474 YES YES 100 a 1413.36 12.93221 YES YES 101 b 1413.47 10.83951 YES YES 102 b 1416.06 6.34712 YES YES 103 a 1417.00 3.48499 YES YES 104 a 1419.32 4.47439 YES YES 105 b 1421.04 3.32949 YES YES 106 b 1421.70 12.40885 YES YES 107 a 1422.70 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<>						
95 b 1394.27 0.06153 YES YES 96 b 1397.18 0.33563 YES YES 97 a 1397.18 0.33563 YES YES 98 a 1411.92 1.83224 YES YES 99 b 1412.61 8.84474 YES YES 100 a 1413.36 12.93221 YES YES 101 b 1414.71 10.89951 YES YES 102 b 1416.06 6.34712 YES YES 103 a 1417.00 3.48499 YES YES 104 a 1414.14 0.20668 YES YES 105 b 1421.79 1.62724 YES YES 106 b 1422.70 12.40855 YES YES 110 b 1425.53 67.66128 YES YES 1110 b 1425.40	94	а	1392.06	0.11980	YES	YES
96 b 1396.74 0.44743 YES YES 97 a 1397.18 0.39563 YES YES 98 a 1411.2 1.83224 YES YES 99 b 1412.61 8.84474 YES YES 100 a 1413.36 12.93221 YES YES 101 b 1414.7 10.89951 YES YES 102 b 1416.06 6.34712 YES YES 103 a 1417.00 3.48499 YES YES 105 b 1419.32 4.47439 YES YES 106 b 1421.70 1.26085 YES YES 106 b 1421.70 1.24085 YES YES 107 a 142.70 1.24085 YES YES 110 b 1425.58 0.01711 YES YES 1112 b 1428.90 <td< td=""><td>95</td><td>b</td><td>1394.27</td><td>0.06153</td><td>YES</td><td>YES</td></td<>	95	b	1394.27	0.06153	YES	YES
97 a 1397.18 0.39563 YES YES 98 a 1411.92 1.83224 YES YES 99 b 1412.61 8.84474 YES YES 100 a 1413.36 12.93221 YES YES 101 b 1413.47 10.89951 YES YES 102 b 1416.06 6.34712 YES YES 103 a 1417.00 3.48499 YES YES 104 a 1413.22 4.47439 YES YES 105 b 1421.04 3.32949 YES YES 106 b 1421.79 1.62724 YES YES 107 a 1422.70 1.24085 YES YES 110 b 1425.53 67.66128 YES YES 111 a 1428.90 21.55718 YES YES 112 b 1447.79 2.88361 YES YES 114 b 1447.79 2.8474 <td>96</td> <td>b</td> <td>1396.74</td> <td>0.44743</td> <td>YES</td> <td>YES</td>	96	b	1396.74	0.44743	YES	YES
98 a 1411.92 1.83224 YES YES 99 b 1412.61 8.84474 YES YES 100 a 1413.47 10.89951 YES YES 101 b 1413.47 10.89951 YES YES 102 b 1416.06 6.34712 YES YES 103 a 1417.00 3.44849 YES YES 104 a 1418.14 0.20868 YES YES 105 b 1419.32 4.47439 YES YES 106 b 1421.04 3.32949 YES YES 108 b 1422.70 12.40885 YES YES 108 b 1425.58 0.01711 YES YES 110 b 1428.90 21.55718 YES YES 111 a 1452.49 0.44254 YES YES 114 b 1445.409	97	а	1397.18	0.39563	YES	YES
99 b 1412.61 8.84474 YES YES 100 a 1413.36 12.93221 YES YES 101 b 1413.47 10.89951 YES YES 102 b 1416.06 6.34712 YES YES 103 a 1417.00 3.48499 YES YES 104 a 1418.14 0.20868 YES YES 106 b 1421.04 3.32949 YES YES 107 a 1422.70 12.40885 YES YES 108 b 1422.70 12.40885 YES YES 109 a 1425.53 67.66128 YES YES 110 b 1425.53 67.66128 YES YES 111 a 1425.53 67.66128 YES YES 111 a 1425.53 67.6128 YES YES 1111 a 1436.03	98	а	1411.92	1.83224	YES	YES
100 a 1413.36 12.93221 YES YES 101 b 1413.47 10.89951 YES YES 102 b 1416.06 6.34712 YES YES 103 a 1417.00 3.48499 YES YES 104 a 1418.14 0.20868 YES YES 105 b 1421.04 3.32949 YES YES 106 b 1421.79 1.62724 YES YES 108 b 1422.70 12.40885 YES YES 109 a 1423.14 0.53409 YES YES 110 b 1425.58 0.01711 YES YES 111 a 1425.89 0.14254 YES YES 113 a 1450.43 0.03188 YES YES 114 b 1447.79 2.88361 YES YES 114 b 14450.43	99	b	1412.61	8.84474	YES	YES
101 b 1413.47 10.89951 YES YES 102 b 1416.06 6.34712 YES YES 103 a 1417.00 3.48499 YES YES 104 a 1418.14 0.20868 YES YES 105 b 1419.32 4.47439 YES YES 106 b 1421.79 1.67724 YES YES 108 b 1422.70 12.40885 YES YES 109 a 1425.53 67.66128 YES YES 110 b 1425.53 67.66128 YES YES 111 a 1425.58 0.01711 YES YES 114 b 1447.79 2.88361 YES YES 113 a 1431.07 5.81212 YES YES 114 b 1447.79 2.88361 YES YES 114 b 14454.09	100	а	1413.36	12.93221	YES	YES
102 b 1116.06 6.34712 YES YES 103 a 1417.00 3.48499 YES YES 104 a 1418.14 0.20868 YES YES 106 b 1421.04 3.32949 YES YES 106 b 1421.79 1.62724 YES YES 108 b 1422.70 12.40885 YES YES 108 b 1422.70 12.40855 YES YES 110 b 1425.53 67.66128 YES YES 111 a 1425.89 0.01711 YES YES 112 b 1428.90 21.55718 YES YES 113 a 1431.07 5.81212 YES YES 114 b 1447.79 2.88361 YES YES 115 a 1450.43 0.10667 YES YES 114 b 14454.09	101	b	1413 47	10.89951	YES	YES
103a117.003.48499YESYES104a1418.140.20868YESYES105b1419.324.47439YESYES106b1421.043.32949YESYES107a1421.791.62724YESYES108b1422.7012.40885YESYES109a1425.5367.66128YESYES110b1425.5367.66128YESYES111a1425.580.01711YESYES112b1428.9021.55718YESYES113a1431.075.81212YESYES114b1447.792.88361YESYES115a1450.430.03188YESYES116a1452.290.14254YESYES118b1456.300.20261YESYES120b1485.2721.61823YESYES121a1489.980.14423YESYES122a1492.3720.24407YESYES123b1495.730.0603YESYES124a2919.734.37635YESYES125b2919.7990.98434YESYES126b2922.22135.20792YESYES131a2923.2670.62571YESYES132b <t< td=""><td>102</td><td>~ b</td><td>1416.06</td><td>6 34712</td><td>YES</td><td>YES</td></t<>	102	~ b	1416.06	6 34712	YES	YES
104a1118.140.20868YESYES105b1419.324.47439YESYES106b1421.043.32949YESYES107a1421.791.62724YESYES108b1422.7012.40885YESYES109a1425.5367.66128YESYES110b1425.5367.66128YESYES111a1425.580.01711YESYES112b1428.9021.55718YESYES113a1431.075.81212YESYES114b1447.792.88661YESYES115a1450.430.03188YESYES116a1452.890.14254YESYES117b1454.090.34494YESYES118b1456.300.20261YESYES120b1485.2721.61823YESYES121a1489.980.14423YESYES122a1495.730.00603YESYES123b1495.730.00603YESYES124a2919.734.37635YESYES125b2919.7990.98434YESYES126b2920.2179.7380YESYES131a2923.2670.62571YESYES132b <td< td=""><td>103</td><td>a</td><td>1417.00</td><td>3 48499</td><td>YES</td><td>YES</td></td<>	103	a	1417.00	3 48499	YES	YES
105b14121320.12000115115106b1421.04 3.32949 YESYES107a1421.79 1.62724 YESYES108b1422.70 12.40885 YESYES109a1422.14 0.53409 YESYES110b1425.53 67.66128 YESYES111a1425.58 0.01711 YESYES112b1428.90 21.55718 YESYES113a1431.07 5.81212 YESYES114b1447.79 2.88361 YESYES115a1450.43 0.03188 YESYES116a1452.89 0.14254 YESYES117b1456.30 0.20261 YESYES118b1456.30 0.20261 YESYES120b1485.27 21.61823 YESYES121a1489.98 0.14423 YESYES122a1492.37 20.24407 YESYES123b1495.73 0.00603 YESYES124a2919.79 90.98434 YESYES125b2919.79 90.98434 YESYES126b2920.21 79.17380 YESYES127a2920.42 2.34164 YESYES130b2923.26 70.62571 YES	104	a	1418 14	0 20868	VES	VES
1050142.1.04 3.32949 YESYES107a1421.79 1.62724 YESYES108b1422.70 12.40885 YESYES109a1423.53 67.66128 YESYES110b1425.53 67.66128 YESYES111a1425.58 0.01711 YESYES112b1428.90 21.55718 YESYES113a1431.07 5.81212 YESYES114b1447.79 2.88361 YESYES115a1450.43 0.03188 YESYES116a1452.89 0.14254 YESYES117b1454.09 0.34494 YESYES118b1456.30 0.20261 YESYES120b1485.27 21.61823 YESYES121a1489.98 0.14423 YESYES122a1492.37 20.24407 YESYES123b1495.73 0.06603 YESYES124a2919.73 4.37635 YESYES125b2919.79 90.98434 YESYES126b292.21 79.17380 YESYES127a292.42 2.34164 YESYES133a2925.22 416321 YESYES134b2992.53 34.94925 YES	105	a b	1/19 32	4 47439	VES	VES
100101102102103103107a1421.791.62724YESYES108b1422.7012.40885YESYES109a1423.140.53409YESYES110b1425.5367.66128YESYES111a1425.580.01711YESYES112b1428.9021.55718YESYES113a1431.075.81212YESYES114b1447.792.88361YESYES115a1450.430.03188YESYES116a1452.890.14254YESYES117b1454.090.34494YESYES118b1460.430.16067YESYES120b1485.2721.61823YESYES121a1489.980.14423YESYES122a1492.3720.24407YESYES123b1495.730.0603YESYES124a2919.734.37635YESYES125b2919.7990.98434YESYES126b2920.2179.17380YESYES127a2923.2670.62571YESYES130b2923.2670.62571YESYES133a2925.5244.65814YESYES134b299	105	b	1/21 0/	3 379/19	VES	VES
107a1421.731.02724113113108b1422.7012.40885YESYES109a1423.140.53409YESYES110b1425.5367.66128YESYES111a1425.580.01711YESYES112b1428.9021.55718YESYES113a1431.075.81212YESYES114b1447.792.88361YESYES115a1450.430.03188YESYES116a1452.890.14254YESYES117b1454.090.34494YESYES118b1445.300.20261YESYES119a1460.430.16067YESYES120b1485.2721.61823YESYES121a1489.980.14423YESYES122a1492.3720.24407YESYES123b1495.730.00603YESYES124a2919.7990.98434YESYES125b2919.7990.98434YESYES126b2920.2179.17380YESYES127a2920.422.34164YESYES130b2923.2670.62571YESYES133a2925.5244.65814YESYES133a	100	ы С	1421.04	1 62724	VES	VES
100b 1422.70 12.40833 113 113 113 109 a 1422.14 0.53409 YESYES 110 b 1425.53 67.66128 YESYES 111 a 1425.58 0.01711 YESYES 112 b 1428.90 21.55718 YESYES 113 a 1431.07 5.81212 YESYES 114 b 1447.79 2.88361 YESYES 115 a 1450.43 0.03188 YESYES 116 a 1452.89 0.14254 YESYES 116 a 1456.30 0.20261 YESYES 118 b 14456.30 0.120261 YESYES 120 b 14485.27 21.61823 YESYES 121 a 1499.98 0.14423 YESYES 122 a 1492.37 20.24407 YESYES 123 b 1495.73 0.00603 YESYES 124 a 2919.73 4.37635 YESYES 125 b 2910.79 90.98434 YESYES 126 b 2920.42 2.34164 YESYES 126 b 2920.42 79.17380 YESYES 127 a 2920.42 2.34164 YESYES 128 b 2921.81 75.00907 YESYES 130 b 2923.26 70.6	107	a b	1421.79	12 /0995	VES	VES
109a1425.140.35409113115115110b1425.5367.66128YESYES111a1425.580.01711YESYES112b1428.9021.55718YESYES113a1431.075.81212YESYES114b1447.792.88361YESYES115a1450.430.03188YESYES116a1452.890.14254YESYES117b1454.090.34494YESYES118b1456.300.20261YESYES120b1485.2721.61823YESYES121a1489.980.14423YESYES122a1492.3720.24407YESYES123b1495.730.00603YESYES124a2919.734.37635YESYES125b2919.7990.98434YESYES126b2920.2179.17380YESYES127a2920.422.34164YESYES130b2923.2670.62571YESYES131a2923.295.86851YESYES133a2925.5244.65814YESYES134b2992.700.08517YESYES135a2992.700.08517YESYES136	108	u c	1422.70	12.40005	TES VES	VES
11001425.5367.66123YESYES111a1425.580.01711YESYES112b1428.9021.55718YESYES113a1431.075.81212YESYES114b1447.792.88361YESYES115a1450.430.03188YESYES116a1452.890.14254YESYES117b1454.090.34494YESYES118b1456.300.20261YESYES119a1460.430.16067YESYES120b1485.2721.61823YESYES121a1489.980.14423YESYES122a1492.3720.24407YESYES123b1495.730.00603YESYES124a2919.734.37635YESYES125b2919.7990.98434YESYES126b2920.2179.17380YESYES127a292.422.34164YESYES138b292.8270.62571YESYES139a292.720.08517YESYES133a292.5334.94925YESYES135a292.7334.94925YESYES136a293.3714.16930YESYES137b29	109	d	1423.14	0.53409	TES	YES
111 a 1425.38 0.01711 YES YES 112 b 1428.90 21.55718 YES YES 113 a 1431.07 5.81212 YES YES 114 b 1447.79 2.88361 YES YES 115 a 1450.43 0.03188 YES YES 116 a 1452.89 0.14254 YES YES 117 b 1456.30 0.20261 YES YES 118 b 1456.30 0.20261 YES YES 119 a 1460.43 0.16067 YES YES 120 b 1485.27 21.61823 YES YES 121 a 1489.73 0.00603 YES YES 122 a 1492.37 20.24407 YES YES 124 a 2919.79 90.98434 YES YES 125 b 2919.79 90.98434 YES YES 126 b 2920.42 2.341	110	d	1425.53	07.00128	YES	YES
112 0 1428.90 21.55/18 YES YES 113 a 1431.07 5.81212 YES YES 114 b 1447.79 2.88361 YES YES 115 a 1450.43 0.03188 YES YES 116 a 1452.89 0.14254 YES YES 117 b 1456.30 0.20261 YES YES 118 b 1460.43 0.16067 YES YES 120 b 1485.27 21.61823 YES YES 121 a 1489.98 0.14423 YES YES 122 a 1492.37 20.24407 YES YES 123 b 1495.73 0.00603 YES YES 124 a 2919.73 4.37635 YES YES 125 b 2919.79 90.98434 YES YES 126 b 2920.21 79.17380 YES YES 127 a 2920.22 135.2	111	a	1425.58	0.01/11	YES	YES
113 a 1431.07 5.81212 YES YES 114 b 1447.79 2.88361 YES YES 115 a 1450.43 0.03188 YES YES 116 a 1452.89 0.14254 YES YES 117 b 1454.09 0.34494 YES YES 118 b 1456.30 0.20261 YES YES 119 a 1460.43 0.16067 YES YES 120 b 1485.27 21.61823 YES YES 121 a 1489.98 0.14423 YES YES 122 a 1492.37 20.24407 YES YES 123 b 1495.73 0.00603 YES YES 124 a 2919.73 4.37635 YES YES 125 b 2919.79 90.98434 YES YES 126 b 2920.42 2.34164 YES YES 127 a 2920.42 2.34164	112	b	1428.90	21.55/18	YES	YES
114 b 1447.79 2.88361 YES YES 115 a 1450.43 0.03188 YES YES 116 a 1452.89 0.14254 YES YES 117 b 1456.30 0.20261 YES YES 118 b 1456.30 0.20261 YES YES 119 a 1460.43 0.16067 YES YES 120 b 1485.27 21.61823 YES YES 121 a 1489.98 0.14423 YES YES 122 a 1492.37 20.24407 YES YES 123 b 1495.73 0.00603 YES YES 124 a 2919.79 90.98434 YES YES 125 b 2919.79 90.98434 YES YES 126 b 2920.21 79.17380 YES YES 127 a 2922.22 135.20792 YES YES 130 b 2923.26 70.	113	a	1431.07	5.81212	YES	YES
115 a 1450.43 0.03188 YES YES 116 a 1452.89 0.14254 YES YES 117 b 1454.09 0.34494 YES YES 118 b 1456.30 0.20261 YES YES 119 a 1460.43 0.16067 YES YES 120 b 1485.27 21.61823 YES YES 121 a 1489.98 0.14423 YES YES 122 a 1492.37 20.24407 YES YES 123 b 1495.73 0.00603 YES YES 124 a 2919.73 4.37635 YES YES 125 b 2919.79 90.98434 YES YES 126 b 2920.21 79.17380 YES YES 127 a 2920.42 2.34164 YES YES 130 b 2923.26 70.62571 YES YES 131 a 2923.29 5.868	114	b	1447.79	2.88361	YES	YES
116 a 1452.89 0.14254 YES YES 117 b 1456.30 0.20261 YES YES 118 b 1456.30 0.20261 YES YES 119 a 1460.43 0.16067 YES YES 120 b 1485.27 21.61823 YES YES 121 a 1489.98 0.14423 YES YES 122 a 1492.37 20.24407 YES YES 123 b 1495.73 0.00603 YES YES 124 a 2919.73 4.37635 YES YES 125 b 2919.79 90.98434 YES YES 126 b 2920.21 79.17380 YES YES 127 a 2920.42 2.34164 YES YES 128 b 2921.81 75.00907 YES YES 130 b 2923.26 70.62571 YES YES 133 a 2925.52 44.6	115	а	1450.43	0.03188	YES	YES
117b1454.090.34494YESYES118b1456.300.20261YESYES119a1460.430.16067YESYES120b1485.2721.61823YESYES121a1489.980.14423YESYES122a1492.3720.24407YESYES123b1495.730.00603YESYES124a2919.734.37635YESYES125b2919.7990.98434YESYES126b2920.2179.17380YESYES128b2921.8175.00907YESYES129a2922.22135.20792YESYES130b2923.2670.62571YESYES131a2923.295.86851YESYES133a2925.5244.65814YESYES134b2992.700.08517YESYES135a2992.700.08517YESYES136a2993.3714.16930YESYES138b2994.180.00786YESYES140a2994.940.89946YESYES141b2994.972.35808YESYES144a3001.080.30167YESYES145b3026.7715.79793YESYES146a	116	а	1452.89	0.14254	YES	YES
118b1456.300.20261YESYES119a1460.430.16067YESYES120b1485.2721.61823YESYES121a1489.980.14423YESYES122a1492.3720.24407YESYES123b1495.730.00603YESYES124a2919.734.37635YESYES125b2919.7990.98434YESYES126b2920.2179.17380YESYES127a2920.422.34164YESYES128b2921.8175.00907YESYES130b2923.2670.62571YESYES131a2923.295.86851YESYES133a2925.5244.65814YESYES134b2992.5334.94925YESYES135a2992.700.08517YESYES136a2993.3714.16930YESYES137b2993.448.80579YESYES138b2993.884.41273YESYES140a2994.940.89946YESYES144b2994.972.35808YESYES145b3000.1912.60812YESYES144a3026.7715.79793YESYES144a	117	b	1454.09	0.34494	YES	YES
119a1460.430.16067YESYES120b1485.2721.61823YESYES121a1489.980.14423YESYES122a1492.3720.24407YESYES123b1495.730.00603YESYES124a2919.734.37635YESYES125b2919.7990.98434YESYES126b2920.2179.17380YESYES127a2920.422.34164YESYES128b2921.8175.00907YESYES129a2922.22135.20792YESYES130b2923.2670.62571YESYES131a2923.295.86851YESYES133a2925.5244.65814YESYES134b2992.700.08517YESYES135a2993.3714.16930YESYES136a2993.3714.16930YESYES138b2993.884.41273YESYES140a2994.972.35808YESYES144a3001.080.30167YESYES144a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	118	b	1456.30	0.20261	YES	YES
120 b 1485.27 21.61823 YES YES 121 a 1489.98 0.14423 YES YES 122 a 1492.37 20.24407 YES YES 123 b 1495.73 0.00603 YES YES 124 a 2919.73 4.37635 YES YES 125 b 2919.79 90.98434 YES YES 126 b 2920.21 79.17380 YES YES 127 a 2920.42 2.34164 YES YES 128 b 2921.21 135.20792 YES YES 130 b 2923.26 70.62571 YES YES 131 a 2923.29 5.86851 YES YES 133 a 2925.52 44.65814 YES YES 134 b 2992.70 0.08517 YES YES 135 a 2992.70 0.08517 YES YES 136 a 2993.37 14	119	а	1460.43	0.16067	YES	YES
121a1489.980.14423YESYES122a1492.3720.24407YESYES123b1495.730.00603YESYES124a2919.734.37635YESYES125b2919.7990.98434YESYES126b2920.2179.17380YESYES127a2920.422.34164YESYES128b2921.8175.00907YESYES129a2922.22135.20792YESYES130b2923.2670.62571YESYES131a2924.2266.44031YESYES133a2925.5244.65814YESYES134b2992.5334.94925YESYES135a2992.700.08517YESYES136a2993.3714.16930YESYES138b2993.884.41273YESYES139a2994.180.00786YESYES140a2994.972.35808YESYES144a3001.080.30167YESYES145b3006.7715.79793YESYES146a3027.040.51512YESYES	120	b	1485.27	21.61823	YES	YES
122 a 1492.37 20.24407 YES YES 123 b 1495.73 0.00603 YES YES 124 a 2919.73 4.37635 YES YES 125 b 2919.79 90.98434 YES YES 126 b 2920.21 79.17380 YES YES 127 a 2920.42 2.34164 YES YES 128 b 2921.81 75.00907 YES YES 129 a 2922.22 135.20792 YES YES 130 b 2923.26 70.62571 YES YES 131 a 2923.29 5.86851 YES YES 133 a 2925.52 44.65814 YES YES 134 b 2992.53 34.94925 YES YES 135 a 2992.70 0.08517 YES YES 136 a 2993.37 14.16930 YES YES 137 b 2993.44	121	а	1489.98	0.14423	YES	YES
123b1495.730.00603YESYES124a2919.734.37635YESYES125b2919.7990.98434YESYES126b2920.2179.17380YESYES127a2920.422.34164YESYES128b2921.8175.00907YESYES129a2922.22135.20792YESYES130b2923.2670.62571YESYES131a2923.295.86851YESYES133a2925.5244.65814YESYES134b2992.5334.94925YESYES135a2992.700.08517YESYES136a2993.3714.16930YESYES138b2993.884.41273YESYES139a2994.180.00786YESYES140a2994.940.89946YESYES144a3001.080.30167YESYES145b3026.7715.79793YESYES146a3027.040.51512YESYES	122	а	1492.37	20.24407	YES	YES
124a2919.734.37635YESYES125b2919.7990.98434YESYES126b2920.2179.17380YESYES127a2920.422.34164YESYES128b2921.8175.00907YESYES129a2922.22135.20792YESYES130b2923.2670.62571YESYES131a2923.295.86851YESYES132b2924.2266.44031YESYES133a2925.5244.65814YESYES134b2992.5334.94925YESYES135a2992.700.08517YESYES136a2993.3714.16930YESYES137b2993.448.80579YESYES138b2993.884.41273YESYES140a2994.940.89946YESYES141b2994.972.35808YESYES143a3001.080.30167YESYES144a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	123	b	1495.73	0.00603	YES	YES
125b2919.7990.98434YESYES126b2920.2179.17380YESYES127a2920.422.34164YESYES128b2921.8175.00907YESYES129a2922.22135.20792YESYES130b2923.2670.62571YESYES131a2923.295.86851YESYES132b2924.2266.44031YESYES133a2925.5244.65814YESYES134b2992.700.08517YESYES135a2992.700.08517YESYES136a2993.3714.16930YESYES137b2993.448.80579YESYES138b2993.884.41273YESYES139a2994.940.89946YESYES140a2994.972.35808YESYES141b2994.972.35808YESYES143a3001.080.30167YESYES144a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	124	а	2919.73	4.37635	YES	YES
126b2920.2179.17380YESYES127a2920.422.34164YESYES128b2921.8175.00907YESYES129a2922.22135.20792YESYES130b2923.2670.62571YESYES131a2923.295.86851YESYES132b2924.2266.44031YESYES133a2925.5244.65814YESYES134b2992.5334.94925YESYES135a2992.700.08517YESYES136a2993.3714.16930YESYES138b2993.884.41273YESYES139a2994.180.00786YESYES140a2994.940.89946YESYES141b2994.972.35808YESYES143a3001.080.30167YESYES144a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	125	b	2919.79	90.98434	YES	YES
127a2920.422.34164YESYES128b2921.8175.00907YESYES129a2922.22135.20792YESYES130b2923.2670.62571YESYES131a2923.295.86851YESYES132b2924.2266.44031YESYES133a2925.5244.65814YESYES134b2992.5334.94925YESYES135a2992.700.08517YESYES136a2993.3714.16930YESYES137b2993.448.80579YESYES138b2993.884.41273YESYES140a2994.940.89946YESYES141b2994.972.35808YESYES143a3001.080.30167YESYES144a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	126	b	2920.21	79.17380	YES	YES
128b2921.8175.00907YESYES129a2922.22135.20792YESYES130b2923.2670.62571YESYES131a2923.295.86851YESYES132b2924.2266.44031YESYES133a2925.5244.65814YESYES134b2992.5334.94925YESYES135a2992.700.08517YESYES136a2993.3714.16930YESYES137b2993.448.80579YESYES138b2993.884.41273YESYES139a2994.180.00786YESYES140a2994.972.35808YESYES141b2994.972.35808YESYES143a3001.080.30167YESYES144a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	127	а	2920.42	2.34164	YES	YES
129a2922.22135.20792YESYES130b2923.2670.62571YESYES131a2923.295.86851YESYES132b2924.2266.44031YESYES133a2925.5244.65814YESYES134b2992.5334.94925YESYES135a2992.700.08517YESYES136a2993.3714.16930YESYES137b2993.448.80579YESYES138b2993.884.41273YESYES139a2994.180.00786YESYES140a2994.972.35808YESYES141b2994.972.35808YESYES143a3001.080.30167YESYES144a3026.7715.79793YESYES146a3027.040.51512YESYES	128	b	2921.81	75.00907	YES	YES
130b2923.2670.62571YESYES131a2923.295.86851YESYES132b2924.2266.44031YESYES133a2925.5244.65814YESYES134b2992.5334.94925YESYES135a2992.700.08517YESYES136a2993.3714.16930YESYES137b2993.448.80579YESYES138b2993.884.41273YESYES139a2994.180.00786YESYES140a2994.940.89946YESYES141b2994.972.35808YESYES142b3000.1912.60812YESYES143a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	129	а	2922.22	135.20792	YES	YES
131a2923.295.86851YESYES132b2924.2266.44031YESYES133a2925.5244.65814YESYES134b2992.5334.94925YESYES135a2992.700.08517YESYES136a2993.3714.16930YESYES137b2993.448.80579YESYES138b2993.884.41273YESYES139a2994.180.00786YESYES140a2994.940.89946YESYES141b2994.972.35808YESYES143a3001.080.30167YESYES144a3026.7715.79793YESYES146a3027.040.51512YESYES	130	b	2923.26	70.62571	YES	YES
132b2924.2266.44031YESYES133a2925.5244.65814YESYES134b2992.5334.94925YESYES135a2992.700.08517YESYES136a2993.3714.16930YESYES137b2993.448.80579YESYES138b2993.884.41273YESYES139a2994.180.00786YESYES140a2994.972.35808YESYES141b2994.972.35808YESYES142b3000.1912.60812YESYES143a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	131	a	2923.29	5.86851	YES	YES
133a2925.5244.65814YESYES134b2992.5334.94925YESYES135a2992.700.08517YESYES136a2993.3714.16930YESYES137b2993.448.80579YESYES138b2993.884.41273YESYES139a2994.180.00786YESYES140a2994.940.89946YESYES141b2994.972.35808YESYES142b3000.1912.60812YESYES143a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	132	b	2924.22	66.44031	YES	YES
135a135i 135i 135i 135134b2992.5334.94925YESYES135a2992.700.08517YESYES136a2993.3714.16930YESYES137b2993.448.80579YESYES138b2993.884.41273YESYES139a2994.180.00786YESYES140a2994.940.89946YESYES141b2994.972.35808YESYES142b3000.1912.60812YESYES143a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	133	a	2925.52	44.65814	YES	YES
13121353135115115135a2992.700.08517YESYES136a2993.3714.16930YESYES137b2993.448.80579YESYES138b2993.884.41273YESYES139a2994.180.00786YESYES140a2994.940.89946YESYES141b2994.972.35808YESYES142b3000.1912.60812YESYES143a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	134	ĥ	2992 53	34 94925	YES	YES
135a2931.700.00017115115136a2993.3714.16930YESYES137b2993.448.80579YESYES138b2993.884.41273YESYES139a2994.180.00786YESYES140a2994.940.89946YESYES141b2994.972.35808YESYES142b3000.1912.60812YESYES143a3001.080.30167YESYES144a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	135	a	2992.33	0.08517	VES	VES
130a2353.3714.10330113113137b2993.448.80579YESYES138b2993.884.41273YESYES139a2994.180.00786YESYES140a2994.940.89946YESYES141b2994.972.35808YESYES142b3000.1912.60812YESYES143a3001.080.30167YESYES144a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	135	а Э	2002.70	1/ 16030	VES	VES
137b2555.446.60575113138b2993.884.41273YESYES139a2994.180.00786YESYES140a2994.940.89946YESYES141b2994.972.35808YESYES142b3000.1912.60812YESYES143a3001.080.30167YESYES144a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	130	a b	2003 11	8 80579	VES	VES
136D2333.884.41273TE3TE3139a2994.180.00786YESYES140a2994.940.89946YESYES141b2994.972.35808YESYES142b3000.1912.60812YESYES143a3001.080.30167YESYES144a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	122	b	2002.99	0.00373 A A1272	VES	VES
135a2554.180.00780TESYES140a2994.940.89946YESYES141b2994.972.35808YESYES142b3000.1912.60812YESYES143a3001.080.30167YESYES144a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	120	U D	2993.00 2001 10	4.412/3 0.00796	VEC	VEC
140a2994.940.89940YESYES141b2994.972.35808YESYES142b3000.1912.60812YESYES143a3001.080.30167YESYES144a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	170	a	2334.10	0.00700	VEC	TES VEC
141D2994.972.35808YESYES142b3000.1912.60812YESYES143a3001.080.30167YESYES144a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	140	d L	2994.94	0.89940	TES	1ES VEC
142D3000.1912.60812YESYES143a3001.080.30167YESYES144a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	141	D	2994.97	2.35808	YES	YES
143a3001.080.30167YESYES144a3026.7715.79793YESYES145b3026.7910.68515YESYES146a3027.040.51512YESYES	142	b	3000.19	12.60812	YES	YES
144 a 3026.77 15.79793 YES YES 145 b 3026.79 10.68515 YES YES 146 a 3027.04 0.51512 YES YES	143	а	3001.08	0.30167	YES	YES
145 b 3026.79 10.68515 YES YES 146 a 3027.04 0.51512 YES YES	144	a	3026.77	15.79793	YES	YES
146 a 3027.04 0.51512 YES YES	145	b	3026.79	10.68515	YES	YES
	146	а	3027.04	0.51512	YES	YES

147	b	3027.11	16.36209	YES	YES
148	b	3028.07	9.87928	YES	YES
149	а	3028.16	32.59178	YES	YES
150	b	3036.29	30.46914	YES	YES
151	а	3037.80	4.84809	YES	YES
152	а	3040.37	15.33959	YES	YES
153	b	3040.65	3.11616	YES	YES

[SnCp*]⁺

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory.

1.88779874177138	-1.37156607021192	-0.12758639081768	С	
1.88779874177138	1.37156607021192	-0.12758639081768	С	
-0.72107495543738	2.21924051941901	-0.12758639081768	С	
-2.33344757266800	0.000000000000000	-0.12758639081768	С	
-0.72107495543738	-2.21924051941901	-0.12758639081768	С	
4.17007745835804	-3.02973861857364	0.15996198251824	С	
5.88428755065090	-2.17621118485616	-0.69243384956556	h	
3.88804468113190	-4.92380377933160	-0.69243384956556	h	
4.57465522677582	-3.32368157321463	2.20562660482398	h	
4.17007745835804	3.02973861857364	0.15996198251824	С	
4.57465522677582	3.32368157321463	2.20562660482398	h	
3.88804468113190	4.92380377933160	-0.69243384956556	h	
5.88428755065090	2.17621118485616	-0.69243384956556	h	
-1.59282785337299	4.90222006188028	0.15996198251824	С	
-3.48134378793314	5.21928927441828	-0.69243384956556	h	
-0.25135497525178	6.26877625827038	-0.69243384956556	h	
-1.74736280981600	5.37782975324300	2.20562660482398	h	
-5.15449920997011	0.00000000000000	0.15996198251824	С	
-6.03963346859789	-1.69810561062333	-0.69243384956556	h	
-6.03963346859789	1.69810561062333	-0.69243384956556	h	
-5.65458483391961	0.000000000000000	2.20562660482398	h	
-1.59282785337299	-4.90222006188028	0.15996198251824	С	
-1.74736280981600	-5.37782975324300	2.20562660482398	h	
-0.25135497525178	-6.26877625827038	-0.69243384956556	h	
-3.48134378793314	-5.21928927441828	-0.69243384956556	h	
0.00000000000000	0.00000000000000	-4.26567248696892	sn	

mode	symmetry	wave number	IR intensity	select	on rules
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	e1	126.00	0.21762	YES	YES
8	e1	126.00	0.21762	YES	YES
9	e2	133.85	0.00000	NO	YES
10	e2	133.85	0.00000	NO	YES
11	a2	135.65	0.00000	NO	NO
12	a1	137.72	0.06674	YES	YES
13	e1	143.16	0.40105	YES	YES

14	e1	143.16	0.40105	YES	YES
15	e2	144.89	0.00000	NO	YES
16	e2	144.89	0.00000	NO	YES
17	e1	278.24	0.38314	YES	YES
18	e1	278.24	0.38314	YES	YES
19	e2	283.54	0.00000	NO	YES
20	e2	283.54	0.00000	NO	VES
20	21	200.04	40 76665	VES	VES
21	a1 01	200 12	40.70005	VES	VES
22	e1	200.45	0.02925	TES	YES
23	el	388.43	0.02923	TES	YES
24	ez	532.59	0.00000	NO	YES
25	e2	532.59	0.00000	NO	YES
26	a2	540.72	0.00000	NO	NO
27	al	587.39	2.82887	YES	YES
28	e2	600.90	0.00000	NO	YES
29	e2	600.90	0.00000	NO	YES
30	e1	794.49	3.86458	YES	YES
31	e1	794.49	3.86458	YES	YES
32	e2	928.21	0.00000	NO	YES
33	e2	928.21	0.00000	NO	YES
34	e1	1001.32	14.41134	YES	YES
35	e1	1001.32	14.41134	YES	YES
36	a1	1005.17	4.07450	YES	YES
37	e2	1005.45	0.00000	NO	YES
38	e2	1005.45	0.00000	NO	YES
39	е <u>-</u>	1057 24	5 14223	VES	VES
40	e1	1057.24	5 14223	YES	VES
40 //1	22	1085.03	0.00000	NO	NO
41	o2	1155.06	0.00000	NO	VES
42	62	1155.90	0.00000	NO	VES
45	ez 02	1133.90	0.00000	NO	TES VES
44	ez	1347.85	0.00000	NO	YES
45	ez	1347.85	0.00000	NU	YES
46	el	1365.02	10.40076	YES	YES
47	e1	1365.02	10.40076	YES	YES
48	a1	1367.59	4.19955	YES	YES
49	e2	1384.96	0.00000	NO	YES
50	e2	1384.96	0.00000	NO	YES
51	e1	1399.66	2.96309	YES	YES
52	e1	1399.66	2.96309	YES	YES
53	al	1406.27	64.78513	YES	YES
54	a2	1412.36	0.00000	NO	NO
55	e2	1416.75	0.00000	NO	YES
56	e2	1416.75	0.00000	NO	YES
57	e1	1425.35	1.70402	YES	YES
58	e1	1425.35	1.70402	YES	YES
59	a1	1442.17	35.21515	YES	YES
60	e2	1447 02	0.00000	NO	YES
61	<u>م</u>	1447.02	0.00000	NO	VES
62	<u>ح</u>	1/62 00	62 25001	VEC	VEC
62	e1	1403.90	02.239UI		
03	er	1403.98	02.25901	TES	1ES VEC
64	ez	2950.79	0.00000	NO	YES
65	e2	2950.79	0.00000	NO	YES
66	e1	2950.95	5.17247	YES	YES

67	e1	2950.95	5.17247	YES	YES
68	a1	2950.98	0.19823	YES	YES
69	e1	3032.54	5.52550	YES	YES
70	e1	3032.54	5.52550	YES	YES
71	a1	3032.63	0.25526	YES	YES
72	e2	3033.12	0.00000	NO	YES
73	e2	3033.12	0.00000	NO	YES
74	a2	3064.72	0.00000	NO	NO
75	e1	3065.62	6.43753	YES	YES
76	e1	3065.62	6.43753	YES	YES
77	e2	3065.95	0.00000	NO	YES
78	e2	3065.95	0.00000	NO	YES

SnCp*₂

0.0000000000000000000000000000000000000	-0.00000000000000	1.20854652324380	sn
4.09920355070885	3.32971946347570	0.23857286526907	С
3.61419887626404	1.82541156142356	-1.98766819087465	С
4.40991048880231	-0.73296547063096	-1.45446906782970	С
5.38333616802707	-0.78866241105547	1.09265106632429	С
5.19160472203681	1.71012581266315	2.12561113239194	С
-5.38333616802707	0.78866241105547	1.09265106632429	С
-4.40991048880231	0.73296547063096	-1.45446906782970	С
-3.61419887626404	-1.82541156142356	-1.98766819087465	С
-4.09920355070885	-3.32971946347570	0.23857286526907	С
-5.19160472203681	-1.71012581266315	2.12561113239194	С
-3.71256062481383	-6.13694484890116	0.45495299796115	С
-2.76717652763590	-2.82031174575720	-4.51191738363433	С
-4.49172861031814	2.87758615551648	-3.31793662696154	С
-6.06743100788419	-2.51878019621233	4.70666203552601	С
-6.53800303407269	3.04891583626680	2.37111747296096	С
6.06743100788419	2.51878019621233	4.70666203552601	С
6.53800303407269	-3.04891583626680	2.37111747296096	С
4.49172861031814	-2.87758615551648	-3.31793662696154	С
2.76717652763590	2.82031174575720	-4.51191738363433	С
3.71256062481383	6.13694484890116	0.45495299796115	С
2.12140652245704	6.80474249519657	-0.74340628486552	h
5.42698934672503	7.20460188915413	-0.15588306652526	h
3.30239824258451	6.72525408022873	2.42967107860727	h
1.45539084026209	4.44756591536016	-4.31580477452041	h
1.78191187324625	1.35143590744003	-5.64347705827247	h
4.40406394928960	3.48624803360339	-5.66442984617442	h
3.04992703785419	-2.65654383340134	-4.82649737317533	h
4.15752172920336	-4.73648253615066	-2.39747358206937	h
6.36950061585967	-2.99842545686450	-4.27182618436636	h
5.69854239210084	-4.84993419190683	1.68944970552022	h
6.28852664463745	-2.98731809810627	4.45672549960277	h
8.61327192265394	-3.16929016323487	2.01008253320845	h
4.94223597773774	4.13078449334240	5.44836188972098	h

8.08305221385935	3.14022029353791	4.68867418000715	h	
5.92550480852958	0.95903243899403	6.10781884051904	h	
-5.69854239210083	4.84993419190683	1.68944970552022	h	
-6.28852664463745	2.98731809810627	4.45672549960277	h	
-8.61327192265394	3.16929016323487	2.01008253320845	h	
-4.15752172920336	4.73648253615066	-2.39747358206937	h	
-6.36950061585967	2.99842545686450	-4.27182618436636	h	
-3.04992703785419	2.65654383340134	-4.82649737317533	h	
-1.78191187324625	-1.35143590744003	-5.64347705827247	h	
-4.40406394928960	-3.48624803360339	-5.66442984617442	h	
-1.45539084026209	-4.44756591536016	-4.31580477452041	h	
-2.12140652245704	-6.80474249519657	-0.74340628486552	h	
-5.42698934672503	-7.20460188915413	-0.15588306652526	h	
-3.30239824258451	-6.72525408022873	2.42967107860727	h	
-5.92550480852958	-0.95903243899403	6.10781884051904	h	
-4.94223597773774	-4.13078449334240	5.44836188972098	h	
-8.08305221385935	-3.14022029353791	4.68867418000715	h	

mode	symmetry	wave number	IR intensity	selecti	on rules
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	b	11.57	0.00516	YES	YES
8	а	19.35	0.00009	YES	YES
9	а	51.88	0.01437	YES	YES
10	b	83.06	0.26066	YES	YES
11	а	84.80	0.15874	YES	YES
12	b	86.15	0.01664	YES	YES
13	а	86.81	0.62334	YES	YES
14	а	88.49	0.00023	YES	YES
15	b	99.86	0.56471	YES	YES
16	а	108.05	0.04537	YES	YES
17	b	108.73	0.13980	YES	YES
18	b	114.59	0.07102	YES	YES
19	а	115.22	0.08943	YES	YES
20	а	117.39	0.19724	YES	YES
21	b	118.93	0.23796	YES	YES
22	b	133.52	0.26491	YES	YES
23	b	135.28	6.23826	YES	YES
24	а	141.34	0.00505	YES	YES
25	b	141.97	0.00170	YES	YES
26	а	142.71	0.00047	YES	YES
27	а	154.34	0.02252	YES	YES
28	а	168.46	0.00011	YES	YES
29	b	171.67	0.12089	YES	YES
30	b	256.18	251.87512	YES	YES
31	b	274.56	4.64528	YES	YES
32	а	275.23	0.72459	YES	YES
33	а	277.78	1.02599	YES	YES
34	b	278.08	15.35633	YES	YES
35	а	281.34	0.06734	YES	YES

36	b	281.77	0.21737	YES	YES
37	а	283.15	0.04667	YES	YES
38	b	286.62	1.26252	YES	YES
39	b	313.92	1.51500	YES	YES
40	а	319.17	0.13243	YES	YES
41	b	362.78	12.69110	YES	YES
42	a	366.94	0.00015	YES	YES
42	a	409 19	5 40835	VES	VES
45	a	522 02	0.00/12	VES	VES
44	a h	535.55	0.00413	VES	VES
45	D h	530.05	0.27214		TES VES
40	U	540.09	0.17460	TES	TES VEC
47	a	540.81	0.00464	YES	YES
48	D	545.94	0.02983	YES	YES
49	a	546.11	0.00221	YES	YES
50	b	589.27	11.33161	YES	YES
51	а	590.74	0.18189	YES	YES
52	а	591.58	0.01819	YES	YES
53	b	598.97	0.64555	YES	YES
54	b	620.93	0.29225	YES	YES
55	а	624.21	0.44383	YES	YES
56	b	799.67	4.85474	YES	YES
57	а	800.27	3.97307	YES	YES
58	b	803.14	1.03026	YES	YES
59	а	803.24	0.33204	YES	YES
60	a	928.47	0.01851	YES	YES
61	ц h	932 14	0 20387	YES	VES
62	b	934 78	0.31120	VES	VES
62	2	026 75	0.1221/	VES	VES
64	a	1006 44	10 70161	VEC	VES
65	ŭ	1000.44	9 70712		TES VES
05	d	1000.87	8.79713	TES	YES
66	D	1008.24	10.15787	YES	YES
67	a	1008.30	5.93360	YES	YES
68	b	1015.60	2.93708	YES	YES
69	а	1018.49	0.22595	YES	YES
70	b	1019.78	0.08631	YES	YES
71	а	1021.29	3.40757	YES	YES
72	b	1024.31	0.08101	YES	YES
73	а	1024.32	0.01219	YES	YES
74	b	1055.86	4.98649	YES	YES
75	а	1056.14	3.09352	YES	YES
76	b	1057.37	3.58109	YES	YES
77	а	1057.73	0.65462	YES	YES
78	b	1086.06	0.06857	YES	YES
79	a	1086.76	0.00449	YES	YES
80	a	1154 64	0.00536	YES	VES
81 81	h	1157 27	1 29033	VFS	VFS
82	5 h	1166 /1	0 15020	VES	VEC
02 02	u	1167.24	0.13080		
03 04	d	110/.24	0.07828	TES	TES
84	a	1349.72	1.64151	YES	YES
85	а	1351.19	0.00323	YES	YES
86	a	1354.32	0.02574	YES	YES
87	b	1355.83	2.70943	YES	YES
88	b	1362.15	5.06298	YES	YES

