ESI

Synthesis and Characterization of Lewis Base stabilized Mono- and Di-

Organo Aluminum Radicals

Subrata Kundu,^a Soumen Sinhababu,^a Sayan Dutta,^b Totan Mondal,^b Debasis Koley,^{b*} Birger Dittrich,^{c*} Brigitte Schwederski,^d Wolfgang Kaim,^{d*} A. C. Stückl,^a Herbert W. Roesky ^{a*}

Content:

(S1) Syntheses of compounds 1 and 2 (pages 1-2)

(S2) Theoretical calculations (pages 2-16)

(S3) Crystal data of 1 (pages 16-23)

(S4) References (pages 23-24)

(S1) Synthesis

Experimental Section

All manipulations were carried out under a dry argon or nitrogen atmosphere using Schlenk line and glovebox techniques. Toluene or diethyl ether were dried by refluxing with sodium/potassium under N₂ prior to use. Commercial reagents were purchased from Sigma Aldrich and used as received. cAAC (cyclic alkyl amino carbene) was prepared according to the literature.¹ Elemental analyses were performed by the Analytisches Labor des Instituts für Anorganische Chemie der Universität Göttingen. Melting points were measured in sealed glass tubes on a Büchi B-540 melting point apparatus. Electron paramagnetic resonance (EPR) spectra were recorded on a Bruker E500 spectrometer equipped with an X-band microwave source (~9.445 GHz).

 $(cAAC)_2AlClEt$ (1): A mixture of cAAC (285 mg; 1.0 mmol) and KC₈ (75 mg; 0.055 mmol) was placed in a 100 mL Schlenk flask and 40 mL of diethyl ether was added at -78 °C. To this mixture EtAlCl₂ [0.5 mL (1(M) solution in hexane), 0.5 mmol] was added at -78 °C and the reaction mixture was slowly warmed to -40 °C in three hours to give a red solution. The reaction was continued for one hour at -40 °C. Then the solvent was removed by high vacuum at -30 °C and the product was quickly extracted using 30 mL of toluene at 0 °C. After filtration of the

insoluble residue, the solution was concentrated to 10 mL in vacuum, which gave single crystals of 1 at -32 °C (Yield: 24 %).

Elemental analysis (%) for C₄₂H₆₇AlClN₂: calcd. C, 76.15; H, 10.19; N, 4.23; found C, 76.02; H, 10.13; N, 4.18. **1** decomposes at 132 °C.

(*cAAC*)₂*AlEt*₂ (2): A mixture of cAAC: (285 mg; 1.0 mmol) and KC₈ (75 mg; 0.055 mmol) was placed in a 100 mL Schlenk flask and 40 mL of diethyl ether were added at -78 °C. To this mixture Et₂AlCl [0.5 mL (1(M) solution in hexane), 0.5 mmol] was added at -78 °C and the reaction mixture was slowly warmed to -40 °C in three hours to give a red solution. The reaction was continued for one hour at -40 °C. Then the solvent was removed in vacuum at -30 °C and the product was quickly extracted using 30 mL of toluene at 0 °C. After filtration of the insoluble residue, the solution was concentrated to 10 mL in vacuum, to result in a crystalline product of **2** at -32 °C (Yield: 22 %).

Elemental analysis (%) for C₄₄H₇₂AlN₂: calcd. C, 80.55; H, 11.06; N, 4.27; found C, 80.21; H, 10.97; N, 4.24. **2** decomposes at 126 °C.

(S2) Theoretical calculations

Computational Details: All theoretical calculations are performed by density functional theory (DFT) methods using Gaussian 09² and ADF2017.106³ program packages. Geometries of all the complexes are optimized with the global-hybrid meta-GGA U-M06-2X functional⁴ in conjugation with def2-SVP⁵ basis set for all the atoms without symmetry constraints. The vibrational frequency calculations were accomplished at the optimized geometries to determine the nature of stationary points (minima or saddle point on the potential energy surface). The geometries were verified as true minima by the absence of imaginary frequency. Single point calculations were performed on optimized geometries using higher basis set def2-TZVP⁶ for all atoms. Solvation energies in diethyl ether ($\varepsilon = 4.24$) were evaluated by a selfconsistent reaction field (SCRF) approach using the SMD continuum solvation model.⁷ All energy values reported in the manuscript are at U-M06-2X/def2-TZVP/SMD//U-M06-2X/def2-SVP level of theory. Within ADF2013.01, Natural bond orbital (NBO) analysis is performed by using the NBO 6.0⁸ program at the BP86⁹ functional in combination with a triple-ζ-quality basis set using uncontracted slater-type orbital (STO)¹⁰ augmented with two set of polarization functions for all atoms without any frozen core approximation. This level of theory is denoted as U-BP86/TZ2P//U-M06-2X/def2-SVP. Wiberg bond indices (WBI)¹¹ and Mulliken spin density calculations were accomplished at the same level of theory. QTAIM¹² analysis in the AIMALL program is also performed in the wave function generated file at U-

M06-2X/def2-TZVP//U-M06-2X/def2-SVP level of theory. Any bonded pair of atoms has a bond path, i.e. a connecting line with maximum electron density. The bond critical point (BCP) is a point on this line where the gradient $\nabla \rho(\mathbf{r})$ of the density is equal to zero. The magnitude of the electron density, $\rho(\mathbf{r})$ and its Laplacian, $\nabla^2 \rho(\mathbf{r})$ at the BCP provide information about the strength and type of bond. The Laplacian indicates whether the density is locally concentrated ($\nabla^2 \rho < 0$) or depleted ($\nabla^2 \rho > 0$). The ellipticity (ε) measures the deviation of the bonding density from cylindrical symmetry.

