Stalin R. Pathipati, Lars Eriksson, and Nicklas Selander*

Supporting Information

Stereoselective synthesis of bicyclo[3.*n*.1]alkenone frameworks by Lewis acid-catalysis

Stalin R. Pathipati,^a Lars Eriksson,^b and Nicklas Selander^{*a}

^aDepartment of Organic Chemistry, ^bDepartment of Materials and Environmental Chemistry Arrhenius Laboratory, Stockholm University SE-106 91 Stockholm, Sweden nicklas.selander@su.se

Table of Contents

1.	. General Information			
2.	Experimental Procedures and Spectral Data	3		
2.1	I Screening of Reaction Conditions			
2.2	2 Screening of Amines	4		
2.3	General Procedure for the Synthesis of Compounds 3a-3n , 3p-3s			
2.4	Procedure for the Oxidation of 3a			
2.5	5 Differential NOE Spectra of 3h and 3q	14		
3.	¹ H and ¹³ C NMR Spectra			
4.	References			

1. General Information

All reactions were carried out using anhydrous solvents under argon atmosphere (by using a glove-box or standard Schlenk techniques). 2-(1-Alkynyl)-2-alken-1-ones (1) were synthesized according to a literature procedure¹ from the corresponding 2-iodo-2-alken-1-ones² and spectral data for the compounds above can be found in the following references: 1a, 1h, 1p&1q,³ 1b&1g,⁴ 1c&1d,⁵ 1f,¹ 1r.⁶, 1i&1e.⁷ 4 Å molecular sieves (powdered, 2-3 μ m) were flame dried for 20-30 minutes in vacuo prior to use. All other starting materials, catalysts, and solvents were purchased from commercial suppliers and were used as received.

¹H NMR and ¹³C NMR spectra were recorded at room temperature in CDCl₃ on a Bruker 400 or 500 MHz spectrometer. Chemical shifts (δ) are reported in ppm with the following abbreviations used for the observed multiplicities: s (singlet), d (doublet), t (triplet), q (quartet), br (broad), m (multiplet, for unresolved signals). ¹H NMR chemical shifts were referenced to the residual solvent signal for CHCl₃ (7.26 ppm), and ¹³C NMR chemical shifts were referenced to the solvent signal of CDCl₃ (77.16 ppm). Analytical TLC was performed on pre-coated silica gel plates. After elution, the plates were visualized by UV illumination at 254–360 nm and by staining with ethanolic KMnO₄. Column chromatography was performed using Davisil 60Å silica gel (35-70 µm). HRMS data were recorded on a micrOTOF instrument using ESI technique. X-ray crystallographic data were collected using a Bruker advance D8 single crystal diffractometer. HPLC samples were analyzed by UV detection (at 210.5 nm) on a Waters 2489 HPLC.

Isomeric ratios of the products were determined by ¹H NMR analysis of crude reaction mixtures. Single-crystal X-ray analysis (CCDC 1569101) was used for determination of the relative configuration of compound 3n. The relative configuration of compounds 3h and 3q was determined by 1D-NOE experiments. The enantiomeric excess of compound $3a^*$ was determined by chiral HPLC using the racemic compound as a reference.

2. Experimental Procedures and Spectral Data

2.1 Screening of Reaction Conditions

To a screw-cap vial equipped with a magnetic stirring bar were added **1a** (0.10 mmol), **2a** (1-2 equiv, see below), morpholine (1-2 equiv, see below), the indicated catalyst, molecular sieves (4 Å) and the indicated solvent under argon (glove-box). The reaction mixture was stirred for 18 hours at 80 °C and then allowed to cool down to room temperature. The yields were determined by ¹H NMR analysis after evaporation of the solvent, using 1,3,5-trimethoxybenzene as an internal standard. The results are summarized in Table S-1.