89	а	1363.03	0.04504	YES	YES
90	b	1366.54	35.89739	YES	YES
91	а	1367.05	0.61911	YES	YES
92	b	1368.41	16.46785	YES	YES
93	а	1374.66	0.53391	YES	YES
94	а	1386.51	0.01077	YES	YES
95	b	1388.90	0.16351	YES	YES
96	b	1392.22	0.52174	YES	YES
97	a	1392 29	0 43263	YES	YES
98	a	1410.68	1.08474	YES	YES
99	а b	1412.88	14 74273	YES	VES
100	ə b	1414 23	4 43466	YES	VES
101	2	1/1///3	6 303/12	VES	VES
101	a b	1/15 20	17 62084	VES	VES
102	U C	1415.80	17.02004 9.04412	TES VES	VES
103	a	1410.45	0.04415	TES VES	VES
104	a	1417.65	0.57169		TES VES
105	D	1420.69	8.07380	YES	YES
106	D	1420.98	8.80189	YES	YES
107	b	1421.91	39.25641	YES	YES
108	a	1422.25	0.52848	YES	YES
109	b	1423.10	43.70240	YES	YES
110	а	1424.45	1.18535	YES	YES
111	а	1425.48	1.47533	YES	YES
112	b	1428.44	3.43089	YES	YES
113	а	1428.60	6.87376	YES	YES
114	b	1444.33	3.51524	YES	YES
115	а	1448.54	0.00009	YES	YES
116	а	1449.24	0.23424	YES	YES
117	b	1452.16	0.70155	YES	YES
118	b	1453.77	0.30371	YES	YES
119	а	1457.79	0.19116	YES	YES
120	b	1478.28	26.20436	YES	YES
121	а	1483.36	0.05537	YES	YES
122	а	1485.74	20.31020	YES	YES
123	b	1488.52	0.05560	YES	YES
124	а	2916.45	3.20703	YES	YES
125	b	2916.55	115.13839	YES	YES
126	b	2916.76	74.44552	YES	YES
127	а	2917.03	6.16082	YES	YES
128	b	2918.33	29.38402	YES	YES
129	a	2918.55	123.19675	YES	YES
130	b	2918.71	114,84175	YES	YES
131	≈ a	2918 84	39 56889	YES	YES
132	а b	2919.89	107 16627	VES	VES
132	2	2921.05	29 83679	VES	VES
13/	a b	2020.20	17 33603	VES	VES
125	U C	2000.22	19 20517	VES	VEC
126	a	2909.33	7 27/10	VEC	VEC
107	a h	2330.03	2.32440 0 00157	VEC	VEC
120	U L	2330.33	J.00432		
138 120	u	2331.13	2.20204		TES
139	d L	2991.44	0.01906	TES	TES
140	a	2994.73	18.68164	YES	YES
141	а	2994.85	0.55426	YES	YES

142	b	2996.74	5.59596	YES	YES
143	а	2997.28	0.04110	YES	YES
144	а	3024.30	0.63987	YES	YES
145	b	3024.35	30.81902	YES	YES
146	а	3025.55	0.18256	YES	YES
147	b	3025.66	2.64365	YES	YES
148	b	3026.03	9.06955	YES	YES
149	а	3026.18	44.76923	YES	YES
150	b	3033.75	31.24612	YES	YES
151	а	3034.76	2.58163	YES	YES
152	а	3037.73	14.91904	YES	YES
153	b	3037.97	5.59551	YES	YES

[PbCp*]⁺

				_
1.88816792446246	-1.37183429713759	-0.17034042134697	С	
1.88816792446246	1.37183429713759	-0.17034042134697	С	
-0.72121597067731	2.21967451970144	-0.17034042134697	С	
-2.33390390757029	0.000000000000000	-0.17034042134697	С	
-0.72121597067731	-2.21967451970144	-0.17034042134697	С	
4.16602105451009	-3.02679146866733	0.17243711001667	С	
5.89512854838541	-2.18415128002220	-0.66115543916134	h	
3.89894621291553	-4.93166055652688	-0.66115543916134	h	
4.54046356758163	-3.29883987870701	2.22735299224324	h	
4.16602105451009	3.02679146866733	0.17243711001667	С	
4.54046356758163	3.29883987870701	2.22735299224324	h	
3.89894621291553	4.93166055652688	-0.66115543916134	h	
5.89512854838541	2.18415128002220	-0.66115543916134	h	
-1.59127844497517	4.89745147316195	0.17243711001667	С	
-3.48544726849592	5.23208512493305	-0.66115543916134	h	
-0.25555640196351	6.28154028415219	-0.66115543916134	h	
-1.73430275813558	5.33763504719152	2.22735299224324	h	
-5.14948521906982	0.0000000000000000000000000000000000000	0.17243711001667	С	
-6.05307109084151	-1.69805411728550	-0.66115543916134	h	
-6.05307109084151	1.69805411728550	-0.66115543916134	h	
-5.61232161889210	0.0000000000000000000000000000000000000	2.22735299224324	h	
-1.59127844497517	-4.89745147316195	0.17243711001667	С	
-1.73430275813558	-5.33763504719152	2.22735299224324	h	
-0.25555640196351	-6.28154028415219	-0.66115543916134	h	
-3.48544726849592	-5.23208512493305	-0.66115543916134	h	
0.00000000000000	0.0000000000000000000000000000000000000	-4.53569401295223	pb	

mode	symmetry	wave number	IR intensity	select	ion rules
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	e1	113.55	0.05955	YES	YES
8	e1	113.55	0.05955	YES	YES
9	a1	131.16	0.49690	YES	YES
10	e2	137.41	0.00000	NO	YES
11	e2	137.41	0.00000	NO	YES
12	a2	138.05	0.00000	NO	NO
13	e1	142.87	0.51063	YES	YES
14	e1	142.87	0.51063	YES	YES
15	e2	144.50	0.00000	NO	YES
16	e2	144.50	0.00000	NO	YES
17	e1	275.83	0.46870	YES	YES
18	e1	275.83	0.46870	YES	YES
19	e2	281.76	0.00000	NO	YES
20	e2	281.76	0.00000	NO	YES
21	a1	296.46	28.19857	YES	YES
22	e1	375.73	0.13018	YES	YES
23	e1	375.73	0.13018	YES	YES
24	e2	529.90	0.00000	NO	YES
25	e2	529.90	0.00000	NO	YES
26	a2	541.36	0.00000	NO	NO
27	a1	588.10	2.46894	YES	YES
28	e2	608.12	0.00000	NO	YES
29	e2	608.12	0.00000	NO	YES
30	e1	794.90	3.33255	YES	YES
31	e1	794.90	3.33255	YES	YES
32	e2	927.30	0.00000	NO	YES
33	e2	927.30	0.00000	NO	YES
34	e1	1000.12	15.61629	YES	YES
35	e1	1000.12	15.61629	YES	YES
36	a1	1004.57	6.45452	YES	YES
37	e2	1005.83	0.00000	NO	YES
38	e2	1005.83	0.00000	NO	YES
39	e1	1057.09	5.21260	YES	YES
40	e1	1057.09	5.21260	YES	YES
41	a2	1085.20	0.00000	NO	NO
42	e2	1153.37	0.00000	NO	YES
43	e2	1153.37	0.00000	NO	YES
44	e2	1346.57	0.00000	NO	YES
45	e2	1346.57	0.00000	NO	YES
46	e1	1365.35	8.25819	YES	YES
47	el	1365.35	8.25819	YES	YES
48	a1	1367.31	9.21019	YES	YES
49	e2	1383.50	0.00000	NO	YES
50	e2	1383.50	0.00000	NO	YES
51	e1	1399.95	2.29487	YES	YES
52	e1	1399.95	2.29487	YES	YES
53	a1	1405.45	71.32890	YES	YES
54	a2	1413.09	0.00000	NO	NO

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory).

55	e2	1417.16	0.00000	NO	YES
56	e2	1417.16	0.00000	NO	YES
57	e1	1425.76	1.39181	YES	YES
58	e1	1425.76	1.39181	YES	YES
59	a1	1441.86	31.61357	YES	YES
60	e2	1445.77	0.00000	NO	YES
61	e2	1445.77	0.00000	NO	YES
62	e1	1462.31	61.67713	YES	YES
63	e1	1462.31	61.67713	YES	YES
64	e2	2947.97	0.00000	NO	YES
65	e2	2947.97	0.00000	NO	YES
66	e1	2948.03	7.44728	YES	YES
67	e1	2948.03	7.44728	YES	YES
68	a1	2948.11	0.74382	YES	YES
69	e1	3029.11	6.37369	YES	YES
70	e1	3029.11	6.37369	YES	YES
71	a1	3029.15	0.23874	YES	YES
72	e2	3029.84	0.00000	NO	YES
73	e2	3029.84	0.00000	NO	YES
74	a2	3061.93	0.00000	NO	NO
75	e1	3062.87	8.36499	YES	YES
76	e1	3062.87	8.36499	YES	YES
77	e2	3063.18	0.00000	NO	YES
78	e2	3063.18	0.00000	NO	YES

PbCp*₂

-0.0000000000000	0.000000000000000	1.34955689358885	pb
4.21274628102858	3.35919514969575	0.29676948084204	С
3.69016344272230	1.85995925909786	-1.92460547857403	С
4.49441290167835	-0.69955830567832	-1.41263309642706	С
5.50947958796139	-0.76382474049137	1.11893164564893	С
5.33444846156177	1.73344275243950	2.16286031407874	С
-5.50947958796139	0.76382474049137	1.11893164564893	С
-4.49441290167835	0.69955830567832	-1.41263309642706	С
-3.69016344272230	-1.85995925909786	-1.92460547857403	С
-4.21274628102858	-3.35919514969573	0.29676948084204	С
-5.33444846156177	-1.73344275243950	2.16286031407874	С
-3.86375079652109	-6.17203404615777	0.51422892889697	С
-2.81347150216372	-2.86118711260346	-4.43740018669911	С
-4.56008993136629	2.83071850106515	-3.29332198854803	С
-6.28698869247574	-2.54215489555919	4.71750242465455	С
-6.71997098408365	3.01680521100618	2.36020355875048	С
6.28698869247574	2.54215489555919	4.71750242465455	С
6.71997098408365	-3.01680521100618	2.36020355875048	С
4.56008993136629	-2.83071850106515	-3.29332198854803	С
2.81347150216372	2.86118711260346	-4.43740018669911	С
3.86375079652109	6.17203404615777	0.51422892889697	С
2.26218256814924	6.86015968081939	-0.65909861905281	h

5.58058961487096	7.21791442424319	-0.12753006368060	h
3.49553488775957	6.77133121473771	2.49422167914947	h
1.50144859567493	4.48685666283175	-4.22448870345223	h
1.81697887998095	1.39388644046306	-5.56178113686021	h
4.43511157203340	3.53266993278450	-5.60870766302990	h
3.04757400343534	-2.64800844667565	-4.73775751141606	h
4.32414373822173	-4.70423259071638	-2.37228594445438	h
6.39647421470651	-2.88992412122907	-4.33087544892795	h
5.88813323871642	-4.82655617874594	1.69159977940088	h
6.52211790028197	-2.96726493187435	4.45185608379940	h
8.78767521134056	-3.11183430040567	1.95010053813072	h
5.19679181387221	4.16548057931703	5.48676515663656	h
8.30610677251334	3.14897711395991	4.64283723220676	h
6.17585535590724	0.98767101918010	6.12783057213248	h
-5.88813323871641	4.82655617874594	1.69159977940088	h
-6.52211790028197	2.96726493187435	4.45185608379940	h
-8.78767521134056	3.11183430040567	1.95010053813072	h
-4.32414373822173	4.70423259071638	-2.37228594445438	h
-6.39647421470651	2.88992412122907	-4.33087544892795	h
-3.04757400343534	2.64800844667565	-4.73775751141606	h
-1.81697887998095	-1.39388644046306	-5.56178113686021	h
-4.43511157203340	-3.53266993278450	-5.60870766302990	h
-1.50144859567493	-4.48685666283175	-4.22448870345223	h
-2.26218256814924	-6.86015968081939	-0.65909861905281	h
-5.58058961487096	-7.21791442424319	-0.12753006368060	h
-3.49553488775957	-6.77133121473771	2.49422167914947	h
-6.17585535590724	-0.98767101918010	6.12783057213248	h
-5.19679181387221	-4.16548057931703	5.48676515663656	h
-8.30610677251334	-3.14897711395991	4.64283723220676	h

mode	symmetry	wave	IR intensity	selection	
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	а	9.62	0.00008	YES	YES
8	b	15.78	0.04243	YES	YES
9	а	47.32	0.12168	YES	YES
10	а	78.46	0.74954	YES	YES
11	b	82.44	0.36416	YES	YES
12	b	84.58	0.72776	YES	YES
13	а	86.87	0.00944	YES	YES
14	а	92.92	0.03991	YES	YES
15	b	93.34	0.04205	YES	YES
16	b	111.18	0.20681	YES	YES
17	а	111.68	0.03091	YES	YES
18	b	117.06	9.56877	YES	YES
19	а	125.65	0.06003	YES	YES
20	b	130.82	0.14154	YES	YES
21	b	132.16	0.34040	YES	YES
22	а	133.67	0.14771	YES	YES
23	а	138.11	0.00136	YES	YES

24	b	139.08	0.09160	YES	YES
25	а	141.55	0.00109	YES	YES
26	b	141.68	0.03394	YES	YES
27	а	153.00	0.00725	YES	YES
28	а	162.73	0.01952	YES	YES
29	b	167.82	0.00559	YES	YES
30	ə b	239 52	223 91614	VES	VES
21	b	233.32	223.31014	VES	VES
21	u	271.02	2.32470		
32	d	272.74	0.40767	TES VEC	YES
33	a	274.61	1.41311	YES	YES
34	a	275.80	4.13980	YES	YES
35	a	279.36	0.00184	YES	YES
36	b	280.00	0.03862	YES	YES
37	а	283.91	0.01779	YES	YES
38	b	286.97	0.35796	YES	YES
39	а	309.75	0.27679	YES	YES
40	b	310.21	0.29422	YES	YES
41	b	355.88	16.01935	YES	YES
42	а	358.30	3.45424	YES	YES
43	а	361.31	0.00304	YES	YES
44	а	534.60	0.00027	YES	YES
45	b	536.61	0.36771	YES	YES
46	b	539.79	0.17312	YES	YES
47	≈ a	540 55	0.01254	YES	VES
47	2	540.55	0.001234	VES	VES
40	a	544.44	0.00147	VES	VES
49	b	544.45	12 25612	TES VEC	TES VEC
50	u	589.33	12.25012	TES	YES
51	а	590.94	0.08163	YES	YES
52	a	599.65	0.05973	YES	YES
53	b	608.71	0.41113	YES	YES
54	b	626.90	0.30721	YES	YES
55	а	630.92	0.38999	YES	YES
56	b	798.03	4.42598	YES	YES
57	а	799.49	3.08282	YES	YES
58	а	801.35	0.82278	YES	YES
59	b	802.23	0.68956	YES	YES
60	а	926.06	0.01886	YES	YES
61	b	929.65	0.25694	YES	YES
62	b	934.44	0.32997	YES	YES
63	а	935.83	0.04458	YES	YES
64	b	1006 95	20 89730	YES	YES
65	2	1007.03	12 22/97	VES	VES
66	a	1007.03	12.22457	VES	VES
67	u c	1008.23	2 10226	VES	VES
67	a	1006.50	3.19520		TES VEC
68	D	1016.42	3.65017	YES	YES
69	а	1019.03	2.69913	YES	YES
70	а	1020.66	1.80941	YES	YES
71	b	1021.04	0.08022	YES	YES
72	b	1024.59	0.06875	YES	YES
73	а	1024.70	0.00451	YES	YES
74	b	1055.04	5.19631	YES	YES
75	а	1055.35	2.77806	YES	YES
76	h	1056 87	3 44549	VES	VES

77	а	1057.01	1.20878	YES	YES
78	b	1085.65	0.04058	YES	YES
79	а	1086.27	0.00005	YES	YES
80	а	1152.24	0.00488	YES	YES
81	b	1155.50	1.80516	YES	YES
82	b	1165.29	0.22493	YES	YES
83	~ a	1166 55	0.09724	YES	YES
84	u b	13/8 70	1 64047	VES	VES
0 4 95	5	12/0/2	0.00017	VES	VES
85 83	a	1252 72	0.00017	VES	VES
00 07	a	1333.73	1.02446		TES VES
07	D	1355.47	1.02440	TES	TES VEC
88	D	1362.77	0.06234	YES	YES
89	а	1363.48	0.11924	YES	YES
90	a	1365.95	0.36282	YES	YES
91	b	1366.02	50.45289	YES	YES
92	b	1368.22	22.36403	YES	YES
93	а	1374.54	0.87671	YES	YES
94	а	1383.97	0.00488	YES	YES
95	b	1386.15	0.05211	YES	YES
96	а	1390.19	0.32994	YES	YES
97	b	1390.59	0.34247	YES	YES
98	а	1410.96	1.91330	YES	YES
99	b	1413.23	18.65889	YES	YES
100	а	1414.81	4,24016	YES	YES
101	h	1415 01	5 66182	YES	YES
102	b	1416.18	23 29853	VES	VES
102	3	1416 72	8 45179	VES	VES
103	a 2	1/10.72	0.43175	VES	VES
104	a	1410.12	10.45401		TES VES
105	D	1420.19	18.40819	YES	YES
106	D	1420.97	20.65820	YES	YES
107	b	1422.26	43.38654	YES	YES
108	а	1423.10	0.00322	YES	YES
109	b	1423.64	3.13847	YES	YES
110	а	1423.70	6.21111	YES	YES
111	а	1424.84	0.61414	YES	YES
112	b	1428.07	2.27173	YES	YES
113	а	1428.14	4.25470	YES	YES
114	b	1443.44	3.88945	YES	YES
115	а	1446.23	0.24073	YES	YES
116	а	1448.66	0.15649	YES	YES
117	b	1451.11	0.53203	YES	YES
118	b	1453.45	0.15743	YES	YES
119	а	1456.81	0.19981	YES	YES
120	b	1476.52	23,35932	YES	YES
121	~ a	1481 36	0.00011	VES	VES
177	а Э	1/122 22	17 50610	VES	VES
172	a h	1/06 11	17.30010 0 11E13	VEC	VEC
123	u	1400.11	0.11010	TES	TES
124	a	2914.71	1.03914	YES	YES
125	b	2914.//	102.960/1	YES	YES
126	b	2915.02	81.07344	YES	YES
127	а	2915.21	11.25805	YES	YES
128	а	2916.04	40.53166	YES	YES
	ŭ			-	

130	b	2916.42	109.00450	YES	YES
131	а	2916.49	140.20608	YES	YES
132	b	2917.38	153.88059	YES	YES
133	а	2919.01	19.20279	YES	YES
134	b	2986.69	14.17564	YES	YES
135	а	2987.01	23.98806	YES	YES
136	а	2987.62	0.00000	YES	YES
137	b	2987.90	10.75335	YES	YES
138	b	2988.68	2.83603	YES	YES
139	а	2988.96	0.30634	YES	YES
140	b	2992.19	19.89420	YES	YES
141	а	2992.46	0.27451	YES	YES
142	b	2994.51	3.91781	YES	YES
143	а	2994.55	0.00707	YES	YES
144	а	3021.84	0.65488	YES	YES
145	b	3021.89	33.09600	YES	YES
146	а	3023.18	4.82198	YES	YES
147	b	3023.25	1.77281	YES	YES
148	b	3023.80	10.50910	YES	YES
149	а	3023.92	42.92207	YES	YES
150	b	3030.69	33.87527	YES	YES
151	а	3031.08	1.90886	YES	YES
152	а	3034.01	15.25990	YES	YES
153	b	3034.17	6.63372	YES	YES

dmap

0.000000000000000	0.000000000000000	5.89792762479475	n
0.000000000000000	-2.15028204090009	4.54218300667464	С
0.000000000000000	-2.27943016799427	1.89988467859110	С
0.000000000000000	0.00000000000000	0.46910364484354	С
0.000000000000000	2.27943016799427	1.89988467859110	С
0.000000000000000	2.15028204090009	4.54218300667464	С
0.000000000000000	0.000000000000000	-2.13587522635005	n
0.000000000000000	2.38080928104964	-3.50112545412983	С
0.000000000000000	-2.38080928104964	-3.50112545412983	С
0.000000000000000	-1.99852354397876	-5.55942738501177	h
-1.70348540367989	-3.54271967968016	-3.05855782932803	h
1.70348540367989	-3.54271967968016	-3.05855782932803	h
1.70348540367989	3.54271967968016	-3.05855782932803	h
-1.70348540367989	3.54271967968016	-3.05855782932803	h
0.000000000000000	1.99852354397876	-5.55942738501177	h
0.000000000000000	4.14116113248648	0.97865788028414	h
0.00000000000000	3.93026530469192	5.64136491060365	h
0.00000000000000	-3.93026530469192	5.64136491060365	h
0.000000000000000	-4.14116113248648	0.97865788028414	h

$\begin{array}{ c cm^{-1} } [km mol^{-1}] & [km mol^{-1}] & [km mol^{-1}] \\ \hline R \\ \hline [cm^{-1}] & [km mol^{-1}] & [km mol^{-1}] \\ \hline R \\ \hline R$	RAMAI YES YES YES YES YES YES YES
7b170.880.53657YES8a290.800.00000NO9b1143.250.00242YES10a2204.890.00000NO11b2245.910.15965YES12b1284.755.43474YES13a1378.301.06656YES14a2389.780.00000NO15b2472.103.09033YES16b1534.1113.24794YES17a1538.732.35162YES18b2663.790.36704YES19b1735.340.41794YES20a1752.496.31606YES21b1797.8538.93292YES22a2807.420.00000NO23b1930.940.12392YES24a2953.850.00000NO25a1976.3435.94850YES26a1976.3435.94850YES30b11110.870.23327YES31a21118.490.00000NO32a11166.840.00168YES33a11220.1719.14186YES34b21256.8142.03177YES35b21334.7815.56656YES36b21348.052.40777YES37a11371.4	YES YES YES YES YES YES YES
8 a2 90.80 0.00000 NO 9 b1 143.25 0.00242 YES 10 a2 204.89 0.00000 NO 11 b2 245.91 0.15965 YES 12 b1 284.75 5.43474 YES 13 a1 378.30 1.06656 YES 14 a2 389.78 0.00000 NO 15 b2 472.10 3.09033 YES 16 b1 534.11 13.24794 YES 17 a1 538.73 2.35162 YES 18 b2 663.79 0.36704 YES 19 b1 735.34 0.41794 YES 20 a1 752.49 6.31606 YES 21 b1 797.85 38.93292 YES 24 a2 953.85 0.00000 NO 25 a1 976.34 35.94850 YES	YES YES YES YES YES YES
9 b1 143.25 0.00242 YES 10 a2 204.89 0.0000 NO 11 b2 245.91 0.15965 YES 12 b1 284.75 5.43474 YES 13 a1 378.30 1.06656 YES 14 a2 389.78 0.00000 NO 15 b2 472.10 3.09033 YES 16 b1 534.11 13.24794 YES 17 a1 538.73 2.35162 YES 18 b2 663.79 0.36704 YES 20 a1 752.49 6.31606 YES 21 b1 797.85 38.93292 YES 22 a2 807.42 0.00000 NO 23 b1 930.94 0.12392 YES 24 a2 953.85 0.00000 NO 25 a1 976.34 35.94850 YE	YES YES YES YES YES
10a2204.890.00000NO11b2245.910.15965YES12b1284.75 5.43474 YES13a1378.301.06656YES14a2389.780.00000NO15b2472.10 3.09033 YES16b1 534.11 13.24794 YES17a1 538.73 2.35162 YES18b2663.79 0.36704 YES19b1735.34 0.41794 YES20a1752.49 6.31606 YES21b1797.8538.93292YES24a2953.85 0.00000 NO25a1959.2211.16178YES26a1976.3435.94850YES27b21055.2621.68037YES28a11067.04 0.49812 YES29b21101.322.15470YES30b11110.87 0.23327 YES34b21256.8142.03177YES35b21334.7815.56656YES36b21348.052.40777YES37a11371.4159.97813YES38b21398.15 0.94125 YES39a21419.46 0.00000 NO40b11428.3114.42949YES41b21432.19 0.04115 YES </td <td>YES YES YES YES</td>	YES YES YES YES
11b2245.91 0.15965 YES12b1284.75 5.43474 YES13a1378.30 1.06656 YES14a2389.78 0.0000 NO15b2 472.10 3.09033 YES16b1 534.11 13.24794 YES17a1 538.73 2.35162 YES18b2 663.79 0.36704 YES19b1 735.34 0.41794 YES20a1 752.49 6.31606 YES21b1 797.85 38.93292 YES22a2 807.42 0.00000 NO23b1 930.94 0.12392 YES24a2 953.85 0.00000 NO25a1 976.34 35.94850 YES26a1 976.34 35.94850 YES27b2 1055.26 21.68037 YES28a1 1067.04 0.49812 YES29b2 1101.32 2.15470 YES31a2 118.49 0.00000 NO32a1 1220.17 19.14186 YES34b2 1256.81 42.03177 YES35b2 1334.78 15.56656 YES36b2 1348.05 2.40777 YES37a1 1371.41 59.97813 YES38b2 1398.15 0.94115 YES	YES YES YES
12b1 284.75 5.43474 YES13a1 378.30 1.06656 YES14a2 389.78 0.0000 NO15b2 472.10 3.09033 YES16b1 534.11 13.24794 YES17a1 538.73 2.35162 YES18b2 663.79 0.36704 YES19b1 735.34 0.41794 YES20a1 752.49 6.31606 YES21b1 797.85 38.93292 YES22a2 807.42 0.00000 NO23b1 930.94 0.12392 YES24a2 953.85 0.00000 NO25a1 959.22 11.16178 YES26a1 976.34 35.94850 YES27b2 1055.26 21.68037 YES28a1 1067.04 0.49812 YES29b2 1101.32 2.15470 YES30b1 1110.87 0.23327 YES31a2 1138.49 0.00000 NO32a1 1166.84 0.00168 YES34b2 1256.81 42.03177 YES35b2 1334.78 15.56656 YES36b2 1348.05 2.40777 YES37a1 1371.41 59.97813 YES38b2 1398.15 0.94125 YES	YES YES
13a1 378.30 1.06656 YES14a2 389.78 0.00000 NO15b2 472.10 3.09033 YES16b1 534.11 13.24794 YES17a1 538.73 2.35162 YES18b2 663.79 0.36704 YES19b1 735.34 0.41794 YES20a1 752.49 6.31606 YES21b1 797.85 38.93292 YES22a2 807.42 0.00000 NO23b1 930.94 0.12392 YES24a2 953.85 0.00000 NO25a1 959.22 11.16178 YES26a1 976.34 35.94850 YES27b2 1055.26 21.68037 YES28a1 1067.04 0.49812 YES29b2 1101.32 2.15470 YES30b1 1110.87 0.23327 YES31a2 118.49 0.00000 NO32a1 166.84 0.00168 YES34b2 1256.81 42.03177 YES35b2 1334.78 15.56656 YES36b2 1348.05 2.40777 YES37a1 1371.41 59.97813 YES38b2 1398.15 0.94125 YES39a2 1419.46 0.00000 NO<	YES
14a2 389.78 0.00000 NO15b2 472.10 3.09033 YES16b1 534.11 13.24794 YES17a1 538.73 2.35162 YES18b2 663.79 0.36704 YES19b1 735.34 0.41794 YES20a1 752.49 6.31606 YES21b1 797.85 38.93292 YES22a2 807.42 0.00000 NO23b1 930.94 0.12392 YES24a2 953.85 0.00000 NO25a1 959.22 11.16178 YES26a1 976.34 35.94850 YES27b2 1055.26 21.68037 YES28a1 1067.04 0.49812 YES30b1 1110.87 0.23327 YES31a2 1118.49 0.00000 NO32a1 1166.84 0.00168 YES33a1 1220.17 19.14186 YES34b2 1256.81 42.03177 YES35b2 1334.78 15.56656 YES36b2 1348.05 2.40777 YES37a1 1371.41 59.97813 YES38b2 1398.15 0.94125 YES39a2 1449.46 0.00000 NO40b1 1428.31 14.42949 YES<	. = •
15b2472.10 3.09033 YES16b1 534.11 13.24794 YES17a1 538.73 2.35162 YES18b2 663.79 0.36704 YES19b1 735.34 0.41794 YES20a1 752.49 6.31606 YES21b1 797.85 38.93292 YES22a2 807.42 0.00000 NO23b1 930.94 0.12392 YES24a2 953.85 0.00000 NO25a1 959.22 11.16178 YES26a1 976.34 35.94850 YES27b2 1055.26 21.68037 YES28a1 1067.04 0.49812 YES30b1 1110.87 0.23327 YES31a2 1118.49 0.00000 NO32a1 1166.84 0.00168 YES33a1 1220.17 19.14186 YES34b2 1256.81 42.03177 YES35b2 1334.78 15.56656 YES36b2 1348.05 2.40777 YES37a1 1371.41 59.97813 YES38b2 1398.15 0.94125 YES39a2 1449.46 0.00000 NO40b1 1428.31 14.42949 YES41b2 1432.19 0.04115 YES<	YES
16b1 534.11 13.24794 YES17a1 538.73 2.35162 YES18b2 663.79 0.36704 YES19b1 735.34 0.41794 YES20a1 752.49 6.31606 YES21b1 797.85 38.93292 YES22a2 807.42 0.00000 NO23b1 930.94 0.12392 YES24a2 953.85 0.00000 NO25a1 959.22 11.16178 YES26a1 976.34 35.94850 YES27b2 1055.26 21.68037 YES28a1 1067.04 0.49812 YES29b2 1101.32 2.15470 YES30b1 1110.87 0.23327 YES31a2 118.49 0.00000 NO32a1 1266.81 42.03177 YES34b2 1256.81 42.03177 YES35b2 1334.78 15.56656 YES36b2 1348.05 2.40777 YES37a1 1371.41 59.97813 YES38b2 1398.15 0.94125 YES39a2 1449.46 0.00000 NO40b1 1428.31 14.42949 YES41b2 1432.19 0.04115 YES43b2 1462.03 4.27798 YE	YES
17a1 538.73 2.35162 YES18b2 663.79 0.36704 YES19b1 735.34 0.41794 YES20a1 752.49 6.31606 YES21b1 797.85 38.93292 YES22a2 807.42 0.00000 NO23b1 930.94 0.12392 YES24a2 953.85 0.00000 NO25a1 959.22 11.16178 YES26a1 976.34 35.94850 YES27b2 1055.26 21.68037 YES28a1 1067.04 0.49812 YES29b2 1101.32 2.15470 YES30b1 1110.87 0.23327 YES31a2 118.49 0.00000 NO32a1 1220.17 19.14186 YES34b2 1256.81 42.03177 YES35b2 1334.78 15.56656 YES36b2 1348.05 2.40777 YES37a1 1371.41 59.97813 YES38b2 1398.15 0.94125 YES39a2 1419.46 0.00000 NO40b1 1428.31 14.42949 YES41b2 1432.19 0.04115 YES42a1 1472.78 61.98874 YES44a1 1472.78 61.98874 <t< td=""><td>YES</td></t<>	YES
18b2 663.79 0.36704 YES19b1 735.34 0.41794 YES20a1 752.49 6.31606 YES21b1 797.85 38.93292 YES22a2 807.42 0.00000 NO23b1 930.94 0.12392 YES24a2 953.85 0.00000 NO25a1 959.22 11.16178 YES26a1 976.34 35.94850 YES27b2 1055.26 21.68037 YES28a1 1067.04 0.49812 YES29b2 1101.32 2.15470 YES30b1 1110.87 0.23327 YES31a2 118.49 0.00000 NO32a1 1266.81 42.03177 YES34b2 1256.81 42.03177 YES35b2 1334.78 15.56656 YES36b2 1348.05 2.40777 YES37a1 1371.41 59.97813 YES38b2 1398.15 0.94125 YES39a2 1419.46 0.00000 NO40b1 1428.31 14.42949 YES41b2 1432.19 0.04115 YES43b2 1462.03 4.27798 YES44a1 1472.78 61.98874 YES45a1 1516.60 90.51850 <td< td=""><td>YES</td></td<>	YES
19b1 735.34 0.41794 YES20a1 752.49 6.31606 YES21b1 797.85 38.93292 YES22a2 807.42 0.00000 NO23b1 930.94 0.12392 YES24a2 953.85 0.00000 NO25a1 959.22 11.16178 YES26a1 976.34 35.94850 YES27b2 1055.26 21.68037 YES28a1 1067.04 0.49812 YES29b2 1101.32 2.15470 YES30b1 1110.87 0.23327 YES31a2 1118.49 0.00000 NO32a1 1166.84 0.00168 YES33a1 1220.17 19.14186 YES34b2 1256.81 42.03177 YES35b2 1347.8 15.56656 YES36b2 1398.15 0.94125 YES39a2 1419.46 0.00000 NO40b1 1428.31 14.42949 YES41b2 1432.19 0.04115 YES42a1 14472.78 61.98874 YES44a1 1472.78 61.98874 YES	YES
20a1 752.49 6.31606 YES 21 b1 797.85 38.93292 YES 22 a2 807.42 0.00000 NO 23 b1 930.94 0.12392 YES 24 a2 953.85 0.00000 NO 25 a1 959.22 11.16178 YES 26 a1 976.34 35.94850 YES 27 b2 1055.26 21.68037 YES 28 a1 1067.04 0.49812 YES 29 b2 1101.32 2.15470 YES 30 b1 1110.87 0.23327 YES 31 a2 1118.49 0.00000 NO 32 a1 1166.84 0.00168 YES 34 b2 1256.81 42.03177 YES 35 b2 1334.78 15.56656 YES 36 b2 1398.15 0.94125 YES 37 a1 1371.41 59.97813 YES 38 b2 1398.15 0.94125 YES 39 a2 1449.46 0.00000 NO 40 b1 1428.31 14.42949 YES 41 b2 1432.19 0.04115 YES 42 a1 14472.78 61.98874 YES 44 a1 1472.78 61.98874 YES	YES
21b1797.8538.93292YES22a2807.420.00000NO23b1930.940.12392YES24a2953.850.00000NO25a1959.2211.16178YES26a1976.3435.94850YES27b21055.2621.68037YES28a11067.040.49812YES29b21101.322.15470YES30b11110.870.23327YES31a21118.490.00000NO32a11166.840.00168YES33a11220.1719.14186YES34b21256.8142.03177YES35b21334.7815.56656YES36b21348.052.40777YES37a11371.4159.97813YES38b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES42a11441.1312.63110YES43b21462.034.27798YES44a11472.7861.98874YES	YES
22a2807.420.00000NO23b1930.940.12392YES24a2953.850.00000NO25a1959.2211.16178YES26a1976.3435.94850YES27b21055.2621.68037YES28a11067.040.49812YES29b21101.322.15470YES30b11110.870.23327YES31a21118.490.00000NO32a11166.840.00168YES33a11220.1719.14186YES34b21256.8142.03177YES35b21334.7815.56656YES36b21348.052.40777YES37a11371.4159.97813YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES42a11441.1312.63110YES43b21462.034.27798YES44a11472.7861.98874YES	YES
23b1930.940.12392YES24a2953.850.00000NO25a1959.2211.16178YES26a1976.3435.94850YES27b21055.2621.68037YES28a11067.040.49812YES29b21101.322.15470YES30b11110.870.23327YES31a21118.490.00000NO32a11166.840.00168YES33a11220.1719.14186YES34b21256.8142.03177YES35b21334.7815.56656YES36b21348.052.40777YES37a11371.4159.97813YES38b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES42a11441.1312.63110YES43b21462.034.27798YES44a11472.7861.98874YES	YES
24a2953.850.00000NO25a1959.2211.16178YES26a1976.3435.94850YES27b21055.2621.68037YES28a11067.040.49812YES29b21101.322.15470YES30b11110.870.23327YES31a21118.490.00000NO32a11166.840.00168YES33a11220.1719.14186YES34b21256.8142.03177YES35b21334.7815.56656YES36b21348.052.40777YES37a11371.4159.97813YES38b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES43b21462.034.27798YES44a11472.7861.98874YES45a11516.6099.51850YES	YES
25a1959.2211.16178YES26a1976.3435.94850YES27b21055.2621.68037YES28a11067.040.49812YES29b21101.322.15470YES30b11110.870.23327YES31a21118.490.00000NO32a11166.840.00168YES33a11220.1719.14186YES34b21256.8142.03177YES35b21334.7815.56656YES36b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES43b21462.034.27798YES44a11472.7861.98874YES	YES
26a1976.3435.94850YES27b21055.2621.68037YES28a11067.040.49812YES29b21101.322.15470YES30b11110.870.23327YES31a21118.490.00000NO32a11166.840.00168YES33a11220.1719.14186YES34b21256.8142.03177YES35b21334.7815.56656YES36b21348.052.40777YES37a11371.4159.97813YES38b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES43b21462.034.27798YES44a11472.7861.98874YES	YES
27b21055.2621.68037YES28a11067.040.49812YES29b21101.322.15470YES30b11110.870.23327YES31a21118.490.00000NO32a11166.840.00168YES33a11220.1719.14186YES34b21256.8142.03177YES35b21334.7815.56656YES36b21348.052.40777YES37a11371.4159.97813YES38b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES43b21462.034.27798YES44a11472.7861.98874YES45a11516.6099.51850YES	YES
28a11067.040.49812YES29b21101.322.15470YES30b11110.870.23327YES31a21118.490.00000NO32a11166.840.00168YES33a11220.1719.14186YES34b21256.8142.03177YES35b21334.7815.56656YES36b21348.052.40777YES37a11371.4159.97813YES38b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES43b21462.034.27798YES44a11472.7861.98874YES45a11516.6099.51850YES	YES
29b21101.322.15470YES30b11110.870.23327YES31a21118.490.00000NO32a11166.840.00168YES33a11220.1719.14186YES34b21256.8142.03177YES35b21334.7815.56656YES36b21348.052.40777YES37a11371.4159.97813YES38b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES43b21462.034.27798YES44a11472.7861.98874YES45a11516.6099.51850YES	YES
30b11110.870.23327YES31a21118.490.00000NO32a11166.840.00168YES33a11220.1719.14186YES34b21256.8142.03177YES35b21334.7815.56656YES36b21348.052.40777YES37a11371.4159.97813YES38b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES43b21462.034.27798YES44a11472.7861.98874YES45a11516.6099.51850YES	YES
31a21118.490.00000NO32a11166.840.00168YES33a11220.1719.14186YES34b21256.8142.03177YES35b21334.7815.56656YES36b21348.052.40777YES37a11371.4159.97813YES38b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES43b21462.034.27798YES44a11472.7861.98874YES45a11516.6099.51850YES	YES
32a11166.840.00168YES33a11220.1719.14186YES34b21256.8142.03177YES35b21334.7815.56656YES36b21348.052.40777YES37a11371.4159.97813YES38b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES43b21462.034.27798YES44a11472.7861.98874YES45a11516.6099.51850YES	YES
33a11220.1719.14186YES34b21256.8142.03177YES35b21334.7815.56656YES36b21348.052.40777YES37a11371.4159.97813YES38b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES42a11441.1312.63110YES43b21462.034.27798YES44a11472.7861.98874YES45a11516.6099.51850YES	YES
34b21256.8142.03177YES35b21334.7815.56656YES36b21348.052.40777YES37a11371.4159.97813YES38b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES42a11441.1312.63110YES43b21462.034.27798YES44a11472.7861.98874YES45a11516.6099.51850YES	YES
35b21334.7815.56656YES36b21348.052.40777YES37a11371.4159.97813YES38b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES42a11441.1312.63110YES43b21462.034.27798YES44a11472.7861.98874YES45a11516.6099.51850YES	YES
36b21348.052.40777YES37a11371.4159.97813YES38b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES42a11441.1312.63110YES43b21462.034.27798YES44a11472.7861.98874YES45a11516.6099.51850YES	YES
37a11371.4159.97813YES38b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES42a11441.1312.63110YES43b21462.034.27798YES44a11472.7861.98874YES45a11516.6099.51850YES	YES
38b21398.150.94125YES39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES42a11441.1312.63110YES43b21462.034.27798YES44a11472.7861.98874YES45a11516.6099.51850YES	YES
39a21419.460.00000NO40b11428.3114.42949YES41b21432.190.04115YES42a11441.1312.63110YES43b21462.034.27798YES44a11472.7861.98874YES45a11516.6099.51850YES	YES
40b11428.3114.42949YES41b21432.190.04115YES42a11441.1312.63110YES43b21462.034.27798YES44a11472.7861.98874YES45a11516.6099.51850YES	YES
41b21432.190.04115YES42a11441.1312.63110YES43b21462.034.27798YES44a11472.7861.98874YES45a11516.6099.51850YES	YES
42 a1 1441.13 12.63110 YES 43 b2 1462.03 4.27798 YES 44 a1 1472.78 61.98874 YES 45 a1 1516.60 99.51850 YES	YES
43 b2 1462.03 4.27798 YES 44 a1 1472.78 61.98874 YES 45 a1 1516.60 99.51850 YES	YES
44 a1 1472.78 61.98874 YES 45 a1 1516.60 99.51850 YES	YES
45 a1 1516.60 00.51850 VEC	YES
-J at 1510.00 55.51050 1ES	YES
46 b2 1558.57 42.45154 YES	YES
47 a1 1618.69 297.57535 YES	YES
48 b2 2903.70 93.36678 YES	YES
49 a1 2912.62 52.15441 YES	YES
50 a2 2964.05 0.00000 NO	YES
51 b1 2965.04 64.44986 YES	YES
52 b2 3052.17 51.66993 YES	YES
53 a1 3055.66 24.20147 YES	

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory).

55	a1	3064.09	21.05970	YES	YES
56	a1	3131.03	3.44113	YES	YES
57	b2	3131.42	16.99924	YES	YES

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory (grid m4).