Furthermore, to gain insight into the bonding scenario of the complexes, ETS-NOCV¹³ calculations were performed at BP86/TZ2P level without any frozen core approximation using ADF2017.106 program package on the BP86/def2-SVP optimized geometries. In extended transition state (ETS) analysis, the instantaneous interaction energy is partitioned into three chemically meaningful terms:

$$\Delta E_{\rm int} = \Delta E_{\rm elstat} + \Delta E_{\rm Pauli} + \Delta E_{\rm orb}$$

where ΔE_{elstat} denotes the quasiclassical coulomb interaction energy between the fragments. ΔE_{Pauli} accounts for destabilizing interaction between the occupied orbitals. The stabilizing orbital interaction term ΔE_{orb} represents the interaction between the occupied and virtual orbitals of the two fragments. ETS-NOCV analysis is an extension of ETS analysis in which ΔE_{orb} term is decomposed into the contributions from different natural orbitals of chemical valence (NOCV). The contours of deformation densities were plotted using the ADF-GUI interface. Scalar relativistic effects were considered using the zeroth-order regular approximation (ZORA) in all ADF calculations.¹⁴ EPR parameters including the Landé splitting factors (*g*) and hyperfine coupling constants (*A*) were computed at UB3LYP/def2-TZVP¹⁵ level of theory. Optimized geometries and orbital diagrams are rendered in the Chemcraft¹⁶ and CYLview¹⁷ visualization softwares.

Fig. S1 Optimized geometries of the compounds **1** and **2** in doublet ground electronic states at U-M06-2X/def2-SVP level.

Table S1 Selected geometrical parameters of the compounds **1** and **2** in doublet ground electronic states at U-M06-2X/def2-SVP level. Bond distances (d) are in angstroms (Å) and bond angles (A) are in degrees ($^{\circ}$).

Geometrical Parameter	1	2
d (Al1–C1)	2.156	2.221
d (Al1–C21)	1.987	2.028
d (Al1-C41)	1.994	2.011
d (Al1-C43)	-	2.033
d (Al1–Cl1)	2.206	-
d (C1–N1)	1.308	1.311
d (C21–N2)	1.405	1.417
A (C1–Al1–C21)	112.8	108.6
A (Cl1–Al1–C41)	108.8	-
A (C43–Al1–C41)	-	116.6

Fig. S2 KS-MOs of 1 and 2 (isosurface = 0.065 a.u.). Hydrogen atoms are omitted for clarity. The orbital energies are shown in parentheses.

Compound	Bond	$ ho(r)^{a}$	$\left[\nabla^2 \rho(\mathbf{r})\right]^{\mathrm{b}}$	Ellipticity $(\varepsilon)^{c}$
1	Al1-C1	0.052	+0.194	0.047
	Al1-C21	0.074	+0.307	0.133
	C1-N1	0.339	-0.529	0.112
	C21-N2	0.277	-0.617	0.095
2	Al1-C1	0.045	+0.160	0.066
	Al1-C21	0.068	+0.273	0.111
	C1-N1	0.337	-0.519	0.137
	C21-N2	0.270	-0.597	0.093

Table S2 Topological parameters of selected bonds in the compounds 1 and 2 using AIMAII calculations at U-M06-2X/def2-TZVP//U-M06-2X/def2-SVP level.

^[a] Electron density at BCP (*e*/Å³). ^[b] Laplacian at BCP (*e*/Å⁵). ^[c] Ellipticity.

Table S3 Mulliken atomic spin densities (in a.u.) of selected atoms in the compounds 1 and 2.

Atom	Compound			
	1	2		
Al1	0.057	0.051		
C1	0.152	0.152		
C21	0.621	0.647		
N1	0.024	0.020		
N2	0.102	0.092		

Fig. S3 Labelling of atoms for EPR calculations on 1 and 2.

Compound	g iso	g_{xx}	g_{yy}	g_{zz}
1	2.0027	2.0025	2.0026	2.0031
2	2.0027	2.0023	2.0027	2.0032

 Table S4 Calculated g-tensors of 1 and 2 at U-B3LYP/def2-TZVP level.

Table S5 Ca	lculated hyperfine c	upling constants	(A in Gauss	s) of 1 and 2 at U	-B3LYP/def2-TZVP level.
-------------	----------------------	------------------	-------------	------------------------	-------------------------

Compound	Atom	A_{iso}	A_{xx}	A_{yy}	A _{zz}
1	Al2	-9.62	-11.45	-10.76	-6.65
	N3	0.43	0.07	0.11	1.10
	N4	2.55	-1.07	-0.81	9.53
	C5	7.82	5.28	6.32	11.86
	C6	-0.63	-0.77	-0.68	-0.46
	C27	0.04	-0.03	-0.01	0.17
	C56	17.44	-1.65	-1.24	55.2
	C57	-5.74	-6.23	-5.85	-5.15
	C78	3.14	1.97	2.78	4.66
2	Al1	-5.32	-6.79	-5.89	-3.29
	N2	0.42	0.14	0.16	0.96
	N3	2.51	-0.88	-0.62	9.04

C4	9.30	6.68	7.90	13.32
C5	-0.64	0.77	-0.67	-0.46
C26	0.06	-0.01	0.01	0.18
C55	19.77	-0.36	0.10	59.56
C56	-6.12	-6.61	-6.28	-5.46
C77	4.86	3.67	4.41	6.49

Table S6 ETS calculations of 1/2 at BP86/TZ2P level of theory using the fragments $(cAAC)_2$ and AlClEt/AlEt₂ in different electronic states.^[a] Energy values are given in kcal/mol.