F	Ph Me +	0 2a	catalyst (20 mol%) morpholine solvent, 4Å MS 80 °C, 18 h	Ph 3a +	Ph Ph Ph	0 L a
entry	catalyst	4Å MS	solvent	ratio	yield 3a	yield 4a
	(20 mol %)	(mg)	(1.0 mL)	1a : 2a : morpholine	(%)	(%)
1	InBr ₃	0	DCE (2.0 mL)	1:1.5:2	61	17
2	InBr ₃	45	DCE (2.0 mL)	1:1.5:2	84	2
3	InBr ₃	45	DCE	1:1.5:2	89	6
4	InBr ₃	45	EtOAc	1:1.5:2	74	4
5	InBr ₃	45	CH ₃ CN	1:1.5:2	79	9
6	InBr ₃	45	CDCl ₃	1:1.5:2	72	1
7	InBr ₃	45	PhCH ₃	1:1.5:2	54	4
8	InBr ₃	45	DCM	1:1.5:2	85	2
9	InBr ₃	45	THF	1:1.5:2	81	3
10	None	45	DCE	1:1.5:2	39	16
11	ScOTf ₃	45	DCE	1:1.5:2	35	24
12	$ZnOTf_2$	45	DCE	1:1.5:2	47	7
13	CuOTf ₂	45	DCE	1:1.5:2	34	5
14	AgOTf	45	DCE	1:1.5:2	76	9
15	InOTf ₃	45	DCE	1:1.5:2	35	9
16	$In(NTf_2)_3$	45	DCE	1:1.5:2	54	9
17	ZnCl ₂	45	DCE	1:1.5:2	62	6
18	FeCl ₃	45	DCE	1:1.5:2	60	2
19	InCl ₃	45	DCE	1:1.5:2	91	3
20	TsOH [·] H ₂ O	45	DCE	1:1.5:2	57	12
21	$InCl_3(5 mol\%)$	45	DCE	1:1.5:2	74	4
22	InCl ₃ (10 mol%)	45	DCE	1:1.5:2	90	4
23	$InCl_3(10 mol\%)$	45	DCE	1:1:1	46	7
24	$InCl_3(10 mol\%)$	45	DCE	1:1.5:1	50	6
25	$InCl_3(10 mol\%)$	45	DCE	1:2:1	42	4
26	$InCl_3(10 mol\%)$	45	DCE	1 : 1.5 : 1.5	76	6
27	$InCl_3(10 \text{ mol}\%)$	45	DCE	1:1:2	71	2

Table S-1 Screening of reaction conditions

2.2 Screening of Amines

To a screw-cap vial equipped with a magnetic stirring bar were added **1a** (0.10 mmol), **2a** (1.5 equiv), amine (0.3-2.0 equiv, see below), $InCl_3$ (10 mol%), molecular sieves (4 Å, 45 mg) and DCE (1.0 mL) under argon (glove-box). The reaction mixture was stirred for 18 hours at 80 °C and then allowed to cool down to room temperature. The yields were determined by ¹H NMR analysis after evaporation of the solvent, using 1,3,5-trimethoxybenzene as an internal standard. The results are summarized in Table S-2.

 Table S-2 Screening of various amines

entry	amine	amine	yield 3a	yield 4a	SM 1a
		(X equiv)	(%)	(%)	(%)
1	S 1	0.3	0	0	05
1	51	0.3	0	0	93
2	51	2.0	0	0	95
3	S2	2.0	0	0	99
4	S3	0.3	48	3	0
5	S3	1.0	48	2	0
6	S3	2.0	69	8	0
7	S4	0.3	29	0	32
8	S4	1.0	39	3	0
9	S4	2.0	57	8	0
10	S 5	0.3	34	1	21
11	S 5	1.0	55	7	0
12	S5	2.0	90	3	0
13	S6	2.0	8	0	70
14	S 7	0.3	0	0	30
15	S7	2.0	4	0	25
16	S8	2.0	26	0	0
17	S9	0.3	0	0	77
18	S9	2.0	13	0	28

Determination of ee values for reactions carried out with amines S8 and S9

Scheme S-1 Performing the reaction with amine S8

3-Acetyl-2-benzyl-4-phenylbicyclo[3.2.1]oct-2-en-8-one* (3a*): (Amine S8, 24% yield, 8.0 mg, colorless solid); HPLC: 33% *ee* (Chiralcel IC, 1.0 mL/min, 10% i-PrOH/hexanes), $t_{\rm R} = 12.64$ min (minor), $t_{\rm R} = 13.68$ min (major).

Scheme S-2 Performing the reaction with amine S9

3-Acetyl-2-benzyl-4-phenylbicyclo[3.2.1]oct-2-en-8-one* (3a*): (Amine **S9**, 12% yield, 4.0 mg, colorless solid); HPLC: 70% *ee* (Chiralcel IC, 1.0 mL/min, 10% i-PrOH/hexanes), $t_{\rm R} = 12.58$ min (minor), $t_{\rm R} = 13.62$ min (major).

(*rac*)-3a:

with amine S9:

Using a preformed enamine as a starting material

To reduce the requirement of an excess of amine and ketone, a preformed enamine was used as a starting material (in different equivalents) along with 2a (0-1.0 equiv).