0.0000000000000000	0.000000000000000	5.89775017208916	n
0.0000000000000000	-2.15040723286183	4.54190943657188	С
0.0000000000000000	-2.27942184977459	1.89946130552798	С
0.000000000000000	0.000000000000000	0.46884136975548	С
0.000000000000000	2.27942184977459	1.89946130552798	С
0.0000000000000000	2.15040723286183	4.54190943657188	С
0.0000000000000000	0.000000000000000	-2.13606113605054	n
0.0000000000000000	2.38007574350887	-3.50098407483286	С
0.0000000000000000	-2.38007574350887	-3.50098407483286	С
0.0000000000000000	-1.99822274031072	-5.55926065109368	h
-1.70331004742666	-3.54237276919379	-3.05801252601572	h
1.70331004742666	-3.54237276919379	-3.05801252601572	h
1.70331004742666	3.54237276919379	-3.05801252601572	h
-1.70331004742666	3.54237276919379	-3.05801252601572	h
0.000000000000000	1.99822274031072	-5.55926065109368	h
0.000000000000000	4.14109216585072	0.97849254438064	h
0.000000000000000	3.93047251243325	5.64114128858042	h
0.000000000000000	-3.93047251243325	5.64114128858042	h
0.0000000000000000	-4.14109216585072	0.97849254438064	h

mode	symmetry	wave number	IR intensity	selecti	on rules
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	b1	66.73	0.61673	YES	YES
8	a2	78.16	0.00000	NO	YES
9	b1	140.89	0.01018	YES	YES
10	a2	206.45	0.00000	NO	YES
11	b2	245.94	0.15335	YES	YES
12	b1	278.58	5.21054	YES	YES
13	a1	378.38	1.03336	YES	YES
14	a2	389.92	0.00000	NO	YES
15	b2	471.52	3.04606	YES	YES
16	b1	533.94	13.24675	YES	YES
17	a1	537.05	2.41303	YES	YES
18	b2	663.83	0.36815	YES	YES
19	b1	735.51	0.42494	YES	YES
20	a1	752.39	6.32518	YES	YES
21	b1	798.17	38.91798	YES	YES
22	a2	807.87	0.00000	NO	YES
23	b1	931.26	0.11500	YES	YES
24	a2	954.10	0.00000	NO	YES
25	a1	958.59	9.99589	YES	YES
26	a1	976.56	36.53860	YES	YES

27	b2	1051.05	22.03879	YES	YES
28	a1	1067.37	0.43634	YES	YES
29	b2	1101.81	2.08294	YES	YES
30	b1	1106.43	0.16502	YES	YES
31	a2	1112.62	0.00000	NO	YES
32	a1	1165.20	0.01004	YES	YES
33	a1	1220.25	19.28709	YES	YES
34	b2	1257.86	42.15005	YES	YES
35	b2	1334.66	16.41789	YES	YES
36	b2	1347.15	1.59913	YES	YES
37	a1	1370.37	63.19062	YES	YES
38	b2	1392.46	1.03446	YES	YES
39	a2	1416.58	0.00000	NO	YES
40	b1	1425.73	14.52299	YES	YES
41	b2	1430.31	0.02717	YES	YES
42	a1	1435.84	12.64510	YES	YES
43	b2	1461.93	4.04323	YES	YES
44	a1	1472.56	55.44751	YES	YES
45	a1	1515.88	101.69698	YES	YES
46	b2	1557.77	42.33238	YES	YES
47	a1	1617.73	299.21701	YES	YES
48	b2	2902.06	93.69845	YES	YES
49	a1	2910.99	52.15150	YES	YES
50	a2	2962.37	0.00000	NO	YES
51	b1	2963.36	64.86850	YES	YES
52	b2	3051.59	51.61901	YES	YES
53	a1	3055.09	23.83725	YES	YES
54	b2	3055.89	0.53238	YES	YES
55	a1	3064.47	21.45828	YES	YES
56	a1	3131.85	3.46728	YES	YES
57	b2	3132.27	16.87375	YES	YES

[Si(dmap)₄]²⁺

1.72519823909930	-4.11284126159181	-1.43203597039279	n	_
1.60646828184185	-12.05580270883545	-2.10550737038344	n	
1.05173211435834	-5.61592577341569	0.53599715731615	С	
0.98146130092981	-8.23360267315894	0.41352587866297	С	
1.63396110181136	-9.49990076630659	-1.89242041862162	С	
2.33449064093425	-7.88541861456310	-3.95093724613840	С	
2.36086914273450	-5.28683260841473	-3.62406234875143	С	
0.91223416054783	-13.62367707413717	0.06168114285140	С	
2.31030038355641	-13.25632822994030	-4.49534541949734	С	
-1.50373319697021	-0.00458828906198	-2.40220296998231	n	
-9.02318440938025	-0.43026188452285	-4.96621708463681	n	
-3.31477914152141	-1.23174574298021	-1.03894289755904	С	
-5.80826400090409	-1.40840792116029	-1.80147823991036	С	
-6.60863437404938	-0.28615530232208	-4.13795704266142	С	
-4.67159984973098	0.99188029837718	-5.54447731138742	С	

-2.22613429251483	1.07443407423988	-4.63757326817276	С
-10.93107499028164	-1.77074313020803	-3.47441484403581	С
-9.74149396575382	0.72771359903852	-7.37739882547529	С
1.75145872448534	4.08801857389753	-1.48258485129734	n
2.48774479115790	12.02402970101466	-1.29346083959804	n
4.03212069644461	5.23433193605052	-1.74961607974338	С
4.38012988936345	7.82951899087899	-1.68277861460414	С
2.25257584456037	9.47036571205444	-1.34275876973195	С
-0.14425736656717	8.23292932730399	-1.07613399238479	с
-0.28353890311154	5.61625311170067	-1.15327487341485	С
4.97441329703321	13.19419834207307	-1.60249084089186	С
0.25361574778170	13.61977366654151	-0.97894238402210	С
2.09698330283199	0.00277654904039	1.89645198890462	n
3.28669135670232	0.47234125644405	9.74842738141874	n
4.17487386691747	-1.05981213041791	3.00780914645455	с
4.63464016688671	-0.96161139157681	5.57468959836374	с
2.90016568274763	0.31453503078044	7.22596345689099	с
0.73608918194849	1.41928365403828	6.01928445268169	с
0.42820767778293	1.22886991838940	3.43095260185750	C
5.54237720520631	-0.66185590516912	10.88703263870360	C
1.46988654631829	1.80526674281875	11.35621545562569	c
2.12672124214235	-0.01728790435949	-1.78571092896252	si
-0.71672366884109	2.02752127204661	-5.71147758784044	h
1.32147700919633	3.83317033343621	10.82025056902495	h
2.10718232388211	1,70454249243159	13,34335900312310	h
-0.43654884138435	0.92673279306862	11,23936111324895	h
5.59620655380947	-2,73821874603444	10.56265597757447	h
5.51175210456923	-0.32915375021604	12,94939097272069	h
7,29898777775217	0.19573975222459	10,11342928493803	h
0 83508753139085	15 62707013852459	-0 98384443590854	h
-0.71580893887597	13 22983759930152	0.84663294477219	h
-1.11931606381437	13 33756042663535	-2.54798501579942	h
5 82153364135799	12 71401626888483	-3 46698251667838	h
6 29742231024211	12 59022266784396	-0.08348153378601	h
4 77485351318210	15 27174850096501	-1 49767686635800	h
-8 67796599208875	-0 12402622172839	-8 97845272397998	h
-9 39904751436875	2 8017002 <u>4</u> 100120	-7 35677267383048	h
-11 7795222120072	Ω 411/27/760/275	-7 710882/106/651	h
-12 77126407285289	-1 66612887003315	-4 45823480741943	h
-11,15925767213792	-0.90183173096532	-1.57355640743189	h
-10 22986837222000	-3 79958987777050	-3 20220711523216	h
4 292607/62/227	-12 79816061949848	-5 02894360402746	h
292007+0942997 1 03459986115199	-12 65739483004607	-6 0562/200755/06	h
2 15661510 <i>1</i> /627/	-15 3307/751/72272	-1 20124303233400	h
1 00352155282/50	-15 63777220265202	-0.48822750767255	h
-1 0/70277/202061	-13 21552/1220/025	0.40022730707233	h
2 22026/55057101	-13 3306/3/32204303	1 67508007081715	h
2.2302043303/101 -2 12260617725277	-13.33004243334604 1 67525650111011	T.01200221201512	li h
-2.1330301//3322/	4.U/JJJUJUII4214 0.21727/072777	-0.30343040743036 _0.83031007116091	li k
-1.03/41//3U20138	3.3123/4U224/3/4 0 E77613E1020617	-U.OZUSIUU/410984 1 00700001000000	[] k
0.23323/43433038 5 6/957/60033065	0.J//013J482804/ 2 0/005060/05050	-1.32/0032103032U _2.06100670602112	[] h
J.040J/40002300J	3.343U33U04U383U 3.1120E661433444	-2.001030/3032112	11 k
-2.03823340529253	-2.11305001433444	0.73794840999648	[] ⊾
-7.13383752186998	-2.43648089675937	-0.58226096148281	n
 -5.07177255260555	1.90677352542849	-7.36173162772384	h
-----------------------	-------------------	-------------------	---
2.94627376778721	-4.02209290882569	-5.17941260497053	h
2.88926443749136	-8.65679259498410	-5.79485025444916	h
0.56322043954499	-4.65266642973226	2.31833889436958	h
0.42974588811109	-9.29133132786803	2.11083200077175	h
-1.21537690920740	2.09752273946828	2.50465196878323	h
-0.70381975307457	2.44527049887610	7.10315020979384	h
6.35706301070069	-1.86417612619198	6.29473869786003	h
 5.50326409918559	-2.01320373429601	1.71671717599913	h

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory, grid m4).

mode	symmetry	wave number	IR intensity	selecti	on rules
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	а	14.28	0.34707	YES	YES
8	а	14.76	0.01545	YES	YES
9	а	19.37	0.01701	YES	YES
10	а	20.29	0.00536	YES	YES
11	а	23.71	0.25093	YES	YES
12	а	29.00	1.72183	YES	YES
13	а	37.42	0.01358	YES	YES
14	а	44.13	1.77513	YES	YES
15	а	51.10	0.02131	YES	YES
16	а	71.35	0.02530	YES	YES
17	а	74.73	7.24679	YES	YES
18	а	79.78	0.18812	YES	YES
19	а	81.53	0.05985	YES	YES
20	а	87.81	0.19721	YES	YES
21	а	97.86	7.95215	YES	YES
22	а	102.54	2.91268	YES	YES
23	а	103.86	52.54489	YES	YES
24	а	108.09	2.39734	YES	YES
25	а	110.32	0.09275	YES	YES
26	а	123.45	0.63278	YES	YES
27	а	126.06	0.94655	YES	YES
28	а	126.27	0.46761	YES	YES
29	а	129.66	0.75952	YES	YES
30	а	137.13	3.87255	YES	YES
31	а	141.36	0.32377	YES	YES
32	а	153.52	0.27468	YES	YES
33	а	171.91	102.54558	YES	YES
34	а	173.33	1.42727	YES	YES
35	а	180.61	7.80007	YES	YES
36	а	185.45	22.41501	YES	YES
37	а	186.50	2.39862	YES	YES
38	а	187.50	1.02452	YES	YES
39	а	193.10	5.55527	YES	YES
40	а	234.69	0.16546	YES	YES
41	а	244.14	69.44754	YES	YES
42	а	256.18	0.00811	YES	YES
43	а	265.77	0.63402	YES	YES

44	а	281.95	35.35375	YES	YES
45	а	284.13	1.33498	YES	YES
46	а	301.51	0.45496	YES	YES
47	а	302.72	2.57376	YES	YES
48	a	326.79	0.62687	YES	YES
49	a	328.30	44,70047	YES	YES
50	a	346 30	184 03949	VES	VES
50	2	380 13	0 8/600	VES	VES
52	a	201 52	58 88501	VES	VES
52	a	204 45	2 07022	VES	VES
55	a	394.43	1 41010	TES VEC	VES
54	d	414.44	1.41919	YES	YES
55	d	421.30	0.05703	YES	YES
56	а	425.34	2.11399	YES	YES
57	а	426.37	3.54202	YES	YES
58	а	438.17	51.88440	YES	YES
59	а	447.27	28.83070	YES	YES
60	а	480.18	0.35886	YES	YES
61	а	482.15	0.11122	YES	YES
62	а	482.71	0.86352	YES	YES
63	а	489.44	0.82451	YES	YES
64	а	526.78	40.86647	YES	YES
65	а	531.64	13.57167	YES	YES
66	а	535.62	49.50558	YES	YES
67	а	536.73	1.31017	YES	YES
68	а	545.71	0.41628	YES	YES
69	a	546.13	55,85387	YES	YES
70	a	567.61	13,11351	YES	YES
70	a	577.24	34 32870	VES	VES
71	a	652 55	2 62062	VES	VES
72	a	654.71	2.03002	VEC	VES
73	d	054.71	0.00212	YES	YES
74	a	657.39	0.38/1/	YES	YES
75	а	658.30	0.05621	YES	YES
/6	а	/22.0/	1.66/53	YES	YES
77	а	722.88	0.12066	YES	YES
78	а	727.47	5.64685	YES	YES
79	а	727.77	1.48219	YES	YES
80	а	757.90	0.71484	YES	YES
81	а	758.67	11.61337	YES	YES
82	а	764.46	0.71007	YES	YES
83	а	766.51	1.23197	YES	YES
84	а	796.91	7.54654	YES	YES
85	а	801.98	2.60822	YES	YES
86	а	808.23	5.54716	YES	YES
87	а	808.76	10.17697	YES	YES
88	a	813.86	56.26323	YES	YES
89	a	814 87	32,13764	YES	YES
90	2	816.09	50 77450	VES	VES
01	a 2	816 00	2 11024	VEC	VEC
02 21	a	010.30	3.11034 2 E0120	VEC	TES
92	d	920.33	5.50128		IES VEC
93	a	935.48	0.02110	YES	YES
94	а	940.24	3.46/86	YES	YES
95	а	941.02	0.26612	YES	YES
96	а	944.57	2.84908	YES	YES

97	а	944.78	1.28150	YES	YES
98	а	945.10	0.28964	YES	YES
99	а	947.25	0.06253	YES	YES
100	а	947.39	3.21856	YES	YES
101	а	947.93	0.26082	YES	YES
102	а	953.44	1.52152	YES	YES
103	a	953.83	0.39672	YES	YES
104	a	987.36	320 04388	VES	VES
104	а Э	988 24	30 68/37	VES	VES
105	a	1009.24	27 10212	VES	VES
100	a	1008.80	122 02505	VES	VES
107	a	1009.74	205122		TES VES
108	d	1045.50	8.05132	TES VEC	YES
109	а	1045.79	14.83709	YES	YES
110	а	1046.99	14.21520	YES	YES
111	а	1047.30	17.09834	YES	YES
112	а	1048.69	167.83388	YES	YES
113	а	1050.75	31.43812	YES	YES
114	а	1052.92	269.75150	YES	YES
115	а	1058.76	18.78636	YES	YES
116	а	1090.52	0.00100	YES	YES
117	а	1090.68	0.00949	YES	YES
118	а	1095.21	0.00293	YES	YES
119	а	1095.41	0.00602	YES	YES
120	а	1108.24	0.15277	YES	YES
121	а	1108.47	0.09312	YES	YES
122	а	1108.51	0.18793	YES	YES
123	a	1108.60	0.10155	YES	YES
124	a	1115 09	1 54204	YES	YES
125	a	1118 21	0 30832	VES	YES
125	а Э	1110.21	10 288/11	VES	VES
120	a 2	1122.00	2 01006	VES	VES
127	a	1122.99	2.04000	VES	VES
128	d	1103.52	1.50824	TES VEC	YES
129	а	1163.67	0.63542	YES	YES
130	а	1164.11	0.56032	YES	YES
131	а	1164.26	1.27892	YES	YES
132	а	1206.03	26.27735	YES	YES
133	а	1207.05	141.00594	YES	YES
134	а	1208.44	145.28431	YES	YES
135	а	1218.87	0.35871	YES	YES
136	а	1231.39	16.89423	YES	YES
137	а	1231.52	18.88506	YES	YES
138	а	1236.84	17.82330	YES	YES
139	а	1236.91	28.13166	YES	YES
140	а	1317.28	1.70959	YES	YES
141	а	1318.48	14.06913	YES	YES
142	а	1320.81	14.67236	YES	YES
143	a	1321.81	28.30728	YES	YES
144	я а	1339 65	14 77838	YES	YES
1/5	u c	12// 10	35 27627	VEC	VEC
145	a	1244.10	33.37007 26.0106E	VEC	VEC
140	a	1016 71	20.91000 5 70100	TES	VEC
147 140	d	1202 20	J./OIUU		
148	a	1383.20	130.0/296	IES	TES VEC
149	а	1383.88	9.66/95	YES	YES

150	а	1387.39	23.02669	YES	YES
151	а	1387.72	93.75718	YES	YES
152	а	1394.53	1.16805	YES	YES
153	а	1394.77	1.50330	YES	YES
154	а	1394.88	1.14249	YES	YES
155	a	1395.34	0.79109	YES	YES
156	a	1423 22	0.01349	YES	YES
157	a	1423.22	0.01545	VES	VES
158	а Э	1/23 65	0.02312	VES	VES
150	a	1423.05	0.03230	VES	VES
155	a	1423.79	0.04075	VES	VES
100	a	1429.00	42.03090	TES VES	
101	d	1429.90	20.05470	TES VEC	TES VEC
162	d	1431.81	40.00938	YES	YES
163	а	1432.14	24.01813	YES	YES
164	а	1436.78	27.45791	YES	YES
165	а	1436.83	28.09381	YES	YES
166	а	1438.18	29.51746	YES	YES
167	а	1438.34	29.27402	YES	YES
168	а	1442.53	0.56863	YES	YES
169	а	1442.58	0.45134	YES	YES
170	а	1444.15	1.15350	YES	YES
171	а	1444.35	0.61408	YES	YES
172	а	1464.19	73.04457	YES	YES
173	а	1464.44	25.53603	YES	YES
174	а	1465.59	84.93846	YES	YES
175	а	1465.65	20.73994	YES	YES
176	а	1482.43	2.22776	YES	YES
177	а	1482.57	5.07865	YES	YES
178	а	1499.22	12.08497	YES	YES
179	а	1499.87	3.21364	YES	YES
180	a	1518.65	18,11298	YES	YES
181	a	1519.75	6.67136	YES	YES
182	a	1527.81	15 15814	VES	YES
183	2	1520.07	30 12029	VES	VES
105	а Э	15/0 00	285 82800	VES	VES
104	a	1545.00	15 07024	VES	VES
185	a	1549.50		TES VES	
100	d	1556.26	279.01054	TES VEC	TES VEC
187	a	1558.03	1072 55625	YES	YES
188	а	1643.59	10/3.55625	YES	YES
189	а	1644.87	67.14167	YES	YES
190	а	1654.83	876.34190	YES	YES
191	а	1658.34	218.86549	YES	YES
192	а	2937.40	32.87904	YES	YES
193	а	2937.58	33.58113	YES	YES
194	а	2943.64	53.89125	YES	YES
195	а	2943.77	19.42966	YES	YES
196	а	2944.24	19.49591	YES	YES
197	а	2944.27	28.07043	YES	YES
198	а	2949.50	45.00827	YES	YES
199	а	2949.60	8.77117	YES	YES
200	а	3010.38	8.35846	YES	YES
201	а	3010.76	8.00848	YES	YES
202	а	3015.06	11.41265	YES	YES
202	u	3013.00	11.71200	163	165

203	а	3015.35	11.12007	YES	YES
204	а	3020.73	4.44878	YES	YES
205	а	3020.74	4.74840	YES	YES
206	а	3023.76	8.58556	YES	YES
207	а	3023.83	8.83228	YES	YES
208	а	3079.51	4.09154	YES	YES
209	а	3080.35	3.08029	YES	YES
210	а	3086.46	0.29623	YES	YES
211	а	3086.52	0.31028	YES	YES
212	а	3091.30	0.14951	YES	YES
213	а	3091.32	0.15118	YES	YES
214	а	3094.53	4.50571	YES	YES
215	а	3094.58	3.58920	YES	YES
216	а	3097.77	4.69805	YES	YES
217	а	3099.10	7.22365	YES	YES
218	а	3099.44	2.43465	YES	YES
219	а	3099.46	1.40629	YES	YES
220	а	3113.87	0.50658	YES	YES
221	а	3114.66	0.54564	YES	YES
222	а	3143.05	2.14913	YES	YES
223	а	3145.76	0.80318	YES	YES
224	а	3151.79	1.47595	YES	YES
225	а	3152.28	1.34794	YES	YES
226	а	3156.19	0.95740	YES	YES
227	а	3156.45	0.87997	YES	YES
228	а	3160.37	0.10276	YES	YES
229	а	3160.88	0.10237	YES	YES
230	а	3161.75	0.44970	YES	YES
231	а	3161.79	0.54531	YES	YES

[Ge(dmap)₄]²⁺

1.87837257187853	-4.43096850929110	-1.60325633342410	n
1.68709881876807	-12.38999551374359	-1.98760673772284	n
1.29306926646222	-5.85423256677447	0.44495593289337	С
1.19809059052563	-8.47623759816496	0.41949034809429	С
1.73783606471035	-9.82705438763916	-1.86697240410415	С
2.34445374258949	-8.29266124633003	-4.01417811816530	С
2.39336947044703	-5.68153372566843	-3.78039209063686	С
1.07848904513511	-13.87422717957612	0.26134424188223	С
2.28286959799913	-13.67904511341912	-4.35982677919416	С
-1.52449722984840	-0.00976056399446	-2.61916046602039	n
-9.14642632022216	-0.34172434510977	-4.85104987327395	n
-3.24018212985292	-1.39300188580047	-1.29025393572106	С
-5.76716779931802	-1.54294412106349	-1.94426640877044	С
-6.69488039166865	-0.22945362003040	-4.12965500792240	С
-4.84902879876803	1.20565329210484	-5.50487283582954	С
-2.36224049404081	1.25355925701316	-4.70538557251119	С
-10.95985252795517	-1.84290734383241	-3.39598122659167	С

-9.99592024824963	1.00809944400527	-7.11448890071420	С
1.92632990242501	4.37164822511692	-1.72130724982031	n
2.58162340717782	12.30030397125161	-1.23432392618095	n
4.18139609373130	5.55175129617725	-2.01803411390024	С
4.50433247168893	8.14979741699307	-1.86861146899005	С
2.37228394707694	9.74673667219781	-1.38349421085411	С
0.00135194546173	8.47023495708490	-1.07785879839990	С
-0.10991459123390	5.85525388697960	-1.26021843294571	C
5.03972339616741	13.51278769946565	-1.59567868900314	C
0.34701056889344	13.85101510296427	-0.75297827617624	C
2,23873972288177	-0.00120286643883	1.83594218001789	n
3 05997003594257	0 46241456707798	9 72671695572947	n
4 27378909040391	-1 03978972568231	3 02860195333523	r r
4 62031737257779	-0 93965542314029	5 61681528479415	e C
2 79332981/132097	0.30690210219933	7 18710414362767	C
0.66851755726165	1 3821/026337216	5 88689/0161081/	c
0.00051755720105	1 107255/8330707	3 28/8953270103/	C C
5 278072/28//081	-0.62751626782262	10 06/61560682022	C C
1 1/790110276022	1 75750657305302	11 25126226075205	C C
2 26201282022201	-0.04538632681518	-2 08427482555341	U TO
0.02076241142102	2 24644271721465	5 752054274825555541	ge h
-0.93070341143193	2.340442/1/21403	10 71827160017/08	li b
1 60166051669702	1 65740060055015	12 26602927720762	h
0 72710100210112	0.84032490526303	11 04218262226025	h
-0.73710199310113 E 2700010E44E277	0.04923400330292	11.04218203230923	n b
5.57606165445277	-2.71308017339023	12 02202706762241	li b
7 05587670603864	0.24293757062217	10 26640703531654	h
0 0071/121706028	15 86301280072187	-0 680/3/07866575	h
-0 5/5/052/2/2/2023	12 26015256647802	1 08800525808852	h
-0.54545584844055	12 62048060700128	-2 277/0321062226	h
5 81700107 <i>//</i> 8100	12 11/872/0020271	-2.27745551505250	h
6 /30/3//0//6029	12 87158267825126	-0.1535/06798/819	h
1 22050220570772	15 58247102554805	-1 40567052018016	h
4.82039239379773	0 22006060557011	-8 83224000806312	h
-0.55700024275015	2 0702270200557011	-0.03224900000313	n b
-3.00430203103300	0.69297175699002	7 29076069116606	n b
12.04233073307340	0.08287173088003	-7.58070008115090	n b
11 00700250000210	-1.07374908247023	-4.20551620150855	n b
10 42975201076070	2 97766609121200	-1.412//409/49/31	n b
A 2277/2101/0755	12 24020450102170	5.38008142880495	h
4.23774310140733	12 14200154654411	-5.00114557759001 5.99200067605512	n b
0.95469575120054	-13.14300134034411	-5.88500907005515	li h
2.14509942202192	-15.74475552995000	-4.07364623321970	li h
1.110/3/0302310/	-13.90092342303090	-0.222/15/0800055	li h
-0.04433320004703		1 90100275260060	n b
2.47406109005179	-13.34490337780809	1.80100273209900	11 b
-1.9422/014/9/200	4.88103093399799	-1.03114272308891	11 b
-1./5200051621005	9.31033300993441	-0.71529011090848	11 b
0.403113003240/3	0.332102/3802802	-2.143/3/01001023	li b
J.01/J1102J/J1/0	4.31330/32224304 2 12165100150171	-2.413330000037810 0 263377711707331	li b
-2.J1004909342408 _7 01820285201756	-2.424031034384/4 _7 7000685300371 <i>6</i>	0.3022//4149/231 _0.763//060152105	li h
-1.0103030304/30 _5 2577000751117	-2.70030032003710	-0.70344000133103 _7 2081116000006	h
-J.JJZZJ030/J414/ 2 88760100076201	2.2/0001/3433340 _/ /0/200103335/0	-7.20011400030000 _5.725700720120	11 h
7.00/001033/0331	-4.49420019322340	-2.422/09429/2109	11

2.79571121532642	-9.13325419980978	-5.85588455437154	h	
0.89401241231471	-4.82145600318470	2.21153557847388	h	
0.71803462388210	-9.46995920131468	2.17615414018808	h	
-1.12713865299950	2.04105805907155	2.27954799651207	h	
-0.83461821532512	2.38046192791047	6.90890135666705	h	
6.31817189810197	-1.82309123957495	6.41487935059663	h	
5.66753769744656	-1.99252905333120	1.80664447335736	h	
	2.79571121532642 0.89401241231471 0.71803462388210 -1.12713865299950 -0.83461821532512 6.31817189810197 5.66753769744656	2.79571121532642-9.133254199809780.89401241231471-4.821456003184700.71803462388210-9.46995920131468-1.127138652999502.04105805907155-0.834618215325122.380461927910476.31817189810197-1.823091239574955.66753769744656-1.99252905333120	2.79571121532642-9.13325419980978-5.855884554371540.89401241231471-4.821456003184702.211535578473880.71803462388210-9.469959201314682.17615414018808-1.127138652999502.041058059071552.27954799651207-0.834618215325122.380461927910476.908901356667056.31817189810197-1.823091239574956.414879350596635.66753769744656-1.992529053331201.80664447335736	2.79571121532642-9.13325419980978-5.85588455437154h0.89401241231471-4.821456003184702.21153557847388h0.71803462388210-9.469959201314682.17615414018808h-1.127138652999502.041058059071552.27954799651207h-0.834618215325122.380461927910476.90890135666705h6.31817189810197-1.823091239574956.41487935059663h5.66753769744656-1.992529053331201.80664447335736h

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory).

mode	symmetry	wave number	IR intensity	selection rules	
		[cm ⁻¹]	[km mol⁻¹]	IR	RAMAN
7	а	12.73	0.24453	YES	YES
8	а	13.43	0.20407	YES	YES
9	а	17.31	0.04221	YES	YES
10	а	19.39	0.00998	YES	YES
11	а	20.92	0.20508	YES	YES
12	а	24.87	1.66368	YES	YES
13	а	34.26	0.04487	YES	YES
14	а	40.54	2.37895	YES	YES
15	а	50.08	0.17948	YES	YES
16	а	68.12	0.15295	YES	YES
17	а	69.61	20.91129	YES	YES
18	а	80.72	34.72471	YES	YES
19	а	81.62	26.65650	YES	YES
20	а	83.03	0.30885	YES	YES
21	а	89.70	2.88180	YES	YES
22	а	91.98	0.62137	YES	YES
23	а	101.09	0.44403	YES	YES
24	а	102.94	1.09343	YES	YES
25	а	106.55	0.13935	YES	YES
26	а	113.28	12.12470	YES	YES
27	а	123.94	1.04664	YES	YES
28	а	127.58	0.36953	YES	YES
29	а	127.82	0.46160	YES	YES
30	а	129.09	0.82977	YES	YES
31	а	129.55	0.74480	YES	YES
32	а	137.19	41.79740	YES	YES
33	а	144.49	5.38680	YES	YES
34	а	162.52	0.35898	YES	YES
35	а	166.99	0.44699	YES	YES
36	а	182.61	0.02257	YES	YES
37	а	186.07	0.05202	YES	YES
38	а	188.12	0.05950	YES	YES
39	а	191.78	0.09308	YES	YES
40	а	203.71	22.80252	YES	YES
41	а	208.40	6.31363	YES	YES
42	а	214.70	18.23903	YES	YES
43	а	236.25	1.33882	YES	YES
44	а	259.44	1.69839	YES	YES
45	а	269.43	1.84450	YES	YES

46	а	271.92	7.33062	YES	YES
47	а	291.13	0.05794	YES	YES
48	а	301.14	10.84831	YES	YES
49	а	307.32	4.93115	YES	YES
50	а	315.95	39.83231	YES	YES
51	a	321 61	12 56556	YES	YES
52	a	387 38	52 06765	VES	VES
52	a 2	205 / 2	1 52876	VES	VES
55	a	407 72	25 5570	VES	VEC
54	d	407.72	25.55797		
55	d	412.40	9.20799	YES	TES VEC
56	а	413.07	1.36123	YES	YES
57	а	417.75	0.09321	YES	YES
58	а	423.05	0.79401	YES	YES
59	а	425.93	0.16678	YES	YES
60	а	478.67	1.07137	YES	YES
61	а	479.74	2.88522	YES	YES
62	а	480.88	2.79667	YES	YES
63	а	482.56	3.24623	YES	YES
64	а	524.56	33.16942	YES	YES
65	а	527.06	12.10396	YES	YES
66	а	531.59	19.45627	YES	YES
67	а	534.01	7.30723	YES	YES
68	a	544.30	41,20582	YES	YES
69	a	549 97	0.92896	YES	YES
70	a	557 51	18 42217	VES	VES
70	а Э	550 55	7 70255	VES	VES
71	a	553.55	1 02062	VES	VES
72	d	052.97	1.05962	TES	TES VEC
73	d	654.36	0.06044	YES	YES
74	а	657.29	0.18677	YES	YES
/5	а	657.66	0.05424	YES	YES
76	а	719.24	0.73090	YES	YES
77	а	719.84	0.59606	YES	YES
78	а	724.82	1.23617	YES	YES
79	а	724.97	0.65079	YES	YES
80	а	757.27	6.18447	YES	YES
81	а	759.13	0.02651	YES	YES
82	а	761.82	0.63441	YES	YES
83	а	762.35	0.59881	YES	YES
84	а	799.41	6.10775	YES	YES
85	а	803.03	2.37459	YES	YES
86	a	807.92	9.89378	YES	YES
87	a	809.46	15 39159	YES	YES
88	2	812.78	55 36551	VES	VES
80	a 2	012.20 012.20	28 82151	VES	VES
00	a	012.05	20.02131		TES VEC
90	d	813.54	30.70522	YES	TES VEC
91	а	814.72	1.90355	YES	YES
92	а	928.56	1.55196	YES	YES
93	а	933.58	0.14031	YES	YES
94	а	936.36	3.19321	YES	YES
95	а	938.31	0.41549	YES	YES
96	а	943.12	0.62409	YES	YES
97	а	944.47	1.25855	YES	YES
00	а	944.74	2,16124	YES	YES

99	а	945.82	0.02443	YES	YES
100	а	947.62	1.20772	YES	YES
101	а	948.50	1.17149	YES	YES
102	а	948.69	0.95349	YES	YES
103	а	950.26	1.13118	YES	YES
104	a	987.04	291,21625	YES	YES
105	a	993.29	15 38901	YES	VES
106	a	1001 29	153 72666	VES	VES
107	a	1001.25	20 00501	VES	VES
107	a	104.10	12 77/05	VES	VES
100	a	1045.12	14 70202	TES VEC	VES
109	d	1045.40	14.70295	TES VES	YES
110	d	1047.74	14.53790	TES	YES
111	d	1048.79	13.69429	YES	YES
112	а	1050.88	188.42452	YES	YES
113	а	1053.27	125.53118	YES	YES
114	а	1053.61	99.38213	YES	YES
115	а	1063.58	4.92698	YES	YES
116	а	1091.09	0.03609	YES	YES
117	а	1091.91	0.01485	YES	YES
118	а	1096.06	0.00490	YES	YES
119	а	1096.32	0.01771	YES	YES
120	а	1108.11	0.08788	YES	YES
121	а	1108.35	0.16980	YES	YES
122	а	1108.58	0.15035	YES	YES
123	а	1109.02	0.11492	YES	YES
124	а	1115.01	1.12838	YES	YES
125	а	1117.33	0.71293	YES	YES
126	а	1118.99	7.47347	YES	YES
127	а	1121.30	2.76657	YES	YES
128	а	1162.68	0.30926	YES	YES
129	a	1162.87	0.42704	YES	YES
130	a	1164.09	0.14064	YES	YES
131	a	1164 65	0 11397	YES	YES
132	a	1206 53	50 28621	YES	VES
132	a	1200.55	101 61192	VES	VES
13/	а Э	1200.13	170 25823	VES	VES
125	a	1205.02	1 61515	VES	VES
126	a	1210.05	10 50050	VES	VES
130	a	1231.23	10.30932	TES VEC	VES
137	a	1231.90	10.44391		TES VES
130	d	1237.04	10./3103		
139	a	1237.71	27.39408	TES	TES
140	а	1319.76	3./3358	YES	YES
141	а	1322.37	0.69583	YES	YES
142	а	1323.29	22.18554	YES	YES
143	а	1323.96	17.54042	YES	YES
144	а	1344.77	14.33388	YES	YES
145	а	1347.82	22.00932	YES	YES
146	а	1349.79	18.59324	YES	YES
147	а	1350.22	16.22182	YES	YES
148	а	1383.99	155.17703	YES	YES
149	а	1385.02	12.86406	YES	YES
150	а	1386.94	38.13344	YES	YES
151	а	1387.30	92.92609	YES	YES

152	а	1394.11	1.30739	YES	YES
153	а	1394.16	1.17689	YES	YES
154	а	1395.30	0.71731	YES	YES
155	а	1396.02	0.70741	YES	YES
156	а	1422.90	0.53168	YES	YES
157	а	1423.09	0.11938	YES	YES
158	a	1423 30	0.02953	YES	YES
159	a	1423.30	0.02000	VES	VES
155	а Э	1/20 11	28 88072	VES	VES
161	a	1430.11	20.00972	VES	VES
101	a	1430.34	20.19334	TES VES	TES VES
102	d	1455.02	1 21221	TES	TES VEC
103	d	1433.19	1.21231	YES	YES
164	а	1436.79	27.20873	YES	YES
165	а	1437.06	28.93216	YES	YES
166	а	1437.56	28.34250	YES	YES
167	а	1437.82	28.75063	YES	YES
168	а	1442.68	0.33253	YES	YES
169	а	1442.70	0.73356	YES	YES
170	а	1444.38	0.96701	YES	YES
171	а	1444.70	0.57199	YES	YES
172	а	1464.04	58.18434	YES	YES
173	а	1464.16	44.02253	YES	YES
174	а	1465.80	125.68930	YES	YES
175	а	1466.44	7.93850	YES	YES
176	а	1478.58	3.56867	YES	YES
177	a	1479.08	3.46345	YES	YES
178	a	1495.86	6 31523	YES	YES
170	2	1/06 72	4 96115	VES	VES
190	a	1522.24	76 25/0/	VES	VES
100	a	1522.54	20.23464	TES VES	TES VES
181	d	1523.35	7.38504	YES	YES
182	а	1531.62	15.82435	YES	YES
183	а	1532.58	33.25219	YES	YES
184	а	1547.89	247.40848	YES	YES
185	а	1548.57	13.36624	YES	YES
186	а	1556.93	202.48013	YES	YES
187	а	1557.66	100.84602	YES	YES
188	а	1640.85	1125.11597	YES	YES
189	а	1642.83	73.89964	YES	YES
190	а	1651.45	843.22028	YES	YES
191	а	1655.22	254.33302	YES	YES
192	а	2935.40	34.59784	YES	YES
193	а	2936.06	34.60988	YES	YES
194	а	2941.59	40.45255	YES	YES
195	а	2942.27	35.99528	YES	YES
196	а	2942.46	22,69371	YES	YES
197	с а	2943 07	25,54740	YES	YES
192	2	2049.07 2048 11	28 17/0	VES	VES
100	a	2340.11 2010 25	15 20/76	VEC	VEC
200	d	2340.23	13.234/0		
200	a	3007.84	8.79435	YES	YES
201	а	3008.63	8./3166	YES	YES
202	а	3012.49	11.96795	YES	YES
203	а	3013.41	11.82304	YES	YES
204	а	3018.07	5.32739	YES	YES

205	а	3019.35	4.29631	YES	YES
206	а	3021.71	8.98215	YES	YES
207	а	3021.93	9.88117	YES	YES
208	а	3078.57	3.70896	YES	YES
209	а	3079.77	4.24805	YES	YES
210	а	3085.41	0.33447	YES	YES
211	а	3085.68	0.30097	YES	YES
212	а	3090.40	0.17538	YES	YES
213	а	3091.20	0.14171	YES	YES
214	а	3092.02	6.39080	YES	YES
215	а	3093.66	4.52365	YES	YES
216	а	3093.76	3.82331	YES	YES
217	а	3096.56	5.61687	YES	YES
218	а	3098.41	2.19359	YES	YES
219	а	3099.18	2.12406	YES	YES
220	а	3109.13	0.53537	YES	YES
221	а	3112.76	0.58673	YES	YES
222	а	3137.20	1.32627	YES	YES
223	а	3141.89	1.27837	YES	YES
224	а	3151.70	1.31706	YES	YES
225	а	3152.72	1.23899	YES	YES
226	а	3157.31	0.75774	YES	YES
227	а	3157.44	0.67604	YES	YES
228	а	3159.34	0.20436	YES	YES
229	а	3159.64	0.41280	YES	YES
230	а	3160.20	0.22506	YES	YES
231	а	3160.66	0.35910	YES	YES

[Sn(dmap)₄]²⁺

				_
1.84055992553369	-5.10904333565865	-1.66659112334970	n	
1.76742871800138	-13.07997115223246	-1.44113808863116	n	
2.57837535157891	-6.39908818573226	0.42603630772597	С	
2.57364869572772	-9.01606536684522	0.60192586896475	С	
1.78299858554248	-10.51627230049197	-1.51045213197603	С	
1.02139247084989	-9.12729482358973	-3.70927538411374	С	
1.09543077093968	-6.50825503985453	-3.68938264117790	С	
2.59403915981652	-14.41200276023668	0.83561518874234	С	
0.98556493632084	-14.52570352571267	-3.66435449079501	С	
-1.37403697361774	-0.15328221517665	-3.21169786771502	n	
-9.04560084863006	0.73141044339230	-5.17271495534829	n	
-3.15125804634172	-1.86538678495269	-2.48271255174691	С	
-5.69409106920120	-1.64687495571432	-3.06671432113612	С	
-6.58050774556193	0.44951189508176	-4.53878058787203	С	
-4.67748781317305	2.22073779536230	-5.30444991058536	С	
-2.18062531378318	1.85103516293572	-4.61563027256488	С	
-10.91440872199291	-1.13673191862497	-4.35482394474202	С	
-9.84771641341627	2.88308144924154	-6.71645662480186	С	
2.66900522473711	4.10231035072058	-1.89383188689385	n	

2.61421805749737	12.03076405055684	-1.11481159449034	n
4.21584976273171	5.59546592114235	-3.29201039655755	С
4.27356288921484	8.21180252996369	-3.11065360601794	С
2.63259210583758	9.47656725601387	-1.36712948967489	С
1.01105241318313	7.86853618179956	0.09411658810038	С
1.10435494532830	5.26806139670294	-0.23201401700511	С
4.31182954908195	13.58862043287961	-2.64439825591643	с
0.89575261866638	13.23666361612814	0.68063045790443	C
2.63150756108321	-0.27731707668309	1.84906208121810	n
2.34460499716071	0.89092963302929	9.71476261134395	n
4 59417956047304	0 80248761934482	3 11305083517085	r r
4 58941434880702	1 22508615493376	5 69535347804715	c C
2 43252717392847	0 52661261151952	7 18095814694840	c C
0 37/89130169398	-0 58233183844985	5 80680902241626	c
0.56174227653897	-0 93760684929150	3 21847474172968	C
A 50/10002/78673	2 00999005608198	11 03/90//2950669	C
4.30410332478073	0 15188760505157	11 1/08022108/605	C
2 02167600059272	0.13188/0030313/	2 56226540917402	C C
5.02107009956222	-0.004/249559/488	-2.30230340817403	SII b
	1 10240042405888		li b
-1.00590655592205	1.19549042405888	10.49235379393465	li b
0.39318082040247	0.00317579021579	13.10872505434992	n b
-0.26490757869529	-1.91343674142864	10.39112161199607	n
6.23464086722110	0.83918438824673	10.79688437674341	n F
4.07799896539321	2.12356681402545	13.07735942565533	n F
4.89981191018976	3.95640171208088	10.34259735950065	n
1.15839769813908	15.30835105519600	0.59995119650405	n F
1.2802/960/36643	12.01006555844818	2.6517/208231527	n F
-1.1142621/33/961	12.81897424262869	0.21963327317720	n F
3.91/0685350/859	13.36496947792640	-4.69863104530318	n F
6.32665365146905	13.102/354/651935	-2.28/02566352234	n F
4.03523878395418	15.59983198512773	-2.14/66//2396/43	n
-8.90360943330441	2.86990390564484	-8.59536860411351	n
-9.43049204671436	4.70773566547976	-5.75728159922372	n
-11.9110//945/8/25	2.//4/3533184448	-7.02788665477650	h
-12.8058293352/148	-0.55800123797272	-5.02839355678015	h
-10.9862/325251805	-1.27590553641699	-2.25/95924805561	h
-10.49387940769664	-3.03915577668519	-5.14806075281586	h
2.24110996890109	-14.14453610263657	-5.30851883810833	h
-0.99/12939191023	-14.08046860492350	-4.20/6652256/146	h
1.09128545936023	-16.56710305702549	-3.22993478306790	h
2.43183224533818	-16.47220715128181	0.52503583804366	h
1.39801231376111	-13.90977290978493	2.49144910803049	h
4.60151629216397	-13.97876208789760	1.29262408348433	h
-0.14084948568462	4.02830403975106	0.88988786812924	h
-0.31717263985005	8.64806420388859	1.48425554038696	h
5.59013291084234	9.26239190666256	-4.32103048823156	h
5.48052458211093	4.61681496987746	-4.63477163479834	h
-2.45729347423265	-3.50267984925147	-1.40350768096735	h
-6.98666453281005	-3.12319565574766	-2.39416756947528	h
-5.14338723937571	3.88682171830534	-6.44825509814631	h
0.52729073726362	-5.44614712142058	-5.39458186207909	h
0.39455319186036	-10.08825971234731	-5.43719181432860	h
3.21501222383407	-5.24935761892098	2.04208397801933	h

3.20463372637838	-9.88968606205933	2.37419086532071	h
-1.01247286818082	-1.79848396572466	2.16668858016416	h
-1.37090384408229	-1.17324726713673	6.75778695031732	h
6.26355209811232	2.09761132089732	6.55353932989265	h
6.24683483561174	1.35623595301169	1.96869188011376	h

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory).

mode	symmetry	wave number	IR intensity	selecti	on rules
		[cm ⁻¹]	[km mol⁻¹]	IR	RAMAN
7	а	8.62	0.18891	YES	YES
8	а	11.90	0.19462	YES	YES
9	а	13.13	0.32205	YES	YES
10	а	15.77	0.56866	YES	YES
11	а	20.81	1.06013	YES	YES
12	а	23.47	0.46462	YES	YES
13	а	28.02	0.01158	YES	YES
14	а	37.58	0.12364	YES	YES
15	а	41.51	0.36475	YES	YES
16	а	63.63	0.88183	YES	YES
17	а	67.06	1.28014	YES	YES
18	а	76.72	0.03509	YES	YES
19	а	79.47	0.01872	YES	YES
20	а	81.74	0.33079	YES	YES
21	а	84.93	0.08448	YES	YES
22	а	87.71	0.97684	YES	YES
23	а	91.42	0.08564	YES	YES
24	а	93.33	9.63975	YES	YES
25	а	99.57	18.68213	YES	YES
26	а	103.68	3.98137	YES	YES
27	а	109.74	5.98109	YES	YES
28	а	114.48	2.23218	YES	YES
29	а	124.06	0.93885	YES	YES
30	а	125.71	0.84532	YES	YES
31	а	129.70	0.91172	YES	YES
32	а	131.70	1.18020	YES	YES
33	а	135.03	36.57358	YES	YES
34	а	148.70	19.30232	YES	YES
35	а	150.42	2.68666	YES	YES
36	а	161.53	1.78862	YES	YES
37	а	179.32	6.70769	YES	YES
38	а	184.57	0.13864	YES	YES
39	а	185.76	0.80379	YES	YES
40	а	185.91	0.15645	YES	YES
41	а	190.19	0.68837	YES	YES
42	а	193.19	8.13765	YES	YES
43	а	198.29	6.17037	YES	YES
44	а	255.79	0.67846	YES	YES
45	а	259.10	1.09555	YES	YES
46	а	262.90	1.27533	YES	YES
47	а	268.36	4.96705	YES	YES

48	а	298.99	8.85393	YES	YES
49	а	302.28	8.85577	YES	YES
50	а	305.80	5.84504	YES	YES
51	а	308.11	19.20400	YES	YES
52	а	388.93	47.16727	YES	YES
53	a	390.97	1.50265	YES	YES
53	a	398.20	21 41326	YES	VES
55	a	202 77	11 201/0	VES	VES
55	a	330.77	0 20202	VEC	VES
50	d	411.00	0.29505		TES VEC
57	a	413.12	0.37313	YES	YES
58	а	416.39	0.40504	YES	YES
59	а	427.65	0.05865	YES	YES
60	а	477.79	3.20427	YES	YES
61	а	478.12	3.76491	YES	YES
62	а	479.29	1.19731	YES	YES
63	а	480.72	2.69365	YES	YES
64	а	524.76	22.60397	YES	YES
65	а	528.23	12.39324	YES	YES
66	а	529.02	12.55710	YES	YES
67	а	531.85	12.49002	YES	YES
68	а	545.11	29.81562	YES	YES
69	а	546.09	7.07131	YES	YES
70	а	550.54	10.60107	YES	YES
71	a	551.52	13.34263	YES	YES
72	a	654 25	0 14341	YES	YES
72	a	655 76	0.08327	VES	VES
73	a	656.26	0.13910	VES	VES
75	a	657.20	1 10160	VES	VES
75	a		0 51027	VEC	VES
70	a	720.82	0.51927		TES VES
//	a	722.10	0.51898	YES	YES
/8	а	724.85	0.06022	YES	YES
79	а	/25.36	0.19923	YES	YES
80	а	756.13	0.37538	YES	YES
81	а	756.91	3.75373	YES	YES
82	а	759.53	0.74940	YES	YES
83	а	761.04	0.66610	YES	YES
84	а	804.42	18.21946	YES	YES
85	а	806.26	4.29519	YES	YES
86	а	806.71	1.22359	YES	YES
87	а	808.32	1.59195	YES	YES
88	а	810.88	47.82419	YES	YES
89	а	812.09	35.81614	YES	YES
90	а	815.12	16.23996	YES	YES
91	a	815.98	48,94461	YES	YES
92	a	931.41	0.21691	YES	YES
92	а а	937 11	0 41543	VFS	YES
9/	и Э	932.44	0.71343	VES	VES
0F	a	0/1 26	2 05000	VEC	VEC
30	d	J41.30	3.33030		
90	d	942.79	0.400/5	TES	1ED VEC
97	a	945.39	0.25047	YES	1ES
98	а	946.16	T.991/9	YES	YES
99	а	946.47	2.03606	YES	YES
100	а	946.79	1.70460	YES	YES