	1	2
	$(cAAC)_2(S) + AlClEt(D)$	$(cAAC)_2 (S) + AlEt_2 (D)$
$\Delta E_{\rm int}$	-95.3	-86.1
$\Delta E_{ m pauli}$	384.5	367.5
$\Delta E_{elstat}^{[b]}$	-234.5 (48.9%)	-217.6 (48.0%)
$\Delta E_{\rm orb}^{[b]}$	-245.3 (51.1%)	-236.0 (52.0%)

^[a] S=singlet, D=doublet. ^[b] Percentage contribution to the total attractive interactions $\Delta E_{elstat} + \Delta E_{orb}$.

Fig. S4 Plot of deformation densities $\Delta \rho$ of the pairwise orbital interactions in **1** between the fragments $(cAAC)_2$ and AlClEt in singlet and doublet electronic states, respectively. The associated energies $\Delta E_{orb,n}$ (in kcal/mol) are given in parentheses. The charge eigen values v (in e) are also provided. The charge flow is color coded red \rightarrow blue. The most important interacting occupied and vacant orbitals of the fragments are shown.

Fig. S5 Plot of deformation densities $\Delta \rho$ of the pairwise orbital interactions in 2 between the fragments $(cAAC)_2$ and $AlEt_2$ in singlet and doublet electronic states, respectively. The associated energies $\Delta E_{orb,n}$ (in kcal/mol) are given in parentheses. The charge eigen values v (in e) are also provided. The charge flow is color coded red—blue. The most important interacting occupied and vacant orbitals of the fragments are shown.

Table S7 Cartesian coordinates (in Å) of the optimized structures of **1** and **2** at U-M06-2X/def2-SVP level of theory. Energy terms are in kcal/mol.

1			
113			
Ener	gy: -1537826	.0309468	
XYZ	2		
Cl	1.05879	1.35159	1.89100
Al	-0.06691	-0.01432	0.57510
N	2.78343	-0.60792	-0.74175
N	-2.76009	0.53392	-0.70085
C	1.48707	-0.77873	-0.70831
C	1.11491	-1.80043	-1.78154
C	2.35057	-1.85305	-2.69192
Н	2.52678	-2.85654	-3.10453
Н	2.21124	-1.16163	-3.53700
C	3.52391	-1.37509	-1.83450
C	0.87470	-3.15001	-1.07693
Н	0.60482	-3.90103	-1.83462
Н	0.05561	-3.07521	-0.35329
Н	1.76233	-3.50899	-0.53976
C	-0.14723	-1.41881	-2.54820
Н	-0.36423	-2.18160	-3.31240
Н	-0.02649	-0.44635	-3.04442
Н	-1.00941	-1.34329	-1.87187
C	4.46976	-0.48128	-2.62588
Н	4.93244	-1.09353	-3.41340
Н	5.27119	-0.08177	-1.98975
Н	3.94158	0.34865	-3.11056
C	4.34800	-2.50758	-1.22340

Н	4.83574	-3.06190	-2.03726
Н	3.74251	-3.21356	-0.64386
Н	5.13241	-2.09947	-0.57130
С	3.59420	0.08733	0.24734
C	3.93848	-0.59202	1.43678
C	4.82880	0.03648	2.31267
Н	5.10339	-0.47086	3.23902
C	5.35126	1.29320	2.04154
Н	6.04466	1.76238	2.74080
C	4.95896	1.96256	0.89065
Н	5.33193	2.97052	0.70102
С	4.07280	1.38574	-0.02354
C	3.34941	-1.92494	1.88259
Н	2.67568	-2.29388	1.09624
C	4.41917	-2.99121	2.15100
Н	3.93788	-3.94680	2.40664
Н	5.04577	-2.70330	3.00819
Н	5.08412	-3.15958	1.29455
C	2.50815	-1.72830	3.15183
Н	1.97833	-2.65853	3.40693
Н	1.77270	-0.92552	3.02462
Н	3.15548	-1.46404	4.00206
С	3.59403	2.25370	-1.17872
Н	2.92905	1.64892	-1.81247
С	4.73451	2.80786	-2.04039
Н	5.39653	2.02682	-2.43472
Н	5.35339	3.50737	-1.45928
Н	4.32091	3.37039	-2.89042
C	2.76866	3.42158	-0.62336
Н	1.99781	3.05977	0.06641
Н	2.28985	3.98078	-1.44079
Н	3.41633	4.11696	-0.06790
C	-1.46146	0.99198	-0.42008
C	-1.27816	2.35289	-1.11198

