Exploiting Electronic Strategies to Stabilize a Planar Tetracoordinate

Carbon in Cyclic Aromatic Hydrocarbons

Osvaldo Yañez, Alejandro Vásquez-Espinal, Ricardo Pino-Rios, Franklin Ferraro, Sudip Pan, Edison Osorio,

Gabriel Merino^{*} and W. Tiznado.^{*}

Fig. S1 Optimized structures within the range of $0-30 \text{ kcal.mol}^{-1}$ with respect to the global minimum structure of the $\text{Li}_2\text{C}_3\text{N}_2\text{H}_2$ cluster at the PBE0/def2-TZVP level. Relative energies are listed in kcal.mol⁻¹ at the single-point CCSD(T)/def2-TZVP//PBE0/def2-TZVP (in **bold**) and PBE0/def2-TZVP (in parentheses) levels, with zero-point energy (ZPE) corrections.

Fig. S2 Optimized structures within the range of $0-30 \text{ kcal.mol}^{-1}$ with respect to the global minimum structure of the C₇H₂ cluster at the PBE0/def2-TZVP level. Relative energies are listed in kcal.mol⁻¹ at the single-point CCSD(T)/def2-TZVP//PBE0/def2-TZVP (in **bold**) and PBE0/def2-TZVP (in parentheses) levels, with zero-point energy (ZPE) corrections.

Fig. S3 Optimized structures within the range of $0-30 \text{ kcal.mol}^{-1}$ with respect to the global minimum structure of the Li₄C₅H₂ cluster at the PBE0/def2-TZVP level. Relative energies are listed in kcal.mol⁻¹ at the single-point CCSD(T)/def2-TZVP//PBE0/def2-TZVP (in **bold**) and PBE0/def2-TZVP (in parentheses) levels, with zero-point energy (ZPE) corrections.

 $\begin{array}{c} C_{s} \\ {}^{1}A' \\ \mathbf{19.20} \\ (17.56) \end{array}$

 $\begin{array}{c} C_{s} \\ {}^{1}\!A' \\ \mathbf{19.93} \\ (23.35) \end{array}$

 C_{I} ${}^{1}A$ **20.06**(18.76)

 $C_{s}^{1}A'$ **20.44** (24.03)

 $C_{s}^{l}A'$ **27.70** (28.14)

 $C_{s}^{1}A'$ **25.53** (25.84)

 $C_{s}^{1}A'$ **22.97** (26.48)

 $C_{s}^{1}A'$ **25.60** (25.86)

 ^{1}A **30.12** (29.88)

Fig. S4 Optimized structures within the range of $0-30 \text{ kcal.mol}^{-1}$ with respect to the global minimum structure of the Si₂C₅H₂ cluster at the PBE0/def2-TZVP level. Relative energies are listed in kcal.mol⁻¹ at the single-point CCSD(T)/def2-TZVP//PBE0/def2-TZVP (in **bold**) and PBE0/def2-TZVP (in parentheses) levels, with zero-point energy (ZPE) corrections.

Fig. S5 σ - and π -bonding pattern revealed by the AdNDP analysis for the Si₂C₅H₂, Ge₂C₅H₂, Sn₂C₅H₂ and Pb₂C₅H₂ systems.

Fig. S6 σ - and π -bonding pattern revealed by the AdNDP analysis for the Si₂C₆H₃⁺, Ge₂C₆H₃⁺, Sn₂C₆H₃⁺ and Pb₂C₆H₃⁺ systems.

Fig. S7 Optimized within the range of $0-30 \text{ kcal.mol}^{-1}$ with respect to the global minimum structure of the Ge₂C₅H₂ cluster at the PBE0/def2-TZVP level. Relative energies are listed in kcal.mol⁻¹ at the single-point CCSD(T)/def2-TZVP//PBE0/def2-TZVP (in **bold**) and PBE0/def2-TZVP (in parentheses) levels, with zero-point energy (ZPE) corrections.