101	а	947.34	1.72817	YES	YES
102	а	948.09	1.03180	YES	YES
103	а	958.91	3.48571	YES	YES
104	а	987.10	250.88508	YES	YES
105	a	988.89	35,79005	YES	YES
106	a	993 38	137 97461	YES	YES
107	a	996 72	76 10855	VES	VES
107	a 2	1046 11	7 55052	VES	VES
100	a	1040.11	7.55552	VES	VES
109	d	1040.10	22.03030		TES VEC
110	d	1040.80	17.53387	YES	TES VEC
111	а	1047.30	14.3/139	YES	YES
112	а	1049.71	105.59641	YES	YES
113	а	1051.44	160.02521	YES	YES
114	а	1054.55	34.47141	YES	YES
115	а	1058.22	48.71519	YES	YES
116	а	1093.57	0.02473	YES	YES
117	а	1093.97	0.03335	YES	YES
118	а	1095.23	0.00452	YES	YES
119	а	1096.58	0.03052	YES	YES
120	а	1108.57	0.35277	YES	YES
121	а	1108.72	0.06147	YES	YES
122	а	1108.77	0.06424	YES	YES
123	а	1109.08	0.18963	YES	YES
124	a	1113.29	2,11181	YES	YES
125	a	1113.23	5 90561	VES	VES
125	а Э	1115.69	1 61137	VES	VES
120	a 2	1110.02	5 05022	VES	VES
127	a	1119.95	0.06385		TES VEC
128	d	1103.25	0.06285	YES	YES
129	а	1163.31	0.16654	YES	YES
130	а	1163.67	0.13820	YES	YES
131	а	1163.79	0.15855	YES	YES
132	а	1207.24	63.65050	YES	YES
133	а	1209.15	154.78057	YES	YES
134	а	1210.43	125.32882	YES	YES
135	а	1220.11	8.92345	YES	YES
136	а	1233.09	19.13969	YES	YES
137	а	1234.30	21.57942	YES	YES
138	а	1236.17	22.10046	YES	YES
139	а	1236.35	23.05614	YES	YES
140	а	1320.73	5.16215	YES	YES
141	а	1322.90	12.24900	YES	YES
142	a	1324.53	7,80460	YES	YES
143	a	1325.83	10 59843	YES	YES
143	a	1341.86	10.33043	VES	VES
144	a 2	1245.00	11 70000	VES	VES
145	a	1343.06	11.70555		TES VES
140	d	1348.00	23./3303	TES	TES
147	а	1349.20	5.07593	YES	YES
148	а	1383.82	133.13497	YES	YES
149	а	1385.12	67.00677	YES	YES
150	а	1385.64	50.20443	YES	YES
151	а	1387.29	53.52254	YES	YES
152	а	1394.48	1.14299	YES	YES
152	а	1394.71	1.01628	YES	YES

154	а	1394.80	0.50193	YES	YES
155	а	1395.11	1.04412	YES	YES
156	а	1423.09	0.04779	YES	YES
157	а	1423.22	0.17450	YES	YES
158	a	1423.77	0.12300	YES	YES
159	a	1423 87	0.02390	YES	YES
160	a	1430.82	39 07967	VES	VES
161	а Э	1/21 20	18 22211	VES	VES
162	a	1431.09	20.00700	VES	VES
162	d	1452.12	12 95075	TES VES	TES VES
103	d	1432.39	12.85075	TES	YES
164	а	1436.63	27.55887	YES	YES
165	а	1436.94	27.89135	YES	YES
166	а	1437.84	16.34132	YES	YES
167	а	1437.87	38.63622	YES	YES
168	а	1443.28	1.04430	YES	YES
169	а	1443.35	0.47587	YES	YES
170	а	1443.95	0.51565	YES	YES
171	а	1444.13	0.43127	YES	YES
172	а	1463.70	56.18805	YES	YES
173	а	1464.71	125.47222	YES	YES
174	а	1465.22	47.75560	YES	YES
175	а	1465.54	19.33193	YES	YES
176	a	1477.83	3,96707	YES	YES
177	a	1481 72	3 06277	YES	YES
178	a	1/189 03	1 38677	VES	VES
170	а Э	1/80 50	5 56221	VES	VES
120	a 2	1521.64	25 21700	VES	VES
100	a	1521.04	25.21700	VES	VES
101	d	1527.02	20.07217	TES VEC	TES VEC
182	d	1528.12	10.09150	YES	YES
183	а	1530.76	25.61237	YES	YES
184	а	1547.10	148.51406	YES	YES
185	а	1548.40	92.46849	YES	YES
186	а	1552.56	173.32734	YES	YES
187	а	1553.97	106.63853	YES	YES
188	а	1639.58	978.46231	YES	YES
189	а	1643.08	298.10505	YES	YES
190	а	1646.40	718.67556	YES	YES
191	а	1650.97	330.36755	YES	YES
192	а	2936.19	33.64896	YES	YES
193	а	2937.58	32.93487	YES	YES
194	а	2940.37	27.23423	YES	YES
195	а	2940.73	29.79428	YES	YES
196	a	2942.69	43.06495	YES	YES
197	a	2943.07	30 85783	YES	YES
198	a	2945 57	30 31851	VES	VES
100	а Э	2045.06	26 26801	VES	VES
200	a	2943.30	20.30001	VES	VEC
200	d	3008.01	9.34884	TES	TES
201	а	3011.76	4.72861	YES	YES
202	а	3013.93	14.33308	YES	YES
203	а	3013.99	11.27667	YES	YES
204	а	3015.54	4.03050	YES	YES
205	а	3016.04	4.17896	YES	YES
206	а	3017.60	12.22480	YES	YES

207	а	3018.21	12.42744	YES	YES
208	а	3082.32	4.08095	YES	YES
209	а	3082.58	6.66240	YES	YES
210	а	3085.33	0.23303	YES	YES
211	а	3086.67	0.21195	YES	YES
212	а	3088.58	0.23232	YES	YES
213	а	3088.79	0.24960	YES	YES
214	а	3093.48	4.02438	YES	YES
215	а	3094.64	3.91034	YES	YES
216	а	3096.72	2.87068	YES	YES
217	а	3096.88	2.49606	YES	YES
218	а	3097.49	4.04026	YES	YES
219	а	3100.47	1.88309	YES	YES
220	а	3113.85	3.87798	YES	YES
221	а	3123.63	2.48551	YES	YES
222	а	3128.52	4.13443	YES	YES
223	а	3131.73	2.03405	YES	YES
224	а	3150.39	1.26866	YES	YES
225	а	3155.61	1.52290	YES	YES
226	а	3155.99	0.80970	YES	YES
227	а	3156.27	0.21511	YES	YES
228	а	3156.57	0.63896	YES	YES
229	а	3157.70	0.60132	YES	YES
230	а	3157.97	0.45180	YES	YES
231	а	3159.29	0.19147	YES	YES

[Pb(dmap)₄]²⁺

1.92363942610325	-5.28751313466393	-1.83471629107714	n
2.02939853603777	-13.24888210375518	-1.31563246751127	n
2.51886998452422	-6.48326358014786	0.35484630633395	С
2.56543755028527	-9.09268543053359	0.63053716215705	С
1.98493799984599	-10.68819784958134	-1.47959898845556	С
1.36174325281633	-9.40023541329846	-3.78001321445451	С
1.36881900082275	-6.77898101877269	-3.85026886770446	С
2.70528289211103	-14.47451361551884	1.06733579768501	С
1.44635490748215	-14.79310358078218	-3.53286865876714	С
-1.53114817128047	-0.09284545533179	-3.31460855496795	n
-9.29146408007077	0.69271382145710	-4.93112495986035	n
-3.20039141042798	-1.98742929267449	-2.82063051206032	С
-5.76872257558501	-1.81047018006428	-3.30268187781676	С
-6.79767886911853	0.44446946146168	-4.39897999852557	С
-5.00869422634910	2.41654647178880	-4.90021317353511	С
-2.47399498421747	2.06940408013228	-4.34407173703939	С
-11.04135142553051	-1.38075656275094	-4.39533231669456	С
-10.23962966110666	3.01813529758491	-6.09146291558822	С
2.80059130170316	4.35185398526623	-2.08116754787262	n
2.96845105612295	12.27693465285669	-1.21144498514548	n
4.17431816631282	5.84743759598613	-3.64775257516041	С

4.29418755701692	8.46112027567714	-3.44817307489265	С
2.91371163163564	9.72547396909787	-1.49242809600441	С
1.47148004416685	8.12046932307696	0.14661832576923	С
1.48329172935267	5.52210976394215	-0.21986719226408	С
4.47673543433177	13.83001951475776	-2.93146496048191	С
1.53064011181610	13.48072870684316	0.81659443540786	С
2.56906472817871	-0.24630842062309	1.76995319344396	n
1.98326311420270	0.78162906825598	9.63950599534858	n
4.52138739287001	0.70796581816952	3.14123173540624	С
4.42117389224190	1.08024680792612	5.73114805799293	С
2.16825572767204	0.46060371611947	7.10386902447542	С
0.12349541570676	-0.51798728195417	5.61683600348522	С
0.41041793509163	-0.83011287847008	3.03093684524159	С
4.13284364001114	1.76522398591609	11.07712940749694	С
-0.35946687143118	0.13047155812669	10.95632133681219	С
3.00301832830901	-0.54384429076963	-2.77438495317434	pb
-1.10182986032851	3.58771675256405	-4.72329505364004	h
-1.97936056519532	1.26822601310915	10.24489598106808	h
-0.13635569742229	0.52973833533895	12.99525980944104	h
-0.81786160025440	-1.91076742111501	10.73972810725946	h
5.81254326458794	0.51341462585919	10.89243668154518	h
3.62013318727099	1.86283733174619	13.10041562726075	h
4.65683914411714	3.70122286173891	10.44359431138088	h
1.80937230966805	15.54997002701479	0.72399057265255	h
2.17213081229307	12.82252008391402	2.70899169195674	h
-0.52963815271707	13.09507134204961	0.63167200032516	h
3.82765081064298	13.62201973702285	-4.92171602140632	h
6.51634772087400	13.32669941455175	-2.83018662652052	h
4.28008132445237	15.84030807463911	-2.39508285383487	h
-9.33892703552108	3.36227520094165	-7.96118462536793	h
-9.89704835219410	4.68407511978859	-4.85442872493461	h
-12.30080831186896	2.84777272314258	-6.38942974549139	h
-12.97612519424141	-0.80544591903374	-4.93631446526259	h
-11.05468547286369	-1.85841450927094	-2.34742401435382	h
-10.54451886779450	-3.10559471944311	-5.49219585808842	h
2.80861898009063	-14.43796985856513	-5.09587650452419	h
-0.50140274123518	-14.42049086853878	-4.23545114376768	h
1.56806397767098	-16.81426240567796	-3.01530699589648	h
2.63948041228290	-16.54844386932648	0.81766566591120	h
1.35980846212359	-13.96233981163069	2.60153711990226	h
4.65209397435711	-13.95484918193426	1.67234731992044	h
0.37227665225357	4.28897226054415	1.04155911135040	h
0.34696930220576	8.89867111014209	1.70679753787120	h
5.46101261961286	9.50909471801775	-4.80561979306162	h
5.24632986950304	4.88178251831119	-5.15678355581605	h
-2.39558499512444	-3.72888222560499	-2.01259839555498	h
-6.96941255780819	-3.43865401614970	-2.84438974553231	h
-5.59234519925279	4.22380769253361	-5.73394703043159	h
0.89818542840099	-5.80056965680959	-5.63410572091272	h
0.89206426188539	-10.43904940261927	-5.51302324306206	h
2.98838229382258	-5.26051044171765	1.97508636917426	h
3.06945064775901	-9.88577755172614	2.47976252979306	h
-1.15660317506110	-1.58819316745585	1.89029630229229	h

-1.68976040228076	-1.04023734089459	6.47737444279760	h
6.09457239212326	1.85351467949945	6.68128211478137	h
6.25159185151169	1.20431396029396	2.08969111277426	h

_

mode	symmetry	wave	IR intensity	selecti	ion rules
mode	symmetry	number	intincensity	Sciect	lon rules
		[cm ⁻¹]	[km mol⁻¹]	IR	RAMAN
7	а	10.34	0.50693	YES	YES
8	а	11.16	0.24968	YES	YES
9	а	12.68	0.36597	YES	YES
10	а	14.98	0.69265	YES	YES
11	а	19.99	1.05048	YES	YES
12	а	21.07	0.50925	YES	YES
13	а	29.10	0.11283	YES	YES
14	а	35.03	0.02314	YES	YES
15	а	40.00	0.60418	YES	YES
16	а	61.97	1.91912	YES	YES
17	а	64.67	1.63625	YES	YES
18	а	76.05	1.78521	YES	YES
19	а	78.23	2.21278	YES	YES
20	а	80.31	11.12385	YES	YES
21	а	81.84	8.66342	YES	YES
22	а	84.32	7.24741	YES	YES
23	а	85.58	2.16475	YES	YES
24	а	90.51	6.11846	YES	YES
25	а	93.49	0.17396	YES	YES
26	а	93.80	0.98956	YES	YES
27	а	101.28	1.82321	YES	YES
28	а	108.50	0.54848	YES	YES
29	а	119.08	1.23284	YES	YES
30	а	121.81	11.40821	YES	YES
31	а	124.73	1.18597	YES	YES
32	а	125.72	1.16974	YES	YES
33	а	126.32	2.67631	YES	YES
34	а	128.42	10.60558	YES	YES
35	а	147.62	2.45690	YES	YES
36	а	154.91	0.43383	YES	YES
37	а	168.96	2.34849	YES	YES
38	а	180.47	2.21655	YES	YES
39	а	182.95	0.73415	YES	YES
40	а	184.10	0.12673	YES	YES
41	а	185.47	1.10856	YES	YES
42	а	187.66	0.47748	YES	YES
43	а	188.38	1.12557	YES	YES
44	а	254.10	0.51518	YES	YES
45	а	256.10	0.73460	YES	YES
46	а	260.37	0.22362	YES	YES
47	а	264.03	2.76220	YES	YES
48	а	296.19	7.80413	YES	YES
49	а	298.92	7.97784	YES	YES

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory).

50	а	303.58	4.97795	YES	YES
51	а	305.09	13.89097	YES	YES
52	а	387.69	42.88638	YES	YES
53	а	393.36	2.38186	YES	YES
54	a	397.33	17,47379	YES	YES
55	a	405 56	7 49272	YES	YES
56	a	411 33	0 20035	VES	VES
50	a	412.33	0.20033	VES	VES
57	a	415.25	0.22000	TES VES	YES
58	d	415.51	0.35000	TES VEC	YES
59	d	425.76	0.09671	YES	YES
60	а	477.60	3.03684	YES	YES
61	а	477.91	3.97097	YES	YES
62	а	479.37	1.67818	YES	YES
63	а	480.19	2.41796	YES	YES
64	а	525.15	22.16149	YES	YES
65	а	529.60	11.26977	YES	YES
66	а	530.09	15.97848	YES	YES
67	а	531.48	6.72673	YES	YES
68	а	544.36	28.88821	YES	YES
69	а	548.42	1.06187	YES	YES
70	а	550.80	12.88017	YES	YES
71	а	555.09	6.32964	YES	YES
72	a	654.67	0.16268	YES	YES
73	a	656 64	0 29620	YES	YES
74	a	656 79	0.28045	VES	VES
75	а Э	657 11	0.20045	VES	VES
75	a	720.26	0.80810	VES	VES
70	a	720.30	0.59000	TES VES	TES VEC
77	d	722.07	0.05196	TES VEC	TES VEC
78	а	724.73	0.12813	YES	YES
79	а	/25.43	0.33745	YES	YES
80	а	/56.9/	2.50150	YES	YES
81	а	758.54	0.37816	YES	YES
82	а	759.67	0.52265	YES	YES
83	а	760.62	0.26011	YES	YES
84	а	807.17	1.21750	YES	YES
85	а	809.16	14.51275	YES	YES
86	а	810.04	10.20048	YES	YES
87	а	810.34	24.89087	YES	YES
88	а	811.01	56.84409	YES	YES
89	а	811.55	7.38538	YES	YES
90	а	811.96	12.98571	YES	YES
91	a	816.32	40.97929	YES	YES
92	a	931.05	0.38717	YES	YES
93	a	933.29	0 40513	VES	VES
94	a	934.86	0.22896	VES	VES
05	a	042.80	0.22000	VES	VES
95	a	J42.01	0.23027	I ES VEC	TES
90	d	940.09	5.87041	1ES	TES
97	а	946.92	2.61411	YES	YES
98	а	947.21	2.55859	YES	YES
99	а	947.49	0.93341	YES	YES
100	а	947.78	0.23547	YES	YES
101	а	948.73	1.16692	YES	YES
102	а	949.48	1.72677	YES	YES

103	а	961.39	1.79068	YES	YES
104	а	987.36	254.08103	YES	YES
105	а	991.09	45.11014	YES	YES
106	а	993.59	109.57995	YES	YES
107	а	999.32	33.84709	YES	YES
108	а	1046.80	17.64986	YES	YES
109	a	1047 10	16 19039	YES	YES
110	2	1047.10	16 60102	VES	VES
110	a	1047.41	14 05542	VES	VES
112	a	1047.32	14.93343	VES	VES
112	a	1055.52	90.02014		TES VES
113	d	1054.29	140./1925	TES	YES
114	а	1057.19	44.56362	YES	YES
115	а	1063.76	19.32460	YES	YES
116	а	1094.20	0.03260	YES	YES
117	а	1094.83	0.06459	YES	YES
118	а	1095.95	0.03711	YES	YES
119	а	1096.39	0.01556	YES	YES
120	а	1108.11	0.07193	YES	YES
121	а	1108.37	0.15222	YES	YES
122	а	1108.78	0.05260	YES	YES
123	а	1109.30	0.14121	YES	YES
124	а	1114.37	6.36474	YES	YES
125	а	1115.13	1.81838	YES	YES
126	a	1115.88	7.71873	YES	YES
127	a	1119 68	3 26894	VES	VES
129	2	1163 35	0.03100	VES	VES
120	а Э	1163.81	0.03133	VES	VES
129	a	1162.00	0.02993	VES	TL3 VES
130	d	1105.96	0.05007	TES VEC	TES VEC
131	a	1164.07	0.26080	YES	YES
132	а	1209.89	/6.6845/	YES	YES
133	а	1212.60	125./4123	YES	YES
134	а	1213.20	151.01171	YES	YES
135	а	1222.38	7.44089	YES	YES
136	а	1235.01	14.90326	YES	YES
137	а	1235.08	27.12582	YES	YES
138	а	1237.16	22.05131	YES	YES
139	а	1237.67	24.20620	YES	YES
140	а	1322.72	2.28193	YES	YES
141	а	1326.71	8.97060	YES	YES
142	а	1327.57	6.41332	YES	YES
143	а	1328.05	7.26185	YES	YES
144	а	1344.16	6.97718	YES	YES
145	a	1346.58	13,22013	YES	YES
146	a	1348 38	20 12476	YES	VES
147	2	1349 76	11 68474	VES	VES
147	a	1294 21	164 42661	VES	VES
140	a	1205 25	104.42001 E1 16000		TES
149	d	1385.25	21.10033	TES	TES
150	а	1385.81	36.42819	YES	YES
151	а	1387.74	62.88257	YES	YES
152	а	1394.78	0.44371	YES	YES
153	а	1395.27	1.08615	YES	YES
154	а	1395.99	0.68068	YES	YES
155	а	1396.04	1.56046	YES	YES

156	а	1422.63	0.05337	YES	YES
157	а	1423.15	0.03444	YES	YES
158	а	1423.62	0.23992	YES	YES
159	а	1424.22	0.09334	YES	YES
160	а	1431.43	37.93238	YES	YES
161	a	1432.75	42,63965	YES	YES
162	a	1432.85	21 24354	VES	VES
162	a 2	1/33.07	9 16900	VES	VES
164	a 2	1435.07	2.40500	VES	VES
104	a	1430.00	27.29000	TES VES	VES
105	d	1430.79	20.94059	TES VEC	YES
100	d	1437.58	27.48015	YES	YES
167	а	1438.14	27.71349	YES	YES
168	а	1442.92	1.52167	YES	YES
169	а	1443.27	0.27314	YES	YES
170	а	1444.00	0.44072	YES	YES
171	а	1444.13	0.48971	YES	YES
172	а	1464.03	52.70261	YES	YES
173	а	1465.31	114.89613	YES	YES
174	а	1465.56	82.83204	YES	YES
175	а	1466.20	3.83735	YES	YES
176	а	1477.02	3.28517	YES	YES
177	а	1478.63	2.98694	YES	YES
178	а	1486.41	3.13348	YES	YES
179	а	1488.34	2.82266	YES	YES
180	a	1522.69	29.61344	YES	YES
181	a	1528 11	24 14657	VES	VES
182	a	1520.11	17 47489	VES	VES
102	a 2	1525.75	17.47405	VES	VES
103	a	1551.05	27.00028		TES VES
184	d	1540.30	189.09805	YES	YES
185	а	1547.24	41.63529	YES	YES
186	а	1551.19	162.01396	YES	YES
18/	а	1552.43	113.28457	YES	YES
188	а	1638.95	1185.37049	YES	YES
189	а	1641.29	101.62911	YES	YES
190	а	1644.91	683.13154	YES	YES
191	а	1649.20	335.32422	YES	YES
192	а	2935.53	34.37046	YES	YES
193	а	2936.35	34.78817	YES	YES
194	а	2939.52	26.34764	YES	YES
195	а	2939.64	32.88033	YES	YES
196	а	2941.90	47.92561	YES	YES
197	а	2942.18	28.35662	YES	YES
198	а	2944.70	33,49795	YES	YES
199	a	2945.00	24,73609	YES	YES
200	a	3007 54	9,73805	YES	YES
200	а а	3010 09	4 68143	YES	YES
201	2	3010.05	15 87805	YES	VES
202	a	2012.13	11 65570	VEC	VEC
205	d	2012.22	E 00212		
204	d	3014.17	5.00312	TES VEC	TES VEC
205	а	3014.82	0.88109	YES	YES
206	а	3016.07	16.448/6	YES	YES
207	а	3016.64	12.28058	YES	YES
208	а	3077.85	6.44844	YES	YES

209a3080.987.60492YESYES210a3085.130.26061YESYES211a3085.570.28311YESYES212a3087.520.25768YESYES213a3088.480.27421YESYES214a3093.264.25757YESYES215a3093.624.17582YESYES216a3095.703.06317YESYES217a3096.582.67744YESYES218a3097.843.69125YESYES219a3101.652.38970YESYES220a3109.494.07354YESYES221a3123.163.68416YESYES222a3123.163.68416YESYES223a315.511.76013YESYES224a3151.511.4559YESYES225a3155.040.16883YESYES226a3155.890.60440YESYES228a3157.650.69366YESYES230a3157.650.69366YESYES231a3158.600.12142YESYES						
210a3085.130.26061YESYES211a3085.570.28311YESYES212a3087.520.25768YESYES213a3088.480.27421YESYES214a3093.264.25757YESYES215a3093.624.17582YESYES216a3095.703.06317YESYES217a3096.582.67744YESYES218a3097.843.69125YESYES219a3101.652.38970YESYES220a3109.494.07354YESYES221a3123.163.68416YESYES222a3123.163.68416YESYES223a3155.040.16883YESYES226a3155.151.14559YESYES227a3155.151.14559YESYES228a3157.490.59507YESYES229a3157.650.69366YESYES230a3158.600.12142YESYES	209	а	3080.98	7.60492	YES	YES
211 a 3085.57 0.28311 YES YES 212 a 3087.52 0.25768 YES YES 213 a 3088.48 0.27421 YES YES 214 a 3093.26 4.25757 YES YES 215 a 3093.62 4.17582 YES YES 216 a 3095.70 3.06317 YES YES 217 a 3096.58 2.67744 YES YES 218 a 3097.84 3.69125 YES YES 219 a 3101.65 2.38970 YES YES 220 a 3109.49 4.07354 YES YES 221 a 3120.16 6.51070 YES YES 222 a 3123.16 3.68416 YES YES 223 a 3151.31 1.38178 YES YES 224 a 3155.04 0.16883 YES YES 225 a 3155.15 1.14559 <td>210</td> <td>а</td> <td>3085.13</td> <td>0.26061</td> <td>YES</td> <td>YES</td>	210	а	3085.13	0.26061	YES	YES
212a3087.520.25768YESYES213a3088.480.27421YESYES214a3093.264.25757YESYES215a3093.624.17582YESYES216a3095.703.06317YESYES217a3096.582.67744YESYES218a3097.843.69125YESYES219a3101.652.38970YESYES220a3109.494.07354YESYES221a3120.166.51070YESYES222a3123.163.68416YESYES223a3153.564.35299YESYES224a3151.311.38178YESYES225a3155.040.16883YESYES226a3155.151.14559YESYES228a3157.490.59507YESYES230a3157.650.69366YESYES231a3158.600.12142YESYES	211	а	3085.57	0.28311	YES	YES
213a3088.480.27421YESYES214a3093.264.25757YESYES215a3093.624.17582YESYES216a3095.703.06317YESYES217a3096.582.67744YESYES218a3097.843.69125YESYES219a3101.652.38970YESYES220a3109.494.07354YESYES221a3123.163.68416YESYES222a3123.163.68416YESYES223a3151.311.38178YESYES224a3155.040.16883YESYES225a3155.151.14559YESYES226a3155.890.60440YESYES228a3157.490.59507YESYES230a3157.650.69366YESYES231a3158.600.12142YESYES	212	а	3087.52	0.25768	YES	YES
214a3093.264.25757YESYES215a3093.624.17582YESYES216a3095.703.06317YESYES217a3096.582.67744YESYES218a3097.843.69125YESYES219a3101.652.38970YESYES220a3109.494.07354YESYES221a3120.166.51070YESYES222a3123.163.68416YESYES223a3151.311.38178YESYES224a3155.040.16883YESYES226a3155.151.14559YESYES227a3155.890.60440YESYES228a3157.650.69366YESYES230a3158.600.12142YESYES	213	а	3088.48	0.27421	YES	YES
215a3093.624.17582YESYES216a3095.703.06317YESYES217a3096.582.67744YESYES218a3097.843.69125YESYES219a3101.652.38970YESYES220a3109.494.07354YESYES221a3120.166.51070YESYES222a3123.163.68416YESYES223a3123.564.35299YESYES224a3151.311.38178YESYES225a3155.040.16883YESYES226a3155.151.14559YESYES227a3155.890.60440YESYES228a3157.650.69366YESYES230a3157.650.69366YESYES231a3158.600.12142YESYES	214	а	3093.26	4.25757	YES	YES
216a3095.703.06317YESYES217a3096.582.67744YESYES218a3097.843.69125YESYES219a3101.652.38970YESYES220a3109.494.07354YESYES221a3120.166.51070YESYES222a3123.163.68416YESYES223a315.311.38178YESYES224a3154.571.76013YESYES226a3155.040.16883YESYES227a3155.151.14559YESYES228a3157.490.59507YESYES229a3157.650.69366YESYES231a3158.600.12142YESYES	215	а	3093.62	4.17582	YES	YES
217a3096.582.67744YESYES218a3097.843.69125YESYES219a3101.652.38970YESYES220a3109.494.07354YESYES221a3120.166.51070YESYES222a3123.163.68416YESYES223a3151.311.38178YESYES224a3151.311.38178YESYES225a3155.040.16883YESYES226a3155.151.14559YESYES228a3157.490.59507YESYES230a3157.650.69366YESYES231a3158.600.12142YESYES	216	а	3095.70	3.06317	YES	YES
218a3097.843.69125YESYES219a3101.652.38970YESYES220a3109.494.07354YESYES221a3120.166.51070YESYES222a3123.163.68416YESYES223a3123.564.35299YESYES224a3151.311.38178YESYES225a3155.040.16883YESYES226a3155.151.14559YESYES227a3155.890.60440YESYES228a3157.490.59507YESYES230a3157.650.69366YESYES231a3158.600.12142YESYES	217	а	3096.58	2.67744	YES	YES
219a3101.652.38970YESYES220a3109.494.07354YESYES221a3120.166.51070YESYES222a3123.163.68416YESYES223a3123.564.35299YESYES224a3151.311.38178YESYES225a3155.040.16883YESYES226a3155.151.14559YESYES228a3157.490.59507YESYES229a3157.650.69366YESYES231a3158.600.12142YESYES	218	а	3097.84	3.69125	YES	YES
220a3109.494.07354YESYES221a3120.166.51070YESYES222a3123.163.68416YESYES223a3123.564.35299YESYES224a3151.311.38178YESYES225a3155.040.16883YESYES226a3155.151.14559YESYES228a3157.490.59507YESYES229a3157.650.69366YESYES231a3158.600.12142YESYES	219	а	3101.65	2.38970	YES	YES
221a3120.166.51070YESYES222a3123.163.68416YESYES223a3123.564.35299YESYES224a3151.311.38178YESYES225a3154.571.76013YESYES226a3155.040.16883YESYES227a3155.151.14559YESYES228a3157.490.59507YESYES229a3157.650.69366YESYES231a3158.600.12142YESYES	220	а	3109.49	4.07354	YES	YES
222a3123.163.68416YESYES223a3123.564.35299YESYES224a3151.311.38178YESYES225a3154.571.76013YESYES226a3155.040.16883YESYES227a3155.151.14559YESYES228a3155.890.60440YESYES229a3157.490.59507YESYES230a3158.600.12142YESYES	221	а	3120.16	6.51070	YES	YES
223a3123.564.35299YESYES224a3151.311.38178YESYES225a3154.571.76013YESYES226a3155.040.16883YESYES227a3155.151.14559YESYES228a3155.890.60440YESYES229a3157.490.59507YESYES230a3158.600.12142YESYES	222	а	3123.16	3.68416	YES	YES
224a3151.311.38178YESYES225a3154.571.76013YESYES226a3155.040.16883YESYES227a3155.151.14559YESYES228a3155.890.60440YESYES229a3157.490.59507YESYES230a3157.650.69366YESYES231a3158.600.12142YESYES	223	а	3123.56	4.35299	YES	YES
225a3154.571.76013YESYES226a3155.040.16883YESYES227a3155.151.14559YESYES228a3155.890.60440YESYES229a3157.490.59507YESYES230a3157.650.69366YESYES231a3158.600.12142YESYES	224	а	3151.31	1.38178	YES	YES
226a3155.040.16883YESYES227a3155.151.14559YESYES228a3155.890.60440YESYES229a3157.490.59507YESYES230a3157.650.69366YESYES231a3158.600.12142YESYES	225	а	3154.57	1.76013	YES	YES
227a3155.151.14559YESYES228a3155.890.60440YESYES229a3157.490.59507YESYES230a3157.650.69366YESYES231a3158.600.12142YESYES	226	а	3155.04	0.16883	YES	YES
228a3155.890.60440YESYES229a3157.490.59507YESYES230a3157.650.69366YESYES231a3158.600.12142YESYES	227	а	3155.15	1.14559	YES	YES
229a3157.490.59507YESYES230a3157.650.69366YESYES231a3158.600.12142YESYES	228	а	3155.89	0.60440	YES	YES
230 a 3157.65 0.69366 YES YES 231 a 3158.60 0.12142 YES YES	229	а	3157.49	0.59507	YES	YES
231 a 3158.60 0.12142 YES YES	230	а	3157.65	0.69366	YES	YES
	231	а	3158.60	0.12142	YES	YES

$[Sn(PPh_3)_3]^{2+}$

2.66295460827596	-1.50727601076275	-0.67070067259323	sn	
1.50238165149270	1.39704447042382	-6.64913153251512	С	
1.48467402203252	2.66477389935605	-3.44679604019644	р	
0.10417675830402	-0.81474908393610	-7.16893845927959	С	
-0.96675283223332	-1.77823244439587	-5.66762064746190	h	
0.05139664583763	-1.81055960149284	-9.62317675071476	С	
-1.03878821380848	-3.54196888301491	-10.00217420246567	h	
1.40142559162893	-0.60224317343271	-11.56642719715257	С	
1.37444525566975	-1.38606531381089	-13.49486086948970	h	
2.79403848703206	1.60320239884231	-11.05405379664358	С	
3.84860717778536	2.54825157631314	-12.57974189775008	h	
2.85506186479968	2.61123845250325	-8.60077057002997	С	
3.95538386360503	4.33335376326236	-8.20665827957045	h	
4.25408290690415	4.69655412116768	-3.18048354827283	С	
6.67024259567487	3.56153140473400	-3.31012617355114	С	
6.86641420244270	1.49511571959192	-3.52506995538788	h	
8.84519827393579	5.07103396087526	-3.23691173529187	С	
10.72392582265791	4.18348253101154	-3.36487018582852	h	
8.62330602929323	7.71221782283074	-3.02383845407729	С	
10.33428192772156	8.89742317563529	-2.97780487384565	h	
6.22403848454856	8.83808306658508	-2.88470499958951	С	
6.04599188696233	10.90631784781500	-2.73233579364281	h	
4.03376301803657	7.34176652078304	-2.96605233732327	С	

2.16197963571625	8.24508501608723	-2.88537750788547	h
-1.29911494912592	4.66820958747154	-3.15608776286751	С
-1.77031067285231	5.91909143563099	-0.84709173657054	С
-0.44018116705845	5.73115418679646	0.74194829923561	h
-3.91317433060909	7.45605244226273	-0.59503639039325	С
-4.26928757024085	8.44101869624463	1.20395864218076	h
-5.59004367612290	7.74973375653195	-2.63587369590009	С
-7.26901199521656	8.96481333996159	-2.43697350897468	h
-5.11207185384536	6.51445975840673	-4.93903017377653	С
-6.40507926270702	6.77064068071037	-6.55094207399932	h
-2.97287024433987	4.96757523514804	-5.21110692447915	C
-2.60275167731991	4 00757085759413	-7.01978121043812	h
1.76422021290373	0.58493460539274	3.88366727291624	n
5 54949140064867	4 13970750513134	3 04699494488803	۲ ۲
6 68162233662210	2 53341343527792	2 35171172926600	e h
6 62160701145061	6 55859372298091	3 12201950382525	C C
8 57522784108311	6 83765335390403	2 46692968807671	e h
5 20640902893840	8 61686086566043	4 02995879780546	C II
6 05535453732866	10 51694057511407	4.02333673780346	b b
2 72424347421394	8 25162122182367	4.89719973983131	n C
1 62903012818472	9 85847890969651	5 64046569930578	b b
1.64293092058083	5 82715165729485	4 86403794166228	n C
-0.2868/656367179	5 53072574702538	5 5877/513609922	h
2 65878812320531	-1 26/595673082/1	6.07848400445373	n C
A 00271006111822	-0.07085256146213	8 05753227085751	C
4.99271090111022	2 00206901224402	8.05755527085751 9.24546280506026	L h
4.90040880202308 6 361855/3683/82	-1 5/515886958688	9 78575208124537	
7 /02/217720/061	-0.61848054525724	11 221//972025527	c h
6 A10667A195AA10	4 10007602950044	0 54222091092620	II C
7 40795276272000	-4.19097093839044 5.22700620011402	10 90922960105460	L h
F 09752595660064	5.337000355511402	7 56622084542204	II C
5.00752505000004 E 177E447E267402	7 44652280000767	7.300223843433334	L h
2 71250516102752	2 02028700404201	F 920/0999711175	II C
2 66949001572412	-3.92028709494301	4 2005 4040287640	L b
2.00040091575412	-4.8/205555/4009/	4.29954049287040	11
	0.70717820138507	5.10052914759445	l
-1.95508235811790	0.02994412345256	7.63393661920774	C h
-0.41042140050941	-0.54674086244513	8.90407249736389	n
-4.46100372707088	0.06042307744087	8.50353909460054	C
-4.8/3094/3019108	-0.40001815938789	10.47517596324136	n
-0.44034015778903	0.75006743893002	0.86/15/21060866	C h
-8.40402673525323	0.74845653251844	7.55815716635402	n
-5.91/46/1018/044	1.44485740325799	4.35592056671399	C
-7.45586526300935	1.98098919284307	3.06211968172671	n
-3.42051094775628	1.42084176103804	3.47326634431378	C
-3.0250/94148/109	1.94219/14/50/40	1.50059136213583	n
3.05523/033961/8	3.77139613993000	3.925211/0339/49	C
-11./06814/26//295	0.05945094495071	-1.42601502854748	h
-11.04061992485875	-4.059//94595/611	0.82428951478382	n
-9.79242915222308	-0./44/42/468//04	-1.2/44542043/829	C
-9.4205012/4153/8	-3.04985178843989	-0.005/90344/1035	C
-/./25955/86456/0	0.52588473991023	-2.36028432958657	C
-7.99522517802838	2.32956339991904	-3.36146/49904636	h
-3.20802276230607	-6.16347814309833	8.28775175668415	h

-6.98/988602935/4	-4.08868224994359	0.20061608917291	С
-6.71840573777554	-5.90415039059552	1.18084853518841	h
-2.32487008361858	-6.79505164482003	6.51256107732203	С
-3.81457757282748	-3.63373997006573	4.37425691658009	h
-5.29258903932186	-0.49880113163144	-2.15832620343602	С
-2.66399728884687	-5.36177515993777	4.31054660940188	С
-4.91225383077868	-2.79609286346074	-0.86675300159409	С
-0.62037502361947	-10.14163209778086	8.18938563827312	h
-0.87793641045953	-9.02150310956066	6.45393382898810	С
-3.68529305535631	0.51734199651722	-2.99600174645778	h
-1.55270732317019	-6.17037692015242	2.01980500310279	С
-1.75560594707544	-4.15055325856397	-0.76682409443771	р
0.21921736090057	-9.83192742862534	4.17470835337181	С
-0.10965293596701	-8.41505293568483	1.95489527612839	С
-5.47396109345461	-6.04385516929130	-4.48569932156023	h
1.32306263564068	-11.59574250119559	4.11195989116974	h
-3.59125528689753	-6.72725925621776	-5.04846508695798	С
-1.44330843090194	-6.12571754937075	-3.58556668471133	С
0.72601150304736	-9.08867194001627	0.17184538645357	h
-3.32194595844252	-8.20326779050816	-7.23736263763230	С
-5.00426331114209	-8.67684605912887	-8.36843068551826	h
0.96712702268850	-6.99295186208068	-4.34692207509387	С
2.67428962169520	-6.51298821238249	-3.24870547964562	h
-0.92705861235307	-9.08198793899153	-7.97658949302707	С
1.21684572238996	-8.47510046750666	-6.52971825538371	С
-0.72794594159304	-10.24329471028694	-9.69298382089136	h
3.09805401763060	-9.15274235241439	-7.10702378728825	h

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory).

mode	symmetry	wave number	IR intensity	selecti	on rules
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	а	10.04	0.01763	YES	YES
8	а	18.51	0.03092	YES	YES
9	а	25.39	0.06559	YES	YES
10	а	30.90	0.01266	YES	YES
11	а	32.60	0.07956	YES	YES
12	а	37.28	0.04439	YES	YES
13	а	38.65	0.13956	YES	YES
14	а	42.80	0.00951	YES	YES
15	а	46.57	0.04752	YES	YES
16	а	49.54	0.06607	YES	YES
17	а	50.53	0.03969	YES	YES
18	а	52.35	0.07741	YES	YES
19	а	52.83	0.15279	YES	YES
20	а	56.50	0.03645	YES	YES
21	а	59.02	0.04907	YES	YES
22	а	63.51	0.04443	YES	YES
23	а	64.60	0.27999	YES	YES
24	а	65.83	0.05495	YES	YES
25	а	67.52	0.09241	YES	YES

26	а	73.80	0.07922	YES	YES
27	а	74.91	0.02721	YES	YES
28	а	77.93	0.07409	YES	YES
29	а	79.02	0.13017	YES	YES
30	а	81.33	0.09312	YES	YES
31	a	86.92	0.09428	YES	YES
32	a	93.72	0.10448	YES	YES
32	a	95.99	0.10440	VES	VES
24	a	100 70	0.10251	VES	VES
25	a	109.79	0.20207	VES	VES
35	a	114.00	0.00498		TES VEC
30	d	110.01	0.30539	TES	YES
37	d	142.09	3.38511	YES	YES
38	а	150.04	11.74634	YES	YES
39	а	152.93	15.94827	YES	YES
40	а	188.42	0.55664	YES	YES
41	а	190.01	1.57137	YES	YES
42	а	193.10	0.75649	YES	YES
43	а	197.82	0.64535	YES	YES
44	а	206.41	0.57327	YES	YES
45	а	209.91	1.52543	YES	YES
46	а	216.99	4.40382	YES	YES
47	а	222.72	0.62193	YES	YES
48	а	228.94	1.30386	YES	YES
49	а	244.08	3.34126	YES	YES
50	a	248.80	1.38162	YES	YES
51	a	249 29	3 74371	VES	YES
52	a	258 10	1 26782	VES	VES
52	a	250.10	0 20020	VES	VES
53	a	255.81	0.30035	VES	VES
54	a	201.01	0.12035		TES VEC
55	d	209.41	0.37029	TES	YES
56	а	270.12	0.93623	YES	YES
57	а	2/1.81	0.11942	YES	YES
58	а	388.56	0.40041	YES	YES
59	а	392.78	0.13277	YES	YES
60	а	393.19	1.36695	YES	YES
61	а	395.37	2.36112	YES	YES
62	а	396.31	0.14460	YES	YES
63	а	397.08	0.93273	YES	YES
64	а	398.71	1.24580	YES	YES
65	а	401.67	0.81925	YES	YES
66	а	405.79	1.88220	YES	YES
67	а	407.21	0.51688	YES	YES
68	а	410.21	1.42067	YES	YES
69	a	418.01	1.04243	YES	YES
70	a	435 30	3 34531	YES	YES
70	а а	135.30 436 89	5 01552	VES	VES
72	2	400.05 AAO 15	5 27280	VES	VES
72	a	440.13	J.21203 2 12021	VEC	VEC
/3	d	440.95	2.12821	TES	TES
74	а	445.89	3.430/2	YES	YES
/5	а	449.44	1.13182	YES	YES
76	а	486.15	22.49324	YES	YES
77	а	487.41	27.26915	YES	YES
78	а	490.58	30.69665	YES	YES

79	а	493.02	20.14995	YES	YES
80	а	496.40	60.48284	YES	YES
81	а	496.76	8.51610	YES	YES
82	а	506.31	60.06113	YES	YES
83	а	507.77	87.19004	YES	YES
84	a	515.09	15.38557	YES	YES
85	a	608.05	0 16513	YES	VES
86	а Э	608.00	0.10515	VES	VES
80	a	608.41	0.20255	VEC	VES
07	a	600.00	0.04205		
88	d	609.21	0.13182	TES	TES VEC
89	d	609.66	0.00492	YES	YES
90	а	610.04	0.60555	YES	YES
91	а	610.37	0.18571	YES	YES
92	а	610.72	0.10419	YES	YES
93	а	611.48	0.79191	YES	YES
94	а	678.35	0.05453	YES	YES
95	а	680.90	1.64360	YES	YES
96	а	683.20	1.26860	YES	YES
97	а	691.80	38.80582	YES	YES
98	а	692.73	6.78630	YES	YES
99	а	693.31	28.52177	YES	YES
100	а	695.84	24.59788	YES	YES
101	а	696.38	34,75963	YES	YES
102	a	697.13	33,87106	YES	YES
103	a	699.00	20 30634	YES	VES
104	а Э	700.26	7 53727	VES	VES
104	a 2	700.20	17 58552	VES	VES
105	a	704.42	17.36335		
100	d	707.39	7.57431	TES	TES VEC
107	а	707.93	6.14999	YES	YES
108	а	708.84	9.66734	YES	YES
109	а	709.61	11.07809	YES	YES
110	а	712.58	8.22639	YES	YES
111	а	712.85	17.33120	YES	YES
112	а	737.04	9.20819	YES	YES
113	а	737.22	38.12442	YES	YES
114	а	739.09	8.83859	YES	YES
115	а	740.58	5.31183	YES	YES
116	а	741.55	26.49556	YES	YES
117	а	742.17	34.41298	YES	YES
118	а	742.97	6.32658	YES	YES
119	а	745.73	10.81855	YES	YES
120	a	746.00	6.71419	YES	YES
120	а а	875 52	0 63650	VES	VFS
177	и Э	821 56	0.05050	VFS	VFS
172	a	837.70	0.70019	VEC	VEC
123	a	032.43	0.34303	VEC	VEC
124	a	834.37	0.94318	TES	1ES
125	а	834.63	0.39/6/	YES	YES
126	а	837.44	0.67484	YES	YES
127	а	843.51	0.35249	YES	YES
128	а	848.60	0.05786	YES	YES
129	а	851.53	0.18085	YES	YES
130	а	908.31	0.05423	YES	YES
131	а	910.83	1.54194	YES	YES

132	а	913.16	0.26219	YES	YES
133	а	914.59	0.34062	YES	YES
134	а	914.85	0.16493	YES	YES
135	а	918.74	0.54896	YES	YES
136	а	923.05	0.41037	YES	YES
137	a	928.98	0.29462	YES	YES
138	2	930 50	0.62136	VES	VES
120	a 2	061.02	0.02130	VES	VES
139	a	901.95	0.17788	VES	VES
140	a	905.54	0.35775		TES VEC
141	d	903.07	0.20072	TES	YES
142	а	964.43	1.14964	YES	YES
143	а	966.52	0.21049	YES	YES
144	а	966.67	0.49627	YES	YES
145	а	970.30	0.39740	YES	YES
146	а	974.61	0.58774	YES	YES
147	а	975.92	0.00577	YES	YES
148	а	985.20	9.89081	YES	YES
149	а	985.71	2.57858	YES	YES
150	а	986.29	8.23322	YES	YES
151	а	987.13	5.94887	YES	YES
152	а	987.44	11.99730	YES	YES
153	а	988.10	0.29738	YES	YES
154	a	988.54	6.10481	YES	YES
155	a	989 43	1 42701	YES	YES
156	2	990.45	9 88808	VES	VES
157	u 2	007 35	0.65721	VES	VES
157	a	997.33	1 20200	VES	VES
156	d	999.52 1000 22	1.29699	TES VEC	TES VEC
159	a	1000.22	0.34922	YES	YES
160	а	1000.79	0.11656	YES	YES
161	а	1002.44	0.2/1//	YES	YES
162	а	1002.89	0.38235	YES	YES
163	а	1003.41	0.05833	YES	YES
164	а	1003.47	0.12340	YES	YES
165	а	1004.26	0.35742	YES	YES
166	а	1024.00	0.74567	YES	YES
167	а	1024.77	0.34646	YES	YES
168	а	1025.34	0.24487	YES	YES
169	а	1025.95	0.43140	YES	YES
170	а	1026.45	0.42540	YES	YES
171	а	1026.52	0.56122	YES	YES
172	а	1026.83	0.32315	YES	YES
173	a	1027.07	0.59591	YFS	YES
17/	и Э	1027.07	0 60700	VEC	VEC
175	a	1027.03	6 70125	VEC	VEC
175	a	1070.24	0.70123	VEC	
170	d	1000 42	2.49030		
1//	а	1080.43	2.01962	YES	1ES
1/8	а	1080.71	2.08609	YES	YES
179	а	1081.54	0.47431	YES	YES
180	а	1082.57	3.12676	YES	YES
181	а	1083.21	3.37120	YES	YES
182	а	1084.44	11.25234	YES	YES
183	а	1085.30	37.08430	YES	YES
184	а	<u>1</u> 085.39	3.43422	YES	YES