С	-2.66565	2.64896	-1.72488
Н	-3.21673	3.34190	-1.06965
Н	-2.59539	3.12751	-2.71357
C	-3.42271	1.31071	-1.78759
C	-0.18605	2.30210	-2.19270
Н	0.00359	3.30451	-2.61044
Н	-0.47022	1.63906	-3.02209
Н	0.75729	1.93038	-1.76101
С	-0.91439	3.46866	-0.11642
Н	-0.83972	4.43627	-0.64065
Н	0.03647	3.26710	0.38854
Н	-1.67969	3.56169	0.66680
C	-4.91637	1.50199	-1.54170
Н	-5.34107	2.11664	-2.34895
Н	-5.09971	2.01035	-0.58584
Н	-5.44851	0.54043	-1.52264
C	-3.21882	0.64425	-3.15823
Н	-3.48084	1.34829	-3.96201
Н	-3.85335	-0.24436	-3.27417
Н	-2.17125	0.34037	-3.28851
C	-3.51959	-0.22753	0.24592
C	-3.92008	0.37317	1.46693
С	-4.62009	-0.39186	2.40374
Н	-4.91604	0.06711	3.34956
С	-4.95081	-1.71870	2.15496
Н	-5.49188	-2.30178	2.90172
C	-4.60494	-2.28659	0.93584
Н	-4.88842	-3.32008	0.72426
C	-3.90178	-1.56061	-0.03177
C	-3.66797	1.83871	1.78519
Н	-3.29423	2.30938	0.86833
C	-2.60699	2.02833	2.87323
Н	-2.48211	3.09884	3.09933
Н	-1.62678	1.63635	2.57009

Н	-2.90971	1.52182	3.80376	-
С	-4.96234	2.55905	2.18431	
Н	-4.78501	3.64298	2.25032	
Н	-5.31993	2.22626	3.17027	
Н	-5.77196	2.38370	1.46093	
С	-3.60965	-2.23542	-1.36042	
Н	-2.96174	-1.55772	-1.92751	
С	-2.87413	-3.56783	-1.19778	
Н	-2.57610	-3.96408	-2.18097	
Н	-3.51326	-4.32370	-0.71687	
Н	-1.97202	-3.45511	-0.58284	
С	-4.89800	-2.44690	-2.16475	
Н	-4.67265	-2.86189	-3.15943	
Н	-5.45313	-1.50826	-2.30175	
Н	-5.56580	-3.15262	-1.64695	
С	-0.58954	-1.62887	1.62286	
Н	-1.36915	-2.19910	1.08729	
Н	0.28583	-2.30085	1.67893	
С	-1.08408	-1.32883	3.04414	
Н	-1.23043	-2.24372	3.64210	
Н	-2.04805	-0.80230	3.02039	
Н	-0.38076	-0.68119	3.59212	
2				-
119				
Energ	gy: -1298729	.0802301		
XYZ				
Al	0.01586	0.15669	0.62576	
Ν	2.84980	-0.60039	-0.74162	
Ν	-2.71766	0.41993	-0.76655	
С	1.54395	-0.71317	-0.73147	
С	1.16888	-1.72380	-1.82110	
С	2.42690	-1.81321	-2.70262	

Н	2.57796	-2.81782	-3.12224
Н	2.33097	-1.10940	-3.54350
C	3.59466	-1.38474	-1.81595
C	0.85859	-3.06789	-1.13312
Н	0.76291	-3.84424	-1.90707
Н	-0.08648	-3.00843	-0.58281
Н	1.63876	-3.38024	-0.42506
C	-0.05433	-1.31635	-2.63255
Н	-0.33077	-2.12781	-3.32465
Н	0.14908	-0.41377	-3.22301
Н	-0.90451	-1.10183	-1.97271
С	4.59385	-0.51352	-2.56916
Н	5.07179	-1.13440	-3.34038
Н	5.38083	-0.13303	-1.90263
Н	4.10630	0.32955	-3.07291
C	4.36092	-2.55793	-1.20520
Н	4.88861	-3.08398	-2.01281
Н	3.70813	-3.28030	-0.70151
Н	5.11218	-2.19508	-0.49094
C	3.63732	0.10661	0.24999
C	3.96926	-0.55413	1.45200
C	4.77818	0.12463	2.36919
Н	5.03505	-0.36427	3.31052
C	5.24838	1.40572	2.11284
Н	5.87959	1.91458	2.84253
С	4.89056	2.04460	0.93255
Н	5.23097	3.06516	0.74875
C	4.07496	1.42023	-0.01559
C	3.44885	-1.92918	1.84845
Н	2.88834	-2.34554	1.00248
C	4.57331	-2.90403	2.21652
Н	4.15562	-3.90495	2.39941
Н	5.07729	-2.58828	3.14209
Н	5.33792	-2.98908	1.43307