Fig. S8 Optimized structures within the range of $0-30 \text{ kcal.mol}^{-1}$ with respect to the global minimum structure of the Sn₂C₅H₂ cluster at the PBE0/def2-TZVP level. Relative energies are listed in kcal.mol⁻¹ at the single-point CCSD(T)/def2-TZVP//PBE0/def2-TZVP (in **bold**) and PBE0/def2-TZVP (in parentheses) levels, with zero-point energy (ZPE) corrections.

Fig. S9 Optimized structures within the range of $0-30 \text{ kcal.mol}^{-1}$ with respect to the global minimum structure of the Pb₂C₅H₂ cluster at the PBE0/def2-TZVP level. Relative energies are listed in kcal.mol⁻¹ at the single-point CCSD(T)/def2-TZVP//PBE0/def2-TZVP (in **bold**) and PBE0/def2-TZVP (in parentheses) levels, with zero-point energy (ZPE) corrections.

Fig. S10 Optimized structures within the range of $0-30 \text{ kcal.mol}^{-1}$ with respect to the global minimum structure of the Si₂C₆H₃⁺ cluster at the PBE0/def2-TZVP level. Relative energies are listed in kcal.mol⁻¹ at the single-point CCSD(T)/def2-TZVP/PBE0/def2-TZVP (in **bold**) and PBE0/def2-TZVP (in parentheses) levels, with zero-point energy (ZPE) corrections.

Fig. S11 Optimized structures within the range of $0-30 \text{ kcal.mol}^{-1}$ with respect to the global minimum structure of the Ge₂C₆H₃⁺ cluster at the PBE0/def2-TZVP level. Relative energies are listed in kcal.mol⁻¹ at the single-point CCSD(T)/def2-TZVP/PBE0/def2-TZVP (in **bold**) and PBE0/def2-TZVP (in parentheses) levels, with zero-point energy (ZPE) corrections.

Fig. S12 Optimized structures within the range of $0-30 \text{ kcal.mol}^{-1}$ with respect to the global minimum structure of the $\text{Sn}_2\text{C}_6\text{H}_3^+$ cluster at the PBE0/def2-TZVP level. Relative energies are listed in kcal.mol⁻¹ at the single-point CCSD(T)/def2-TZVP//PBE0/def2-TZVP (in **bold**) and PBE0/def2-TZVP (in parentheses) levels, with zero-point energy (ZPE) corrections.

Fig. S13 Optimized structures within the range of $0-30 \text{ kcal.mol}^{-1}$ with respect to the global minimum structure of the $Pb_2C_6H_3^+$ cluster at the PBE0/def2-TZVP level. Relative energies are listed in kcal.mol⁻¹ at the single-point CCSD(T)/def2-TZVP//PBE0/def2-TZVP (in **bold**) and PBE0/def2-TZVP (in parentheses) levels, with zero-point energy (ZPE) corrections.

Fig. S14 Optimized structures for the lowest-energy triplets of $Si_2C_5H_2$, $Ge_2C_5H_2$, $Sn_2C_5H_2$. $Pb_2C_5H_2$, $Si_2C_6H_3^+$, $Ge_2C_6H_3^+$, $Sn_2C_6H_3^+$ and $Pb_2C_6H_3^+$. Relative energies with respect to their corresponding global minimum are listed in kcal.mol⁻¹, calculated at the PBE0/def2-TZVP level of theory, with zero-point energy (ZPE) corrections.

Fig. S15 Isolines of B_z^{ind} in $Si_2C_5H_2$, $Ge_2C_5H_2$, $Sn_2C_5H_2$, $Pb_2C_5H_2$ and C_5H_5 systems

Table S1. HOMO-LUMO energy gaps, singlet-triplet energy differences, smallest vibrational frequencies, T₁-diagnostics for the studied systems.