185	а	1088.30	23.27387	YES	YES
186	а	1089.00	28.37281	YES	YES
187	а	1089.61	15.89105	YES	YES
188	а	1090.73	33.96855	YES	YES
189	а	1091.90	31.87639	YES	YES
190	a	1092.83	35.58108	YES	YES
191	a	1093.85	14.44748	YES	YES
192	a	1094.49	26.05628	VES	VES
102	а Э	11/8 58	0 30106	VES	VES
195	a	1140.50	0.30100	VES	VES
194	a	1149.00	0.78690	TES VEC	TES VES
195	d	1150.02	0.06140		TES VEC
190	d	1150.27	0.34017	YES	YES
197	а	1150.46	0.44116	YES	YES
198	а	1150.68	0.44125	YES	YES
199	а	1152.15	0.98449	YES	YES
200	а	1152.76	0.02180	YES	YES
201	а	1152.87	0.32204	YES	YES
202	а	1166.82	0.41884	YES	YES
203	а	1167.97	2.09632	YES	YES
204	а	1168.34	0.76646	YES	YES
205	а	1169.58	0.32329	YES	YES
206	а	1170.34	1.06093	YES	YES
207	а	1172.35	1.71118	YES	YES
208	а	1172.77	2.80064	YES	YES
209	а	1175.07	2.99074	YES	YES
210	а	1176.69	0.33163	YES	YES
211	а	1289.90	19.00249	YES	YES
212	a	1290 72	11 58528	YES	YES
212	2	1291.83	2 85952	VES	VES
215	a 2	1201.05	2.03332	VES	VES
214	a	1294.70	3.01047	TES VEC	TES VES
215	d	1294.78	1.01874	TES VES	TES VEC
210	a	1296.01	5.91435	YES	YES
217	а	1296.44	5.69874	YES	YES
218	а	1300.57	4.12021	YES	YES
219	а	1304.36	4.38566	YES	YES
220	а	1367.16	0.09952	YES	YES
221	а	1367.77	0.17830	YES	YES
222	а	1368.73	0.27248	YES	YES
223	а	1368.99	0.03220	YES	YES
224	а	1370.13	0.05836	YES	YES
225	а	1371.10	0.33996	YES	YES
226	а	1371.87	0.06990	YES	YES
227	а	1372.42	0.01562	YES	YES
228	а	1372.76	0.37440	YES	YES
229	а	1430.35	33.84959	YES	YES
230	a	1431.56	20.63692	YES	YES
231	я а	1432 08	28.41472	YES	YES
231	и 2	1/122 82	20.414,2	VES	VES
232	a	1/12/ 25	0 101012	VEC	VEC
200 201	a	1404.00 1404.00	J.40400		TES
234 225	d	1434.03	10 40427	I ES	
235	d	1435.48	10.40427	TES VEC	TES VEC
236	а	1436.56	29.53600	YES	YES
237	а	1437.25	18.72152	YES	YES

238	а	1469.26	0.04290	YES	YES
239	а	1470.20	7.68391	YES	YES
240	а	1470.51	7.33108	YES	YES
241	а	1471.36	3.43139	YES	YES
242	a	1471.59	7.12745	YES	YES
243	a	1471 77	8 40617	YES	YES
244	a	1472.07	4 47214	VES	VES
244	a 2	1472.07	12 70072	VEC	VES
245	a	1472.93	7 96207	VEC	VES
240	d	1475.07	1.00409		TES VEC
247	d	1585.20	1.09498	TES	YES
248	а	1586.31	0.55575	YES	YES
249	а	1587.07	0.64549	YES	YES
250	а	1587.25	1.33509	YES	YES
251	а	1588.28	0.17727	YES	YES
252	а	1588.47	0.05162	YES	YES
253	а	1589.26	0.75046	YES	YES
254	а	1589.79	0.20432	YES	YES
255	а	1590.24	0.17928	YES	YES
256	а	1596.68	0.77329	YES	YES
257	а	1597.99	4.53575	YES	YES
258	а	1598.25	4.35847	YES	YES
259	а	1598.46	0.50464	YES	YES
260	a	1598.72	0.73722	YES	YES
261	a	1599 11	1 43182	YES	YES
262	a	1599.11	0 52882	VES	VES
202	а Э	1600.20	0.12122	VES	VES
203	a	1600.29	0.10133	VES	VES
204	d	1000.88	2.23442	TES VEC	TES VEC
265	a	3070.73	9.54889	YES	YES
266	а	30/1.50	7.69066	YES	YES
267	а	3085.12	2.79803	YES	YES
268	а	3089.17	5.44646	YES	YES
269	а	3100.65	1.42691	YES	YES
270	а	3101.80	5.72717	YES	YES
271	а	3102.02	2.88098	YES	YES
272	а	3107.00	0.20104	YES	YES
273	а	3107.77	0.11251	YES	YES
274	а	3107.86	0.18818	YES	YES
275	а	3108.17	1.53486	YES	YES
276	а	3109.07	0.01164	YES	YES
277	а	3110.06	0.34158	YES	YES
278	а	3110.13	0.39757	YES	YES
279	a	3110 21	0.09462	YES	YES
280	я а	3114 27	0.10313	YES	YES
280	a	3114.59	0.10515	VES	VES
201	a	211/ 06	0.40002	VEC	VEC
202	a	2115 21	0.30037	VEC	VEC
203	d	3115.24	0.39042	TES	1ES VEC
284	а	3116.08	0.061/6	YES	YES
285	а	3116.11	0.14456	YES	YES
286	а	3117.14	0.43363	YES	YES
287	а	3117.26	0.02801	YES	YES
288	а	3117.46	0.30901	YES	YES
289					
205	а	3118.75	0.55645	YES	YES

291	а	3121.79	0.16349	YES	YES
292	а	3121.99	1.51046	YES	YES
293	а	3123.87	0.33370	YES	YES
294	а	3124.14	1.31085	YES	YES
295	а	3124.21	1.03579	YES	YES
296	а	3124.66	1.10806	YES	YES
297	а	3124.83	1.04994	YES	YES
298	а	3124.88	1.30483	YES	YES
299	а	3126.98	0.10690	YES	YES
300	а	3129.03	1.44436	YES	YES
301	а	3130.14	0.97906	YES	YES
302	а	3131.03	1.26952	YES	YES
303	а	3131.66	1.13517	YES	YES
304	а	3131.89	1.61403	YES	YES
305	а	3132.20	1.69556	YES	YES
306	а	3132.29	1.24526	YES	YES
307	а	3132.35	1.82485	YES	YES
308	а	3135.01	1.05412	YES	YES
309	а	3137.43	1.69741	YES	YES

PPh₃

0.0000000000000000000000000000000000000	-0.00000000000000	2.78176461268879	р
-2.90908504665261	1.12583413907605	1.19607951946434	С
0.47954155843868	-3.08225862170863	1.19607951946434	С
2.42954348821393	1.95642448263259	1.19607951946434	С
1.95008203874038	3.50477812709089	-0.92010525010986	С
3.90768332450714	4.93021853061515	-2.01009574298839	С
6.36522025136688	4.81462129807917	-1.01197998321402	С
6.85916900269885	3.27563512860001	1.09755657300318	С
4.90028814747755	1.87273835509468	2.20457893181640	С
-0.82830508358529	-5.18014319912669	2.20457893181640	С
-0.59280126645310	-7.57803216948799	1.09755657300318	С
0.98697422805473	-7.91975308740649	-1.01197998321402	С
2.31585283146793	-5.84926229427559	-2.01009574298839	С
2.06018587331857	-3.44120964855834	-0.92010525010986	С
-4.07198306389226	3.30740484403198	2.20457893181640	С
-6.26636773624573	4.30239704088798	1.09755657300318	С
-7.35219447942163	3.10513178932730	-1.01197998321402	С
-6.22353615597506	0.91904376366046	-2.01009574298839	С
-4.01026791205893	-0.06356847853253	-0.92010525010986	С
3.09503028626056	-1.82315694504976	-1.72390195252854	h
3.56074421137586	-6.10637513559951	-3.66127268502225	h
1.18901637468973	-9.80639621009223	-1.87212808292069	h
-1.63387224870672	-9.19586513622352	1.89794192553937	h
-2.04886197057401	-4.92244908246645	3.87607187606425	h
0.03138508636883	3.59195332590874	-1.72390195252854	h
3.50790388677887	6.13688251122964	-3.66127268502225	h
7.89808005017045	5.93291649104311	-1.87212808292069	h

8.78078894209856	3.18295769419336	1.89794192553937	h
5.28739693953831	0.68685802586829	3.87607187606425	h
-3.12641537262939	-1.76879638085899	-1.72390195252854	h
-3.23853496896435	4.23559105659816	3.87607187606425	h
-7.14691669339186	6.01290744203017	1.89794192553937	h
-9.08709642486017	3.87347971904912	-1.87212808292069	h
-7.06864809815473	-0.03050737563011	-3.66127268502225	h

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory).

mode	symmetry	wave number	IR intensity	selecti	on rules
		[cm ⁻¹]	[km mol⁻¹]	IR	RAMAN
7	е	27.80	0.30662	YES	YES
8	е	27.80	0.30662	YES	YES
9	а	47.06	0.00736	YES	YES
10	е	52.05	0.10494	YES	YES
11	е	52.05	0.10494	YES	YES
12	а	64.78	0.40634	YES	YES
13	а	182.33	0.27891	YES	YES
14	е	198.32	1.12893	YES	YES
15	е	198.32	1.12893	YES	YES
16	а	244.10	0.72097	YES	YES
17	е	256.94	0.44089	YES	YES
18	е	256.94	0.44089	YES	YES
19	е	394.41	1.21812	YES	YES
20	е	394.41	1.21812	YES	YES
21	а	398.05	0.06145	YES	YES
22	а	402.33	0.22712	YES	YES
23	е	423.51	5.59665	YES	YES
24	е	423.51	5.59665	YES	YES
25	е	495.39	23.48600	YES	YES
26	е	495.39	23.48600	YES	YES
27	а	506.51	14.16096	YES	YES
28	е	612.18	0.26943	YES	YES
29	е	612.18	0.26943	YES	YES
30	а	612.25	0.05570	YES	YES
31	а	676.06	0.79936	YES	YES
32	е	690.08	1.45521	YES	YES
33	е	690.08	1.45521	YES	YES
34	е	698.48	34.81876	YES	YES
35	е	698.48	34.81876	YES	YES
36	а	699.13	31.56210	YES	YES
37	а	743.55	13.23311	YES	YES
38	е	743.87	16.00222	YES	YES
39	е	743.87	16.00222	YES	YES
40	е	834.82	0.09105	YES	YES
41	е	834.82	0.09105	YES	YES
42	а	837.18	0.26854	YES	YES
43	е	902.76	1.14820	YES	YES
44	е	902.76	1.14820	YES	YES
45	а	903.32	0.00902	YES	YES

46	е	956.49	0.01130	YES	YES
47	е	956.49	0.01130	YES	YES
48	а	956.98	0.21373	YES	YES
49	е	982.03	0.00233	YES	YES
50	е	982.03	0.00233	YES	YES
51	а	982.14	0.00987	YES	YES
52	e	987 71	4 06230	YES	YES
52	0	987 71	4.06230	VES	VES
53	2	022 15	0.02200	VES	VES
54	a	1025 62	0.00502	TES VEC	TES VES
55	e	1025.02	4.98000	TES	TES VEC
50	e	1025.02	4.98000	TES	YES
57	а	1026.10	0.33361	YES	YES
58	e	10/2.54	0.91888	YES	YES
59	е	1072.54	0.91888	YES	YES
60	а	1072.68	5.62109	YES	YES
61	е	1080.76	10.10049	YES	YES
62	е	1080.76	10.10049	YES	YES
63	а	1089.31	1.12035	YES	YES
64	а	1140.98	0.01038	YES	YES
65	е	1141.17	0.05808	YES	YES
66	е	1141.17	0.05808	YES	YES
67	е	1164.38	6.10719	YES	YES
68	е	1164.38	6.10719	YES	YES
69	a	1165.72	0.94137	YES	YES
70	a	1288 32	4 82298	VES	VES
70	а О	1200.52	1 68667	VES	VES
71	e	1201.27	1.00004	VES	VES
72	e	1291.57	1.00004		
73	d	1360.94	0.04245	TES	YES
74	е	1363.69	0.98235	YES	YES
/5	e	1363.69	0.98235	YES	YES
76	а	1430.21	13.51883	YES	YES
77	е	1432.04	7.53654	YES	YES
78	е	1432.04	7.53654	YES	YES
79	а	1472.16	2.01574	YES	YES
80	е	1472.16	12.43694	YES	YES
81	е	1472.16	12.43694	YES	YES
82	а	1588.09	0.29157	YES	YES
83	е	1589.52	0.11213	YES	YES
84	е	1589.52	0.11213	YES	YES
85	е	1602.68	6.37945	YES	YES
86	e	1602.68	6.37945	YES	YES
87	a	1605 13	0 15846	VES	VES
88	2	3079.83	1 3/058	VES	VES
80	a	2075.85	1 40106	VES	VES
89	e	2079.88	1.40190		
90	e	3079.88	1.40196	TES	YES
91	e	3089.68	0.25136	YES	YES
92	е	3089.68	0.25136	YES	YES
93	а	3089.72	0.01102	YES	YES
94	е	3099.30	7.73935	YES	YES
95	е	3099.30	7.73935	YES	YES
96	а	3099.59	24.48174	YES	YES
97	е	3107.33	11.17282	YES	YES
98	е	3107.33	11.17282	YES	YES

99	а	3107.81	9.35430	YES	YES
100	е	3114.64	36.07531	YES	YES
101	е	3114.64	36.07531	YES	YES
102	а	3115.26	8.47853	YES	YES

[Sn(bipy)₃]²⁺

3.33728066673074	-7.71900098407905	7.99201541865177	h	
2.13717848633868	-4.82084201232203	11.62793562045221	h	
0.93208392069452	-6.52934425206837	-9.51204095729094	h	
2.46700833043155	-5.86064729266837	7.65203444003441	С	
-11.44675541683879	-0.58661611021561	1.58927644392842	h	
1.80304284765820	-4.25284572779297	9.65361283592371	С	
5.73152530676078	-6.47875717902847	-9.35952226191709	h	
1.95520068789663	-5.58639108628445	-7.96589373735944	С	
-12.35587575386052	2.08095311444647	-2.29959946138757	h	
2.44101899454928	-6.23671523882495	3.53600258250115	h	
4.60533915698889	-5.55163331763563	-7.87475179127492	С	
-9.91163136184606	0.09861390494526	0.36451363121170	С	
1.97728822258141	-5.03617369008551	5.17985615145959	С	
-1.45846560475346	-4.37653106148060	-5.97400401532811	h	
-6.89418675783498	-1.67804344939479	2.56028925561458	h	
-0.82504766592562	-1.74175364004086	0.01556556651571	sn	
0.62889827313410	-4.38651504351501	-6.00832041941003	С	
0.70253949122989	-1.90187360418455	9.11848353681418	С	
-10.40423580543773	1.57454947271364	-1.78312062200956	С	
0.18699202488479	-0.64077095646644	10.68515541137632	h	
-7.38633322091609	-0.49997138308614	0.90839310205345	С	
5.81858058294626	-4.32136514492924	-5.86512230950733	С	
0.93073373424263	-2.78285817286764	4.67126362008157	n	
7.89328988624866	-4.29116129781829	-5.79672171718756	h	
1.79352126249390	-3.20317547330083	-4.09142004885629	n	
0.28839031917313	-1.20335766765622	6.57770834644293	С	
4.34760733251424	-3.14098773501948	-3.97888075169225	С	
-8.37957172702558	2.40457530753977	-3.27870011895390	С	
-5.45078030659229	0.30212001550662	-0.52085843951577	n	
-1.40689916235212	2.67348550792804	9.68331703644002	h	
-8.76583495550685	3.56232234023692	-4.95834741689756	h	
-5.88965040762045	1.74013052806660	-2.58978520063157	С	
9.42000469871643	-2.48709240076932	-2.81044369189485	h	
-0.81736543488527	1.28210467843980	5.83984722883263	С	
5.48358083963862	-1.74045743124207	-1.81269167729635	С	
-1.56408165079269	3.08741112132744	7.65553529887373	С	
8.12372125122143	-1.54548145066515	-1.49133839110739	С	
3.88870226790340	-0.58734027787292	-0.14938952888198	n	
-1.04727958165819	1.80286715230298	3.32728053522205	n	
-3.62694285361604	2.59797082090760	-4.03505419692466	С	
-5.70392011580402	4.68768522430529	-6.92813378822625	h	
9.11343379504801	-0.13744220237967	0.51934333384296	С	

4.84625380217461	0.77881384891801	1.77487992252895	С
-2.50986312551927	5.43410646410652	6.87900302752597	С
11.17364447883492	0.01990001598622	0.77064657722751	h
-3.83924344917664	4.13291556559690	-6.20545000682993	С
-3.09152466332067	6.84598801167076	8.29347462027321	h
-1.30396719978860	1.90111033366443	-3.16511110138426	n
3.45580794700403	1.68142278458752	3.02896772210192	h
7.44258585834376	1.07162966251182	2.18466222210127	С
-1.94199489532499	4.06870436121388	2.58523459565668	С
-2.68687512676158	5.95255163843015	4.28531001870360	С
-2.05151600287569	4.37464298350551	0.53176750427592	h
8.12730892837407	2.22057177854238	3.77691756251922	h
0.78931912487263	2.72565310418669	-4.35834748887380	С
-1.66090878123458	4.97185914182748	-7.45255200683192	С
-3.39171985326215	7.77781002279615	3.58146979119777	h
2.60174277231691	2.11931379141163	-3.53993372334448	h
-1.82289666496719	6.17312810604387	-9.14469153883321	h
0.71292332436275	4.27266717454710	-6.50176041112359	С
2.47881892918849	4.90756730548143	-7.39777613961241	h

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory).

mode	symmetry	wave number	IR intensity	selecti	on rules
		[cm ⁻¹]	[km mol⁻¹]	IR	RAMAN
7	а	13.36	0.18716	YES	YES
8	а	13.67	0.18916	YES	YES
9	а	19.96	0.02069	YES	YES
10	а	25.67	0.56771	YES	YES
11	а	26.32	0.48058	YES	YES
12	а	37.25	1.92673	YES	YES
13	а	40.99	0.24725	YES	YES
14	а	42.63	0.40487	YES	YES
15	а	67.68	0.73944	YES	YES
16	а	76.15	1.05928	YES	YES
17	а	77.35	1.19361	YES	YES
18	а	88.24	1.32881	YES	YES
19	а	88.79	1.06698	YES	YES
20	а	96.52	0.03762	YES	YES
21	а	102.13	0.83006	YES	YES
22	а	121.32	4.93437	YES	YES
23	а	122.71	15.92480	YES	YES
24	а	123.35	16.25641	YES	YES
25	а	139.98	21.39408	YES	YES
26	а	140.91	20.50944	YES	YES
27	а	195.25	4.04887	YES	YES
28	а	208.18	17.06186	YES	YES
29	а	208.63	17.09556	YES	YES
30	а	216.33	3.11529	YES	YES
31	а	225.21	1.89717	YES	YES
32	а	225.64	2.49678	YES	YES
33	а	230.14	1.74573	YES	YES

34 a 340.20 0.87232 YES YES 35 a 340.27 0.87261 YES YES 36 a 358.10 0.21614 YES YES 37 a 398.25 2.75797 YES YES 38 a 398.67 2.58354 YES YES 40 a 409.11 6.46502 YES YES 41 a 409.50 6.63529 YES YES 42 a 417.21 12.42786 YES YES 43 a 429.80 0.86028 YES YES 44 a 429.80 0.86028 YES YES 45 a 41.34 0.01184 YES YES 46 a 441.03 0.01183 YES YES 50 a 551.00 0.0183 YES YES 51 a 551.49 0.02921 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<>						
35 a 340.27 0.87261 YES YES 36 a 358.10 0.21614 YES YES 37 a 398.25 2.75797 YES YES 38 a 398.67 2.58354 YES YES 40 a 403.01 6.46502 YES YES 41 a 409.50 6.63529 YES YES 42 a 417.21 12.42786 YES YES 43 a 429.80 0.86028 YES YES 44 a 429.80 0.86028 YES YES 45 a 431.66 0.07150 YES YES 47 a 441.34 0.01979 YES YES 48 a 441.87 0.35751 YES YES 50 a 551.49 0.02921 YES YES 51 a 51.49 0.02921 <t< td=""><td>34</td><td>а</td><td>340.20</td><td>0.87232</td><td>YES</td><td>YES</td></t<>	34	а	340.20	0.87232	YES	YES
36 a 358.10 0.21614 YES YES 37 a 398.25 2.75797 YES YES 38 a 398.25 2.75797 YES YES 39 a 403.03 0.96223 YES YES 40 a 409.11 6.46502 YES YES 41 a 409.50 6.63529 YES YES 42 a 417.21 12.42786 YES YES 43 a 429.80 0.86028 YES YES 44 a 429.80 0.86028 YES YES 45 a 431.66 0.01184 YES YES 46 a 441.34 0.01979 YES YES 47 a 441.34 0.01971 YES YES 50 a 551.00 0.01883 YES YES 51 a 651.06 12.26462	35	а	340.27	0.87261	YES	YES
37 a 398.75 2.75797 YES YES 38 a 398.67 2.58354 YES YES 40 a 409.11 6.46502 YES YES 40 a 409.50 6.63529 YES YES 41 a 409.50 6.63529 YES YES 42 a 417.21 12.42786 YES YES 43 a 429.80 0.86028 YES YES 44 a 429.80 0.86028 YES YES 45 a 441.03 0.01184 YES YES 46 a 441.34 0.01979 YES YES 47 a 441.34 0.01979 YES YES 50 a 551.00 0.01883 YES YES 51 a 551.00 0.01893 YES YES 52 a 616.16 11.09923	36	а	358.10	0.21614	YES	YES
38 a 398.67 2.58354 YES YES 40 a 403.03 0.96223 YES YES 40 a 409.50 6.63529 YES YES 41 a 409.50 6.63529 YES YES 42 a 417.21 12.42786 YES YES 43 a 429.60 0.86028 YES YES 44 a 429.60 0.86028 YES YES 45 a 431.66 0.07150 YES YES 46 a 441.03 0.011979 YES YES 47 a 441.87 0.35751 YES YES 48 a 441.87 0.02921 YES YES 50 a 551.49 0.02921 YES YES 51 a 617.66 12.26462 YES YES 54 a 617.66 12.26462	37	а	398.25	2.75797	YES	YES
39 a 403.03 0.96223 YES YES 40 a 409.10 6.45502 YES YES 41 a 409.50 6.63529 YES YES 42 a 417.21 1.2.42786 YES YES 43 a 429.60 0.88871 YES YES 44 a 429.80 0.86028 YES YES 45 a 431.66 0.07150 YES YES 46 a 441.03 0.01184 YES YES 47 a 441.7 0.35751 YES YES 48 a 441.7 0.35751 YES YES 50 a 551.49 0.02921 YES YES 51 a 551.49 0.02921 YES YES 52 a 616.61 11.09923 YES YES 54 a 617.66 12.27142	38	а	398.67	2.58354	YES	YES
40 a 409.11 6.46502 YES YES 41 a 409.50 6.63529 YES YES 42 a 417.21 12.42786 YES YES 43 a 429.80 0.86028 YES YES 44 a 429.80 0.86028 YES YES 45 a 431.66 0.07150 YES YES 46 a 441.03 0.01184 YES YES 47 a 441.34 0.01979 YES YES 48 a 441.37 0.35751 YES YES 50 a 551.00 0.01883 YES YES 51 a 551.49 0.02921 YES YES 52 a 616.16 11.09923 YES YES 53 a 617.56 12.26462 YES YES 54 a 617.26412.27142 YES	39	a	403.03	0.96223	YES	YES
Add Add Add Add Add Add Add 41 a 405.11 12.42786 YES YES 42 a 417.21 12.42786 YES YES 43 a 429.60 0.88071 YES YES 44 a 429.60 0.86028 YES YES 45 a 431.66 0.07150 YES YES 46 a 441.34 0.01979 YES YES 47 a 441.47 0.35751 YES YES 48 a 441.87 0.35751 YES YES 49 a 550.72 0.01183 YES YES 51 a 615.66 12.27142 YES YES 52 a 616.16 11.09923 YES YES 54 a 617.66 12.27142 YES YES 55 a 634.41 1	40	a	409 11	6 46502	VES	VES
42 a 41.21 12.42786 YES YES 43 a 429.60 0.88871 YES YES 44 a 429.80 0.86028 YES YES 45 a 431.66 0.07150 YES YES 46 a 441.03 0.01184 YES YES 47 a 441.87 0.35751 YES YES 48 a 441.87 0.35751 YES YES 50 a 551.00 0.01183 YES YES 51 a 551.49 0.02921 YES YES 52 a 616.16 11.09923 YES YES 53 a 617.56 12.27142 YES YES 54 a 617.66 12.26462 YES YES 55 a 634.34 18.46293 YES YES 55 a 633.3 2.57354	40 //1	а Э	409.11	6 63529	VES	VES
42 a 417.21 12.427.80 TES TES 43 a 429.60 0.86028 YES YES 44 a 429.80 0.86028 YES YES 45 a 431.66 0.07150 YES YES 46 a 441.03 0.01184 YES YES 47 a 441.34 0.01979 YES YES 48 a 441.87 0.35751 YES YES 50 a 551.00 0.01883 YES YES 51 a 551.49 0.02921 YES YES 52 a 616.16 11.09923 YES YES 54 a 617.66 12.26462 YES YES 55 a 634.41 19.04807 YES YES 56 a 647.01 4.94640 YES YES 58 a 647.01 4.94640	12	а Э	405.50	12 / 2786	VES	VES
43 a 423.00 0.88671 11.53 11.53 44 a 429.80 0.886728 YES YES 45 a 431.66 0.07150 YES YES 46 a 441.34 0.01184 YES YES 47 a 441.87 0.35751 YES YES 48 a 441.87 0.037511 YES YES 49 a 550.72 0.01193 YES YES 50 a 551.00 0.01883 YES YES 51 a 551.49 0.02921 YES YES 52 a 616.16 11.09923 YES YES 53 a 617.66 12.27442 YES YES 54 a 617.66 12.27442 YES YES 55 a 634.41 19.04807 YES YES 56 a 634.71 1.494640 YES YES 58 a 646.95 4.55172 YES <td>42</td> <td>a</td> <td>417.21</td> <td>0 00071</td> <td>VES</td> <td>VES</td>	42	a	417.21	0 00071	VES	VES
44 a 423.80 0.80028 TES TES 45 a 431.66 0.01184 YES YES 46 a 441.03 0.01184 YES YES 47 a 441.37 0.35751 YES YES 48 a 441.87 0.35751 YES YES 50 a 551.00 0.01883 YES YES 51 a 551.49 0.02921 YES YES 52 a 616.16 11.09923 YES YES 54 a 617.66 12.27442 YES YES 55 a 634.41 19.04807 YES YES 56 a 646.78 1.73254 YES YES 58 a 646.95 4.55172 YES YES 59 a 647.01 4.94640 YES YES 61 a 729.8 0.60704 YES YES 62 a 730.16 0.27710 YES	45	a	429.00	0.00071	TES VEC	TES VES
45 a 441.03 0.0150 YES YES 46 a 441.03 0.01184 YES YES 47 a 441.34 0.01979 YES YES 48 a 441.87 0.35751 YES YES 49 a 550.72 0.01193 YES YES 50 a 551.00 0.02921 YES YES 51 a 551.49 0.02921 YES YES 52 a 616.16 11.09923 YES YES 53 a 617.66 12.26462 YES YES 54 a 617.66 12.26462 YES YES 55 a 634.41 19.04807 YES YES 56 a 646.78 1.73254 YES YES 57 a 646.70 4.94640 YES YES 60 a 655.33 2.57354 YES YES 61 a 732.05 1.65623 YES	44	d	429.80	0.86028	YES	TES VEC
46 a 441.03 0.01184 YES YES 47 a 441.87 0.035751 YES YES 48 a 441.87 0.035751 YES YES 49 a 550.72 0.01193 YES YES 50 a 551.00 0.01883 YES YES 51 a 551.49 0.02921 YES YES 52 a 616.16 11.09923 YES YES 53 a 617.66 12.27142 YES YES 54 a 617.66 12.26462 YES YES 55 a 634.41 18.46293 YES YES 56 a 634.41 19.04807 YES YES 57 a 646.78 1.73254 YES YES 58 a 646.701 4.94640 YES YES 61 a 729.98 0.60704 YES YES 62 a 730.16 0.27710 YES	45	d	431.00	0.07150	YES	YES
47 a 441.34 0.01979 YES YES 48 a 441.37 0.35751 YES YES 49 a 550.72 0.01193 YES YES 50 a 551.00 0.01883 YES YES 51 a 551.49 0.02921 YES YES 52 a 616.16 11.09923 YES YES 53 a 617.66 12.26462 YES YES 54 a 617.66 12.26462 YES YES 55 a 634.34 18.46293 YES YES 56 a 634.41 19.04807 YES YES 57 a 646.78 1.73254 YES YES 58 a 647.01 4.94640 YES YES 60 a 653.33 2.57354 YES YES 61 a 729.98 0.60704 YES YES 62 a 730.16 0.27710 YES	46	а	441.03	0.01184	YES	YES
48 a 441.87 0.35751 YES YES 49 a 550.72 0.01193 YES YES 50 a 551.00 0.01883 YES YES 51 a 551.49 0.02921 YES YES 52 a 616.16 11.09923 YES YES 53 a 617.56 12.27142 YES YES 54 a 617.66 12.26462 YES YES 55 a 634.34 18.46293 YES YES 56 a 634.41 19.04807 YES YES 57 a 646.78 1.73254 YES YES 58 a 646.95 4.55172 YES YES 59 a 647.01 4.94640 YES YES 61 a 729.98 0.60704 YES YES 62 a 730.16 0.27710 YES YES 63 a 737.70 4.62700 YES	47	а	441.34	0.019/9	YES	YES
49 a 550.72 0.01193 YES YES 50 a 551.00 0.01883 YES YES 51 a 551.49 0.02921 YES YES 52 a 616.16 11.09923 YES YES 53 a 617.56 12.27142 YES YES 54 a 634.34 18.46293 YES YES 55 a 634.41 19.04807 YES YES 56 a 634.41 19.04807 YES YES 57 a 646.78 1.73254 YES YES 58 a 646.95 4.55172 YES YES 60 a 655.33 2.57354 YES YES 61 a 729.98 0.60704 YES YES 62 a 730.16 0.27710 YES YES 63 a 737.70 4.62700 YES YES 64 a 737.70 4.62700 YES	48	а	441.87	0.35751	YES	YES
50 a 551.00 0.01883 YES YES 51 a 551.49 0.02921 YES YES 52 a 616.16 11.09923 YES YES 53 a 617.66 12.27142 YES YES 54 a 617.66 12.26462 YES YES 55 a 634.34 18.46293 YES YES 56 a 646.78 1.73254 YES YES 58 a 646.70 1.73254 YES YES 59 a 647.01 4.94640 YES YES 61 a 729.98 0.60704 YES YES 62 a 730.16 0.27710 YES YES 63 a 737.70 4.62700 YES YES 64 a 737.70 4.62700 YES YES 65 a 738.56 8.09501 YES YES 66 a 734.52 60194 YES	49	а	550.72	0.01193	YES	YES
51 a 551.49 0.02921 YES YES 52 a 616.16 11.09923 YES YES 53 a 617.56 12.27142 YES YES 54 a 617.66 12.26462 YES YES 55 a 634.34 18.46293 YES YES 56 a 634.41 19.04807 YES YES 57 a 646.78 1.73254 YES YES 58 a 646.95 4.55172 YES YES 60 a 655.33 2.57354 YES YES 61 a 729.98 0.60704 YES YES 62 a 730.16 0.27710 YES YES 63 a 730.95 1.65623 YES YES 64 a 737.70 4.62700 YES YES 65 a 754.31 114.72418 YES YES 66 a 754.34 42.58623 YES	50	а	551.00	0.01883	YES	YES
52 a 616.16 11.09923 YES YES 53 a 617.56 12.27142 YES YES 54 a 617.66 12.26462 YES YES 55 a 634.34 18.46293 YES YES 56 a 634.41 19.04807 YES YES 57 a 646.78 1.73254 YES YES 58 a 646.95 4.55172 YES YES 59 a 647.01 4.94640 YES YES 60 a 655.33 2.57354 YES YES 61 a 729.98 0.60704 YES YES 62 a 730.16 0.27710 YES YES 63 a 737.70 4.62700 YES YES 64 a 754.11 114.72418 YES YES 66 a 754.38 42.58623 YES YES 70 a 763.14 8.43610 YES	51	а	551.49	0.02921	YES	YES
53 a 617.56 12.27142 YES YES 54 a 617.66 12.26462 YES YES 55 a 634.34 18.46293 YES YES 56 a 634.41 19.04807 YES YES 57 a 646.78 1.73254 YES YES 58 a 646.95 4.55172 YES YES 59 a 647.01 4.94640 YES YES 60 a 655.33 2.57354 YES YES 61 a 729.98 0.60704 YES YES 62 a 730.16 0.27710 YES YES 63 a 737.51 4.57008 YES YES 64 a 737.70 4.62700 YES YES 65 a 738.56 8.09501 YES YES 66 a 738.42.58623 YES YES 70 a 763.14 8.43610 YES YES	52	а	616.16	11.09923	YES	YES
54 a 617.66 12.26462 YES YES 55 a 634.34 18.46293 YES YES 56 a 634.41 19.04807 YES YES 57 a 646.78 1.73254 YES YES 58 a 646.95 4.55172 YES YES 59 a 647.01 4.94640 YES YES 60 a 655.33 2.57354 YES YES 61 a 729.98 0.60704 YES YES 62 a 730.16 0.27710 YES YES 63 a 737.51 4.50708 YES YES 64 a 737.70 4.62700 YES YES 65 a 737.74 4.62700 YES YES 66 a 754.11 114.72418 YES YES 70 a 763.16 8.09501 YES YES 71 a 763.16 8.09149 YES	53	а	617.56	12.27142	YES	YES
55 a 634.34 18.46293 YES YES 56 a 634.41 19.04807 YES YES 57 a 646.78 1.73254 YES YES 58 a 646.79 4.55172 YES YES 59 a 647.01 4.94640 YES YES 60 a 655.33 2.57354 YES YES 61 a 729.98 0.60704 YES YES 62 a 730.16 0.27710 YES YES 63 a 737.51 4.57008 YES YES 64 a 737.70 4.62700 YES YES 66 a 738.56 8.09501 YES YES 67 a 754.11 114.72418 YES YES 70 a 763.14 8.43610 YES YES 71 a 763.16 8.09149	54	а	617.66	12.26462	YES	YES
56 a 634.41 19.04807 YES YES 57 a 646.78 1.73254 YES YES 58 a 646.95 4.55172 YES YES 59 a 647.01 4.94640 YES YES 60 a 655.33 2.57354 YES YES 61 a 729.98 0.60704 YES YES 62 a 730.16 0.27710 YES YES 63 a 737.51 4.57008 YES YES 64 a 737.70 4.62700 YES YES 65 a 738.56 8.09501 YES YES 66 a 754.71 141.72418 YES YES 68 a 754.74 52.60194 YES YES 70 a 763.14 8.43610 YES YES 71 a 763.16 8.09149	55	а	634.34	18.46293	YES	YES
57 a 646.78 1.73254 YES YES 58 a 646.95 4.55172 YES YES 59 a 647.01 4.94640 YES YES 60 a 655.33 2.57354 YES YES 61 a 729.98 0.60704 YES YES 62 a 730.16 0.27710 YES YES 63 a 730.95 1.65623 YES YES 64 a 737.51 4.57008 YES YES 65 a 737.70 4.62700 YES YES 66 a 754.11 114.72418 YES YES 67 a 754.31 114.72418 YES YES 68 a 754.34 42.58623 YES YES 70 a 763.14 8.43610 YES YES 71 a 763.16 8.09149 YES YES 73 a 821.61 0.07660 YES	56	а	634.41	19.04807	YES	YES
58 a 646.95 4.55172 YES YES 59 a 647.01 4.94640 YES YES 60 a 655.33 2.57354 YES YES 61 a 729.98 0.60704 YES YES 62 a 730.16 0.27710 YES YES 63 a 730.95 1.65623 YES YES 64 a 737.51 4.57008 YES YES 65 a 737.70 4.62700 YES YES 66 a 738.56 8.09501 YES YES 67 a 754.11 114.72418 YES YES 68 a 754.34 42.58623 YES YES 70 a 763.14 8.43610 YES YES 71 a 763.16 8.09149 YES YES 73 a 821.82 0.06597	57	а	646.78	1.73254	YES	YES
59 a 647.01 4.94640 YES YES 60 a 655.33 2.57354 YES YES 61 a 729.98 0.60704 YES YES 62 a 730.16 0.27710 YES YES 63 a 730.95 1.65623 YES YES 64 a 737.51 4.57008 YES YES 65 a 737.70 4.62700 YES YES 66 a 738.56 8.09501 YES YES 67 a 754.11 114.72418 YES YES 68 a 754.74 52.60194 YES YES 70 a 763.14 8.43610 YES YES 71 a 763.16 8.09149 YES YES 72 a 764.48 1.48288 YES YES 73 a 821.61 0.07660	58	а	646.95	4.55172	YES	YES
60 a 65.33 2.57354 YES YES 61 a 729.98 0.60704 YES YES 62 a 730.16 0.27710 YES YES 63 a 730.95 1.65623 YES YES 64 a 737.51 4.57008 YES YES 65 a 737.70 4.62700 YES YES 66 a 738.56 8.09501 YES YES 67 a 754.11 114.72418 YES YES 68 a 754.74 52.60194 YES YES 70 a 763.14 8.43610 YES YES 71 a 763.14 8.43610 YES YES 71 a 764.48 1.48288 YES YES 73 a 821.61 0.07660 YES YES 74 a 822.87 0.36267	59	a	647.01	4.94640	YES	YES
61 a 729.98 0.60704 YES YES 62 a 730.16 0.27710 YES YES 63 a 730.95 1.65623 YES YES 64 a 737.51 4.57008 YES YES 65 a 737.70 4.62700 YES YES 66 a 738.56 8.09501 YES YES 67 a 754.11 114.72418 YES YES 68 a 754.38 42.58623 YES YES 69 a 763.14 8.43610 YES YES 70 a 763.16 8.09149 YES YES 71 a 763.16 8.09149 YES YES 72 a 764.48 1.48288 YES YES 73 a 821.82 0.06597 YES YES 74 a 822.87 0.36267	60	a	655.33	2,57354	YES	YES
61 61 723.33 61.00747 FES FES 62 a 730.16 0.27710 YES YES 63 a 730.95 1.65623 YES YES 64 a 737.51 4.57008 YES YES 65 a 737.70 4.62700 YES YES 66 a 738.56 8.09501 YES YES 67 a 754.11 114.72418 YES YES 68 a 754.38 42.58623 YES YES 70 a 763.14 8.43610 YES YES 71 a 763.16 8.09149 YES YES 71 a 764.48 1.48288 YES YES 73 a 821.82 0.06597 YES YES 74 a 822.87 0.36267 YES YES 75 a 822.80 0.077423	61	a	729.98	0.60704	VES	VES
62 a 730.10 0.27110 TES TES 63 a 730.95 1.65623 YES YES 64 a 737.51 4.57008 YES YES 65 a 737.70 4.62700 YES YES 66 a 738.56 8.09501 YES YES 67 a 754.11 114.72418 YES YES 68 a 754.38 42.58623 YES YES 70 a 763.14 8.43610 YES YES 71 a 763.16 8.09149 YES YES 71 a 763.16 8.09149 YES YES 71 a 764.48 1.48288 YES YES 73 a 821.61 0.07660 YES YES 74 a 821.82 0.06597 YES YES 75 a 822.87 0.36267 YES YES 76 a 883.42 0.05053 YES	62	а Э	720.16	0.00704	VES	VES
65 a 730.33 1.03623 TES TES 64 a 737.51 4.57008 YES YES 65 a 737.70 4.62700 YES YES 66 a 738.56 8.09501 YES YES 67 a 754.11 114.72418 YES YES 68 a 754.38 42.58623 YES YES 69 a 754.74 52.60194 YES YES 70 a 763.14 8.43610 YES YES 71 a 763.16 8.09149 YES YES 71 a 764.48 1.48288 YES YES 73 a 821.82 0.06597 YES YES 74 a 822.87 0.36267 YES YES 75 a 832.29 0.093307 YES YES 77 a 883.42 0.05053	62	a	730.10	1 65622	VEC	VES
64 a 737.51 4.57008 YES YES 65 a 737.70 4.62700 YES YES 66 a 738.56 8.09501 YES YES 67 a 754.11 114.72418 YES YES 68 a 754.38 42.58623 YES YES 69 a 754.74 52.60194 YES YES 70 a 763.14 8.43610 YES YES 71 a 763.16 8.09149 YES YES 71 a 764.48 1.48288 YES YES 73 a 821.82 0.06597 YES YES 74 a 822.87 0.36267 YES YES 75 a 822.87 0.36267 YES YES 76 a 883.42 0.05053 YES YES 78 a 883.42 0.05053	05	d	750.95	1.05025	TES	TES VEC
65 a 737.70 4.62700 YES YES 66 a 738.56 8.09501 YES YES 67 a 754.11 114.72418 YES YES 68 a 754.38 42.58623 YES YES 69 a 754.74 52.60194 YES YES 70 a 763.14 8.43610 YES YES 71 a 763.16 8.09149 YES YES 71 a 763.16 8.09149 YES YES 71 a 763.16 8.09149 YES YES 72 a 764.48 1.48288 YES YES 73 a 821.61 0.07660 YES YES 74 a 822.87 0.36267 YES YES 75 a 883.29 0.09932 YES YES 76 a 883.42 0.05053 YES YES 79 a 888.49 0.77423 YES	64	а	/3/.51	4.57008	YES	YES
66 a 738.56 8.09501 YES YES 67 a 754.11 114.72418 YES YES 68 a 754.38 42.58623 YES YES 69 a 754.74 52.60194 YES YES 70 a 763.14 8.43610 YES YES 71 a 763.16 8.09149 YES YES 72 a 764.48 1.48288 YES YES 73 a 821.61 0.07660 YES YES 74 a 821.82 0.06597 YES YES 75 a 822.87 0.36267 YES YES 76 a 883.29 0.09932 YES YES 77 a 883.42 0.05053 YES YES 79 a 888.49 0.77423 YES YES 80 a 889.58 0.94479 YES YES 81 a 889.503 0.01696 YES	65	а	/3/./0	4.62700	YES	YES
67 a 754.11 114.72418 YES YES 68 a 754.38 42.58623 YES YES 69 a 754.74 52.60194 YES YES 70 a 763.14 8.43610 YES YES 71 a 763.16 8.09149 YES YES 72 a 764.48 1.48288 YES YES 73 a 821.61 0.07660 YES YES 74 a 821.82 0.06597 YES YES 75 a 822.87 0.36267 YES YES 76 a 882.90 0.03307 YES YES 77 a 883.42 0.05053 YES YES 78 a 883.42 0.05053 YES YES 80 a 888.49 0.71129 YES YES 81 a 889.58 0.94479 YES YES 82 a 955.03 0.00713 YES	66	а	/38.56	8.09501	YES	YES
68a754.3842.58623YESYES69a754.7452.60194YESYES70a763.148.43610YESYES71a763.168.09149YESYES72a764.481.48288YESYES73a821.610.07660YESYES74a821.820.06597YESYES75a822.870.36267YESYES76a883.290.09932YESYES77a883.420.05053YESYES78a883.420.05053YESYES80a888.900.71129YESYES81a89.580.94479YESYES83a955.030.00713YESYES84a955.940.01896YESYES85a958.570.02768YESYES	67	а	754.11	114.72418	YES	YES
69a754.7452.60194YESYES70a763.148.43610YESYES71a763.168.09149YESYES72a764.481.48288YESYES73a821.610.07660YESYES74a821.820.06597YESYES75a822.870.36267YESYES76a882.900.03307YESYES76a883.290.09932YESYES77a883.420.05053YESYES79a888.490.77423YESYES80a889.580.94479YESYES81a895.030.00713YESYES82a954.030.01696YESYES83a955.940.01896YESYES84a955.940.02134YESYES86a958.570.02768YESYES	68	а	754.38	42.58623	YES	YES
70 a 763.14 8.43610 YES YES 71 a 763.16 8.09149 YES YES 72 a 764.48 1.48288 YES YES 73 a 821.61 0.07660 YES YES 74 a 821.82 0.06597 YES YES 75 a 822.87 0.36267 YES YES 76 a 882.90 0.03307 YES YES 77 a 883.29 0.09932 YES YES 78 a 883.42 0.05053 YES YES 79 a 888.49 0.77423 YES YES 80 a 889.58 0.94479 YES YES 81 a 889.50 0.00713 YES YES 82 a 955.03 0.00713 YES YES 83 a 955.94 0.01896 YES YES 85 a 958.11 0.02768 YES <t< td=""><td>69</td><td>а</td><td>754.74</td><td>52.60194</td><td>YES</td><td>YES</td></t<>	69	а	754.74	52.60194	YES	YES
71 a 763.16 8.09149 YES YES 72 a 764.48 1.48288 YES YES 73 a 821.61 0.07660 YES YES 74 a 821.82 0.06597 YES YES 75 a 822.87 0.36267 YES YES 76 a 882.90 0.03307 YES YES 77 a 883.29 0.09932 YES YES 78 a 883.42 0.05053 YES YES 79 a 888.49 0.77423 YES YES 80 a 888.90 0.71129 YES YES 81 a 889.58 0.94479 YES YES 82 a 954.03 0.01696 YES YES 83 a 955.03 0.00713 YES YES 84 a 955.94 0.01896 YES YES 85 a 958.57 0.02768 YES <t< td=""><td>70</td><td>а</td><td>763.14</td><td>8.43610</td><td>YES</td><td>YES</td></t<>	70	а	763.14	8.43610	YES	YES
72a764.481.48288YESYES73a821.610.07660YESYES74a821.820.06597YESYES75a822.870.36267YESYES76a882.900.03307YESYES77a883.290.09932YESYES78a883.420.05053YESYES79a888.490.77423YESYES80a889.580.94479YESYES81a889.580.94479YESYES82a954.030.01696YESYES83a955.030.00713YESYES84a955.940.01896YESYES85a958.570.02768YESYES	71	а	763.16	8.09149	YES	YES
73a821.610.07660YESYES74a821.820.06597YESYES75a822.870.36267YESYES76a882.900.03307YESYES77a883.290.09932YESYES78a883.420.05053YESYES79a888.490.77423YESYES80a888.900.71129YESYES81a889.580.94479YESYES82a954.030.01696YESYES83a955.940.01896YESYES84a958.110.02134YESYES86a958.570.02768YESYES	72	а	764.48	1.48288	YES	YES
74a821.820.06597YESYES75a822.870.36267YESYES76a882.900.03307YESYES77a883.290.09932YESYES78a883.420.05053YESYES79a888.490.77423YESYES80a888.900.71129YESYES81a889.580.94479YESYES82a954.030.01696YESYES83a955.940.01896YESYES84a958.110.02134YESYES86a958.570.02768YESYES	73	а	821.61	0.07660	YES	YES
75a822.870.36267YESYES76a882.900.03307YESYES77a883.290.09932YESYES78a883.420.05053YESYES79a888.490.77423YESYES80a888.900.71129YESYES81a889.580.94479YESYES83a955.030.00713YESYES84a955.940.01896YESYES85a958.570.02768YESYES	74	а	821.82	0.06597	YES	YES
76a882.900.03307YESYES77a883.290.09932YESYES78a883.420.05053YESYES79a888.490.77423YESYES80a888.900.71129YESYES81a889.580.94479YESYES82a954.030.01696YESYES83a955.030.00713YESYES84a955.940.01896YESYES85a958.570.02768YESYES	75	а	822.87	0.36267	YES	YES
77a883.290.09932YESYES78a883.420.05053YESYES79a888.490.77423YESYES80a888.900.71129YESYES81a889.580.94479YESYES82a954.030.01696YESYES83a955.030.00713YESYES84a955.940.01896YESYES85a958.570.02768YESYES	76	а	882.90	0.03307	YES	YES
78 a 883.42 0.05053 YES YES 79 a 888.49 0.77423 YES YES 80 a 888.90 0.71129 YES YES 81 a 889.58 0.94479 YES YES 82 a 954.03 0.01696 YES YES 83 a 955.03 0.00713 YES YES 84 a 955.94 0.01896 YES YES 85 a 958.57 0.02768 YES YES 86 a 958.57 0.02768 YES YES	77	а	883.29	0.09932	YES	YES
79 a 888.49 0.77423 YES YES 80 a 888.90 0.71129 YES YES 81 a 889.58 0.94479 YES YES 82 a 954.03 0.01696 YES YES 83 a 955.03 0.00713 YES YES 84 a 955.94 0.01896 YES YES 85 a 958.57 0.02768 YES YES	78	а	883.42	0.05053	YES	YES
80 a 888.90 0.71129 YES YES 81 a 889.58 0.94479 YES YES 82 a 954.03 0.01696 YES YES 83 a 955.03 0.00713 YES YES 84 a 955.94 0.01896 YES YES 85 a 958.57 0.02768 YES YES	79	a	888 49	0.77423	YES	YES
81 a 889.58 0.94479 YES YES 82 a 954.03 0.01696 YES YES 83 a 955.03 0.00713 YES YES 84 a 955.94 0.01896 YES YES 85 a 958.11 0.02134 YES YES 86 a 958.57 0.02768 YES YES	80	2	888 90	0 71120	VES	VES
81 a 833.35 0.94479 TES TES 82 a 954.03 0.01696 YES YES 83 a 955.03 0.00713 YES YES 84 a 955.94 0.01896 YES YES 85 a 958.11 0.02134 YES YES 86 a 958.57 0.02768 YES YES	Q1	a	880 50	0.71123	VEC	VEC
b2 a 954.03 0.01696 YES YES 83 a 955.03 0.00713 YES YES 84 a 955.94 0.01896 YES YES 85 a 958.11 0.02134 YES YES 86 a 958.57 0.02768 YES YES	01 07	a	003.30	0.344/3	VEC	
85 a 955.03 0.00713 YES YES 84 a 955.94 0.01896 YES YES 85 a 958.11 0.02134 YES YES 86 a 958.57 0.02768 YES YES	δ∠	d	904.03	0.01030		TED
84 a 955.94 0.01896 YES YES 85 a 958.11 0.02134 YES YES 86 a 958.57 0.02768 YES YES	83	a	955.03	0.00713	YES	YES
85 a 958.11 0.02134 YES YES 86 a 958.57 0.02768 YES YES	84	а	955.94	0.01896	YES	YES
86 a 958.57 0.02768 YES YES	85	а	958.11	0.02134	YES	YES
	86	а	958.57	0.02768	YES	YES
87	а	961.79	0.03269	YES	YES	
-----	--------	---------	----------	------------	------------	
88	а	993.95	37.36077	YES	YES	
89	а	994.11	36.18937	YES	YES	
90	а	994.91	15.88454	YES	YES	
91	a	996.67	35.08634	YES	YES	
92	a	996.86	36 28759	YES	YES	
93	2	999.00	0.05782	VES	VES	
04	a 2	000 66	0.03782	VES	VES	
94	a	999.00	0.03200			
95	d	999.74	0.01553	TES VEC	YES	
96	a	1003.39	0.00165	YES	YES	
97	а	1003.44	0.26308	YES	YES	
98	а	1003.44	0.33462	YES	YES	
99	а	1021.00	1.23637	YES	YES	
100	а	1034.12	0.04144	YES	YES	
101	а	1035.50	0.86388	YES	YES	
102	а	1035.53	0.95132	YES	YES	
103	а	1061.81	0.27882	YES	YES	
104	а	1062.98	2.99720	YES	YES	
105	а	1063.00	3.02999	YES	YES	
106	а	1067.77	2.50558	YES	YES	
107	a	1067.89	2 58770	YES	YES	
108	a	1068 33	5 28473	YES	VES	
100	a 2	1000.35	1/ 26/22	VES	VES	
109	a	1099.30	14.30422	TES VEC	TES VEC	
110	d	1099.55	14.13340	TES	YES	
111	а	1101.67	0.95871	YES	YES	
112	а	1112.29	2.49335	YES	YES	
113	а	1112.41	2.36024	YES	YES	
114	а	1113.62	0.76837	YES	YES	
115	а	1145.92	5.39687	YES	YES	
116	а	1145.98	5.39287	YES	YES	
117	а	1146.08	5.81652	YES	YES	
118	а	1162.50	10.96967	YES	YES	
119	а	1162.87	11.17445	YES	YES	
120	а	1163.48	1.22241	YES	YES	
121	а	1261.49	3.13699	YES	YES	
122	а	1261.82	3.15937	YES	YES	
123	a	1265.84	0.10364	YES	YES	
124	a	1287.50	3,25305	YES	YES	
125	a	1288.05	3 09313	YES	VES	
126	2	1200.03	1 93317	VES	VES	
120	a 2	1200.75	20 7/621	VES	VES	
127	a	1298.30	20.74021		TES VEC	
128	а	1298.65	20.33232	YES	YES	
129	а	1301.29	1.23127	YES	YES	
130	а	1337.31	9.23551	YES	YES	
131	а	1337.37	9.09163	YES	YES	
132	а	1337.60	13.86372	YES	YES	
133	а	1355.14	2.39090	YES	YES	
134	а	1355.23	2.60116	YES	YES	
135	а	1355.43	3.05021	YES	YES	
136	а	1417.77	1.49638	YES	YES	
137	а	1418.10	2.61235	YES	YES	
138	a	1418 36	3,19894	YES	YFS	
100	u	110.00	5.15054	. 23	123	