Enamine A: To a screw-cap vial equipped with a magnetic stirring bar were added **2a** (0.10 mmol), morpholine (1.0 equiv), molecular sieves (4 Å, 400 mg) and DCE (1.0 mL) under argon (glove-box). The reaction mixture was stirred for one hour at 28 °C to obtain **enamine A** in full conversion as judged by ¹H NMR. **Enamine A** was used without further purification.

Scheme S-3 Synthesis of enamine A

To a screw-cap vial equipped with a magnetic stirring bar were added **1a** (0.10 mmol), **2a** (0-1.0 equiv), $InCl_3$ (10 mol%) and **enamine A** (0.5-1.5 equiv) in DCE (1.0 mL) under argon (glove-box). The reaction mixture was stirred for 18 hours at 80 °C and then allowed to cool down to room temperature. The yields were determined by ¹H NMR analysis after evaporation of the solvent, using 1,3,5-trimethoxybenzene as an internal standard. The outcome of these experiments (Table S-3) indicates that both starting materials, **enamine A** and **2a**, were needed in excess to obtain high yields of product **3**.

Table S-3 Investigating a preformed enamine as reactant

Pł	Ph Me +		a (0-0.1 mmol) hCl ₃ (10 mol%) DCE (1.0 mL) 80 °C, 18 h	Ph O + Ph Me	N O Ph
	1a (0.1 mmol)	enamine A		3a	4a
entry	2a	enamine A	yield 3a	yield 4a	SM 1a
	(X equiv)	(X equiv)	(%)	(%)	(%)
1		0.5	21	3	45
2		1.0	29	trace	15
3		1.5	27	trace	4
4	0.5	0.5	33	trace	55
5	0.5	1.0	59	trace	2
6	1.0	0.5	30	trace	31

Slow addition of amine

To a screw-cap vial equipped with a magnetic stirring bar were added **1a** (0.10 mmol), **2a** (1.5 equiv), InCl₃ (10 mol%), molecular sieves (4 Å, 45 mg) and DCE (0.5 mL) under argon (glove-box). Morpholine (1.0 equiv) dissolved in 0.5 mL of DCE was added to the reaction mixture drop-wise over 17 h (0.029 mL/h). The reaction mixture was stirred for one additional hour at 80 °C, and then allowed to cool down to room temperature. The yield of **3a** (30%) was determined by ¹H NMR analysis after evaporation of the solvent, using 1,3,5-trimethoxybenzene as an internal standard.

Scheme S-4 Slow addition of morpholine

2.3 General Procedure for the Synthesis of Compounds 3a-3n, 3p-3s.

To a microwave vial equipped with a magnetic stirring bar were added 2-(1-alkynyl)-2-alken-1-one **1** (0.30 mmol), ketone **2** (0.45 mmol), morpholine (for **3a-3i**, **3p-3r**) or pyrrolidine (for **3j-3n** and **3s**) (0.60 mmol), anhydrous InCl₃ (10 mol %), powdered molecular sieves (4 Å, 135 mg), and 1,2-dichloroethane (3.0 mL) under argon (glove-box). The reaction mixture was stirred for 18 hours at 80 °C (unless otherwise stated) and then allowed to cool down to room temperature. After evaporation of the solvent, the crude product was purified by column chromatography (petroleum ether/ethyl acetate) or recrystallized from diethyl ether to obtain analytically pure bicyclic bridged keto compounds **3a-3n**, and **3p-3s**.

3-Acetyl-2-benzyl-4-phenylbicyclo[3.2.1]oct-2-en-8-one (3a)

3a: (86% yield, 85.2 mg; (82% yield, 1.085 g for 4.0 mmol scale), colorless solid): ¹H NMR (400 MHz, CDCl₃): δ ppm 7.38-7.22 (m, 8H), 7.13-7.10 (m, 2H), 4.36 (bs, 1H), 3.87 (d, J = 14.6 Hz, 1H), 3.45 (dd, J = 14.7, 1.5 Hz, 1H), 2.53-2.51 (m, 1H), 2.37-2.34 (m, 1H), 2.29-2.19 (m, 1H), 2.08-2.01 (m, 4H), 1.96-1.87 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 213.55, 203.04, 147.27, 139.95, 137.69, 135.57,

129.15, 129.08, 128.99, 127.87, 127.77, 126.96, 60.73, 49.75, 48.11, 39.55, 30.88, 28.08, 25.72; **HRMS** (ESI): m/z calcd for C₂₃H₂₂NaO₂ [M+Na]⁺ 353.1512, found 353.1499.