С	2.46676	-1.80847	3.01695
Н	2.04901	-2.79443	3.27060
Н	1.63478	-1.14275	2.76121
Н	2.96978	-1.40817	3.91085
С	3.61519	2.24411	-1.20927
Н	3.01314	1.59843	-1.86419
С	4.77702	2.82724	-2.02029
Н	5.49024	2.06071	-2.35008
Н	5.33303	3.56808	-1.42683
Н	4.39103	3.34613	-2.91002
С	2.70268	3.37552	-0.72360
Н	1.89445	2.97941	-0.09780
Н	2.26056	3.91231	-1.57586
Н	3.26994	4.09858	-0.11774
С	-1.44864	0.99261	-0.50138
С	-1.34237	2.28993	-1.33061
С	-2.73712	2.44430	-1.97768
Н	-3.33993	3.16124	-1.39794
Н	-2.68001	2.83366	-3.00622
С	-3.40695	1.06128	-1.92639
С	-0.24021	2.22159	-2.40348
Н	-0.07429	3.21297	-2.85722
Н	-0.50123	1.52683	-3.21197
Н	0.71103	1.88752	-1.95728
С	-1.05266	3.53206	-0.46788
Н	-1.16925	4.44589	-1.07417
Н	-0.02747	3.52361	-0.08047
Н	-1.73490	3.59669	0.39047
С	-4.91627	1.18709	-1.72908
Н	-5.34966	1.70811	-2.59536
Н	-5.15481	1.76354	-0.82584
Н	-5.40031	0.20493	-1.63843
С	-3.13483	0.29408	-3.22872
Н	-3.55514	0.84495	-4.08385

Н	-3.59038	-0.70406	-3.21158
Н	-2.05748	0.17463	-3.39411
C	-3.48988	-0.24652	0.24538
C	-3.98234	0.48995	1.35351
C	-4.71413	-0.16686	2.34696
Н	-5.07766	0.40318	3.20430
C	-4.99327	-1.52454	2.26188
Н	-5.56141	-2.02330	3.04860
C	-4.55300	-2.23546	1.15375
Н	-4.78719	-3.29879	1.07179
C	-3.81350	-1.62173	0.13681
C	-3.77430	1.98820	1.50381
Н	-3.40811	2.36389	0.54209
C	-2.70837	2.29968	2.55539
Н	-2.58629	3.38726	2.68136
Н	-1.73923	1.88046	2.25669
Н	-2.98596	1.87339	3.53288
C	-5.07709	2.72895	1.82675
Н	-4.91681	3.81568	1.76208
Н	-5.42449	2.51194	2.84781
Н	-5.88733	2.45721	1.13432
C	-3.41915	-2.47433	-1.05833
Н	-2.66707	-1.90793	-1.62318
C	-2.81387	-3.82912	-0.66546
Н	-2.35181	-4.30576	-1.54367
Н	-3.58834	-4.51754	-0.29471
Н	-2.05281	-3.73215	0.12039
C	-4.62915	-2.72565	-1.96935
Н	-4.32855	-3.27385	-2.87594
Н	-5.11943	-1.79341	-2.27818
Н	-5.38004	-3.33198	-1.43929
C	-0.60965	-1.55945	1.46725
Н	-1.35536	-1.96650	0.76639
Н	0.19669	-2.31307	1.50753

C	-1.25654	-1.43759	2.85207	
Н	-1.74915	-2.36986	3.17816	
Н	-2.02494	-0.64895	2.87473	
Н	-0.51267	-1.17706	3.62184	
C	0.91570	1.50054	1.85710	
C	0.72632	1.39027	3.38109	
Н	0.51698	2.48422	1.55458	
Н	1.99916	1.56807	1.66334	
Н	1.12446	2.27439	3.90704	
Н	-0.32950	1.29338	3.67311	
Н	1.24528	0.51858	3.80358	

(S3) Crystal data of 1 (CCDC 1566044):

Crystals of compound **1** were selected using a polarization microscope under mounting oil and subsequently shock-frozen in liquid nitrogen and brought to the Swiss Light source (SLS) synchrotron in a storage Dewar. The structure of compound **1** was then measured at beamline X10SA at the SLS. This end station is equipped with a custom-made high-precision one axis goniometer, a DECTRIS Pilatus 6M single photon counting detector and a nitrogen gas-flow cooling device. A wavelength of 0.6358 Å (19.5 keV) and a detector distance of 165 mm were chosen. Only two phi-scans was carried out, giving a > 91 % complete coverage of reciprocal space. In total 450 plus 1800 images were collected in rotation increments of 0.2 degrees. Data integration was performed with the XDS program.¹⁸ An empirical absorption correction, scaling and merging were performed with shelxl using anisotropic displacement parameters for non-hydrogen atoms and a riding hydrogen model.²¹

Crystal data refinement parameter of 1:

C ₄₂ H ₆₇ AlClN ₂	F(000) = 1452
$M_r = 662.40$	$D_{\rm x} = 1.133 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Synchrotron radiation, λ = 0.6358 Å

a = 14.410 (2) Å	Cell parameters from 1302 reflections
b = 17.145 (3) Å	$\theta = 1.4 - 23.0^{\circ}$
c = 17.2175 (5) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 114.14 \ (1)^{\circ}$	T = 100 K
$V = 3881.9 (8) Å^3$	Needle, red
Z = 4	$0.06 \times 0.03 \times 0.03 \text{ mm}$

Data collection:

Microdiffractometer at the SLS	63363 measured reflections
Radiation source: monochromated X-rays beamline X10SA@SLS φ scans Absorption correction: multi-scan <i>SADABS</i> 2016/2: Krause, L., Herbst- Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10 $T_{min} = 0.707, T_{max} = 0.745$	7291 independent reflections 6995 reflections with $I > 2\sigma(I)$ $R_{int} = 0.063$ $\theta_{max} = 23.4^{\circ}, \theta_{min} = 1.4^{\circ}$ $h = -18 \rightarrow 18$ $k = -21 \rightarrow 21$ $l = -21 \rightarrow 21$

Refinement:

Refinement on F^2	Secondary atom site location: difference
Least-squares matrix: full	Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred
$wR(F^2) = 0.113$	from neighbouring sites
S = 1.06	H-atom parameters constrained
 7291 reflections 432 parameters 0 restraints 0 constraints Primary atom site location: dual 	w = $1/[\sigma^2(F_o^2) + (0.0647P)^2 + 1.6437P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.47 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.34 \text{ e } \text{Å}^{-3}$

Bond lengths (Å) and angles (deg) of 1.