140	а	1437.44	52.30384	YES	YES
141	а	1437.56	56.36693	YES	YES
142	а	1460.16	42.92138	YES	YES
143	а	1462.65	24.48149	YES	YES
144	а	1463.36	24.07757	YES	YES
145	а	1485.46	27.24588	YES	YES
146	а	1485.59	26.62662	YES	YES
147	а	1486.07	1.11295	YES	YES
148	а	1578.70	31.60330	YES	YES
149	а	1578.80	31.43771	YES	YES
150	а	1579.15	1.86137	YES	YES
151	а	1592.04	6.03533	YES	YES
152	а	1592.14	6.81350	YES	YES
153	а	1592.35	4.91708	YES	YES
154	а	1597.13	43.14469	YES	YES
155	а	1597.24	39.85982	YES	YES
156	а	1597.55	5.49778	YES	YES
157	а	1609.60	35.41050	YES	YES
158	а	1610.92	26.34660	YES	YES
159	а	1611.17	25.54526	YES	YES
160	а	3086.42	8.20354	YES	YES
161	а	3087.00	8.19904	YES	YES
162	а	3087.50	8.17815	YES	YES
163	а	3125.29	0.68602	YES	YES
164	а	3125.33	0.70556	YES	YES
165	а	3125.43	0.58377	YES	YES
166	а	3126.13	0.14473	YES	YES
167	а	3126.16	0.06951	YES	YES
168	а	3126.18	0.09759	YES	YES
169	а	3135.60	3.61361	YES	YES
170	а	3136.10	3.33034	YES	YES
171	а	3136.70	3.24147	YES	YES
172	а	3139.21	0.49418	YES	YES
173	а	3139.46	0.40740	YES	YES
174	а	3139.75	0.34667	YES	YES
175	а	3142.99	1.45785	YES	YES
176	а	3143.72	1.44338	YES	YES
177	а	3143.86	1.64074	YES	YES
178	а	3145.62	0.88147	YES	YES
179	а	3146.04	0.93476	YES	YES
180	а	3146.85	0.70885	YES	YES
181	а	3153.06	0.03622	YES	YES
182	а	3153.89	0.03652	YES	YES
183	а	3154.04	0.02419	YES	YES

bipy

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory.

2.32434388841853	5.36074939867151	0.00000000000000	С
-0.01337212910269	6.61809970887099	0.0000000000000	С
-2.22655747647419	5.14495846964807	0.0000000000000	С
-2.22529619940329	2.61485412880192	0.0000000000000	n
0.02498258742917	1.40835822044668	0.0000000000000	С
2.35234016718551	2.71506437285101	0.0000000000000	С
-0.02498258742917	-1.40835822044668	0.0000000000000	С
2.22529619940329	-2.61485412880192	0.0000000000000	n
2.22655747647419	-5.14495846964807	0.0000000000000	С
0.01337212910269	-6.61809970887099	0.0000000000000	С
-2.32434388841853	-5.36074939867151	0.0000000000000	С
-2.35234016718551	-2.71506437285101	0.0000000000000	С
-4.10444059516458	6.06477287969121	0.0000000000000	h
-0.12891900865240	8.69710890392869	0.0000000000000	h
4.10965276254494	6.43549978210020	0.0000000000000	h
4.11389005255996	1.61191063395858	0.0000000000000	h
-4.11389005255996	-1.61191063395858	0.0000000000000	h
-4.10965276254494	-6.43549978210020	0.000000000000000	h
0.12891900865240	-8.69710890392869	0.00000000000000	h
4.10444059516458	-6.06477287969121	0.000000000000000	h

mode	symmetry	wave number	IR intensity	selecti	on rules
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	au	66.80	2.97062	YES	NO
8	au	92.67	2.46120	YES	NO
9	bu	160.25	5.92471	YES	NO
10	bg	216.06	0.00000	NO	YES
11	ag	328.41	0.00000	NO	YES
12	au	395.61	7.06030	YES	NO
13	bg	403.91	0.00000	NO	YES
14	au	430.46	0.00476	YES	NO
15	ag	440.73	0.00000	NO	YES
16	bg	558.99	0.00000	NO	YES
17	ag	608.03	0.00000	NO	YES
18	bu	614.02	11.35670	YES	NO
19	bu	653.08	5.88828	YES	NO
20	bg	737.39	0.00000	NO	YES
21	au	744.21	23.61365	YES	NO
22	au	751.99	60.60203	YES	NO
23	ag	768.48	0.00000	NO	YES
24	bg	836.08	0.00000	NO	YES
25	au	892.89	0.95882	YES	NO
26	bg	903.00	0.00000	NO	YES
27	au	947.58	0.35424	YES	NO
28	bg	955.74	0.00000	NO	YES

29	bu	985.75	8.34893	YES	NO
30	ag	986.12	0.00000	NO	YES
31	au	991.10	0.11076	YES	NO
32	bg	992.01	0.00000	NO	YES
33	bu	1034.54	7.36628	YES	NO
34	ag	1039.72	0.00000	NO	YES
35	bu	1055.05	14.06021	YES	NO
36	ag	1080.84	0.00000	NO	YES
37	bu	1085.33	13.12993	YES	NO
38	bu	1125.56	1.50081	YES	NO
39	ag	1125.90	0.00000	NO	YES
40	bu	1255.73	0.03443	YES	NO
41	ag	1270.36	0.00000	NO	YES
42	ag	1312.87	0.00000	NO	YES
43	ag	1337.78	0.00000	NO	YES
44	bu	1348.93	5.38715	YES	NO
45	bu	1412.36	36.93369	YES	NO
46	ag	1443.01	0.00000	NO	YES
47	bu	1452.84	64.26079	YES	NO
48	ag	1480.78	0.00000	NO	YES
49	bu	1572.69	38.29549	YES	NO
50	ag	1593.08	0.00000	NO	YES
51	ag	1599.15	0.00000	NO	YES
52	bu	1605.51	86.31533	YES	NO
53	bu	3060.66	63.07746	YES	NO
54	ag	3060.96	0.00000	NO	YES
55	ag	3097.81	0.00000	NO	YES
56	bu	3097.85	19.18634	YES	NO
57	bu	3116.56	37.50477	YES	NO
58	ag	3116.83	0.00000	NO	YES
59	bu	3137.53	4.21171	YES	NO
60	ag	3138.33	0.00000	NO	YES

[Sn(py)₄]²⁺

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory (grid m5).

1.17179360100779	-4.95260665543011	-1.07673217993084	n	
1.85948811087978	-6.20214238324531	1.04629192966374	С	
1.72703240621567	-8.83848674203585	1.23832015841688	С	
0.86382664903660	-10.23226518335743	-0.84980332873138	С	
0.16747779412393	-8.93516353989965	-3.06063751487964	С	
0.35701517679414	-6.29800994855960	-3.09764276348228	С	
-2.10738948574368	-0.02169013210532	-2.71030946862700	n	
-3.87684753337884	-1.64892175659748	-1.82235628744553	С	
-6.43364890284529	-1.42042442709878	-2.45309164269980	С	
-7.18610235811933	0.53918131212205	-4.07962027208334	С	
-5.34405065055279	2.20634707312980	-5.01591000097668	С	
-2.82650824436375	1.87002754198238	-4.28612173997491	С	
1.81397830161322	4.32046021710071	-1.25975468352448	n	
3.49224036797945	5.81406902600959	-2.47933308407799	С	

3.51290404699178	8.44642389137339	-2.19037713961546	С
1.72595030782910	9.56270819578090	-0.57667295065369	С
-0.01708683173669	8.00526923867551	0.68832302474125	С
0.09301586782261	5.39250736748946	0.29521986485837	С
2.03300236776285	-0.05540801197604	2.51822647197317	n
4.11416249411823	0.87335266975419	3.68856296330641	С
4.18430909658905	1.29053638959393	6.29790650725372	С
2.02359883869240	0.74073977220511	7.73989396710649	С
-0.13244564317071	-0.21280301449667	6.51555007605375	С
-0.05455537843657	-0.58825001144942	3.89996481480963	С
2.34642191793226	-0.41080905520258	-1.97065768889609	sn
-1.32817831077144	3.14309853651933	-4.97209667641910	h
-1.23980770666510	4.10403380774438	1.24798995741377	h
-1.44884648457302	8.80624356919819	1.96778358199750	h
4.91093320144459	9.59327696032669	-3.21907024347795	h
4.86424015100728	4.85983545318810	-3.73079940063057	h
-3.19788154273516	-3.19074943427360	-0.60268632943854	h
-7.81059842406015	-2.77710107408871	-1.68409208529712	h
-5.84269745216628	3.75742241220253	-6.30936318338518	h
-0.15531526079089	-5.21443605987318	-4.80624218084698	h
-0.50296360770077	-9.95141158286096	-4.74745318430557	h
2.54855532650208	-5.04425105971957	2.63416405709429	h
2.30604042626154	-9.77951348293617	3.00099109393483	h
-1.69926582552961	-1.33905850463903	2.87095504302447	h
-1.86478512611193	-0.66729938027349	7.57372483076174	h
5.91556975190654	2.03572901616822	7.17816253969534	h
5.76691270164672	1.29296176951510	2.48714015974271	h
-9.18509399363377	0.75774226977355	-4.62032693582792	h
1.68931546015420	11.62709330306008	-0.30637203950489	h
0.74668557790204	-12.30931491084243	-0.76066453372323	h
2.01959882087195	1.05105655804838	9.79901649660808	h

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory, grid m5).

mode	symmetry	wave number	IR intensity	selecti	on rules
		[cm ⁻¹]	[km mol⁻¹]	IR	RAMAN
7	а	14.82	0.13724	YES	YES
8	а	18.58	0.04494	YES	YES
9	а	24.48	0.20995	YES	YES
10	а	30.12	0.20740	YES	YES
11	а	38.97	0.20325	YES	YES
12	а	41.71	0.66636	YES	YES
13	а	46.21	0.46392	YES	YES
14	а	51.78	0.29578	YES	YES
15	а	68.88	0.19736	YES	YES
16	а	103.12	4.99174	YES	YES
17	а	106.90	2.55299	YES	YES
18	а	110.63	0.22302	YES	YES
19	а	119.24	19.51958	YES	YES
20	а	128.58	12.71113	YES	YES
21	а	137.55	3.54993	YES	YES

22	а	143.89	5.22958	YES	YES
23	а	153.61	0.61705	YES	YES
24	а	160.95	0.48268	YES	YES
25	а	170.73	11.09598	YES	YES
26	а	179.15	27.41190	YES	YES
27	а	228.41	8.84267	YES	YES
28	a	378.05	0.04848	YES	YES
20	2	381 22	0 34107	VES	VES
20	u 2	282 02	0.04002	VES	VES
21	a	204.25	0.04003	VES	VES
21	a	394.23	0.04055		TES VES
32	d	412.40	3.80010	TES	YES
33	а	415.91	3.56062	YES	YES
34	а	417.95	4.11941	YES	YES
35	а	421.16	8.78427	YES	YES
36	а	614.96	36.00643	YES	YES
37	а	621.95	1.41877	YES	YES
38	а	624.82	15.95335	YES	YES
39	а	632.16	9.07002	YES	YES
40	а	641.38	0.08619	YES	YES
41	а	643.45	0.60561	YES	YES
42	а	643.64	0.17567	YES	YES
43	а	643.92	0.73439	YES	YES
44	а	690.50	54.10182	YES	YES
45	а	695.91	37.74210	YES	YES
46	a	696.63	41 84024	YES	YES
47	2	698.45	40 85182	VES	VES
47	2	746 95	31 36830	VES	VES
40	a 2	740.55	0 10701	VES	VES
49	a	747.32	0.10/21		TES VES
50	a	748.44	4.15613	YES	YES
51	а	748.84	27.98393	YES	YES
52	а	859.89	0.0/155	YES	YES
53	а	864.08	0.40273	YES	YES
54	а	865.52	0.17514	YES	YES
55	а	866.48	0.01397	YES	YES
56	а	927.67	0.09913	YES	YES
57	а	929.42	0.39985	YES	YES
58	а	930.07	0.08634	YES	YES
59	а	936.81	1.23201	YES	YES
60	а	967.11	0.02706	YES	YES
61	а	967.76	0.29753	YES	YES
62	а	968.42	0.18108	YES	YES
63	а	970.68	0.25087	YES	YES
64	а	1000.71	107,16053	YES	YES
65	a	1005.31	20.07476	YES	YES
66	a	1007 98	46 92459	VES	VES
67	и Э	1010 25		VEC	VEC
69	a 2	1010.05	0.05075	VEC	VEC
00	a	1010.00	0.00420		
69	а	1012.55	0.00544	TES	TES
70	а	1013.27	0.08541	YES	YES
71	а	1015.38	18.12938	YES	YES
72	а	1023.53	3.73383	YES	YES
73	а	1024.14	8.29938	YES	YES
74	а	1024.56	1.06133	YES	YES

75	а	1027.02	1.21743	YES	YES
76	а	1058.88	49.75017	YES	YES
77	а	1059.21	51.85262	YES	YES
78	а	1059.80	12.21249	YES	YES
79	а	1062.59	11.58370	YES	YES
80	а	1070.58	2.01175	YES	YES
81	a	1070 70	2 75806	YES	YES
82	2	1072.68	0 98821	VES	VES
92	а Э	1076.54	0.55021	VES	VES
01	a	11/15 70	1 70160	VES	VES
04 0F	a	1145.79	1.70100		TES VEC
65	d	1140.44	2.00710	TES VEC	TES VEC
86	а	1147.39	2.15896	YES	YES
87	а	1147.93	2.346/3	YES	YES
88	а	1195.12	21.04731	YES	YES
89	а	1196.76	7.11324	YES	YES
90	а	1197.27	36.96367	YES	YES
91	а	1204.13	0.15214	YES	YES
92	а	1325.67	0.83292	YES	YES
93	а	1328.84	1.34655	YES	YES
94	а	1329.80	3.34379	YES	YES
95	а	1331.21	3.21120	YES	YES
96	а	1344.89	0.99921	YES	YES
97	а	1345.85	0.20612	YES	YES
98	а	1346.44	0.44698	YES	YES
99	a	1347 17	0 32650	YES	YES
100	a	1444 69	29 40551	YES	VES
100	2	1444.05	39 16922	VES	VES
101	a 2	1444.57	1/ 07/22	VEC	VES
102	a	1440.97	14.07433		TES VEC
103	d	1448.00	2 02125	TES	YES
104	а	1472.03	2.82135	YES	YES
105	а	14/3.33	0.19945	YES	YES
106	а	14/4.83	0.52496	YES	YES
107	а	1476.03	2.11184	YES	YES
108	а	1582.50	1.35167	YES	YES
109	а	1584.87	0.70186	YES	YES
110	а	1585.06	0.48472	YES	YES
111	а	1586.51	0.52469	YES	YES
112	а	1609.10	78.09658	YES	YES
113	а	1609.89	8.80608	YES	YES
114	а	1613.29	48.61374	YES	YES
115	а	1614.20	33.77054	YES	YES
116	а	3089.05	3.25234	YES	YES
117	а	3090.66	2.56494	YES	YES
118	a	3100 47	1 11374	YES	YES
119	а а	3103 89	3,52931	YES	YES
120	u c	3118 /6	3 53003	VEC	VEC
101	a	2120.40	2.0002	VEC	VEC
121	d	312U.3Z	2.00091	I ES	TES
122	а	3125.63	0.32566	YES	YES
123	а	3125.83	0.46233	YES	YES
124	а	3126.83	0.46669	YES	YES
125	а	3127.40	1.02629	YES	YES
126	2	2121 78	4 67485	VES	VES
	d	5151.78	1.07 105	125	125

128	а	3136.65	0.56776	YES	YES
129	а	3138.32	0.88712	YES	YES
130	а	3140.59	2.60073	YES	YES
131	а	3140.88	2.68123	YES	YES
132	а	3141.24	2.73651	YES	YES
133	а	3142.19	2.56598	YES	YES
134	а	3143.73	2.96962	YES	YES
135	а	3144.09	3.33453	YES	YES

Pyridine

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory (grid m5).

2.16924098635942	0.000000000000000	1.73806296702269	С
2.27989963654230	0.000000000000000	-0.91759010652283	С
0.000000000000000	0.000000000000000	3.05843375415009	n
-2.16924098635942	0.000000000000000	1.73806296702269	С
-2.27989963654230	0.000000000000000	-0.91759010652283	С
0.000000000000000	0.000000000000000	-2.27427184756308	C
3.93195667794721	0.000000000000000	2.86314042981560	h
-3.93195667794721	0.000000000000000	2.86314042981560	h
-4.11842573851158	0.000000000000000	-1.89655024370362	h
4.11842573851158	0.000000000000000	-1.89655024370362	h
0.000000000000000	0.000000000000000	-4.35828799981069	h

mode	symmetry	wave number	IR intensity	selection rules	
		[cm ⁻¹]	[km mol⁻¹]	IR	RAMAN
7	a2	361.42	0.00000	NO	YES
8	b2	407.14	2.96018	YES	YES
9	a1	591.83	4.12945	YES	YES
10	b1	650.64	0.37010	YES	YES
11	b2	694.52	51.29200	YES	YES
12	b2	743.53	4.08266	YES	YES
13	a2	869.49	0.00000	NO	YES
14	b2	922.46	0.01654	YES	YES
15	a2	963.82	0.00000	NO	YES
16	a1	982.44	9.07329	YES	YES
17	b2	984.47	0.00079	YES	YES
18	a1	1024.42	3.22684	YES	YES
19	b1	1050.12	0.00002	YES	YES
20	a1	1063.32	4.59562	YES	YES
21	b1	1130.49	1.34266	YES	YES
22	a1	1206.94	3.20662	YES	YES
23	b1	1326.11	0.83153	YES	YES
24	b1	1338.29	0.09476	YES	YES
25	b1	1437.19	23.88538	YES	YES
26	a1	1471.91	2.81578	YES	YES
27	a1	1593.33	20.16354	YES	YES

28	b1	1594.70	10.51537	YES	YES
29	b1	3060.74	37.33719	YES	YES
30	a1	3063.95	9.42070	YES	YES
31	a1	3095.14	3.79581	YES	YES
32	b1	3109.42	24.92291	YES	YES
33	a1	3117.15	7.56393	YES	YES

[Sn(pyr)₄]²⁺

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory.

1.08609887517428 -4.9441939555063 -1.00641636831141 n 1.74801994272853 -6.21234083050568 1.10863853722365 c 0.73810145741305 -10.2230337983779 -0.76398298375136 n 0.10437930612534 -8.95706727238429 -2.86591141529877 c 0.27781627040969 -6.30891716171623 -3.01185179164378 c -2.21421716145968 -0.00746330508217 -2.64220986943156 n -3.99489357004167 -1.60779531545796 -1.74227297590181 c -5.52380787553003 2.11569777640524 -4.88264171985281 c -7.3030198982936 0.558220906986898 -3.97408810106123 n -5.52380787553003 2.11569777640524 -4.88264171985281 c -7.9051198892936 1.86049992281083 -4.22404110164927 n -3.37727092857437 5.86597695187954 -2.3595360398733 c -1.62372999563682 9.59100068058290 -0.4498588542924 n -0.03607653700957 8.07238108933046 0.72068057112059 c -0.03607653700957 8.07238108933046 0.72068057112059 c -1.9566450				
1.74801994272853 -6.21234083050568 1.10863853722365 c 1.56034911944380 -8.86351565381403 1.2086487795216 c 0.738101245741305 -10.223037983779 -0.7639298375136 n 0.10437930612534 -8.95706727238429 -2.86591141529877 c 0.27781627040969 -6.30891716171623 -3.01185179164378 c -2.21421716145968 -0.00746330508217 -2.64220986943156 n -3.99489357004167 1.60779531545796 -1.74227297590181 c -5.52380787553003 2.11569777640524 -4.88264171985281 c -2.96117089698830 1.86049992281083 -4.22404110164927 c 1.70208472116016 4.35051158402010 -1.17169702621194 n 3.37727092857437 5.8659769187954 -2.35953603998733 c 1.6237299956362 9.59100068058290 -0.4498588542924 n -0.03607653700957 8.07238108933046 0.72058072102059 c -1.9566450533570 -0.02808159530867 2.600213236199 n -1.9226710331379 9.83206967926542 1.292674716398 6.62369366812803 c	1.08609887517428	-4.94419395556063	-1.00641636831141	n
1.56034911944380 -8.86351565381403 1.20864687795216 c 0.73810145741305 -10.22320337983779 -0.76398298375136 n 0.10437930612534 -8.95706727238429 -2.86591141529877 c 0.27781627040969 -6.30891716171623 -3.01185179164378 c -2.21421716145968 -0.00746330508217 -2.64220986943156 n -3.99489357004167 -1.60779531545796 -1.74227297590181 c -6.54598012855955 -1.29069367049789 -2.41658239375802 c -7.30301989892936 0.558290996986989 -3.97408810106123 n -5.52380787553003 2.11569777640524 -4.88264171985281 c -2.96117089698830 1.86049992281083 -4.22404110164927 c 1.70208472116016 4.35051158420210 -1.1760702621194 n 3.37727092857437 5.86597695187954 -2.3595360398733 c 0.03607653700957 8.072381089330046 0.72086057112059 c -0.01417826118804 5.43921276309218 0.372258920623 c 0.98266647928542 1.922	1.74801994272853	-6.21234083050568	1.10863853722365	С
0.73810145741305 -10.22320337983779 -0.76398298375136 n 0.10437930612534 -8.95706727238429 -2.86591141529877 c 0.27781627040969 -6.30891716171623 -3.01185179164378 c -2.21421716145968 -0.00746330508217 -2.64220986943156 n -3.99489357004167 -1.60779531545796 -1.74227297590181 c -5.73030189892936 0.55820906986989 -3.97408810106123 n -5.52380787553003 2.11569777640524 -4.88264171985281 c -2.96117089698830 1.86049992281083 -4.22404110164927 c 1.70208472116016 4.35051158420210 -1.17169702621194 n 3.37827092857437 5.86597695187954 -2.3595360398733 c 1.6237299956382 9.59100068058290 0.4498588542924 n 0.036076353700 50.0288159530867 2.60902132356199 n 4.0238404103066 0.8879752659434 3.80279287009545 c 0.9267182542 1.2926748716398 6.43054980280659 c 1.9229710331379 0.80983166941163 7.82504105493202 n 0.11634829659205	1.56034911944380	-8.86351565381403	1.20864687795216	С
0.10437930612534 -8.95706727238429 -2.86591141529877 c 0.27781627040969 -6.30891716171623 -3.01185179164378 c -2.21421716145968 -0.00746330508217 -2.64220986943156 n -3.99489357004167 -1.60779531545796 1.74227297590181 c -6.54598012855955 -1.29069367049789 -2.41658293975802 c -2.396117089698830 0.5582906986989 -3.97408810106123 n -5.52380787553003 2.11569777640524 -4.88264171985281 c -2.96117089698830 1.86049992281083 -4.22404110164927 c 1.70208472116016 4.35051158420210 -1.17169702621194 n 3.31856599997207 8.501005808290 -0.4498588842924 n -0.03607653700957 8.07238108933046 0.72068057112059 c -0.1417826118804 5.43921276309218 0.37225389200659 c 1.9566450533570 -0.02808159530867 2.60902132356199 n 4.02388404103066 0.88797522659434 3.80279287009545 c 1.9229710331379 0.80983160941163 7.82504105493202 n 0.11634829659205 </td <td>0.73810145741305</td> <td>-10.22320337983779</td> <td>-0.76398298375136</td> <td>n</td>	0.73810145741305	-10.22320337983779	-0.76398298375136	n
0.27781627040969 -6.30891716171623 -3.01185179164378 c -2.21421716145968 -0.00746330508217 -2.64220986943156 n -3.99489357004167 -1.60779531545796 -1.74227297590181 c -6.54598012855955 -1.29069367049789 -2.41658293975802 c -7.30301989892936 0.55829096986989 -3.97408810106123 n -5.52380787553003 2.1156977640524 -4.88264171985281 c -2.96117089698830 1.86049992281083 -4.22404110164927 c 1.70208472116016 4.3505115842021 -1.17169702621194 n 3.31856599997207 8.50101593487321 -1.98289100344580 c 1.62372999563682 9.59100068058290 -0.44985888542924 n -0.03607653700957 8.07238108933046 0.72068057112059 c 0.01417826118804 5.43921276309218 0.37225389206253 c 1.9266450533570 -0.02808159530867 2.60902132356199 n 4.0238404103066 0.88797522659434 3.80279287009545 c 1.9227103331379 0.0998316694	0.10437930612534	-8.95706727238429	-2.86591141529877	С
-2.21421716145968 -0.00746330508217 -2.64220986943156 n -3.99489357004167 -1.60779531545796 -1.74227297590181 c -6.54598012855955 -1.29069367049789 -2.41658293975802 c -7.303019898292936 0.55829096986989 -3.97408810106123 n -5.52380787553003 2.11569777640524 -4.88264171985281 c -2.96117089698830 1.8604992281083 -4.22404110164927 c 1.70208472116016 4.35051158420210 -1.17169702621194 n 3.3777092857437 5.86597695187954 -2.35953603998733 c 3.31856599997207 8.50101593487321 -1.98289100344580 c 1.62372999563682 9.59100068058290 -0.44985888542924 n -0.03607653700957 8.07238108933046 0.72068057112059 c 0.010417826118804 5.4321276309218 0.37225389220623 c 1.95266450533570 -0.02808159530867 2.60902132356199 n 4.02388404103066 0.88797522659434 3.80279287009545 c 1.9229710331379 0.80983166941163 7.82504105493202 n 0.11634820659205	0.27781627040969	-6.30891716171623	-3.01185179164378	С
-3.99489357004167 -1.60779531545796 -1.74227297590181 c -6.54598012855955 -1.20069367049789 -2.41658293975802 c -7.3030198982936 0.55829096986989 -3.97408810106123 n -5.52380787553003 2.11569777640524 -4.82264171985281 c -2.96117089698830 1.86049992281083 -4.22404110164927 c 1.70208472116016 4.35051158420210 -1.17169702621194 n 3.31856599997207 8.50101593487321 -1.98289100344580 c 1.6237299563682 9.59100068058290 -0.44985888542924 n -0.03607653700957 8.07238108933046 0.72068057112059 c -0.01417826118804 5.43921276309218 0.3722538920623 c -0.9566450533570 -0.02808159530867 2.60902132356199 n 4.02388404103066 0.88797522659434 3.80279287009545 c 3.98206967926542 1.29266748716388 6.43054980280659 c 1.9229710331379 0.80983166941163 7.82504105493202 n -0.11534829659205 -0.09578246449896 6.6236936812803 c -1.92297103331379 <td>-2.21421716145968</td> <td>-0.00746330508217</td> <td>-2.64220986943156</td> <td>n</td>	-2.21421716145968	-0.00746330508217	-2.64220986943156	n
-6.54598012855955 -1.29069367049789 -2.41658293975802 c -7.30301989892936 0.55829096986989 -3.97408810106123 n -5.52380787553003 2.11569777640524 -4.88264171985281 c 2.96117089698830 1.86049992281083 -4.22404110164927 c 1.70208472116016 4.35051158420210 -1.17169702621194 n 3.37727092857437 5.86597695187954 -2.35953603998733 c 1.62372999563682 9.59100068058290 -0.44985888542924 n -0.03607653700957 8.07238108933046 0.72068057112059 c -0.01417826118804 5.43921276309218 0.37225389220623 c -1.92566450533570 -0.02808159530867 2.60902132356199 n 4.02388404103066 0.88797522659434 3.80279287009545 c 3.98206967926542 1.29266748716398 6.62369366812803 c -0.11634829659205 -0.09578246449896 6.62369366812803 c -1.327318697807 3.15270131651621 -4.96874908858898 h -1.38449423115403 4.19881543940723 1.3360952659103 h -1.37745807059321<	-3.99489357004167	-1.60779531545796	-1.74227297590181	С
-7.303019898929360.55829096986989-3.97408810106123n-5.523807875530032.11569777640524-4.88264171985281c-2.961170896988301.86049992281083-4.22404110164927c1.702084721160164.35051158420210-1.17169702621194n3.377270928574375.86597695187954-2.35953603998733c3.318565999972078.50101593487321-1.98289100344580c1.623729995636829.59100068058290-0.44985888542924n-0.036076537009578.072381089330660.72068057112059c-0.014178261188045.439212763092180.37225389220623c1.95666450533570-0.028081595308672.60902132356199n4.023884041030660.887975226594343.80279287009545c3.982069679265421.292667487163986.43054980280659c1.922971033313790.809831669411637.82504105493202n-0.11634829659205-0.095782464498966.62369366812803c-0.12533874993300-0.531464019917284.00254278467528c2.26980287502725-0.39229722508023-1.90671612339094sn-1.35657405882568.971247609263371.98260617533737h4.685347305903219.74521707253987-2.95317665592455h4.779580402373204.97402409568749-3.62239686578800h-3.37170544202934-3.16071135315013-0.50663290823029h-0.23054061469715-5.28206631704153-4.755922058672h-0.23054061469715-5.2	-6.54598012855955	-1.29069367049789	-2.41658293975802	С
-5.52380787553003 2.11569777640524 -4.88264171985281 c -2.96117089698830 1.86049992281083 -4.22404110164927 c 1.70208472116016 4.35051158420210 -1.17169702621194 n 3.37727092857437 5.86597695187954 -2.35953603998733 c 1.62372999563682 9.59100068058290 -0.44985888542924 n -0.03607653700957 8.07238108933046 0.72068057112059 c -0.01417826118804 5.43921276309218 0.37225389220623 c 1.95666450533570 -0.02808159530867 2.60902132356199 n 4.02388404103066 0.88797522659434 3.80279287009545 c 3.98206967926542 1.29266748716398 6.43054980280659 c 1.92297103331379 0.80983166941163 7.82504105493202 n -0.11634829659205 -0.09578246449896 6.62369366812803 c -1.50773186978807 3.15270131651621 -4.9687490858898 h -1.38449423115403 4.19881543940723 1.3360952659103 h -1.38459423120 9.74521707253987 -2.95317665592455 h 4.77958040237320	-7.30301989892936	0.55829096986989	-3.97408810106123	n
-2.96117089698830 1.86049992281083 -4.22404110164927 c 1.70208472116016 4.35051158420210 -1.17169702621194 n 3.37727092857437 5.86597695187954 -2.35953603998733 c 3.31856599997207 8.50101593487321 -1.98289100344580 c -0.03607653700957 8.07238108933046 0.72068057112059 c -0.01417826118804 5.43921276309218 0.37225389220623 c 1.95666450533570 -0.02808159530867 2.60902132356199 n 4.02388404103066 0.88797522659434 3.8027928709545 c 3.98206967926542 1.29266748716398 6.43054980280659 c -0.11634829659205 -0.09578246449896 6.62369366812803 c -0.12533874993300 -0.53146401991728 4.00254278467528 c 2.6980287502725 -0.39229722508023 -1.90671612339094 sn -1.36473186978807 3.15270131651621 -4.9687490858898 h -1.3645740588256 8.97124760926337 1.9826061753377 h -4.68534730590321 9.74521707253987 -2.95317665592455 h -7.7958040237320 <td>-5.52380787553003</td> <td>2.11569777640524</td> <td>-4.88264171985281</td> <td>С</td>	-5.52380787553003	2.11569777640524	-4.88264171985281	С
1.70208472116016 4.35051158420210 -1.17169702621194 n 3.37727092857437 5.86597695187954 -2.35953603998733 c 3.31856599997207 8.50101593487321 -1.98289100344580 c 1.62372999563682 9.59100068058290 -0.4498588542924 n -0.03607653700957 8.07238108933046 0.72068057112059 c -0.01417826118804 5.43921276309218 0.37225389220623 c 1.95666450533570 -0.02808159530867 2.60902132356199 n 4.02388404103066 0.88797522659434 3.80279287009545 c 3.98206967926542 1.29266748716398 6.43054980280659 c 1.9533874993300 -0.53146401991728 4.00254278467528 c 2.26980287502725 -0.39229722508023 -1.90671612339094 sn -1.50773186978807 3.15270131651621 -4.96874908858898 h -1.38449423115403 4.19881543940723 1.33609952659103 h -3.37170544202934 -3.16071135315013 -0.5063290823029 h -3.37170544202934 -3.60217045726 -1.67097921737663 h -6.13569447704222 <td>-2.96117089698830</td> <td>1.86049992281083</td> <td>-4.22404110164927</td> <td>С</td>	-2.96117089698830	1.86049992281083	-4.22404110164927	С
3.37727092857437 5.86597695187954 -2.35953603998733 c 3.31856599997207 8.50101593487321 -1.98289100344580 c 1.62372999563682 9.59100068058290 -0.4498588542924 n -0.03607653700957 8.07238108933046 0.72068057112059 c -0.01417826118804 5.43921276309218 0.37225389220623 c 1.95666450533570 -0.02808159530867 2.60902132356199 n 4.02388404103066 0.88797522659434 3.80279287009545 c 3.98206967926542 1.29266748716398 6.43054980280659 c 1.92297103331379 0.80983166941163 7.82504105493202 n -0.11634829659205 -0.09578246449896 6.62369366812803 c -1.92297103331379 0.809237502725 -0.39229722508023 -1.90671612339094 sn -1.50773186978807 3.15270131651621 -4.96874908858888 h -1.38449423115403 4.19881543940723 1.33609952659103 h -1.43565740588256 8.97124760926337 1.98260617533737 h 4.68334730590321 9.7452170725387 -2.95317665592455 h	1.70208472116016	4.35051158420210	-1.17169702621194	n
3.31856599997207 8.50101593487321 -1.98289100344580 c 1.62372999563682 9.59100068058290 -0.44985888542924 n -0.03607653700957 8.07238108933046 0.72068057112059 c -0.01417826118804 5.43921276309218 0.37225389220623 c 1.95666450533570 -0.02808159530867 2.60902132356199 n 4.02388404103066 0.88797522659434 3.80279287009545 c 3.98206967926542 1.29266748716398 6.43054980280659 c 1.92297103331379 0.80983166941163 7.82504105493202 n -0.11634829659205 -0.09578246449896 6.62369366812803 c -0.12533874993300 -0.53146401991728 4.00254278467528 c 2.26980287502725 -0.39229722508023 -1.90671612339094 sn -1.38449423115403 4.19881543940723 1.33609952659103 h -1.38449423115403 4.19881543940723 1.3620952659103 h -3.37170544202934 -3.16071135315013 -0.50663290823029 h -3.37170544202934 -3.16071135315013 -0.50663290823029 h -8.0071289428442	3.37727092857437	5.86597695187954	-2.35953603998733	С
1.623729995636829.59100068058290-0.44985888542924n-0.036076537009578.072381089330460.72068057112059c-0.014178261188045.439212763092180.37225389220623c1.95666450533570-0.028081595308672.60902132356199n4.023884041030660.887975226594343.80279287009545c3.982069679265421.292667487163986.43054980280659c1.922971033313790.809831669411637.82504105493202n-0.11634829659205-0.095782464498966.62369366812803c-0.12533874993300-0.531464019917284.00254278467528c2.26980287502725-0.39229722508023-1.90671612339094sn-1.507731869788073.15270131651621-4.96874908858898h-1.384494231154034.198815439407231.33609952659103h-1.435657405882568.971247609263371.98260617533737h-3.37170544202934-3.16071135315013-0.50663290823029h-3.37170544202934-3.16071135315013-0.50663290823029h-6.135694477042223.6281266384429-6.18487639224103h-0.56052995173573-10.07169203362995-4.50088719449784h2.4249868672682-5.107999031612162.73147714823349h2.4249868672682-5.107999031612162.73147714823349h-1.80085934706951-1.283446392958123.02450338794351h-1.81402585227226-0.492813361730597.77212056900946h-1.81402585227226	3.31856599997207	8.50101593487321	-1.98289100344580	С
-0.036076537009578.072381089330460.72068057112059c-0.014178261188045.439212763092180.37225389220623c1.95666450533570-0.028081595308672.60902132356199n4.023884041030660.887975226594343.80279287009545c3.982069679265421.292667487163986.43054980280659c1.922971033313790.809831669411637.82504105493202n-0.11634829659205-0.095782464498966.62369366812803c-0.12533874993300-0.531464019917284.00254278467528c2.26980287502725-0.39229722508023-1.90671612339094sn-1.507731869788073.15270131651621-4.96874908858898h-1.384494231154034.198815439407231.33609952659103h-1.435657405882568.971247609263371.98260617533737h4.685347305903219.74521707253987-2.95317665592455h-3.37170544202934-3.16071135315013-0.50663290823029h-6.135694477042223.6281266384429-6.18487639224103h-0.23054061469715-5.2820651704153-4.7559529058672h-0.56052995173573-10.07169203362995-4.50088719449784h2.42424986872682-5.107999031612162.73147714823349h2.42424986872682-5.107999031612162.73147714823349h2.42424986872682-5.107999031612162.73147714823349h2.42424986872682-5.107999031612162.73147714823349h2.18400585934706951	1.62372999563682	9.59100068058290	-0.44985888542924	n
-0.014178261188045.439212763092180.37225389220623c1.95666450533570-0.028081595308672.60902132356199n4.023884041030660.887975226594343.80279287009545c3.982069679265421.292667487163986.43054980280659c1.922971033313790.809831669411637.82504105493202n-0.11634829659205-0.095782464498966.62369366812803c-0.12533874993300-0.531464019917284.00254278467528c2.26980287502725-0.39229722508023-1.90671612339094sn-1.507731869788073.15270131651621-4.96874908858898h-1.384494231154034.198815439407231.33609952659103h-1.435657405882568.971247609263371.98260617533737h4.685347305903219.74521707253987-2.95317665592455h-3.37170544202934-3.1607113515013-0.50663290823029h-6.135694477042223.6281266384429-6.18487639224103h-0.23054061469715-5.28206730461726-1.67097921737663h-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.81402585227226-0.492813361730597.77212056900946h-1.8140258522726-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h	-0.03607653700957	8.07238108933046	0.72068057112059	С
1.95666450533570-0.028081595308672.60902132356199n4.023884041030660.887975226594343.80279287009545c3.982069679265421.292667487163986.43054980280659c1.922971033313790.809831669411637.82504105493202n-0.11634829659205-0.095782464498966.62369366812803c-0.12533874993300-0.531464019917284.00254278467528c2.26980287502725-0.39229722508023-1.90671612339094sn-1.384494231154034.198815439407231.33609952659103h-1.435657405882568.971247609263371.9826017533737h4.685347305903219.74521707253987-2.95317665592455h-3.37170544202934-3.1607113515013-0.50663290823029h-6.135694477042223.62812663844429-6.18487639224103h-0.23054061469715-5.28206730461726-1.67097921737663h-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.81402585227226-0.492813361730597.77212056900946h-1.81402585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	-0.01417826118804	5.43921276309218	0.37225389220623	С
4.023884041030660.887975226594343.80279287009545c3.982069679265421.292667487163986.43054980280659c1.922971033313790.809831669411637.82504105493202n-0.11634829659205-0.095782464498966.62369366812803c-0.12533874993300-0.531464019917284.00254278467528c2.26980287502725-0.39229722508023-1.90671612339094sn-1.507731869788073.15270131651621-4.96874908858898h-1.384494231154034.198815439407231.33609952659103h-1.435657405882568.971247609263371.98260617533737h4.685347305903219.74521707253987-2.95317665592455h4.779580402373204.97402409568749-3.62239686578800h-3.37170544202934-3.16071135315013-0.50663290823029h-6.135694477042223.62812663844429-6.18487639224103h-0.23054061469715-5.28206651704153-4.75595229058672h-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.81402585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	1.95666450533570	-0.02808159530867	2.60902132356199	n
3.982069679265421.292667487163986.43054980280659c1.922971033313790.809831669411637.82504105493202n-0.11634829659205-0.095782464498966.62369366812803c-0.12533874993300-0.531464019917284.00254278467528c2.26980287502725-0.39229722508023-1.90671612339094sn-1.507731869788073.15270131651621-4.96874908858898h-1.384494231154034.198815439407231.33609952659103h-1.435657405882568.971247609263371.98260617533737h4.685347305903219.74521707253987-2.95317665592455h4.779580402373204.97402409568749-3.62239686578800h-3.37170544202934-3.16071135315013-0.50663290823029h-6.135694477042223.62812663844429-6.18487639224103h-0.23054061469715-5.28206651704153-4.75595229058672h-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.81402585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	4.02388404103066	0.88797522659434	3.80279287009545	С
1.922971033313790.809831669411637.82504105493202n-0.11634829659205-0.095782464498966.62369366812803c-0.12533874993300-0.531464019917284.00254278467528c2.26980287502725-0.39229722508023-1.90671612339094sn-1.507731869788073.15270131651621-4.96874908858898h-1.384494231154034.198815439407231.33609952659103h-1.435657405882568.971247609263371.98260617533737h4.685347305903219.74521707253987-2.95317665592455h4.779580402373204.97402409568749-3.62239686578800h-3.37170544202934-3.16071135315013-0.50663290823029h-6.135694477042223.62812663844429-6.18487639224103h-0.23054061469715-5.2820651704153-4.75595229058672h-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.81002585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	3.98206967926542	1.29266748716398	6.43054980280659	С
-0.11634829659205-0.095782464498966.62369366812803c-0.12533874993300-0.531464019917284.00254278467528c2.26980287502725-0.39229722508023-1.90671612339094sn-1.507731869788073.15270131651621-4.96874908858898h-1.384494231154034.198815439407231.33609952659103h-1.435657405882568.971247609263371.98260617533737h4.685347305903219.74521707253987-2.95317665592455h4.779580402373204.97402409568749-3.62239686578800h-3.37170544202934-3.16071135315013-0.50663290823029h-6.135694477042223.62812663844429-6.18487639224103h-0.23054061469715-5.28206651704153-4.75595229058672h-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.81402585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	1.92297103331379	0.80983166941163	7.82504105493202	n
-0.12533874993300-0.531464019917284.00254278467528c2.26980287502725-0.39229722508023-1.90671612339094sn-1.507731869788073.15270131651621-4.96874908858898h-1.384494231154034.198815439407231.33609952659103h-1.435657405882568.971247609263371.98260617533737h4.685347305903219.74521707253987-2.95317665592455h4.779580402373204.97402409568749-3.62239686578800h-3.37170544202934-3.16071135315013-0.50663290823029h-8.00712894284421-2.58206730461726-1.67097921737663h-0.23054061469715-5.28206651704153-4.75595229058672h-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.8140258527226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	-0.11634829659205	-0.09578246449896	6.62369366812803	С
2.26980287502725-0.39229722508023-1.90671612339094sn-1.507731869788073.15270131651621-4.96874908858898h-1.384494231154034.198815439407231.33609952659103h-1.435657405882568.971247609263371.98260617533737h4.685347305903219.74521707253987-2.95317665592455h4.779580402373204.97402409568749-3.62239686578800h-3.37170544202934-3.16071135315013-0.50663290823029h-6.135694477042223.6281266384429-6.18487639224103h-0.23054061469715-5.2820651704153-4.75595229058672h-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h-1.80085934706951-1.283446392958123.02450338794351h-1.81402585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	-0.12533874993300	-0.53146401991728	4.00254278467528	С
-1.507731869788073.15270131651621-4.96874908858898h-1.384494231154034.198815439407231.33609952659103h-1.435657405882568.971247609263371.98260617533737h4.685347305903219.74521707253987-2.95317665592455h4.779580402373204.97402409568749-3.62239686578800h-3.37170544202934-3.16071135315013-0.50663290823029h-8.00712894284421-2.58206730461726-1.67097921737663h-6.135694477042223.6281266384429-6.18487639224103h-0.23054061469715-5.28206651704153-4.75595229058672h-0.56052995173573-10.07169203362995-4.50088719449784h2.49249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.80085934706951-1.283446392958123.02450338794351h-1.81402585227226-0.492813361730597.77212056900946h5.718026246049941.302296291497512.65892026520143h	2.26980287502725	-0.39229722508023	-1.90671612339094	sn
-1.384494231154034.198815439407231.33609952659103h-1.435657405882568.971247609263371.98260617533737h4.685347305903219.74521707253987-2.95317665592455h4.779580402373204.97402409568749-3.62239686578800h-3.37170544202934-3.16071135315013-0.50663290823029h-8.00712894284421-2.58206730461726-1.67097921737663h-6.135694477042223.62812663844429-6.18487639224103h-0.23054061469715-5.28206651704153-4.75595229058672h-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.80085934706951-1.283446392958123.02450338794351h-1.81402585227226-0.492813361730597.77212056900946h5.718026246049941.302296291497512.65892026520143h	-1.50773186978807	3.15270131651621	-4.96874908858898	h
-1.435657405882568.971247609263371.98260617533737h4.685347305903219.74521707253987-2.95317665592455h4.779580402373204.97402409568749-3.62239686578800h-3.37170544202934-3.16071135315013-0.50663290823029h-8.00712894284421-2.58206730461726-1.67097921737663h-6.135694477042223.62812663844429-6.18487639224103h-0.23054061469715-5.28206651704153-4.75595229058672h-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.80085934706951-1.283446392958123.02450338794351h-1.81402585227226-0.492813361730597.77212056900946h5.718026246049941.302296291497512.65892026520143h	-1.38449423115403	4.19881543940723	1.33609952659103	h
4.685347305903219.74521707253987-2.95317665592455h4.779580402373204.97402409568749-3.62239686578800h-3.37170544202934-3.16071135315013-0.50663290823029h-8.00712894284421-2.58206730461726-1.67097921737663h-6.135694477042223.62812663844429-6.18487639224103h-0.23054061469715-5.28206651704153-4.75595229058672h-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.80085934706951-1.283446392958123.02450338794351h-1.81402585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	-1.43565740588256	8.97124760926337	1.98260617533737	h
4.779580402373204.97402409568749-3.62239686578800h-3.37170544202934-3.16071135315013-0.50663290823029h-8.00712894284421-2.58206730461726-1.67097921737663h-6.135694477042223.62812663844429-6.18487639224103h-0.23054061469715-5.28206651704153-4.75595229058672h-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.80085934706951-1.283446392958123.02450338794351h-1.81402585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	4.68534730590321	9.74521707253987	-2.95317665592455	h
-3.37170544202934-3.16071135315013-0.50663290823029h-8.00712894284421-2.58206730461726-1.67097921737663h-6.135694477042223.62812663844429-6.18487639224103h-0.23054061469715-5.28206651704153-4.75595229058672h-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.80085934706951-1.283446392958123.02450338794351h-1.81402585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	4.77958040237320	4.97402409568749	-3.62239686578800	h
-8.00712894284421-2.58206730461726-1.67097921737663h-6.135694477042223.62812663844429-6.18487639224103h-0.23054061469715-5.28206651704153-4.75595229058672h-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.80085934706951-1.283446392958123.02450338794351h-1.81402585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	-3.37170544202934	-3.16071135315013	-0.50663290823029	h
-6.135694477042223.62812663844429-6.18487639224103h-0.23054061469715-5.28206651704153-4.75595229058672h-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.80085934706951-1.283446392958123.02450338794351h-1.81402585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	-8.00712894284421	-2.58206730461726	-1.67097921737663	h
-0.23054061469715-5.28206651704153-4.75595229058672h-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.80085934706951-1.283446392958123.02450338794351h-1.81402585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	-6.13569447704222	3.62812663844429	-6.18487639224103	h
-0.56052995173573-10.07169203362995-4.50088719449784h2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.80085934706951-1.283446392958123.02450338794351h-1.81402585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	-0.23054061469715	-5.28206651704153	-4.75595229058672	h
2.44249868672682-5.107999031612162.73147714823349h2.09787747116387-9.902483821217462.93777849854913h-1.80085934706951-1.283446392958123.02450338794351h-1.81402585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	-0.56052995173573	-10.07169203362995	-4.50088719449784	h
2.09787747116387-9.902483821217462.93777849854913h-1.80085934706951-1.283446392958123.02450338794351h-1.81402585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	2.44249868672682	-5.10799903161216	2.73147714823349	h
-1.80085934706951-1.283446392958123.02450338794351h-1.81402585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	2.09787747116387	-9.90248382121746	2.93777849854913	h
-1.81402585227226-0.492813361730597.77212056900946h5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	-1.80085934706951	-1.28344639295812	3.02450338794351	h
5.668260647918572.028605146046767.41698200479202h5.718026246049941.302296291497512.65892026520143h	-1.81402585227226	-0.49281336173059	7.77212056900946	h
5.71802624604994 1.30229629149751 2.65892026520143 h	5.66826064791857	2.02860514604676	7.41698200479202	h
	5.71802624604994	1.30229629149751	2.65892026520143	h