3-Acetyl-2-(4-methoxybenzyl)-4-phenylbicyclo[3.2.1]oct-2-en-8-one (3b)

3b: (81% yield, 87.3 mg, colorless solid): ¹H NMR (400 MHz, CDCl₃): δ ppm 7.33-7.29 (m, 2H), 7.26-7.22 (m, 3H), 7.12-7.10 (m, 2H), 6.91-6.88 (m, 2H), 4.35 (bs, 1H), 3.82-3.78 (m, 4H), 3.36 (dd, J = 14.5, 1.3 Hz, 1H), 2.52-2.51 (m, 1H), 2.35-2.33 (m, 1H), 2.28-2.20 (m, 1H), 2.08-1.89 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 213.64, 203.02, 158.60, 147.69, 139.97, 135.18, 130.11, 129.62,

129.02, 127.84, 127.71, 114.38, 60.69, 55.40, 49.74, 47.98, 38.66, 30.83, 28.06, 25.70; **HRMS** (ESI): m/z calcd for C₂₄H₂₄NaO₃ [M+Na]⁺ 383.1618, found 383.1630.

3-Acetyl-4-phenyl-2-(4-(trifluoromethyl)benzyl)bicyclo[3.2.1]oct-2-en-8-one (3c)

3c: (75% yield, 89.5 mg, colorless solid): ¹H NMR (400 MHz, CDCl₃): δ ppm 7.62 (d, J = 8.2 Hz, 2H), 7.47 (d, J = 8.2 Hz, 2H), 7.34-7.23 (m, 3H), 7.10-7.08 (m, 2H), 4.39 (bs, 1H), 4.02 (d, J = 14.4 Hz, 1H), 3.39 (d, J = 14.5 Hz, 1H), 2.46 (d, J = 5.3 Hz, 1H), 2.39-2.37 (m, 1H), 2.33-2.22 (m, 1H), 2.11-1.93 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 212.83, 202.15, 147.38, 142.07, 139.63, 135.87,

 $\begin{array}{c} (1.5) \\ (129.49, 129.27 (q, {}^{2}J_{C-CF_{3}} = 32.2 \text{ Hz}), 129.15, 127.89, 127.76, 125.87 (q, {}^{3}J_{C-CF_{3}} = 3.7 \text{ Hz}), \\ (124.33 (q, {}^{1}J_{C-F} = 272.0 \text{ Hz}), 60.63, 49.72, 48.24, 39.36, 30.39, 27.99, 25.70;$ **HRMS**(ESI): $m/z calcd for C₂₄H₂₁F₃NaO₂ [M+Na]⁺ 421.1386, found 421.1371. \\ \end{array}$

3-Acetyl-2-(cyclohexylmethyl)-4-phenylbicyclo[3.2.1]oct-2-en-8-one (3d)

(41.57, 37.05, 33.71, 33.42, 30.98, 28.09, 26.54, 26.49, 25.85; **HRMS** (ESI): *m/z* calcd for C₂₃H₂₈NaO₂ [M+Na]⁺ 359.1982, found 359.1984.

3-Acetyl-2-pentyl-4-phenylbicyclo[3.2.1]oct-2-en-8-one (3e)

3e: (66% yield, 61.7 mg, colorless solid): ¹**H NMR** (400 MHz, CDCl₃): δ ppm 7.29-7.19 (m, 3H), 7.06-7.04 (m, 2H), 4.31 (bs, 1H), 2.56-2.45 (m, 2H), 2.35-2.24 (m, 2H), 2.16-1.93 (m, 7H), 1.67-1.52 (m, 2H), 1.42-1.33 (m, 4H) 0.94-0.91 (m, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 213.80, 202.56, 150.99, 140.20, 133.58, 128.96, 127.80, 127.64, 60.59, 49.96, 48.96, 34.65, 32.18, 30.71, 28.35, 28.11, 25.69, 22.60, *m/z* calcd for Carly Na⁺ Na⁺ 333 1825 found 333 1818

14.15; **HRMS** (ESI): m/z calcd for C₂₁H₂₆NaO₂ [M+Na]⁺ 333.1825, found 333.1818

(Z)-2-Methylene-4-phenyl-3-(1-((trimethylsilyl)oxy)ethylidene)bicyclo[3.2.1]octan-8-one (3f)