Cl1—Al1	2.1967(5)	С20—Н20В	0.9800
Al1—C41	1.9852(13)	С20—Н20С	0.9800
Al1—C21	1.9913(13)	C21—C22	1.5395 (16)
Al1—C1	2.1507(13)	C22—C26	1.5404 (18)
N1—C1	1.3095(15)	C22—C25	1.5407 (18)
N1—C9	1.4676(16)	C22—C23	1.5483 (16)
N1—C4	1.5444(16)	C23—C24	1.5343 (17)
N2—C21	1.4138(15)	С23—Н23А	0.9900
N2—C29	1.4405(16)	С23—Н23В	0.9900
N2—C24	1.4996(16)	C24—C28	1.526 (2)
C1—C2	1.5381(17)	C24—C27	1.5308 (17)
С2—С6	1.5261(17)	С25—Н25А	0.9800
С2—С3	1.5388(18)	С25—Н25В	0.9800
C2—C5	1.5447(18)	С25—Н25С	0.9800
C3—C4	1.5278(18)	С26—Н26А	0.9800
С3—НЗА	0.9900	C26—H26B	0.9800
С3—Н3В	0.9900	С26—Н26С	0.9800
C4—C7	1.5218(19)	С27—Н27А	0.9800
C4—C8	1.5257(18)	С27—Н27В	0.9800
C5—H5A	0.9800	С27—Н27С	0.9800
С5—Н5В	0.9800	C28—H28A	0.9800
C5—H5C	0.9800	C28—H28B	0.9800
С6—Н6А	0.9800	C28—H28C	0.9800
С6—Н6В	0.9800	C29—C34	1.4109 (17)
С6—Н6С	0.9800	C29—C30	1.4151 (19)
С7—Н7А	0.9800	C30—C31	1.3962 (19)
С7—Н7В	0.9800	C30—C35	1.5194 (18)
C7—H7C	0.9800	C31—C32	1.383 (2)
C8—H8A	0.9800	С31—Н31	0.9500
C8—H8B	0.9800	C32—C33	1.380 (2)
C8—H8C	0.9800	С32—Н32	0.9500
C9—C14	1.4075(17)	C33—C34	1.3975 (19)

C9—C10	1.4084(18)	С33—Н33	0.9500
C10—C11	1.3959 (19)	C34—C38	1.5178 (19)
C10—C15	1.5228 (17)	C35—C36	1.537 (2)
C11—C12	1.378 (2)	C35—C37	1.5415 (18)
С11—Н11	0.9500	С35—Н35	1.0000
C12—C13	1.380 (2)	С36—Н36А	0.9800
С12—Н12	0.9500	С36—Н36В	0.9800
C13—C14	1.3940 (18)	С36—Н36С	0.9800
С13—Н13	0.9500	С37—Н37А	0.9800
C14—C18	1.5247 (17)	С37—Н37В	0.9800
C15—C17	1.535 (2)	С37—Н37С	0.9800
C15—C16	1.5419 (19)	C38—C39	1.5304 (18)
С15—Н15	1.0000	C38—C40	1.5413 (17)
С16—Н16А	0.9800	С38—Н38	1.0000
С16—Н16В	0.9800	С39—Н39А	0.9800
С16—Н16С	0.9800	С39—Н39В	0.9800
С17—Н17А	0.9800	С39—Н39С	0.9800
С17—Н17В	0.9800	C40—H40A	0.9800
С17—Н17С	0.9800	C40—H40B	0.9800
C18—C20	1.5375 (18)	С40—Н40С	0.9800
C18—C19	1.5378 (17)	C41—C42	1.526 (2)
С18—Н18	1.0000	C41—H41A	0.9900
С19—Н19А	0.9800	C41—H41B	0.9900
С19—Н19В	0.9800	C42—H42A	0.9800
С19—Н19С	0.9800	C42—H42B	0.9800
С20—Н20А	0.9800	C42—H42C	0.9800
C41—Al1—C21	118.45 (5)	N2—C21—C22	107.36 (10)
C41—Al1—C1	100.39 (5)	N2—C21—Al1	126.01 (8)
C21—Al1—C1	115.19 (5)	C22—C21—Al1	126.29 (8)
C41—Al1—Cl1	108.07 (4)	C21—C22—C26	111.64 (11)
C21—Al1—Cl1	109.37 (4)	C21—C22—C25	112.27 (10)