mode	symmetry	wave	IR intensity	selection rules	
		number			
		[cm ⁻¹]	[km mol⁻¹]	IR	RAMAN
7	а	6.66	0.00032	YES	YES
8	а	17.11	0.07262	YES	YES
9	а	23.21	0.19756	YES	YES
10	а	29.25	0.26222	YES	YES
11	а	37.03	0.24502	YES	YES
12	а	41.96	0.15214	YES	YES
13	а	44.95	0.18804	YES	YES
14	а	48.84	0.07618	YES	YES
15	а	66.54	0.42970	YES	YES
16	а	99.67	4.76656	YES	YES
17	а	103.32	0.26616	YES	YES
18	a	108.40	1.40305	YES	YES
19	a	117.39	17.55251	YES	YES
20	a	124 64	12 18705	YES	YES
21	a	133.81	4 17157	YES	YES
21	a	141 50	5 30426	VES	VES
22	a	1/19 37	1 67217	VES	VES
23	a	157.63	0 50248	VES	VES
24	a	166 52	0.30248 8 22002	VES	VES
25	a	175 62	0.32902 14 76257	VES	VES
20	a	173.03	2 12662	VEC	VES
27	a	223.15	5.15005	TES VES	TES VES
20	a	516.29	0.05592		
29	d	321.72	0.12402	TES VEC	TES VEC
30	d	323.23	0.02273	TES VEC	TES VEC
31	d	335.14	0.02636	YES	YES
32	a	429.12	26.52701	YES	YES
33	а	433.50	15.54060	YES	YES
34	а	436.73	15.32875	YES	YES
35	а	440.03	33.59581	YES	YES
36	а	606.01	7.20180	YES	YES
37	а	612.46	0.06482	YES	YES
38	а	615.38	1.54085	YES	YES
39	а	624.20	2.44276	YES	YES
40	а	690.77	0.71225	YES	YES
41	а	692.84	1.13647	YES	YES
42	а	693.13	1.16469	YES	YES
43	а	693.47	3.61389	YES	YES
44	а	742.22	1.55241	YES	YES
45	а	745.05	0.97578	YES	YES
46	а	747.12	0.37885	YES	YES
47	а	747.35	0.42324	YES	YES
48	а	776.01	28.83022	YES	YES
49	а	777.86	25.01901	YES	YES
50	а	778.83	6.64296	YES	YES
51	а	782.91	35.11153	YES	YES
52	а	884.06	0.24143	YES	YES
53	а	885.10	0.33183	YES	YES
54	а	887.68	0.24261	YES	YES

List of calculated frequencies	((RI-)BP86(D3BI)/def-SV(P)	level of theory)
List of calculated frequencies		level of theory).

55	а	890.86	0.01350	YES	YES
56	а	959.50	0.05022	YES	YES
57	а	959.92	0.22662	YES	YES
58	а	960.38	0.25278	YES	YES
59	а	961.09	0.29178	YES	YES
60	а	969.80	0.03570	YES	YES
61	а	970.65	0.04436	YES	YES
62	а	971.36	0.03479	YES	YES
63	а	971.92	0.04510	YES	YES
64	a	1007.81	49.36307	YES	YES
65	a	1009.14	9,83151	YES	YES
66 66	a	1009 71	11 17917	VES	VES
67	а Э	1013 16	9 67357	VES	VES
607 60	a 2	1015.10	122 25024	VES	VES
00 60	a	1025.02	155.25624	VEC	TES VEC
09 70	d	1026.77	45.54651		TES VEC
70	d	1030.76	02.00495	IES VEC	YES
/ L 70	a	1039.91	29.34525	TES	TES
12	а	10/4.93	3.83806	YES	YES
/3	а	1075.59	2.92484	YES	YES
/4	а	1077.13	4.21796	YES	YES
75	а	1081.03	6.89494	YES	YES
76	а	1118.88	31.69192	YES	YES
77	а	1120.38	29.71532	YES	YES
78	а	1121.50	33.38851	YES	YES
79	а	1124.44	6.67250	YES	YES
30	а	1210.21	0.84798	YES	YES
81	а	1211.28	1.73282	YES	YES
82	а	1211.36	1.02704	YES	YES
83	а	1214.59	1.49149	YES	YES
84	а	1274.12	7.02013	YES	YES
85	а	1275.21	4.51252	YES	YES
86	а	1276.53	2.32394	YES	YES
87	а	1277.52	0.28435	YES	YES
88	а	1323.47	1.89715	YES	YES
89	а	1325.97	2.76484	YES	YES
90	а	1326.23	2.67119	YES	YES
 91	а а	1327 56	4,49628	YES	YES
92	а а	1405 61	43 69896	YES	YES
93	и Э	1406 58	39 80669	YES	YES
2.5 2.4	а а	1/07 05	33 85063	VES	VES
)- 1)5	a	1/00 00	00 /11E2	VEC	VES
55	a	1400.33	0.00401	VEC	TES
סכ	d	1403.72	0.08491		
9/ DO	a	1405.42	2.14507	1ES	TES VEC
30	а	1466.46	0.65581	YES	YES
99	а	1466.96	0.469/6	YES	YES
100	а	1550.90	4.66565	YES	YES
101	а	1553.49	6.11975	YES	YES
102	а	1554.00	4.47403	YES	YES
103	а	1555.56	5.61099	YES	YES
104	а	1575.01	0.58590	YES	YES
105	а	1575.17	0.70901	YES	YES
106	а	1576.34	0.38615	YES	YES
107	а	1578.08	0.68372	YES	YES

108	а	3092.87	4.03045	YES	YES
109	а	3093.44	3.70771	YES	YES
110	а	3097.60	2.61927	YES	YES
111	а	3101.53	3.16221	YES	YES
112	а	3103.76	2.11658	YES	YES
113	а	3103.89	4.40608	YES	YES
114	а	3104.65	0.69805	YES	YES
115	а	3108.13	6.32346	YES	YES
116	а	3108.25	4.30318	YES	YES
117	а	3110.17	2.82500	YES	YES
118	а	3112.32	1.64563	YES	YES
119	а	3113.64	1.78067	YES	YES
120	а	3125.17	0.33766	YES	YES
121	а	3126.03	2.51661	YES	YES
122	а	3133.13	1.50049	YES	YES
123	а	3136.30	1.23179	YES	YES

[Sn(pyr)₂(MeCN)₄]²⁺

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory (grid m4).

0.05306037532322	1.61209669094484	-0.04744861901116	sn	
-0.10904810779384	-4.50595992696372	-2.02296307365591	С	
-0.71956880597778	-4.77965447594111	-0.05285608072204	h	
0.07095392369661	-6.52755037911558	-3.73683398011392	С	
-0.39756414230739	-8.47219157837236	-3.14031919233963	h	
1.37890310414149	-3.82505528605838	-6.84864910470608	С	
1.99150885546619	-3.53685275442466	-8.82292195195949	h	
0.81032194657800	-6.18952383720375	-6.13713969477866	n	
1.21363829698905	-1.77245813689865	-5.17004464153051	С	
1.68512711844069	0.16960166513247	-5.75393910672953	h	
0.46883526480686	-2.13699706133240	-2.76101994232815	n	
2.20061584890577	-1.41010826963590	2.82900665152157	n	
4.33694754531081	-2.60529700860716	2.10524764685202	С	
5.06814560304318	-2.19170916931910	0.20217805483793	h	
4.66367530957479	-4.78951902648257	6.07342669420952	n	
5.55507057504157	-4.29501761870533	3.75326090478188	С	
7.30211699486783	-5.27479630051064	3.16608918380368	h	
2.54912582289786	-3.58341778025852	6.77490259810396	С	
1.80987832499764	-3.97612665369045	8.68707718214004	h	
1.29426201432893	-1.87943014658635	5.16705352168821	С	
-0.42717888618240	-0.86483604242071	5.74374020639374	h	
-3.61403156588788	-0.95098933154317	1.39792924923154	n	
-8.16327913603720	-2.42934966887778	2.67991951383579	С	
-9.55558005244609	-0.90067898265046	2.30501811591703	h	
-8.21655670043873	-2.90776400213042	4.72523252143651	h	
-8.70735426194907	-4.12897972187017	1.57042995211393	h	
-5.64671636520080	-1.60025011142711	1.96721325252982	С	
-1.32399063288130	3.56236738994095	4.72937816539927	n	
-2.12749509309951	7.22284528271648	7.98467902315138	С	
-0.51500964704806	8.56923951152392	7.97794483355621	h	

-2.33580888389294	6.43340933679138	9.92042063557809	h	
-3.88126858514043	8.26789633415451	7.48992162342281	h	
-1.68181074107509	5.19960998633864	6.17550200965037	С	
-3.51013202162681	2.06353256688897	-3.90701273510434	n	
-6.38984552981966	3.96655330245286	-7.47347682680399	С	
-5.57826242319499	3.54129001475842	-9.36383247667532	h	
-6.53683246308376	6.05106669111681	-7.25747651423990	h	
-8.31801103344158	3.13971084196056	-7.37065264866005	h	
-4.79327968502225	2.91603818371436	-5.49464765317665	С	
4.93259779285185	1.94365926372833	-1.92234356610887	n	
9.12979588328087	4.22768926272184	-3.25993462832398	С	
9.74473306636924	3.55875059649772	-5.15429767672996	h	
10.65008772628781	3.81110231357775	-1.87082917945684	h	
8.83837854237598	6.30700685229259	-3.33833353704814	h	
6.80084482797108	2.97104718377276	-2.51859870995195	С	

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory, grid m4).

mode	symmetry	wave number	IR intensity	selecti	on rules
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	а	9.38	0.01155	YES	YES
8	а	13.13	0.01735	YES	YES
9	а	14.60	1.06339	YES	YES
10	а	15.27	0.32376	YES	YES
11	а	20.26	0.03521	YES	YES
12	а	22.13	0.31594	YES	YES
13	а	25.77	2.22823	YES	YES
14	а	26.12	0.67393	YES	YES
15	а	30.51	5.57057	YES	YES
16	а	30.97	0.70735	YES	YES
17	а	32.79	2.86408	YES	YES
18	а	37.36	2.21185	YES	YES
19	а	38.73	1.89545	YES	YES
20	а	49.85	0.41139	YES	YES
21	а	56.45	0.05641	YES	YES
22	а	60.70	0.41686	YES	YES
23	а	70.61	5.21582	YES	YES
24	а	72.64	1.51727	YES	YES
25	а	85.01	0.08875	YES	YES
26	а	98.10	7.64570	YES	YES
27	а	102.25	7.36689	YES	YES
28	а	104.71	10.29015	YES	YES
29	а	109.37	18.31255	YES	YES
30	а	126.09	2.58038	YES	YES
31	а	129.72	6.18708	YES	YES
32	а	134.82	13.70454	YES	YES
33	а	142.62	3.47552	YES	YES
34	а	145.84	35.26318	YES	YES
35	а	148.98	8.10748	YES	YES
36	а	159.71	46.67119	YES	YES
37	а	167.27	8.01309	YES	YES

38	а	174.68	38.73073	YES	YES
39	а	237.71	24.18292	YES	YES
40	а	330.25	0.05980	YES	YES
41	а	333.55	0.26919	YES	YES
42	а	387.40	0.23100	YES	YES
43	a	388 30	0.65955	YES	YES
44	2	389.66	1 41362	VES	VES
44	a	201 25	0.24271	VEC	VES
45	a	201.04	0.54271	VES	VES
40	d	591.94 202.71	2.34329	TES VEC	TES VEC
47	a	393.71	6.34751	YES	YES
48	а	395.10	1.37684	YES	YES
49	а	399.86	3.07097	YES	YES
50	а	436.69	30.67363	YES	YES
51	а	441.05	20.44953	YES	YES
52	а	614.40	3.39527	YES	YES
53	а	620.91	5.10245	YES	YES
54	а	695.79	0.75223	YES	YES
55	а	696.10	0.18710	YES	YES
56	а	747.23	3.07188	YES	YES
57	а	748.14	2.82678	YES	YES
58	а	777.32	19.94407	YES	YES
59	а	783.26	38.98815	YES	YES
60	а	888.12	0.04122	YES	YES
61	a	894 88	0.62276	YES	YES
62	2	935.96	8 47465	VES	VES
62	а Э	027.26	10 60772	VES	VES
64	a	020.61	E 05609	VES	VES
04 65	a	939.01	775614		TES VES
05	d	949.10	7.75014	TES	YES
66	а	957.50	0.28102	YES	YES
67	а	961.91	1.65085	YES	YES
68	а	967.05	0.02478	YES	YES
69	а	969.76	0.52357	YES	YES
70	а	1009.03	6.10165	YES	YES
71	а	1010.33	6.83258	YES	YES
72	а	1011.58	20.39048	YES	YES
73	а	1011.71	1.18056	YES	YES
74	а	1012.30	17.13625	YES	YES
75	а	1012.38	1.61147	YES	YES
76	а	1012.80	6.23982	YES	YES
77	а	1013.05	14.64502	YES	YES
78	а	1013.48	10.92232	YES	YES
79	a	1013.71	6.65824	YES	YES
80	a	1034 23	55 72471	YES	VES
81 81	а Э	1034.23	65 7855/	VES	VES
87 87	а Э	1076 /1	11 22216	VES	VES
02	a	1070.41	11.00510		TES VES
ō3	a	1120.47	4.50035	IES VEC	TES VEC
84	а	1128.1/	27.90081	YES	YES
85	а	1130.46	29.19046	YES	YES
86	а	1213.27	1.54804	YES	YES
87	а	1214.92	1.55262	YES	YES
88	а	1274.59	6.31514	YES	YES
89	а	1278.23	1.41837	YES	YES
00	а	1327.08	1.38786	YES	YES

91	а	1327.55	0.22568	YES	YES
92	а	1345.20	12.82514	YES	YES
93	а	1347.18	9.31902	YES	YES
94	а	1348.34	8.96987	YES	YES
95	а	1348.96	8.40556	YES	YES
96	а	1388.27	21.34394	YES	YES
97	а	1388.42	19.69897	YES	YES
98	а	1391.75	19.57805	YES	YES
99	а	1391.83	20.36052	YES	YES
100	а	1393.90	20.59029	YES	YES
101	а	1394.05	21.18679	YES	YES
102	а	1394.28	17.78838	YES	YES
103	а	1394.66	21.03771	YES	YES
104	а	1410.34	26.26077	YES	YES
105	а	1410.49	55.03652	YES	YES
106	а	1466.56	0.74793	YES	YES
107	а	1469.31	0.95500	YES	YES
108	а	1553.85	2.08836	YES	YES
109	а	1558.95	2.37825	YES	YES
110	а	1583.60	0.06785	YES	YES
111	а	1585.98	0.32284	YES	YES
112	а	2285.75	178.18884	YES	YES
113	а	2287.83	150.58169	YES	YES
114	а	2294.38	118.67476	YES	YES
115	а	2309.61	177.03214	YES	YES
116	а	2958.62	19.46572	YES	YES
117	а	2959.23	12.84551	YES	YES
118	а	2960.34	10.73315	YES	YES
119	а	2960.64	9.22429	YES	YES
120	а	3056.52	10.02446	YES	YES
121	а	3056.68	8.36566	YES	YES
122	а	3057.10	6.63147	YES	YES
123	а	3057.13	7.35705	YES	YES
124	а	3057.27	6.76933	YES	YES
125	а	3057.29	11.66653	YES	YES
126	а	3058.07	6.50351	YES	YES
127	а	3058.10	6.79185	YES	YES
128	а	3100.46	2.52704	YES	YES
129	а	3100.76	0.96437	YES	YES
130	а	3103.65	2.03836	YES	YES
131	а	3103.80	2.02955	YES	YES
132	а	3125.82	3.48264	YES	YES
133	а	3132.51	1.84667	YES	YES
134	а	3137.07	2.09130	YES	YES
135	а	3142.04	7.05661	YES	YES

Pyrazine

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory.

 -2.15226582852150	1.33020778631456	0.0000000000000	С	
-2.15226582852150	-1.33020778631456	0.0000000000000	С	
0.000000000000000	2.67552713694526	0.0000000000000	n	
2.15226582852150	1.33020778631456	0.0000000000000	С	
2.15226582852150	-1.33020778631456	0.0000000000000	С	
0.000000000000000	-2.67552713694526	0.0000000000000	n	
-3.94594242159110	2.40351081179136	0.0000000000000	h	
3.94594242159110	2.40351081179136	0.0000000000000	h	
3.94594242159110	-2.40351081179136	0.0000000000000	h	
 -3.94594242159110	-2.40351081179136	0.00000000000000	h	

mode	symmetry	wave number	IR intensity	selection rules	
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	au	311.17	0.00000	NO	NO
8	b1u	418.98	18.56474	YES	NO
9	ag	586.55	0.00000	NO	YES
10	b1g	703.82	0.00000	NO	YES
11	b3g	761.43	0.00000	NO	YES
12	b1u	771.95	19.70042	YES	NO
13	b2g	912.78	0.00000	NO	YES
14	b3g	957.22	0.00000	NO	YES
15	au	962.54	0.00000	NO	NO
16	b2u	999.72	37.77331	YES	NO
17	ag	1024.27	0.00000	NO	YES
18	b3u	1061.93	8.22918	YES	NO
19	b2u	1139.60	6.52852	YES	NO
20	ag	1215.87	0.00000	NO	YES
21	b3u	1271.86	0.00048	YES	NO
22	b1g	1329.33	0.00000	NO	YES
23	b3u	1408.96	30.05525	YES	NO
24	b2u	1471.12	1.49310	YES	NO
25	b1g	1557.31	0.00000	NO	YES
26	ag	1576.55	0.00000	NO	YES
27	b1g	3063.10	0.00000	NO	YES
28	b2u	3063.64	8.66113	YES	NO
29	b3u	3076.51	85.02470	YES	NO
30	ag	3083.73	0.00000	NO	YES

Optimized atomic coordinates [Boh	ohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory (grid m4).
-----------------------------------	--

-2.15242982989078	1.33024637701547	0.0000000000000	С	
-2.15242982989078	-1.33024637701547	0.0000000000000	С	
0.00000000000000	2.67544620812747	0.0000000000000	n	
2.15242982989078	1.33024637701547	0.0000000000000	С	
2.15242982989078	-1.33024637701547	0.0000000000000	С	
0.00000000000000	-2.67544620812747	0.0000000000000	n	
-3.94611945824018	2.40349162620061	0.0000000000000	h	
3.94611945824018	2.40349162620061	0.0000000000000	h	
3.94611945824018	-2.40349162620061	0.0000000000000	h	
-3.94611945824018	-2.40349162620061	0.00000000000000	h	

mode	symmetry	wave number	IR intensity	selection rules	
		[cm ⁻¹]	[km mol ^{−1}]	IR	RAMAN
7	au	311.92	0.00000	NO	NO
8	b1u	418.85	18.49629	YES	NO
9	ag	586.86	0.00000	NO	YES
10	b1g	704.11	0.00000	NO	YES
11	b3g	761.62	0.00000	NO	YES
12	b1u	772.62	19.74148	YES	NO
13	b2g	913.20	0.00000	NO	YES
14	b3g	957.58	0.00000	NO	YES
15	au	962.89	0.00000	NO	NO
16	b2u	1000.23	37.80973	YES	NO
17	ag	1023.59	0.00000	NO	YES
18	b3u	1061.40	8.26811	YES	NO
19	b2u	1138.96	6.43577	YES	NO
20	ag	1215.62	0.00000	NO	YES
21	b3u	1269.95	0.00041	YES	NO
22	b1g	1329.14	0.00000	NO	YES
23	b3u	1408.39	29.97130	YES	NO
24	b2u	1470.40	1.51525	YES	NO
25	b1g	1555.96	0.00000	NO	YES
26	ag	1575.68	0.00000	NO	YES
27	b1g	3063.07	0.00000	NO	YES
28	b2u	3063.59	8.65563	YES	NO
29	b3u	3076.47	85.00828	YES	NO
30	ag	3083.70	0.00000	NO	YES

[Sn(mes)₃]²⁺

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory (grid m4).

-0.00378656044925	0.00053340740711	0.00877738457369	sn
-3.49328516016347	-4.28173299332775	-2.74091421820117	С
-3.98269109717420	-1.93359928673977	-3.93045581437946	С
-3.64015696969247	-1.73628076418546	-5.97692912040614	h
-5.10259856606624	0.11172621051375	-2.60008418252108	С
-5.84681753609666	2.49518714659713	-3.96633476983738	С
-5.62195120125584	-0.21311499840366	0.00887589116283	С
-6.57716483739122	1.31155172304726	1.04534867678560	h
-4.99750943344915	-2.47511222453911	1.30618503888440	С
-5.62774711495647	-2.80913873019535	4.06135518447378	С
-3.88859918537363	-4.47378690013571	-0.09976450202316	С
-3.47127543893157	-6.27280263975105	0.86539747652675	h
-2.77297800170157	-6.56537708962733	-4.27459825821933	С
-1.68897627457074	-7.97649449572676	-3.16504208987048	h
-1.70936191915478	-6.07057466019609	-6.01296880629041	h
-4.53389400758863	-7.53280712276059	-4.91019306074761	h
2.66006707946091	4.23563257607148	2.56838679831855	С
1.27616342573995	5.53066102279158	0.67245255438823	С
2.60385404637826	6.84628296975912	-1.47412634548356	С
-1.39204889722266	5.67425593233378	0.93021820394990	С
-2.48405495172366	6.74385042772770	-0.48616713719517	h
-2.65390860866670	4.65145242077940	3.05850519717824	С
-5.39477874273747	5.23143394082670	3.54438715036219	С
-1.22391118855098	3.22992658269574	4.82020073941960	С
-2.18443421568989	2.37822050218909	6.46150329621967	h
1.44742478630490	3.04478520490119	4.64145557014055	С
2.95334430915096	1.74968099002600	6.67900788277452	С
4.73296031876316	4.19562076259482	2.45187325746967	h
6.14861825952285	-0.37501972129165	-0.30990406223941	С
5.26827538045379	-2.48277037933625	1.08658052260462	С
5.93563864572224	-2.76261076651687	3.04056632699691	h
3.70995809586228	-4.36020547273303	-0.03226180405653	С
3.00671407508366	-6.71236973894939	1.40731685684981	С
2.95677058101387	-4.02137593297041	-2.58204186520658	С
1.83687012912357	-5.50491109757845	-3.50798503681366	h
3.65971238600861	-1.85044125494244	-3.98946963805030	С
2.90605699584731	-1.55785848537102	-6.71839173598807	С
5.21943412151494	-0.02144546760765	-2.79577147680490	С
5.84845554094127	1.63508658318010	-3.89300835880923	h
8.17130161749949	1.32571297183358	0.73959513355679	С
8.12125932331405	1.44909530413075	2.83234847818320	h
8.11048999037670	3.25521759510937	-0.07975515571098	h
10.05399013073440	0.52421010306930	0.23615439919757	h
1.15893086789096	-2.62420086200206	-7.17063418521678	h
4.42832823028156	-2.32066957909980	-7.95764814025913	h
2.63954011114305	0.45369230592120	-7.25124245145967	h
1.29064116620827	-7.62805065060514	0.62626114356273	h
2.71127544272325	-6.32902351458073	3.44870915004389	h

4.56852799220503	-8.11815486306090	1.27226270624432	h	
-4.24139291502272	-4.03922215938601	5.04385889687378	h	
-7.50781953419146	-3.73861897859809	4.24942206071867	h	
-5.75016181313811	-0.97413887113551	5.06766624293168	h	
-4.44522411256998	3.03371157031091	-5.43248716840718	h	
-6.11575290762959	4.10426469729269	-2.65090930681665	h	
-7.67970607861279	2.19875222217483	-4.95942966323893	h	
4.46217978993101	5.97445416270949	-1.90081639122829	h	
2.97322154755272	8.85294915445356	-0.95293567207663	h	
1.44200922158065	6.87568729367602	-3.22064853304586	h	
-6.46972521321683	5.59653982313059	1.78136027846567	h	
-5.51698772295921	6.99454187503274	4.69201824722139	h	
-6.35427404577237	3.73409553474465	4.65568658497111	h	
4.79073730830626	1.03620379148134	5.96624865210971	h	
1.89522491157767	0.16528917661490	7.55582260057770	h	
3.38499842350290	3.12160371622627	8.21711036686569	h	

mode	symmetry	wave	IR intensity	selection	
mode	symmetry	number	intensity	rules	
		[cm ⁻¹]	[km mol⁻¹]	IR	RAMAN
7	а	15.93	0.00326	YES	YES
8	а	22.22	0.00104	YES	YES
9	а	30.65	0.01194	YES	YES
10	а	40.89	0.05660	YES	YES
11	а	45.29	1.90696	YES	YES
12	а	45.61	2.13731	YES	YES
13	а	62.80	0.21582	YES	YES
14	а	70.35	0.00273	YES	YES
15	а	74.47	0.07894	YES	YES
16	а	81.44	0.05461	YES	YES
17	а	84.39	0.21307	YES	YES
18	а	88.67	0.05207	YES	YES
19	а	89.17	0.03014	YES	YES
20	а	91.10	0.24462	YES	YES
21	а	93.67	0.44534	YES	YES
22	а	99.38	0.54005	YES	YES
23	а	109.37	4.56060	YES	YES
24	а	109.94	3.75743	YES	YES
25	а	125.84	19.67364	YES	YES
26	а	126.12	20.03561	YES	YES
27	а	137.31	0.00090	YES	YES
28	а	189.04	2.43456	YES	YES
29	а	194.57	0.58707	YES	YES
30	а	195.39	0.43983	YES	YES
31	а	204.06	52.61734	YES	YES
32	а	204.47	52.92847	YES	YES
33	а	208.64	1.08856	YES	YES
34	а	224.87	0.07102	YES	YES
35	а	225.57	0.01914	YES	YES
36	а	228.57	0.05601	YES	YES

37	а	236.06	13.12949	YES	YES
38	а	237.45	13.15602	YES	YES
39	а	270.22	0.02614	YES	YES
40	а	271.47	0.16480	YES	YES
41	a	272.51	0.49983	YES	YES
42	2	272.31	0.44355	VES	VES
42	u 2	272.05	0.44333	VES	VES
45	a	273.01	0.01705		
44	d	274.91	0.00446	TES VEC	TES VEC
45	a	277.00	0.00999	YES	YES
46	а	448.95	0.00066	YES	YES
47	а	449.17	0.00081	YES	YES
48	а	451.11	0.02724	YES	YES
49	а	485.97	3.03350	YES	YES
50	а	486.44	2.99831	YES	YES
51	а	489.91	0.00852	YES	YES
52	а	490.75	0.20585	YES	YES
53	а	493.65	0.00295	YES	YES
54	а	494.00	0.00088	YES	YES
55	а	517.63	2.28511	YES	YES
56	а	519.45	0.00144	YES	YES
57	а	519.56	0.01085	YES	YES
58	а	529.10	0.02328	YES	YES
59	a	530 37	0 75649	YES	YES
60	2	530.76	0 74928	VES	VES
61	u 2	570.81	2 50200	VES	VES
62	a	570.81	2.39299	VES	TL3 VES
62	a	570.91	2.03694		
63	a	571.59	0.00986	YES	YES
64	а	668.96	10.96040	YES	YES
65	а	669.38	11.06400	YES	YES
66	а	670.58	0.62359	YES	YES
67	а	843.83	11.89880	YES	YES
68	а	846.11	43.85954	YES	YES
69	а	848.12	45.17682	YES	YES
70	а	888.05	4.95460	YES	YES
71	а	889.31	4.59714	YES	YES
72	а	893.24	5.22573	YES	YES
73	а	898.05	0.15479	YES	YES
74	а	900.16	0.03506	YES	YES
75	а	900.90	0.01045	YES	YES
76	a	925.67	0.08548	YES	YES
77	a	926.15	0 22275	YES	VES
78	2	926.51	0.12/69	VES	VES
78	a	026 72	0.12409	VES	TL3 VES
79	a	920.75	0.00000		
80	d	927.08	0.09508	TES	TES VEC
81	а	929.20	0.00463	YES	YES
82	а	985.10	32.88163	YES	YES
83	а	985.34	32.96777	YES	YES
84	а	987.96	0.14448	YES	YES
85	а	998.07	18.14144	YES	YES
86	а	999.60	0.76705	YES	YES
87	а	1000.25	4.79520	YES	YES
88	а	1001.46	13.14105	YES	YES
			45 02444		

90	а	1002.62	1.98555	YES	YES
91	а	1005.27	0.59797	YES	YES
92	а	1005.82	0.32590	YES	YES
93	а	1006.41	0.17650	YES	YES
94	а	1009.25	20.31264	YES	YES
95	а	1009.78	19.69931	YES	YES
96	а	1011.28	0.62810	YES	YES
97	а	1013.28	3.09607	YES	YES
98	a	1013.59	4,45891	YES	YES
99	a	1013.98	3.15972	YES	YES
100	a	1014 27	15 85763	YES	YES
101	a	1014 50	8 50287	YES	YES
101	2	1015.27	14 44249	VES	VES
102	а Э	1155 57	1 02524	VES	VES
103	a	1155.57	0.21427	VES	VES
104	a	1156.07	0.21427	VES	VES
105	a	1150.97	0.47445		
100	d	1157.21	0.45191	TES	TES VEC
107	a	1157.47	0.29891	YES	YES
108	а	1158.20	0.39556	YES	YES
109	а	1267.49	0.39061	YES	YES
110	а	1268.62	0.05742	YES	YES
111	а	1269.74	0.05922	YES	YES
112	а	1300.33	54.72591	YES	YES
113	а	1300.52	54.33333	YES	YES
114	а	1306.02	0.01818	YES	YES
115	а	1351.59	0.62203	YES	YES
116	а	1351.87	0.05902	YES	YES
117	а	1354.53	1.46670	YES	YES
118	а	1354.81	20.99716	YES	YES
119	а	1356.27	1.94896	YES	YES
120	а	1356.66	14.64660	YES	YES
121	а	1356.88	7.87255	YES	YES
122	а	1357.34	20.62603	YES	YES
123	а	1358.57	54.57221	YES	YES
124	а	1362.43	49.71676	YES	YES
125	а	1362.81	51.32369	YES	YES
126	а	1365.44	0.24983	YES	YES
127	а	1391.96	1.39322	YES	YES
128	а	1392.90	10.23274	YES	YES
129	а	1393.25	11.14054	YES	YES
130	a	1393.37	2.18502	YES	YES
131	a	1393 67	0 51971	YES	YES
132	a	1396 18	14,10368	YES	YES
132	u a	1420 25	0.04532	VES	VES
13/	u c	1420.33	1 58117	VES	VES
125	a	1/21 10	7 67710	VES	VEC
126	a	1421.13 1/17/ /5	7.07712	VEC	VEC
107	d	1424.43	7.70222		
130	d	1424.0/	7.48072	TES	TES
138	а	1425./1	3.04475	YES	YES
139	а	1426.55	0.258/0	YES	YES
140	а	1426.72	0.10891	YES	YES
141	а	1427.35	0.80137	YES	YES
142	а	1427.77	3.27799	YES	YES