3f: (42% yield, 40.9 mg, colorless solid): ¹**H NMR** (500 MHz, CDCl₃): δ ppm 7.26-7.22 (m, 2H), 7.18-7.15 (m, 3H), 5.35 (d, J = 1.6 Hz, 1H), 5.16 (d, J = 1.6 Hz, 1H), 3.91 (d, J = 3.3 Hz, 1H), 2.80 (d, J = 6.2 Hz, 1H), 2.49-2.48 (m, 1H), 2.15-2.07 (m, 1H), 2.03-1.94 (m, 1H), 1.91-1.82 (m, 5H), 0.23 (s, 9H); ¹³C NMR (126 MHz, CDCl₃): δ ppm 215.24, 149.74, 146.90, 142.56, 128.45, 127.30, 126.70, 114.37,

113.51, 55.88, 55.32, 51.21, 24.15, 24.00, 20.33, 1.06; **HRMS** (ESI): m/z calcd for $C_{20}H_{26}NaO_2Si [M+Na]^+$ 349.1594, found 349.1591.

3-Acetyl-2-benzyl-4-methylbicyclo[3.2.1]oct-2-en-8-one (3g)

3g: (29% yield, 23.6 mg, colorless solid): ¹**H NMR** (400 MHz, CDCl₃): δ ppm 7.32-7.26 (m, 2H), 7.22-7.17 (m, 3H), 3.51-3.44 (m, 1H), 3.38 (s, 2H), 2.40 (dd, J = 5.3, 1.2 Hz, 1H), 2.30-2.21 (m, 4H), 2.01-1.94 (m, 1H), 1.87-1.72 (m, 2H), 1.66-1.60 (m, 1H), 1.08 (d, J = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 215.40, 205.48, 140.65, 138.89, 137.73, 129.06, 128.78, 126.80, 43.59, 39.37, 30.42, 28.21, 18.44, 16.46;

HRMS (ESI): m/z calcd for C₁₈H₂₀NaO₂ [M+Na]⁺ 291.1356, found 291.1357.

3-Benzoyl-2-benzyl-4-phenylbicyclo[3.2.1]oct-2-en-8-one (3h)

3h: (63% yield, 74.0 mg, colorless solid): ¹**H NMR** (500 MHz, CDCl₃): δ ppm 7.76-7.75 (m, 2H), 7.50-7.47 (m, 1H), 7.38-7.35 (m, 2H), 7.31-7.28 (m, 2H), 7.24-7.19 (m, 5H), 7.15-7.13 (m, 3H), 4.39 (bs, 1H), 3.42 (d, J = 14.8 Hz, 1H), 3.37 (d, J = 14.8 Hz, 1H), 2.62 (d, J = 5.4 Hz, 1H), 2.42 (d, J = 7.5 Hz, 1H), 2.31-2.24 (m, 1H), 2.19-2.13 (m, 1H), 1.98-1.87 (m, 2H); ¹³C NMR (126 MHz, CDCl₃): δ ppm 214.56, 198.18, 144.62, 120 26 (m, 120 26 (m, 120 26 (m, 120 26 (m, 120 10 m))))

139.73, 137.42, 137.21, 134.45, 133.40, 129.26, 129.14, 128.83, 128.71, 128.66, 128.19, 127.49, 126.92, 61.32, 49.31, 47.77, 40.43, 28.61, 26.05; **HRMS** (ESI): m/z calcd for $C_{28}H_{24}NaO_2 [M+Na]^+$ 415.1669, found 415.1680.

Methyl-2-benzyl-8-oxo-4-phenylbicyclo[3.2.1]oct-2-ene-3-carboxylate (3i)

3i: (78% yield, 84.7 mg; colorless solid): ¹**H** NMR (400 MHz, CDCl₃): δ ppm 7.36-7.27 (m, 7H), 7.23-7.20 (m, 1H), 7.10-7.08 (m, 2H), 4.48 (bs, 1H), 4.17 (d, *J* = 14.1 Hz, 1H), 3.56 (s, 3H), 3.51 (dd, *J* = 14.1, 1.5 Hz, 1H), 2.54-2.53 (m, 1H), 2.34-2.32 (m, 1H), 2.26-2.15 (m, 2H), 2.08-1.90 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 213.19, 167.68, 152.58, 140.66, 137.82, 129.22, 128.91, 128.76, 127.53,

127.35, 126.91, 126.50, 59.92, 51.82, 49.57, 48.45, 40.04, 28.04, 25.33; **HRMS** (ESI): m/z calcd for C₂₃H₂₂NaO₃ [M+Na]⁺ 369.1461, found 369.1452.