System ΔE_{H-L} (eV)		ΔE_{S-T} (kcal/mol)	$v_{\min} (cm^{-1})$	T ₁ Diagnostic	
$\mathrm{Si_2C_5H_2}$	5.11	49.87	196.1	0.015	
$Ge_2C_5H_2$	4.81	43.52	135.6	0.014	
$Sn_2C_5H_2$	4.09	29.28	90.9	0.017	
$Pb_2C_5H_2$	3.79	10.44	62.4	0.016	
$Si_2C_6H_3^+$	4.12	48.19	111.5	0.014	
$\mathrm{Ge_2C_6H_3}^+$	4.01	46.73	99.6	0.014	
$Sn_2C_6H_3^+$	3.74	41.71	80.1	0.016	
$Pb_2C_6H_3^+$	3.65	35.06	56.6	0.014	

Table S2. NPA charges on carbon (q(C1), q(C2), q(C4), q(C6)), and E atoms (E=C, Si, Ge, Sn, Pb) (q(E)), sum of the charges of the C and H atoms (q(Σ C+ Σ H)), and Wiberg bond indices of the C1-E (WBI_{C1-E}), C2-E (WBI_{C2-E}), C1-C2 (WBI_{C1-C2}), C2-C4 (WBI_{C2-C4}) and C4-C5 (WBI_{C4-C5}) bonds computed at the PBE0/def2-TZVP level of theory

System	q(C1)	q(C2)	q(C4)	q(C6)	q(ΣC+ΣH)	q(E)	WBI	WBI	WBI	WBI	WBI
							C1-E	С2-Е	C1-C2	C2-C4	C4-C5 ^a
Si ₂ C ₅ H ₂	-0.79	-0.58	-0.22		-1.93	0.96	0.57	0.99	1.21	1.29	1.57
Ge ₂ C ₅ H ₂	-0.75	-0.58	-0.23		-1.93	0.96	0.54	0.99	1.25	1.29	1.56
Sn ₂ C ₅ H ₂	-0.75	-0.60	-0.26		-2.04	1.02	0.51	0.93	1.28	1.31	1.52
Pb ₂ C ₅ H ₂	-0.70	-0.59	-0.27		-1.97	0.99	0.50	0.94	1.30	1.31	1.51
$Si_2C_6H_3^+$	-0.69	-0.57	-0.09	-0.16	-1.41	1.20	0.45	0.80	1.34	1.37	1.44
$Ge_2C_6H_3^+$	-0.64	-0.57	-0.11	-0.17	-1.41	1.20	0.43	0.78	1.37	1.37	1.44
$Sn_2C_6H_3^+$	-0.61	-0.56	-0.15	-0.18	-1.48	1.24	0.41	0.72	1.41	1.39	1.44
$Pb_2C_6H_3^+$	-0.55	-0.53	-0.17	-0.18	-1.42	1.21	0.41	0.72	1.43	1.39	1.44

 a For the 6MR systems, this corresponds to the $WBI_{C4\text{-}C6\text{-}}$

Si ₂ C ₅ H ₂				Ge ₂ C ₅ H ₂				
6	1.153436000	0.514514000	0.002633000	6	-0.000001000	0.092698000	0.000153000	
6	0.688311000	1.848214000	0.000815000	6	1.154867000	0.979499000	0.000209000	
14	1.755987000	-1.122837000	-0.001440000	6	-1.154863000	0.979500000	-0.000010000	
1	1.325419000	2.723843000	0.002894000	32	-1.844323000	-0.726383000	-0.000022000	
6	-0.000253000	-0.387651000	0.001999000	32	1.844322000	-0.726384000	-0.000017000	
6	-1.155217000	0.513975000	-0.001263000	6	0.690610000	2.315911000	0.000005000	
6	-0.690001000	1.847772000	-0.001635000	6	-0.690607000	2.315912000	-0.000102000	
14	-1.754246000	-1.124879000	0.000490000	1	1.324663000	3.193717000	-0.000033000	
1	-1.327446000	2.723236000	-0.004886000	1	-1.324659000	3.193719000	-0.000252000	
Sn ₂ C ₅ H ₂				Pb ₂ C ₅ H ₂				
6	0.000524000	0.434134000	-0.002069000	6	0.000017000	0.679616000	0.001734000	
6	1.164479000	1.295705000	0.002142000	6	-1.162654000	1.529658000	-0.002883000	
6	-1.163641000	1.295117000	-0.004001000	6	1.162683000	1.529678000	0.004737000	
50	1.980194000	-0.567407000	-0.000144000	82	-2.057142000	-0.392312000	0.000161000	
6	0.693775000	2.630094000	0.001439000	6	-0.695282000	2.867106000	-0.002479000	
6	-0.693940000	2.629826000	-0.000635000	6	0.695286000	2.867116000	0.001438000	
1	-1.322296000	3.512109000	0.000095000	1	1.322837000	3.750259000	0.002358000	
1	1.321835000	3.512605000	0.004263000	1	-1.322845000	3.750236000	-0.005293000	
50	-1.980328000	-0.567272000	0.000432000	82	2.057138000	-0.392316000	-0.000311000	