143 a 1430.23 24.51654 YES YES 144 a 1430.59 24.16365 YES YES 145 a 1445.48 140.3435 YES YES 146 a 1451.78 54.01473 YES YES 147 a 1452.20 52.82005 YES YES 148 a 1453.74 1.58104 YES YES 149 a 1453.74 1.58104 YES YES 150 a 1454.24 1.71532 YES YES 151 a 1578.51 53.39019 YES YES 153 a 1570.61 81.12215 YES YES 154 a 1582.10 0.86558 YES YES 155 a 158.170 1.36075 YES YES 156 a 158.210 0.86578 YES YES 157 a 2948.79						
144 a 1430.59 24.16365 YES YES 145 a 1445.48 140.34835 YES YES 144 a 1452.20 52.82005 YES YES 144 a 1453.34 0.85020 YES YES 144 a 1453.34 0.85020 YES YES 149 a 1453.74 1.58104 YES YES 150 a 1454.24 1.71532 YES YES 151 a 1578.51 53.39019 YES YES 152 a 1579.61 81.12215 YES YES 154 a 1580.93 0.44530 YES YES 155 a 1581.70 1.86058 YES YES 154 a 2948.73 5.80636 YES YES 155 a 1582.71 YES YES YES 160 a 2952.81 2.54825 YES YES 161 a 2953.85 1.96071<	143	а	1430.23	24.51654	YES	YES
145 a 1445.48 140.34835 YES YES 146 a 1451.78 54.01473 YES YES 147 a 1452.20 52.82005 YES YES 148 a 1453.34 0.85020 YES YES 149 a 1453.74 1.58104 YES YES 150 a 1454.24 1.71532 YES YES 151 a 1578.51 53.39019 YES YES 152 a 1579.61 81.12215 YES YES 153 a 1582.10 0.86558 YES YES 156 a 1582.10 0.86558 YES YES 157 a 2948.73 5.80636 YES YES 158 a 2948.73 5.80636 YES YES 160 a 2952.81 2.54825 YES YES 161 a 2953.53 1.96571 YES YES 162 a 2954.55 2.59	144	а	1430.59	24.16365	YES	YES
146 a 1451.78 54.01473 YES YES 147 a 1452.20 52.82005 YES YES 148 a 1453.74 1.58104 YES YES 150 a 1454.24 1.71532 YES YES 151 a 1578.26 51.68922 YES YES 152 a 1578.26 51.68922 YES YES 153 a 1579.61 81.12215 YES YES 154 a 1580.93 0.44530 YES YES 155 a 1581.70 1.36075 YES YES 156 a 1582.10 0.86558 YES YES 157 a 2948.79 4.84577 YES YES 160 a 2953.53 1.96571 YES YES 161 a 2953.53 1.98053 YES YES 162 a 2953.53 1.98053 YES YES 166 a 3023.57 8.205	145	а	1445.48	140.34835	YES	YES
147 a 1452.20 52.82005 YES YES 148 a 1453.34 0.85020 YES YES 149 a 1453.74 1.58104 YES YES 150 a 1454.24 1.71532 YES YES 151 a 1578.51 53.39019 YES YES 152 a 1576.61 81.12215 YES YES 154 a 1580.93 0.44530 YES YES 155 a 1581.70 1.36075 YES YES 156 a 1582.10 0.86558 YES YES 157 a 2948.73 5.80636 YES YES 158 a 2948.79 4.84577 YES YES 161 a 2953.26 2.34026 YES YES 162 a 2953.85 1.96571 YES YES 164 a 2953.85 1.96571 YES YES 165 a 2953.85 1.96571	146	а	1451.78	54.01473	YES	YES
148 a 1453.34 0.85020 YES YES 149 a 1453.74 1.58104 YES YES 150 a 1454.24 1.71532 YES YES 151 a 1578.51 53.39019 YES YES 152 a 1578.51 53.39019 YES YES 153 a 1570.61 81.12215 YES YES 154 a 1580.93 0.44530 YES YES 155 a 1581.70 1.36075 YES YES 156 a 1582.10 0.86558 YES YES 157 a 2948.73 5.80636 YES YES 159 a 2948.79 4.84577 YES YES 160 a 2953.26 2.34026 YES YES 161 a 2953.85 1.98053 YES YES 163 a 2954.55 2.59223 YES YES 166 a 3023.57 8.20502	147	а	1452.20	52.82005	YES	YES
149 a 1453.74 1.58104 YES YES 150 a 1454.24 1.71532 YES YES 151 a 1578.26 51.68922 YES YES 153 a 1578.15 53.30019 YES YES 153 a 1579.61 81.12215 YES YES 154 a 1580.93 0.44530 YES YES 155 a 1581.70 1.36075 YES YES 156 a 1582.10 0.86558 YES YES 157 a 2948.73 5.80636 YES YES 158 a 2948.73 5.80671 YES YES 160 a 2953.53 1.96571 YES YES 161 a 2953.85 1.98053 YES YES 164 a 2953.53 1.96571 YES YES 165 a 2953.53	148	а	1453.34	0.85020	YES	YES
150a163.1.2171532YESYES151a1578.2651.68922YESYES152a1578.5153.39019YESYES153a1579.6181.12215YESYES154a1580.930.44530YESYES155a1581.701.36075YESYES156a1582.100.86558YESYES157a2948.465.57125YESYES158a2948.735.80636YESYES159a2948.794.84577YESYES160a2953.262.34026YESYES162a2953.531.96571YESYES163a2953.843.68952YESYES164a2953.351.98053YESYES166a3023.378.20502YESYES167a3031.755.51055YESYES168a3023.878.26058YESYES170a3031.186.69438YESYES177a3064.383.12249YESYES177a3064.942.41929YESYES177a3064.941.77699YESYES178a3065.752.41824YESYES179a3065.222.04145YESYES178a3065	149	a	1453.74	1.58104	YES	YES
151 a 1578.26 51.68922 YES YES 152 a 1578.51 53.39019 YES YES 153 a 1579.61 81.12215 YES YES 154 a 1580.93 0.44530 YES YES 155 a 1581.70 1.36075 YES YES 156 a 1582.10 0.86558 YES YES 157 a 2948.73 5.80636 YES YES 158 a 2948.79 4.84577 YES YES 160 a 2953.81 2.54825 YES YES 161 a 2953.84 3.68952 YES YES 163 a 2953.85 1.98053 YES YES 164 a 2953.85 1.98053 YES YES 166 a 3023.39 4.75430 YES YES 166 a 3023.17	150	a	1454.24	1,71532	YES	YES
152 a 1578.51 53.39019 YES YES 153 a 1579.61 81.12215 YES YES 154 a 1580.93 0.44530 YES YES 155 a 1581.70 1.36075 YES YES 156 a 1582.10 0.86558 YES YES 157 a 2948.46 5.57125 YES YES 158 a 2948.73 5.80636 YES YES 160 a 2952.81 2.54825 YES YES 161 a 2953.35 1.96571 YES YES 163 a 2953.84 3.68952 YES YES 166 a 3023.37 8.20502 YES YES 166 a 3023.57 8.20502 YES YES 166 a 3023.57 8.20502 YES YES 166 a 3023.75	151	a	1578.26	51.68922	YES	YES
153 a 1579.61 81.12215 YES YES 154 a 1580.93 0.44530 YES YES 155 a 1581.70 1.36075 YES YES 156 a 1582.10 0.86558 YES YES 156 a 2948.46 5.57125 YES YES 158 a 2948.79 4.84577 YES YES 159 a 2948.79 4.84577 YES YES 160 a 2952.81 2.54825 YES YES 162 a 2953.53 1.96571 YES YES 163 a 2953.85 1.98053 YES YES 166 a 3023.57 8.20502 YES YES 166 a 3023.75 S.51055 YES YES 167 a 3031.18 6.69438 YES YES 170 a 3031.85	152	a	1578.51	53,39019	YES	YES
153 a 158.0.93 0.44530 YES YES 155 a 1581.70 1.36075 YES YES 156 a 1582.10 0.86558 YES YES 157 a 2948.46 5.57125 YES YES 158 a 2948.73 5.80636 YES YES 159 a 2948.79 4.84577 YES YES 160 a 2953.81 2.54825 YES YES 161 a 2953.83 1.96571 YES YES 163 a 2953.84 3.68952 YES YES 164 a 2953.85 1.98053 YES YES 165 a 3023.57 8.20502 YES YES 166 a 3023.57 8.20502 YES YES 169 a 3031.18 6.69438 YES YES 170 a 3031.64	153	a	1579.61	81,12215	YES	YES
155 a 1581.70 1.36075 YES YES 156 a 1581.70 1.36075 YES YES 157 a 2948.46 5.57125 YES YES 158 a 2948.73 5.80636 YES YES 159 a 2948.73 4.84577 YES YES 160 a 2952.81 2.54825 YES YES 161 a 2953.25 2.34026 YES YES 162 a 2953.84 3.68952 YES YES 164 a 2953.85 1.98053 YES YES 165 a 2954.55 2.59223 YES YES 166 a 3023.87 8.26052 YES YES 167 a 3030.75 5.51055 YES YES 168 a 3023.87 8.26058 YES YES 170 a 3031.45	154	a	1580 93	0 44530	YES	YES
155 a 158 158 155 YES 157 a 2948.46 5.57125 YES YES 158 a 2948.73 5.80636 YES YES 159 a 2948.73 5.80636 YES YES 160 a 2953.26 2.34026 YES YES 161 a 2953.26 2.34026 YES YES 162 a 2953.81 1.96571 YES YES 163 a 2953.85 1.98053 YES YES 164 a 2953.85 1.98053 YES YES 165 a 2023.39 4.75430 YES YES 166 a 3023.57 8.20502 YES YES 168 a 3023.57 8.20502 YES YES 170 a 3031.18 6.69438 YES YES 1771 a 3031.64 8.	155	a	1581 70	1 36075	YES	YES
1.50 a 1.948.46 5.5712 YES YES 158 a 2.948.73 5.80636 YES YES 159 a 2.948.79 4.84577 YES YES 160 a 2.952.81 2.54825 YES YES 161 a 2.953.26 2.34026 YES YES 162 a 2.953.33 1.96571 YES YES 163 a 2.953.84 3.68952 YES YES 164 a 2.953.85 1.98053 YES YES 165 a 2.954.55 2.59223 YES YES 166 a 3023.37 8.26058 YES YES 167 a 3023.75 5.51055 YES YES 168 a 3030.75 5.51055 YES YES 170 a 3031.64 8.15785 YES YES 171 a 3032.12 <td>156</td> <td>a</td> <td>1582.10</td> <td>0.86558</td> <td>YES</td> <td>YES</td>	156	a	1582.10	0.86558	YES	YES
157 a 2948.73 5.80636 YES YES 159 a 2948.79 4.84577 YES YES 160 a 2952.81 2.54825 YES YES 161 a 2953.26 2.34026 YES YES 162 a 2953.85 1.98053 YES YES 163 a 2953.85 1.98053 YES YES 164 a 2953.85 1.98053 YES YES 165 a 2954.55 2.59223 YES YES 166 a 3023.87 8.20502 YES YES 167 a 3023.87 8.20502 YES YES 168 a 3023.87 8.20502 YES YES 170 a 3031.18 6.69438 YES YES 171 a 3031.64 8.15785 YES YES 172 a 3032.12	157	a	2948.46	5 57125	YES	YES
150 a 2948.79 4.84577 YES YES 160 a 2952.81 2.54825 YES YES 161 a 2953.26 2.34026 YES YES 162 a 2953.35 1.96571 YES YES 163 a 2953.85 1.98053 YES YES 164 a 2953.85 1.98053 YES YES 166 a 3023.39 4.75430 YES YES 166 a 3023.57 8.20502 YES YES 167 a 3023.75 5.51055 YES YES 168 a 3030.75 5.51055 YES YES 170 a 3031.64 8.15785 YES YES 171 a 3032.12 7.32923 YES YES 173 a 3032.12 7.32923 YES YES 174 a 3033.00	158	2	2948.40	5 80636	VES	VES
155a 2546773 1153 1153 1153 160a 2952.81 2.54825 YES YES 161a 2953.26 2.34026 YES YES 162a 2953.53 1.96571 YES YES 163a 2953.85 1.98053 YES YES 164a 2953.85 1.98053 YES YES 165a 2954.55 2.59223 YES YES 166a 3023.57 8.20502 YES YES 167a 3023.57 8.20502 YES YES 168a 3023.57 8.20502 YES YES 169a 3030.75 5.51055 YES YES 170a 3031.18 6.69438 YES YES 171a 3031.64 8.15785 YES YES 172a 3031.85 5.85229 YES YES 173a 3032.12 7.32923 YES YES 174a 3033.30 7.42037 YES YES 175a 3064.94 2.41929 YES YES 176a 3065.62 2.40145 YES YES 178a 3065.62 2.40145 YES YES 180a 3067.95 3.54124 YES YES 181a 3066.16 4.64832 YES YES 183a 3067.95 <td>150</td> <td>а Э</td> <td>2048.75</td> <td>1 84577</td> <td>VES</td> <td>VES</td>	150	а Э	2048.75	1 84577	VES	VES
160 a 253.261 2.34025 1153 1153 161 a 2953.263 2.34026 YES YES 162 a 2953.263 1.96571 YES YES 163 a 2953.83 1.98053 YES YES 164 a 2953.85 1.98053 YES YES 165 a 2954.55 2.59223 YES YES 166 a 3023.57 8.20502 YES YES 167 a 3023.57 8.26058 YES YES 168 a 3023.57 8.26058 YES YES 169 a 3031.18 6.69438 YES YES 170 a 3031.64 8.15785 YES YES 171 a 3032.12 7.32923 YES YES 172 a 3033.30 7.42037 YES YES 174 a 3033.30 7.42037 YES YES 175 a 3064.94 1.7769	160	a 2	2052.81	7 5/1875	VES	VES
101 a 2953.53 1.96571 YES YES 162 a 2953.53 1.96571 YES YES 163 a 2953.85 1.98053 YES YES 164 a 2953.85 1.98053 YES YES 165 a 2954.55 2.59223 YES YES 166 a 3023.39 4.75430 YES YES 167 a 3023.57 8.20502 YES YES 168 a 3023.87 8.26058 YES YES 169 a 3030.75 5.51055 YES YES 170 a 3031.18 6.69438 YES YES 171 a 3031.85 5.85229 YES YES 172 a 3031.85 5.85229 YES YES 173 a 3064.38 3.12249 YES YES 174 a 3064.38 3.12249 YES YES 177 a 3064.94 1.77699 <td>161</td> <td>a 2</td> <td>2052.01</td> <td>2.34026</td> <td>VES</td> <td>VES</td>	161	a 2	2052.01	2.34026	VES	VES
162 a 2953.33 1.30371 1E3 1E3 163 a 2953.84 3.68952 YES YES 164 a 2953.85 1.98053 YES YES 165 a 2954.55 2.59223 YES YES 166 a 3023.39 4.75430 YES YES 166 a 3023.57 8.20502 YES YES 167 a 3023.87 8.26058 YES YES 168 a 3023.87 8.26058 YES YES 169 a 3031.18 6.69438 YES YES 170 a 3031.64 8.15785 YES YES 171 a 3031.85 5.85229 YES YES 173 a 3032.12 7.32923 YES YES 174 a 3036.4.94 2.41929 YES YES 177 a 3064.94	162	a	2955.20	2.34020	VES	VES
163 a 2953.84 3.06952 1E3 TE3 164 a 2953.85 1.98053 YES YES 165 a 2953.85 2.59223 YES YES 166 a 3023.39 4.75430 YES YES 166 a 3023.57 8.20502 YES YES 168 a 3023.87 8.26058 YES YES 169 a 3030.75 5.51055 YES YES 170 a 3031.64 8.15785 YES YES 171 a 3031.64 8.15785 YES YES 172 a 3031.85 5.85229 YES YES 173 a 3032.12 7.32923 YES YES 174 a 3033.0 7.42037 YES YES 175 a 3064.38 3.12249 YES YES 176 a 3065.22	162	a	2933.33	2,60052	TES VES	TES VES
164 a 2953.83 1.38033 1FS 1FS 165 a 2954.55 2.59223 YES YES 166 a 3023.39 4.75430 YES YES 167 a 3023.57 8.20502 YES YES 168 a 3023.87 8.26058 YES YES 169 a 3030.75 5.51055 YES YES 170 a 3031.18 6.69438 YES YES 171 a 3031.64 8.15785 YES YES 172 a 3031.85 5.85229 YES YES 173 a 3032.12 7.32923 YES YES 174 a 3033.30 7.42037 YES YES 175 a 3064.94 2.41929 YES YES 176 a 3065.28 3.35767 YES YES 177 a 3065.62 2.40145 YES YES 178 a 3066.12 4.89131 <td>103</td> <td>a</td> <td>2953.84</td> <td>3.08952</td> <td>YES</td> <td>TES VES</td>	103	a	2953.84	3.08952	YES	TES VES
165 a 2934.53 2.39223 YES YES 166 a 3023.39 4.75430 YES YES 167 a 3023.57 8.20502 YES YES 168 a 3023.87 8.26058 YES YES 169 a 3030.75 5.51055 YES YES 170 a 3031.18 6.69438 YES YES 171 a 3031.64 8.15785 YES YES 171 a 3031.85 5.85229 YES YES 173 a 3032.12 7.32923 YES YES 174 a 3033.30 7.42037 YES YES 175 a 3064.38 3.12249 YES YES 176 a 3065.28 3.35767 YES YES 177 a 3065.62 2.40145 YES YES 178 a 3065.75 2.41824 YES YES 180 a 3067.95 3.54124 <td>104</td> <td>a</td> <td>2955.65</td> <td>1.96055</td> <td></td> <td></td>	104	a	2955.65	1.96055		
166 a 3023.39 4.75430 YES YES 167 a 3023.57 8.20502 YES YES 168 a 3023.87 8.26058 YES YES 169 a 3030.75 5.51055 YES YES 170 a 3031.18 6.69438 YES YES 171 a 3031.64 8.15785 YES YES 171 a 3031.72 7.32923 YES YES 173 a 3033.30 7.42037 YES YES 174 a 3033.30 7.42037 YES YES 175 a 3064.38 3.12249 YES YES 176 a 3065.28 3.35767 YES YES 178 a 3065.62 2.40145 YES YES 179 a 3066.12 4.89131 YES YES 180 a 3067.95	105	d	2954.55	2.59223	TES VEC	YES
167 a 3023.57 8.20502 YES YES 168 a 3023.87 8.26058 YES YES 169 a 3030.75 5.51055 YES YES 170 a 3031.18 6.69438 YES YES 171 a 3031.64 8.15785 YES YES 172 a 3031.85 5.85229 YES YES 173 a 3032.12 7.32923 YES YES 174 a 3033.00 7.42037 YES YES 175 a 3064.38 3.12249 YES YES 176 a 3064.94 2.41929 YES YES 177 a 3065.28 3.35767 YES YES 178 a 3065.62 2.40145 YES YES 180 a 3065.75 2.41824 YES YES 181 a 3066.16 4.64832 YES YES 182 a 3067.95 3.54124 <td>100</td> <td>a</td> <td>3023.39</td> <td>4.75430</td> <td>YES</td> <td>YES</td>	100	a	3023.39	4.75430	YES	YES
168 a 3023.87 8.26058 YES YES 169 a 3030.75 5.51055 YES YES 170 a 3031.18 6.69438 YES YES 171 a 3031.64 8.15785 YES YES 172 a 3031.64 8.15785 YES YES 173 a 3032.12 7.32923 YES YES 174 a 3033.30 7.42037 YES YES 175 a 3064.38 3.12249 YES YES 176 a 3064.94 2.41929 YES YES 177 a 3065.28 3.35767 YES YES 178 a 3065.75 2.41824 YES YES 180 a 3065.75 2.41824 YES YES 181 a 3066.16 4.64832 YES YES 182 a 3066.16 4.64832 YES YES 183 a 3097.99 0.21254 <td>167</td> <td>а</td> <td>3023.57</td> <td>8.20502</td> <td>YES</td> <td>YES</td>	167	а	3023.57	8.20502	YES	YES
169 a 3030.75 5.51055 YES YES 170 a 3031.18 6.69438 YES YES 171 a 3031.64 8.15785 YES YES 172 a 3031.85 5.85229 YES YES 173 a 3032.12 7.32923 YES YES 174 a 3033.30 7.42037 YES YES 175 a 3064.38 3.12249 YES YES 176 a 3064.94 2.41929 YES YES 177 a 3064.94 1.77699 YES YES 178 a 3065.62 2.40145 YES YES 179 a 3066.12 4.89131 YES YES 180 a 3066.16 4.64832 YES YES 181 a 3067.95 3.54124 YES YES 182 a 3067.95 3.54124 YES YES 183 a 3097.99 0.21254 <td>168</td> <td>а</td> <td>3023.87</td> <td>8.26058</td> <td>YES</td> <td>YES</td>	168	а	3023.87	8.26058	YES	YES
170a3031.186.69438YESYES171a3031.648.15785YESYES172a3031.855.85229YESYES173a3032.127.32923YESYES174a3033.307.42037YESYES175a3064.383.12249YESYES176a3064.942.41929YESYES177a3065.283.35767YESYES178a3065.622.40145YESYES180a3065.752.41824YESYES181a3066.124.89131YESYES182a3067.953.54124YESYES183a3097.990.21254YESYES184a3099.140.16961YESYES185a3100.560.46964YESYES188a3100.610.22092YESYES190a3138.371.97304YESYES191a3138.682.28621YESYES192a3140.262.19959YESYES	169	а	3030.75	5.51055	YES	YES
1/1a3031.648.15785YESYES172a3031.855.85229YESYES173a3032.127.32923YESYES174a3033.307.42037YESYES175a3064.383.12249YESYES176a3064.942.41929YESYES177a3064.941.77699YESYES178a3065.283.35767YESYES179a3065.622.40145YESYES180a3065.752.41824YESYES181a3066.164.64832YESYES182a3067.953.54124YESYES183a3097.990.21254YESYES186a3099.140.16961YESYES187a3100.560.46964YESYES188a3100.610.22092YESYES190a3138.371.97304YESYES191a3138.682.28621YESYES192a3140.262.19959YESYES	170	а	3031.18	6.69438	YES	YES
172 a 3031.85 5.85229 YES YES 173 a 3032.12 7.32923 YES YES 174 a 3033.30 7.42037 YES YES 175 a 3064.38 3.12249 YES YES 176 a 3064.94 2.41929 YES YES 177 a 3064.94 1.77699 YES YES 177 a 3065.28 3.35767 YES YES 178 a 3065.62 2.40145 YES YES 179 a 3066.12 4.89131 YES YES 180 a 3066.12 4.89131 YES YES 181 a 3066.16 4.64832 YES YES 182 a 3067.95 3.54124 YES YES 183 a 3097.44 0.21166 YES YES 184 a 3097.99 0.21254 YES YES 185 a 3099.82 0.36560 <td>1/1</td> <td>а</td> <td>3031.64</td> <td>8.15/85</td> <td>YES</td> <td>YES</td>	1/1	а	3031.64	8.15/85	YES	YES
173a3032.127.32923YESYES174a3033.307.42037YESYES175a3064.383.12249YESYES176a3064.942.41929YESYES177a3064.941.77699YESYES178a3065.283.35767YESYES179a3065.622.40145YESYES180a3065.752.41824YESYES181a3066.124.89131YESYES182a3066.164.64832YESYES183a3067.953.54124YESYES184a3097.440.21166YESYES185a3099.140.16961YESYES187a3100.560.46964YESYES189a3100.610.22092YESYES190a3138.371.97304YESYES192a3140.262.19959YESYES	172	а	3031.85	5.85229	YES	YES
174a3033.307.42037YESYES175a3064.383.12249YESYES176a3064.942.41929YESYES177a3064.941.77699YESYES178a3065.283.35767YESYES179a3065.622.40145YESYES180a3065.752.41824YESYES181a3066.124.89131YESYES182a3066.164.64832YESYES183a3067.953.54124YESYES184a3097.440.21166YESYES185a3099.140.16961YESYES186a3100.560.46964YESYES189a3100.610.22092YESYES190a3138.371.97304YESYES191a3140.262.19959YESYES	173	а	3032.12	7.32923	YES	YES
175a3064.383.12249YESYES176a3064.942.41929YESYES177a3064.941.77699YESYES178a3065.283.35767YESYES179a3065.622.40145YESYES180a3065.752.41824YESYES181a3066.124.89131YESYES182a3066.164.64832YESYES183a3097.953.54124YESYES184a3097.440.21166YESYES185a3099.140.16961YESYES186a3099.820.36560YESYES187a3100.560.46964YESYES189a3100.610.22092YESYES190a3138.371.97304YESYES191a3140.262.19959YESYES	174	а	3033.30	7.42037	YES	YES
176a3064.942.41929YESYES177a3064.941.77699YESYES178a3065.283.35767YESYES179a3065.622.40145YESYES180a3065.752.41824YESYES181a3066.124.89131YESYES182a3066.164.64832YESYES183a3097.953.54124YESYES184a3097.440.21166YESYES185a3099.140.16961YESYES186a3099.820.36560YESYES187a3100.560.46964YESYES189a3100.610.22092YESYES190a3138.371.97304YESYES191a3140.262.19959YESYES	175	а	3064.38	3.12249	YES	YES
177a3064.941.77699YESYES178a3065.283.35767YESYES179a3065.622.40145YESYES180a3065.752.41824YESYES181a3066.124.89131YESYES182a3066.164.64832YESYES183a3067.953.54124YESYES184a3097.440.21166YESYES185a3097.990.21254YESYES186a3099.140.16961YESYES187a3099.820.36560YESYES188a3100.560.46964YESYES189a3108.371.97304YESYES190a3138.682.28621YESYES192a3140.262.19959YESYES	176	а	3064.94	2.41929	YES	YES
178a3065.283.35767YESYES179a3065.622.40145YESYES180a3065.752.41824YESYES181a3066.124.89131YESYES182a3066.164.64832YESYES183a3067.953.54124YESYES184a3097.440.21166YESYES185a3097.990.21254YESYES186a3099.140.16961YESYES187a3099.820.36560YESYES188a3100.560.46964YESYES189a3100.610.22092YESYES190a3138.371.97304YESYES191a3140.262.19959YESYES	177	а	3064.94	1.77699	YES	YES
179a3065.622.40145YESYES180a3065.752.41824YESYES181a3066.124.89131YESYES182a3066.164.64832YESYES183a3067.953.54124YESYES184a3097.440.21166YESYES185a3097.990.21254YESYES186a3099.140.16961YESYES187a3099.820.36560YESYES188a3100.560.46964YESYES189a3100.610.22092YESYES190a3138.371.97304YESYES191a3140.262.19959YESYES	178	а	3065.28	3.35767	YES	YES
180a3065.752.41824YESYES181a3066.124.89131YESYES182a3066.164.64832YESYES183a3067.953.54124YESYES184a3097.440.21166YESYES185a3097.990.21254YESYES186a3099.140.16961YESYES187a3099.820.36560YESYES188a3100.560.46964YESYES189a3138.371.97304YESYES190a3138.682.28621YESYES192a3140.262.19959YESYES	179	а	3065.62	2.40145	YES	YES
181a3066.124.89131YESYES182a3066.164.64832YESYES183a3067.953.54124YESYES184a3097.440.21166YESYES185a3097.990.21254YESYES186a3099.140.16961YESYES187a3099.820.36560YESYES188a3100.560.46964YESYES189a3100.610.22092YESYES190a3138.371.97304YESYES191a3138.682.28621YESYES192a3140.262.19959YESYES	180	а	3065.75	2.41824	YES	YES
182 a 3066.16 4.64832 YES YES 183 a 3067.95 3.54124 YES YES 184 a 3097.44 0.21166 YES YES 185 a 3097.99 0.21254 YES YES 186 a 3099.14 0.16961 YES YES 187 a 3099.82 0.36560 YES YES 188 a 3100.56 0.46964 YES YES 189 a 3100.61 0.22092 YES YES 190 a 3138.37 1.97304 YES YES 191 a 3138.68 2.28621 YES YES 192 a 3140.26 2.19959 YES YES	181	а	3066.12	4.89131	YES	YES
183a3067.953.54124YESYES184a3097.440.21166YESYES185a3097.990.21254YESYES186a3099.140.16961YESYES187a3099.820.36560YESYES188a3100.560.46964YESYES189a3100.610.22092YESYES190a3138.371.97304YESYES191a3138.682.28621YESYES192a3140.262.19959YESYES	182	а	3066.16	4.64832	YES	YES
184a3097.440.21166YESYES185a3097.990.21254YESYES186a3099.140.16961YESYES187a3099.820.36560YESYES188a3100.560.46964YESYES189a3100.610.22092YESYES190a3138.371.97304YESYES191a3138.682.28621YESYES192a3140.262.19959YESYES	183	а	3067.95	3.54124	YES	YES
185a3097.990.21254YESYES186a3099.140.16961YESYES187a3099.820.36560YESYES188a3100.560.46964YESYES189a3100.610.22092YESYES190a3138.371.97304YESYES191a3138.682.28621YESYES192a3140.262.19959YESYES	184	а	3097.44	0.21166	YES	YES
186a3099.140.16961YESYES187a3099.820.36560YESYES188a3100.560.46964YESYES189a3100.610.22092YESYES190a3138.371.97304YESYES191a3138.682.28621YESYES192a3140.262.19959YESYES	185	а	3097.99	0.21254	YES	YES
187a3099.820.36560YESYES188a3100.560.46964YESYES189a3100.610.22092YESYES190a3138.371.97304YESYES191a3138.682.28621YESYES192a3140.262.19959YESYES	186	а	3099.14	0.16961	YES	YES
188a3100.560.46964YESYES189a3100.610.22092YESYES190a3138.371.97304YESYES191a3138.682.28621YESYES192a3140.262.19959YESYES	187	а	3099.82	0.36560	YES	YES
189a3100.610.22092YESYES190a3138.371.97304YESYES191a3138.682.28621YESYES192a3140.262.19959YESYES	188	а	3100.56	0.46964	YES	YES
190a3138.371.97304YESYES191a3138.682.28621YESYES192a3140.262.19959YESYES	189	а	3100.61	0.22092	YES	YES
191a3138.682.28621YESYES192a3140.262.19959YESYES	190	а	3138.37	1.97304	YES	YES
192 a 3140.26 2.19959 YES YES	191	а	3138.68	2.28621	YES	YES
	192	а	3140.26	2.19959	YES	YES

Mesitylene

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory (grid m4).

-2.33543296582383	1.23263062227697	0.000000000000000	С
-2.26626337311887	-1.43602470525704	0.00000000000000	С
-0.11050218865521	2.68065400541567	0.0000000000000	С
2.23520591528640	1.40622896610058	0.0000000000000	С
2.37676556177410	-1.24462930015865	0.0000000000000	С
0.10022705053745	-2.63885958837756	0.0000000000000	С
-0.19802487808249	5.53748616460922	0.0000000000000	С
4.89461613069767	-2.59724850730386	0.0000000000000	С
-4.69659125261521	-2.94023765730536	0.0000000000000	С
-5.87102557054743	-2.49917837379736	1.68957930842969	h
-4.32642740920841	-5.00630594312492	0.0000000000000	h
-5.87102557054743	-2.49917837379736	-1.68957930842969	h
6.49880183046737	-1.24364307244132	0.0000000000000	h
5.09986474557092	-3.83486810346343	-1.68957930842969	h
5.09986474557092	-3.83486810346343	1.68957930842969	h
-2.17237442125898	6.24994901556623	0.0000000000000	h
0.77116082497653	6.33404647726079	-1.68957930842969	h
0.77116082497653	6.33404647726079	1.68957930842969	h
0.18211263842230	-4.72419340933378	0.00000000000000	h
-4.18232782408521	2.20438253344296	0.00000000000000	h
4.00021518566293	2.51981087589082	0.00000000000000	h

mode	symmetry	wave number	IR intensity	selecti	on rules
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	e"	27.85	0.00000	NO	YES
8	e"	27.85	0.00000	NO	YES
9	a"	32.65	1.16460	YES	NO
10	a"	171.05	4.66621	YES	NO
11	e"	217.65	0.00000	NO	YES
12	e"	217.65	0.00000	NO	YES
13	e'	267.36	0.46649	YES	YES
14	e'	267.36	0.46649	YES	YES
15	a'	452.04	0.00000	NO	YES
16	e'	508.46	0.66014	YES	YES
17	e'	508.46	0.66014	YES	YES
18	e"	515.15	0.00000	NO	YES
19	e"	515.15	0.00000	NO	YES
20	a'	571.76	0.00000	NO	YES
21	a"	694.86	9.79775	YES	NO
22	a"	834.96	10.78451	YES	NO
23	e"	874.01	0.00000	NO	YES
24	e"	874.01	0.00000	NO	YES
25	e'	929.20	2.92304	YES	YES
26	e'	929.20	2.92304	YES	YES
27	a'	985.34	0.00000	NO	YES

28	e'	1008.41	4.94487	YES	YES
29	e'	1008.41	4.94487	YES	YES
30	a'	1009.06	0.00000	NO	YES
31	e"	1026.71	0.00000	NO	YES
32	e"	1026.71	0.00000	NO	YES
33	a"	1030.50	12.63746	YES	NO
34	e'	1158.93	0.02579	YES	YES
35	e'	1158.93	0.02579	YES	YES
36	a'	1264.90	0.00000	NO	YES
37	a'	1299.61	0.00000	NO	YES
38	e'	1362.17	0.75413	YES	YES
39	e'	1362.17	0.75413	YES	YES
40	a'	1368.73	0.00000	NO	YES
41	a'	1371.21	0.00000	NO	YES
42	e'	1411.21	3.17800	YES	YES
43	e'	1411.21	3.17800	YES	YES
44	a"	1422.62	24.63474	YES	NO
45	e"	1423.65	0.00000	NO	YES
46	e"	1423.65	0.00000	NO	YES
47	a'	1436.65	0.00000	NO	YES
48	e'	1469.31	20.73000	YES	YES
49	e'	1469.31	20.73000	YES	YES
50	e'	1618.06	23.63726	YES	YES
51	e'	1618.06	23.63726	YES	YES
52	e'	2935.86	47.01340	YES	YES
53	e'	2935.86	47.01340	YES	YES
54	a'	2936.64	0.00000	NO	YES
55	e"	3006.14	0.00000	NO	YES
56	e"	3006.14	0.00000	NO	YES
57	a"	3006.23	36.72537	YES	NO
58	a'	3036.87	0.00000	NO	YES
59	e'	3037.13	18.06905	YES	YES
60	e'	3037.13	18.06905	YES	YES
61	e'	3070.88	27.48372	YES	YES
62	e'	3070.88	27.48372	YES	YES
63	a'	3073.57	0.00000	NO	YES

[Sn(C₇H₈)₃]²⁺

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory.

-0.56880386495871	-0.13236443250343	0.51485517742581	sn	
-3.96435354392406	-2.95541587577390	-3.38083918006587	С	
-4.97805488832235	-0.46547842361434	-3.23495633282586	С	
-4.94433096871256	0.74454992129023	-4.93102473222216	h	
-6.13739311294527	0.42533692183807	-1.00522046004545	С	
-7.00553896169014	2.31607280067907	-0.98461689827058	h	
-6.21602541712079	-1.10604641702167	1.17842038479989	С	
-7.13870637047876	-0.42446564579622	2.91556847821064	h	
-5.17768638083548	-3.57000170811002	1.08244917691774	С	
-5.27923587477794	-4.80414309362399	2.75682570672782	h	

-4.08785404221634	-4.47997344423408	-1.17481230765010	С
-3.36442306223273	-6.43035666329767	-1.24595030354235	h
-2.94792619144558	-3.97033437300995	-5.83222407935735	С
-1.65924671310249	-5.59888701607359	-5.54836991409672	h
-1.96512194795925	-2.49538415252435	-6.95468661992946	h
-4.54800218385402	-4.66377466051388	-7.01468562245095	h
1.10242909359649	5.20033783684688	-1.03648926614510	С
-1.55933940799284	5.39770475620984	-0.69522342791995	С
-2.76156526089582	5.83985811968277	-2.33801986067801	h
-2.66815687040138	5.12914799959538	1.71493172282714	С
-4.72242877801284	5.36965614380643	1.94478598218752	h
-1.15235134207288	4.59554754957501	3.84577132846976	С
-2.01282045944280	4.42024955749146	5.73353854885633	h
1.49495364916645	4.39248983789317	3.54390887121687	С
2.70255466355476	4.04727012225323	5.20201340514236	h
2.59901007003621	4.68872615730329	1.13750722653529	С
4.66855349207110	4.58288945151093	0.93717532654939	h
2.30018078188146	5.66152234709391	-3.57197607725036	С
4.10456334497703	4.61616244702412	-3.79569532166164	h
2.75456746046821	7.70981085078809	-3.76759329752042	h
1.01596585541935	5.17147539429622	-5.15545444829478	h
4.64732418491364	-1.75556486414686	2.94257377316692	С
2.88776505792039	-3.70299313765199	3.53466625444896	С
2.43061419921980	-4.09330045425231	5.53033485889059	h
1.83386118573233	-5.24118309453041	1.62364673429472	С
0.56593619710611	-6.80549264740511	2.15107897318724	h
2.44208576059870	-4.80713269533305	-0.93650280644310	С
1.67725912010494	-6.03782287917502	-2.42837562051906	h
4.09751356682904	-2.80772123094392	-1.56961453811344	С
4.60718455636781	-2.46543833977218	-3.55978025547062	h
5.18785475431494	-1.31026614645002	0.35390967852545	С
6.54924817374372	0.17736161724579	-0.16518642300411	h
5.99679853214482	-0.34094541179567	5.00258105612451	С
4.79396638582179	-0.06675213775384	6.69903421275293	h
6.73356290088091	1.51014578511771	4.35144366685198	h
7.66561265652515	-1.46507667223446	5.63027724936764	h

mode	symmetry	wave number	IR intensity	select	ion rules
		[cm ⁻¹]	[km mol ⁻¹]	IR	RAMAN
7	а	13.42	0.01126	YES	YES
8	а	14.93	0.03919	YES	YES
9	а	22.39	0.00571	YES	YES
10	а	38.17	0.03484	YES	YES
11	а	62.56	0.61213	YES	YES
12	а	66.16	0.52291	YES	YES
13	а	76.41	0.69402	YES	YES
14	а	78.88	0.52455	YES	YES
15	а	89.00	0.53755	YES	YES
16	а	93.59	1.48938	YES	YES

17	а	102.17	1.44122	YES	YES
18	а	109.73	4.02358	YES	YES
19	а	117.84	3.93560	YES	YES
20	а	126.97	7.50672	YES	YES
21	а	144.43	37.75380	YES	YES
22	a	151.11	33,30507	YES	YES
22	a	170 61	1 18634	YES	VES
23	a 2	199 22	2 67274	VES	VES
24	a	217.09	11 /05/0	VES	VES
25	a	217.08	12,90242		TES VEC
20	d	219.64	13.89242	TES	TES VEC
27	d	233.40	0.42117	YES	YES
28	а	333.04	0.20562	YES	YES
29	а	336.82	0.02678	YES	YES
30	а	337.42	0.28563	YES	YES
31	а	382.23	0.03480	YES	YES
32	а	386.12	0.09093	YES	YES
33	а	392.29	0.16007	YES	YES
34	а	452.30	17.43437	YES	YES
35	а	456.42	14.94593	YES	YES
36	а	458.62	2.67108	YES	YES
37	а	511.18	2.74116	YES	YES
38	а	512.12	1.79520	YES	YES
39	а	513.89	2.71304	YES	YES
40	a	608.26	0.09054	YES	YES
41	a	609.61	0 11901	YES	VES
41	2	610.87	0.05266	VES	VES
42	a 2	671 76	8 63200	VES	VES
43	a	672.90	5.03299 E 039EC	VES	VES
44	a	675.09	0.20220		TES VEC
45	d	075.10	0.30328	YES	YES
46	а	757.09	131./91/6	YES	YES
47	а	/61.1/	145.91409	YES	YES
48	а	/66.80	1./6148	YES	YES
49	а	780.67	0.19254	YES	YES
50	а	782.36	0.41900	YES	YES
51	а	784.01	0.01610	YES	YES
52	а	866.17	0.07789	YES	YES
53	а	873.41	3.00448	YES	YES
54	а	876.11	1.15136	YES	YES
55	а	907.46	0.77695	YES	YES
56	а	911.93	0.26680	YES	YES
57	а	917.69	0.17040	YES	YES
58	а	966.79	0.59416	YES	YES
59	â	967.12	2.34492	YES	YES
60	a	969 16	1.54016	YES	YES
61	2	976 55	0 21674	VES	VES
62	a	077 /E	0.21074	VEC	VEC
62	a	000 FC		VEC	
03	d	982.50	5.47410	TES	TED
64	а	983.30	5.83234	YES	YES
65	а	984.24	/.91934	YES	YES
66	а	986.43	1.53144	YES	YES
67	а	993.47	6.20368	YES	YES
68	а	994.91	10.14180	YES	YES
60	а	997 36	0.65728	YES	YES

70	а	1008.73	18.96530	YES	YES
71	а	1010.89	22.31056	YES	YES
72	а	1011.99	11.16346	YES	YES
73	а	1020.85	11.23134	YES	YES
74	а	1022.57	3.88199	YES	YES
75	а	1025.88	4.65674	YES	YES
76	a	1077.32	3,21968	YES	YES
70	2	1078.65	0.67196	VES	VES
78	а Э	1070.05	3 596/18	VES	VES
78	a	11/0 15	0.76964	VES	VES
79	a	1140.13	0.70004		TES VEC
80	d	1140.09	0.02918	TES VEC	TES VEC
10	d	1150.74	0.24803	YES	YES
82	а	1165.09	0.74928	YES	YES
83	а	1166.46	0.4/342	YES	YES
84	а	1168.61	1.95780	YES	YES
85	а	1211.60	25.67218	YES	YES
86	а	1211.77	23.25351	YES	YES
87	а	1214.23	1.09705	YES	YES
88	а	1301.83	0.19825	YES	YES
89	а	1303.16	0.35631	YES	YES
90	а	1303.83	0.04282	YES	YES
91	а	1353.91	17.44309	YES	YES
92	а	1355.39	14.73097	YES	YES
93	а	1356.54	12.76018	YES	YES
94	а	1358.09	20.57118	YES	YES
95	a	1360.01	6.04851	YES	YES
96	a	1360 35	5 56749	YES	YES
97	2	1/06 36	2 69765	VES	VES
00	a	1400.50	0 205705	VES	VES
90	a	1400.01	0.39370		TES VEC
99	d	1409.48	4.82494	YES	YES
100	а	1422.99	14.33664	YES	YES
101	а	1425.42	13.60328	YES	YES
102	а	1428.91	19.45848	YES	YES
103	а	1440.26	45.49974	YES	YES
104	а	1441.84	12.88916	YES	YES
105	а	1442.75	39.35939	YES	YES
106	а	1476.70	50.42275	YES	YES
107	а	1477.61	32.68591	YES	YES
108	а	1479.22	31.55133	YES	YES
109	а	1562.55	4.27355	YES	YES
110	а	1563.76	1.19051	YES	YES
111	а	1565.86	1.72520	YES	YES
112	а	1588.54	24,94724	YES	YES
113	a	1591.69	4.31355	YES	YES
114	2	1593.86	22,04852	YES	YES
115	а а	2949 84	9 57168	VES	YES
116	и Э	2050 12	5 70777	VEC	VEC
117	a	2330.43	J./JZ// 7 61/01	VEC	VEC
110	d	2327.72	7.01431		
118	а	3027.60	1.96837	YES	YES
119	а	3030.61	9.33364	YES	YES
120	а	3030.98	9.21203	YES	YES
121	а	3066.78	1.40865	YES	YES
122	а	3069.21	2.11516	YES	YES

123	а	3069.26	1.86068	YES	YES
124	а	3105.95	0.65727	YES	YES
125	а	3106.43	0.34749	YES	YES
126	а	3108.93	0.14034	YES	YES
127	а	3109.77	0.03742	YES	YES
128	а	3113.35	0.12759	YES	YES
129	а	3114.36	0.10058	YES	YES
130	а	3120.90	0.23459	YES	YES
131	а	3121.65	0.09338	YES	YES
132	а	3122.02	1.68948	YES	YES
133	а	3124.83	1.33564	YES	YES
134	а	3127.02	3.58984	YES	YES
135	а	3130.54	0.69299	YES	YES
136	а	3134.95	2.38574	YES	YES
137	а	3137.06	0.61921	YES	YES
138	а	3138.29	1.84218	YES	YES

Toluene

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory.

-1.37693195984459	0.05610887792587	0.0000000000000	С	
-0.00547270395296	0.04248475217029	2.28673994657304	С	
2.64785499295296	0.00664838859411	2.29251543473111	С	
3.98688898782604	-0.01220175761724	0.0000000000000	С	
2.64785499295296	0.00664838859411	-2.29251543473111	С	
-0.00547270395296	0.04248475217029	-2.28673994657304	С	
-4.23418035555670	0.03009512460308	0.0000000000000	С	
-1.04012512911134	0.06493279415113	4.09758947884185	h	
3.67835972897159	0.00167899070758	4.10383538541379	h	
6.06991813199383	-0.03373192736895	0.0000000000000	h	
3.67835972897159	0.00167899070758	-4.10383538541379	h	
-1.04012512911134	0.06493279415113	-4.09758947884185	h	
-5.01516159044126	0.98331391549639	1.70057764327330	h	
-5.01516159044126	0.98331391549639	-1.70057764327330	h	
-4.97527187498886	-1.94229881715618	0.0000000000000	h	

mode	symmetry	wave number	IR intensity	select	ion rules
		[cm ⁻¹]	[km mol⁻¹]	IR	RAMAN
7	a"	12.34	0.51711	YES	YES
8	a'	201.84	2.17470	YES	YES
9	a"	336.78	0.28693	YES	YES
10	a"	402.81	0.00935	YES	YES
11	a'	463.49	7.33612	YES	YES
12	a'	514.82	0.55264	YES	YES
13	a"	616.65	0.11203	YES	YES
14	a'	697.92	28.90365	YES	YES
15	a'	724.98	25.75108	YES	YES

16	a'	785.89	0.88347	YES	YES
17	a"	830.26	0.00563	YES	YES
18	a'	884.52	0.25377	YES	YES
19	a"	951.05	0.00541	YES	YES
20	a"	972.61	0.01290	YES	YES
21	a'	975.92	0.12057	YES	YES
22	a'	989.00	0.10369	YES	YES
23	a'	1027.85	10.44065	YES	YES
24	a'	1030.11	2.86756	YES	YES
25	a"	1081.50	6.60739	YES	YES
26	a"	1140.40	0.04499	YES	YES
27	a'	1162.46	0.26930	YES	YES
28	a'	1211.13	1.09960	YES	YES
29	a"	1302.90	0.00815	YES	YES
30	a'	1362.20	0.79161	YES	YES
31	a"	1368.26	0.01683	YES	YES
32	a"	1419.11	3.19237	YES	YES
33	a'	1427.32	8.20896	YES	YES
34	a"	1455.89	10.57442	YES	YES
35	a'	1494.35	13.93966	YES	YES
36	a"	1601.52	0.29137	YES	YES
37	a'	1624.60	7.05566	YES	YES
38	a'	2934.96	26.18638	YES	YES
39	a'	3009.74	13.29593	YES	YES
40	a"	3039.70	11.23185	YES	YES
41	a'	3078.88	9.33148	YES	YES
42	a"	3080.73	6.72413	YES	YES
43	a'	3093.80	5.77218	YES	YES
44	a"	3101.66	35.56256	YES	YES
45	a'	3113.94	15.13490	YES	YES

Acetonitrile

Optimized atomic coordinates [Bohr units]. (RI-)BP86(D3BJ)/def-SV(P) level of theory (grid m4).

-0.00000000000000	0.00000000000000	-1.84077125441740	С	
-0.000000000000000	0.00000000000000	-4.05314605445386	n	
-0.000000000000000	0.000000000000000	0.92150614144512	С	
-0.98353145203918	-1.70352644577386	1.65747038914204	h	
-0.98353145203918	1.70352644577386	1.65747038914204	h	
1.96706290407837	0.00000000000000	1.65747038914204	h	

List of calculated frequencies ((RI-)BP86(D3BJ)/def-SV(P) level of theory, grid m4).

mode	symmetry	wave	IR intensity	selection rules	
		number			
		[cm⁻¹]	[km mol⁻¹]	IR	RAMAN
7	е	370.02	0.02656	YES	YES
8	е	370.02	0.02656	YES	YES
9	a1	930.71	0.72428	YES	YES
10	е	1025.11	5.07952	YES	YES
11	е	1025.11	5.07952	YES	YES
12	a1	1357.08	3.40288	YES	YES
13	е	1410.86	13.43006	YES	YES
14	е	1410.86	13.43006	YES	YES
15	a1	2300.22	9.69330	YES	YES
16	a1	2956.35	2.56109	YES	YES
17	e	3047.91	0.11071	YES	YES
18	е	3047.91	0.11071	YES	YES

References

- T. A. Engesser, C. Friedmann, A. Martens, D. Kratzert, P. J. Malinowski, I. Krossing, *Chem. Eur. J.* 2016, 22, 15085–15094.
- [2] M. Schleep, C. Hettich, J. Velázquez Rojas, D. Kratzert, T. Ludwig, K. Lieberth, I. Krossing, Angew. Chem. Int. Ed. 2017, in press, DOI: 10.1002/anie.201611351.
- [3] G. M. Sheldrick, Acta Cryst. 2008, A64, 112–122.
- [4] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281–1284.
- [5] D. Kratzert, J. J. Holstein, I. Krossing, J. Appl. Crystallogr. 2015, 48, 933–938.
- [6] a) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, *Theor. Chem. Acc.* 1997, *97*, 119–124; b) K.
 Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, *Chem. Phys. Lett.* 1995, *242*, 652–660.
- [7] A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571.
- [8] a) A. D. Becke, *Phys. Rev. A* 1988, *38*, 3098–3100; b) J. P. Perdew, *Phys. Rev. B* 1986, *33*, 8822–8824.
- [9] P. Deglmann, K. May, F. Furche, R. Ahlrichs, Chem. Phys. Lett. 2004, 384, 103–107.