Methyl-2-benzyl-9-oxo-4-phenylbicyclo[3.3.1]non-2-ene-3-carboxylate (3j)

3j: (pyrrolidine was used, 82% yield, 92.1 mg, colorless solid): ¹**H NMR** (500 MHz, CDCl₃): δ ppm 7.34-7.16 (m, 8H), 7.05-7.03 (m, 2H), 4.37 (d, J = 1.1 Hz, 1H), 4.15 (d, J = 14.3 Hz, 1H), 3.56 (s, 3H), 3.31 (dd, J = 14.3, 1.9 Hz, 1H), 2.90 (bs, 1H), 2.55 (bs, 1H), 2.28-2.24 (m, 1H), 2.09-1.82 (m, 4H), 1.62-1.57 (m, 1H); ¹³**C NMR** (126 MHz, CDCl₃): δ ppm 213.71, 167.59, 144.44, 142.58, 137.97, 132.22, 129.06,

128.85, 128.76, 127.22, 127.02, 126.78, 54.60, 53.59, 51.67, 50.15, 38.76, 37.14, 32.66, 17.61; **HRMS** (ESI): m/z calcd for C₂₄H₂₄NaO₃ [M+Na]⁺ 383.1618, found 383.1621.

3-Acetyl-2-benzyl-4-phenylbicyclo[3.3.1]non-2-en-9-one (3k)

3k: (pyrrolidine was used, 58% yield (33% with morpholine), 59.7 mg, colorless solid): ¹H NMR (500 MHz, CDCl₃): δ ppm 7.35-7.19 (m, 8H), 7.07-7.05 (m, 2H), 4.21 (d, J = 1.2 Hz, 1H), 3.75 (d, J = 15.0 Hz, 1H), 3.33 (dd, J = 15.0, 1.8 Hz, 1H), 2.87 (bs, 1H), 2.58 (bs, 1H), 2.27-2.23 (m, 1H), 2.08-1.89 (m, 6H), 1.86-1.78 (m, 1H), 1.61-1.57 (m, 1H); ¹³C NMR (126 MHz, CDCl₃): δ ppm 204.27, 204.45, 142.12, 141.97,

137.69, 137.56, 129.26, 128.98, 128.91, 127.51, 127.44, 126.94, 55.24, 53.71, 49.66, 38.25, 37.19, 32.55, 31.42, 17.59; **HRMS** (ESI): m/z calcd for $C_{24}H_{24}NaO_2$ [M+Na]⁺ 367.1669, found 367.1683.

7-Acetyl-6-benzyl-8-phenylbicyclo[3.3.1]non-6-ene-3,9-dione (3l)

31: (pyrrolidine was used, reaction time 20 h, 32% yield, 34.9 mg, colorless solid): ¹H NMR (500 MHz, CDCl₃): δ ppm 7.35-7.22 (m, 8H), 7.01-6.99 (m, 2H), 4.25 (bs, 1H), 3.92 (d, *J* = 14.9 Hz, 1H), 3.21 (dd, *J* = 14.9, 1.7 Hz, 1H), 3.04-2.99 (m, 2H), 2.90-2.79 (m, 4H), 2.10 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ ppm 208.81, 204.06, 202.34, 140.30, 139.74, 137.41, 137.10, 129.40, 129.17, 129.12, 128.12,

 $[M+Na]^+$ 381.1461, found 381.1447.

3-Acetyl-2-benzyl-7-(tert-butyl)-4-phenylbicyclo[3.3.1]non-2-en-9-one (3m)

3m: (pyrrolidine was used, 41% yield, 49.0 mg, colorless solid): ¹**H NMR** (500 MHz, CDCl₃): δ ppm 7.34-7.26 (m, 5H), 7.25-7.19 (m, 3H), 7.07-7.05 (m, 2H), 4.18 (bs, 1H), 3.68 (d, *J* = 14.9 Hz, 1H), 3.41 (d, *J* = 14.9 Hz, 1H), 2.85-2.82 (m, 1H), 2.59-2.54 (m, 1H), 2.25-2.21 (m, 1H), 1.99 (s, 3H), 1.91-1.88 (m, 1H), 1.74 (dt, *J* = 13.1, 4.3 Hz, 1H), 1.57 (m, 2H), 0.85 (s, 9H); ¹³**C NMR** (126 MHz,

CDCl₃): δ ppm 214.92, 204.37, 142.05, 141.81, 137.65, 129.25, 129.03, 128.98, 127.53, 127.44, 126.95, 55.64, 52.98, 49.32, 38.69, 38.45, 38.22, 33.68, 32.0, 31.51, 27.86; **HRMS** (ESI): *m/z* calcd for C₂₈H₃₂NaO₂ [M+Na]⁺ 423.2295, found 423.2297.