C1—Al1—Cl1	104.14 (4)	C26—C22—C25	108.23 (10)
C1—N1—C9	126.48 (11)	C21—C22—C23	104.43 (9)
C1—N1—C4	116.04 (10)	C26—C22—C23	108.75 (10)
C9—N1—C4	117.26 (9)	C25—C22—C23	111.46 (11)
C21—N2—C29	122.09 (10)	C24—C23—C22	107.00 (10)
C21—N2—C24	112.90 (10)	С24—С23—Н23А	110.3
C29—N2—C24	121.35 (9)	С22—С23—Н23А	110.3
N1—C1—C2	107.41 (10)	С24—С23—Н23В	110.3
N1—C1—Al1	132.60 (9)	С22—С23—Н23В	110.3
C2—C1—Al1	119.79 (8)	H23A—C23—H23B	108.6
C6—C2—C1	113.86 (10)	N2—C24—C28	111.50 (10)
С6—С2—С3	111.49 (12)	N2—C24—C27	112.67 (11)
C1—C2—C3	104.02 (10)	C28—C24—C27	108.97 (11)
C6—C2—C5	108.56 (11)	N2—C24—C23	101.79 (9)
C1—C2—C5	107.72 (11)	C28—C24—C23	110.57 (11)
C3—C2—C5	111.11 (10)	C27—C24—C23	111.20 (10)
C4—C3—C2	106.13 (11)	C22—C25—H25A	109.5
С4—С3—НЗА	110.5	С22—С25—Н25В	109.5
С2—С3—НЗА	110.5	H25A—C25—H25B	109.5
С4—С3—Н3В	110.5	С22—С25—Н25С	109.5
С2—С3—Н3В	110.5	H25A—C25—H25C	109.5
НЗА—СЗ—НЗВ	108.7	H25B—C25—H25C	109.5
С7—С4—С8	107.69 (11)	C22—C26—H26A	109.5
C7—C4—C3	111.65 (12)	С22—С26—Н26В	109.5
C8—C4—C3	114.50 (11)	H26A—C26—H26B	109.5
C7—C4—N1	111.74 (10)	С22—С26—Н26С	109.5
C8—C4—N1	111.13 (11)	H26A—C26—H26C	109.5
C3—C4—N1	100.10 (9)	H26B—C26—H26C	109.5
С2—С5—Н5А	109.5	С24—С27—Н27А	109.5
С2—С5—Н5В	109.5	С24—С27—Н27В	109.5
Н5А—С5—Н5В	109.5	H27A—C27—H27B	109.5
С2—С5—Н5С	109.5	С24—С27—Н27С	109.5
1	i i i i i i i i i i i i i i i i i i i		i i i i i i i i i i i i i i i i i i i

H5A—C5—H5C	109.5	H27A—C27—H27C	109.5
H5B—C5—H5C	109.5	H27B—C27—H27C	109.5
С2—С6—Н6А	109.5	C24—C28—H28A	109.5
С2—С6—Н6В	109.5	C24—C28—H28B	109.5
Н6А—С6—Н6В	109.5	H28A—C28—H28B	109.5
С2—С6—Н6С	109.5	C24—C28—H28C	109.5
Н6А—С6—Н6С	109.5	H28A—C28—H28C	109.5
Н6В—С6—Н6С	109.5	H28B—C28—H28C	109.5
С4—С7—Н7А	109.5	C34—C29—C30	119.52 (12)
С4—С7—Н7В	109.5	C34—C29—N2	120.37 (12)
Н7А—С7—Н7В	109.5	C30—C29—N2	120.09 (11)
С4—С7—Н7С	109.5	C31—C30—C29	119.09 (12)
Н7А—С7—Н7С	109.5	C31—C30—C35	117.81 (12)
Н7В—С7—Н7С	109.5	C29—C30—C35	123.10 (12)
С4—С8—Н8А	109.5	C32—C31—C30	121.33 (14)
С4—С8—Н8В	109.5	С32—С31—Н31	119.3
Н8А—С8—Н8В	109.5	С30—С31—Н31	119.3
С4—С8—Н8С	109.5	C33—C32—C31	119.42 (13)
Н8А—С8—Н8С	109.5	С33—С32—Н32	120.3
Н8В—С8—Н8С	109.5	С31—С32—Н32	120.3
C14—C9—C10	121.69 (11)	C32—C33—C34	121.50 (13)
C14—C9—N1	119.48 (11)	С32—С33—Н33	119.3
C10—C9—N1	118.76 (11)	С34—С33—Н33	119.3
С11—С10—С9	117.46 (12)	C33—C34—C29	119.01 (13)
C11—C10—C15	116.81 (12)	C33—C34—C38	117.76 (11)
C9—C10—C15	125.59 (11)	C29—C34—C38	123.15 (12)
C12—C11—C10	121.81 (13)	C30—C35—C36	110.59 (11)
C12—C11—H11	119.1	C30—C35—C37	112.31 (11)
C10—C11—H11	119.1	C36—C35—C37	109.79 (12)
C11—C12—C13	119.67 (12)	С30—С35—Н35	108.0
C11—C12—H12	120.2	С36—С35—Н35	108.0
C13—C12—H12	120.2	С37—С35—Н35	108.0
C12—C13—C14	121.56 (12)	С35—С36—Н36А	109.5
С12—С13—Н13	119.2	С35—С36—Н36В	109.5