 $\label{eq:condition} \begin{array}{l} \textbf{Table S4} \ \ - \ \ Cartesian \ \ coordinates \ \ of \ the \ global \ minimum \ \ of \ \ Si_2C_6H_3^{\ +}, \ \ Ge_2C_6H_3^{\ +}, \ \ Sn_2C_6H_3^{\ +} \ and \ \ Pb_2C_6H_3^{\ +}, \ \ Sn_2C_6H_3^{\ +}, \ \ Sn_2C_6H$

Si ₂ C ₆ H ₃ ⁺							Ge ₂ C ₆ H ₃ ⁺		
	6	0.455971000	-0.000003000	-0.000036000	6	0.000005000	0.132970000	-0.000268000	
	6	-0.245602000	-1.229961000	-0.000060000	6	1.228581000	0.815647000	-0.000251000	
	6	-0.245595000	1.229958000	0.000018000	6	-1.228570000	0.815649000	0.000051000	
	6	-1.636898000	-1.217314000	-0.000034000	32	-1.768887000	-0.998001000	0.000009000	
	6	-1.636891000	1.217320000	0.000078000	32	1.768881000	-0.998011000	0.000045000	
	14	1.483281000	1.686158000	-0.000037000	6	1.220319000	2.207305000	-0.000153000	
	14	1.483275000	-1.686161000	0.000024000	6	-1.220309000	2.207306000	0.000205000	
	6	-2.314658000	0.000005000	0.000040000	6	0.000006000	2.882120000	0.000051000	
	1	-2.195523000	-2.147088000	-0.000066000	1	2.147466000	2.770003000	-0.000191000	
	1	-2.195509000	2.147098000	0.000149000	1	-2.147456000	2.770002000	0.000468000	
	1	-3.398707000	0.000008000	0.000072000	1	0.000006000	3.966387000	0.000161000	
			$Sn_2C_6H_3^+$		$Pb_2C_6H_3^+$				
	6	-0.001174000	0.545817000	-0.003363000	6	-0.000358000	0.871869000	0.001653000	
	6	-1.232609000	1.200518000	-0.000881000	6	-1.229715000	1.511391000	0.000058000	
	6	1.230537000	1.199719000	-0.001686000	6	1.229152000	1.511067000	0.002700000	
	50	-1.891717000	-0.790757000	0.000067000	82	1.955870000	-0.556556000	-0.000208000	
	50	1.892103000	-0.790243000	0.000330000	82	-1.955815000	-0.556633000	0.000029000	
	6	1.222468000	2.592111000	-0.000151000	6	-1.223718000	2.904493000	-0.001120000	
	6	-1.222748000	2.593054000	0.001560000	6	1.223712000	2.904120000	0.000599000	
	6	0.000158000	3.265277000	0.000458000	6	0.000098000	3.576004000	-0.000864000	
	1	-2.146539000	3.161504000	0.003712000	1	-2.146864000	3.473852000	-0.002272000	
1	1	2.146922000	3.159596000	0.000733000	1	2.147098000	3.473078000	0.000508000	
	1	0.000545000	4.349949000	0.000059000	1	0.000243000	4.660936000	-0.001726000	