3-Acetyl-2-benzyl-4,7-diphenylbicyclo[3.3.1]non-2-en-9-one (3n)

3n: (pyrrolidine was used, 51% yield, 64.0 mg, colorless solid): ¹**H NMR** (400 MHz, CDCl₃): δ ppm 7.36-7.19 (m, 13H), 7.11-7.08 (m, 2H), 4.35 (bs, 1H), 3.77 (d, *J* = 15.1 Hz, 1H), 3.53-3.42 (m, 2H), 2.94 (bs, 1H), 2.69 (bs, 1H), 2.45-2.39 (m, 1H), 2.19 (ddd, *J* = 15.3, 4.2, 4.1 Hz, 1H), 2.13-1.98 (m, 5H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 213.73, 204.56, 142.86, 142.34, 141.79, 137.74, 137.53,

129.35, 129.09, 128.89, 128.79, 127.60, 127.55, 127.22, 127.08, 126.98, 55.49, 53.27, 49.44, 43.85, 39.48, 38.57, 35.42,31.59; **HRMS** (ESI): m/z calcd for $C_{30}H_{28}NaO_2$ [M+Na]⁺ 443.1982, found 443.1974.

8-Benzyl-3,3a,4,5,6,7-hexahydro-4,7-methanoazulene-1,9(2*H*)-dione (3p)

3p: (73% yield, 58.2 mg, colorless solid): ¹**H** NMR (400 MHz, CDCl₃): δ ppm 7.28-7.16 (m, 5H), 4.42 (d, J = 13.5 Hz, 1H), 3.58 (dd, J = 13.6, 1.4 Hz, 1H), 3.49-3.39 (m, 1H), 2.56-2.35 (m, 4H), 2.02-1.78 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 213.86, 205.21, 152.31, 137.80, 130.55, 129.33, 128.89, 126.90, 51.34, 48.60, 46.96, 40.33, 36.69, 28.63, 23.77, 18.53; **HRMS** (ESI): m/z calcd for C₁₈H₁₈NaO₂ [M+Na]⁺

289.1199, found 289.1196.

9-Benzyl-2,3,4,4a,5,6,7,8-octahydro-1*H*-5,8-methanobenzo[7]annulene-1,10-dione (3q)

3q: (52% yield, 43.8 mg, colorless solid): ¹H NMR (500 MHz, CDCl₃): δ ppm 7.28-7.25 (m, 2H), 7.20-7.18 (m, 3H), 3.94 (d, J = 13.9 Hz, 1H), 3.38 (dd, J = 13.9, 1.2 Hz, 1H), 3.23 (dt, J = 12.2, 3.8 Hz, 1H), 2.62-2.57 (m, 1H), 2.47-2.40 (m, 2H), 2.31-2.29 (m, 1H), 2.18-2.08 (m, 2H), 1.97-1.78 (m, 5H), 1.70-1.65 (m, 1H); ¹³C NMR (126 MHz, CDCl₃): δ ppm 214.13, 201.87, 150.48, 138.14, 132.24, 129.22, 128.65, 126.62, 51.43,

49.48, 48.56, 43.30, 39.30, 28.85, 28.31, 23.74, 19.29; **HRMS** (ESI): m/z calcd for $C_{19}H_{20}NaO_2 [M+Na]^+$ 303.1356, found 303.1345.

9-(4-Methylbenzyl)-2,3,4,4a,5,6,7,8-octahydro-1*H*-5,8-methanobenzo[7]annulene-1,10-dione (3r)

3r: (56% yield, 49.4 mg, colorless solid): ¹H NMR (400 MHz, CDCl₃): δ ppm 7.12-7.02 (m, 4H), 3.89 (d, J = 13.9 Hz, 1H), 3.35 (dd, J = 13.9, 1.2 Hz, 1H), 3.26-3.18 (m, 1H), 2.63-2.56 (m, 1H), 2.47-2.37 (m, 2H), 2.32-2.27 (m, 4H), 2.19-2.07 (m, 2H), 1.98-1.77 (m, 5H), 1.71-1.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 214.30, 201.91, 150.86, 136.12, 135.04, 132.02, 129.38, 129.13, 51.48, 49.48, 48.63, 43.34,

38.91, 28.90, 28.37, 23.79, 21.18, 19.32; **HRMS** (ESI): m/z calcd for C₂₀H₂₂NaO₂ [M+Na]⁺ 317.1512, found 317.1496.