С14—С15—Н13	119.2	H36A—C36—H36B	109.5
C13—C14—C9	117.76 (12)	С35—С36—Н36С	109.5
C13—C14—C18	117.04 (11)	H36A—C36—H36C	109.5
C9—C14—C18	124.99 (11)	H36B—C36—H36C	109.5
C10—C15—C17	110.39 (12)	С35—С37—Н37А	109.5
C10—C15—C16	112.57 (11)	С35—С37—Н37В	109.5
C17—C15—C16	108.92 (12)	Н37А—С37—Н37В	109.5
С10—С15—Н15	108.3	С35—С37—Н37С	109.5
C17—C15—H15	108.3	Н37А—С37—Н37С	109.5
C16—C15—H15	108.3	Н37В—С37—Н37С	109.5
С15—С16—Н16А	109.5	C34—C38—C39	113.59 (12)
C15—C16—H16B	109.5	C34—C38—C40	109.53 (10)
H16A—C16—H16B	109.5	C39—C38—C40	109.11 (10)
C15—C16—H16C	109.5	С34—С38—Н38	108.2
H16A—C16—H16C	109.5	С39—С38—Н38	108.2
H16B—C16—H16C	109.5	C40—C38—H38	108.2
С15—С17—Н17А	109.5	С38—С39—Н39А	109.5
С15—С17—Н17В	109.5	С38—С39—Н39В	109.5
H17A—C17—H17B	109.5	H39A—C39—H39B	109.5
С15—С17—Н17С	109.5	С38—С39—Н39С	109.5
H17A—C17—H17C	109.5	Н39А—С39—Н39С	109.5
H17B—C17—H17C	109.5	Н39В—С39—Н39С	109.5
C14—C18—C20	108.97 (11)	С38—С40—Н40А	109.5
C14—C18—C19	113.19 (10)	C38—C40—H40B	109.5
C20—C18—C19	108.70 (10)	H40A—C40—H40B	109.5
C14—C18—H18	108.6	C38—C40—H40C	109.5
C20—C18—H18	108.6	H40A—C40—H40C	109.5
C19—C18—H18	108.6	H40B—C40—H40C	109.5
С18—С19—Н19А	109.5	C42—C41—Al1	117.28 (9)
C18—C19—H19B	109.5	C42—C41—H41A	108.0
H19A—C19—H19B	109.5	Al1—C41—H41A	108.0
С18—С19—Н19С	109.5	C42—C41—H41B	108.0
H19A—C19—H19C	109.5	Al1—C41—H41B	108.0
H19B—C19—H19C	109.5	H41A—C41—H41B	107.2

C18—C20—H20A	109.5	C41—C42—H42A	109.5
C18—C20—H20B	109.5	C41—C42—H42B	109.5
H20A—C20—H20B	109.5	H42A—C42—H42B	109.5
C18—C20—H20C	109.5	C41—C42—H42C	109.5
H20A—C20—H20C	109.5	H42A—C42—H42C	109.5
H20B—C20—H20C	109.5	H42B—C42—H42C	109.5

(S4) References:

(1) V. Lavallo, Y. Canac, C. Präsang, B. Donnadieu and G. Bertrand, Angew. Chem., Int. Ed., 2005, 44, 5705-5709.

(2) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, Revision D.01*, Gaussian, Inc., Wallingford CT, 2013.

(3) (a) G. teVelde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. Van Gisbergen, J. G. Snijders and T. Ziegler, J. Comput. Chem., 2001, 22, 931; (b) C. Fonseca Guerra, J.G. Snijders, G. te Velde and E.J. Baerends, Towards an order-N DFT method, Theoretical Chemistry Accounts 1998, 99, 391; (c) ADF2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.

(4) Y. Zhao, N. E. Schultz and D. G. Truhlar, J. Chem. Theory and Comput., 2006, 2, 364.

(5) A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571.

(6) A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829.

(7) A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378.

(8) *NBO 6.0.* E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison (2013).

- (9) (a) A. D. Becke, *Phys. Rev. A* 1988, **38**, 3098; (b) J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822.
- (10) J. G. Snijders, P. Vernooijs and E. J. Baerends, Atom. Data Nucl. Data Tables, 1981, 26, 483.
- (11) K. B. Wiberg, Tetrahedron, 1968, 24, 1083.
- (12) T. A. Keith, *AIMALL Version 17.01.25*, TK Gristmill Software, Overland Park, KS, USA, 2017. See http://aim.tkgristmill.com.
- (13) (a) T. Ziegler and A. Rauk, *Theor. Chim. Acta*, 1977, **46**, 1; (b) M. Mitoraj and A. Michalak, *J. Mol. Model.*, 2007, **13**, 347.
- (14) (a) E. Van Lenthe, E. J. Baerends and J. G. Snijders, *J. Chem. Phys.*, 1993, **99**, 4597; (b) E. V. Lenthe, E. J. Baerends and J. G. Snijders, *J. Chem. Phys.*, 1994, **101**, 9783.
- (15) (a) L. Hermosilla, P. Calle, J. M. García de la Vega and C. Sieiro, J. Phys. Chem. A 2005, 109, 1114;
- (b) L. Hermosilla, P. Calle, J. M. García de la Vega, C. Sieiro, J. Phys. Chem. A 2005, 109, 7626.
- (16) G. A. Andrienko, http://www.chemcraftprog.com.
- (17) C. Y. Legault, CYLView, 1.0b, Université de Sherbrooke, 2009. See http://www.cylview.org.
- (18) W. Kabsch, Acta Cryst., 2010, D66, 125-132.
- (19) L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst., 2015, 48, 3-10.
- (20) G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
- (21) Sheldrick G. M., Acta Cryst., 2015, C71, 3-8.