10-Benzyl-3,4,4a,5,6,7,8,9-octahydro-5,9-methanobenzo[8]annulene-1,11(2*H*)-dione (3s)

3s: (pyrrolidine was used, 71% yield, 63.7 mg, colorless solid): ¹**H NMR** (500 MHz, CDCl₃): δ ppm 7.27-7.24 (m, 2H), 7.20-7.17 (m, 3H), 3.66 (d, J = 14.4 Hz, 1H), 3.45 (d, J = 14.4 Hz, 1H), 2.80-2.77 (m, 2H), 2.58-2.54 (m, 1H), 2.38-2.27 (m, 2H), 2.08-2.02 (m, 1H), 1.99-1.92 (m, 2H), 1.88-1.75 (m, 3H), 1.74-1.62 (m, 3H), 1.56-1.52 (m, 1H), 1.43-1.40 (m, 1H); ¹³**C NMR** (126 MHz, CDCl₃): δ ppm 213.91, 205.16,

140.48, 138.33, 138.30, 128.91, 128.72, 126.66, 51.93, 51.80, 51.37, 43.15, 38.65, 36.55, 33.75, 32.84, 24.60, 17.46; **HRMS** (ESI): m/z calcd for $C_{20}H_{22}NaO_2$ [M+Na]⁺ 317.1512, found 317.1511.

2.4 Procedure for the Oxidation of 3a

Compound **5a** was synthesized by an adapted literature procedure.⁸ To a screw-cap vial equipped with a magnetic stirring bar was added **3a** (0.30 mmol, 99.0 mg), NaHCO₃ (1.8 mmol) in CH₂Cl₂ (3.0 mL). Then 77% *m*-CPBA (0.45 mmol, 110.0 mg) was added. The reaction mixture was stirred at room temperature for 2 hours and then an additional 30 minutes after the addition of Na₂SO₃ (175.0 mg) and H₂O (0.5 mL). The organic layer was separated and dried over anhydrous Na₂SO₄. After evaporation of the solvent, the crude product was purified by column chromatography (petroleum ether/ethyl acetate) to obtain analytically pure compound **5a**.

3-Acetyl-4-benzyl-2-phenyl-6-oxabicyclo[3.2.2]non-3-en-7-one (5a)

(92% yield, 95.6 mg, colorless solid): ¹H NMR (400 MHz, CDCl₃): δ ppm 7.39-7.33 (m, 4H), 7.30-7.26 (m, 4H), 7.23-7.20 (m, 2H), 4.72 (dd, J = 7.8, 2.6 Hz, 1H), 3.97 (d, J = 2.2 Hz, 1H), 3.65 (d, J = 14.9 Hz, 1H), 3.56 (d, J = 14.9 Hz, 1H), 3.20 (dd, J = 4.9, 2.3 Hz, 1H), 2.30-2.20 (m, 1H), 2.00-1.86 (m, 5H), 1.83 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 205.92, 172.32, 139.42, 138.05, 136.55, 135.76, 129.15, 129.08, 129.06, 128.99, 128.02, 127.30, 78.37, 55.11, 45.17, 41.56, 32.00, 25.68, 23.70; HRMS (ESI): *m*/*z* calcd for C₂₃H₂₂NaO₃ [M+Na]⁺ 369.1461, found 369.1455.

2.5 Differential NOE Spectra of 3h and 3q

The relative stereochemistry of compounds 3h and 3q was established by 1D differential NOE experiments according to the figures and spectra below.

Product **3h**:

Although the NOE for product $3\mathbf{q}$ resembles the one for product $3\mathbf{h}$, we can not rule out the opposite relative configuration (with respect to H_a and H_b) in $3\mathbf{q}$ due to signal overlap.

3. ¹H and ¹³C NMR Spectra

S-25

4. References

- 1. M. W. Miller and C. R. Johnson, J. Org. Chem., 1997, 62, 1582.
- 2. M. E. Krafft and J. W. Cran, *Synlett.*, 2005, 1263.
- 3. T. Yao, X. Zhang and R. C. Larock, J. Org. Chem., 2005, 70, 7679.
- 4. S. R. Pathipati, A. van der Werf, L. Eriksson and N. Selander, *Angew. Chem. Int. Ed.*, 2016, **55**, 11863.
- 5. L. Zhou, M. Zhang, W. Li and J. Zhang, Angew. Chem. Int. Ed., 2014, 53, 6542.
- 6. N. T. Patil, H. Wu and Y. Yamamoto, J. Org. Chem., 2005, 70, 4531.
- 7. X. Yu, B. Du, K. Wang and J. Zhang, *Org. Lett.*, 2010, **12**, 1876.
- 8. A. P. Marchand, V. S. Kumar and H. K. Hariprakasha, J. Org. Chem., 2001, 66, 2072.