Supporting Information

Facile preparation and dehydrogenation of unsolvated KB₃H₈

Xiongfei Zheng^a, Yanjin Yang^b, Fengqi Zhao^b, Fang Fang^a, Yanhui Guo^a

a, Department of Materials Science, Fudan University, Shanghai, China
E-mail: gyh@fudan.edu.cn
b, Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern
Chemistry Research Institute, Xi'an, Shannxi 710065, China.
E-mail: yyj_zju_91@gmail.com

General procedures

All manipulations were carried out using standard Schlenk line or in a glove box filled with high purity nitrogen. Due to the activity of the reagents, all compounds were stored and handled under an inert atmosphere except during measurements.

Reagents

Sodium borohydride (NaBH₄) (\geq 97%), acetonitrile (\geq 99.5%), diethyl ether ((C₂H₅)₂O) (\geq 99.5%), and tetrahydrofuran (C₄H₈O) (\geq 99.5%) were purchased from SCRC. Sodium (\geq 99.7%), potassium (\geq 99.7%), and cuprous chloride (CuCl) (\geq 97%) were purchased from Aladdin and used as received. THF and Et₂O were dried by refluxing over sodium wire, distilled and stored over potassium mirror.

Na/K alloy preparation

To prepare the Na/K alloy, 8.4g bulky potassium and 0.9g sodium was loaded into a 500ml reaction flask in glove box. A silvery white liquid NaK alloy will form after slow agitation by magnetic bar.

Unsolvated KB₃H₈ preparation

500ml 1 M BH₃·THF solution was prepared by the reaction of excess CuCl with NaBH₄ in THF at 40 °C. ^{s1} The solution was immediately transferred to the Na/K alloy prepared above under N₂ atmosphere and stirred overnight at room temperature. After the solid residue was filtered off, the solvent was distilled off under reduced pressure. Then, the resulting solid product was washed by $15ml\times3$ Et₂O and dried under vacuum to get 4.16g unsolvated KB₃H₈. The yield is 67% based on NaBH₄. Pyrolysis of KB₃H₈

0.5g KB₃H₈ was loaded into a glass tube with one end connected to a N₂ stream line and another end connected to a 50 ml cold trap filled with 10 ml anhydrous tetrahydrofuran (THF). The THF cold trap was cooled to -78 °C by dry ice, and the system was flushed by N₂ flow before pyrolysis. Then, the glass tube was slowly heated to 250 °C and kept for 2h. During the pyrolysis, the gaseous products carried out by the N₂ flow was collected by the THF cold trapped. After the pyrolysis, the glass tube was brought into glove box to collect the solid residue.

Instruments and characterization

Simultaneous thermo-gravimetric analysis and mass spectrometry (TGA-MS) was conducted under 1 atm argon in the temperature range of room temperature to 400 °C at a heating rate of 5 °C min⁻¹ using a netzsch STA 409 C analyzer equipped with a quadrupole mass spectrometer for the analysis of the evolved gas. The targeted gaseous products monitored by MS were H₂ (2) and B₅H₉ (60). Meanwhile, desorption properties for the sample were also evaluated using Sievert's volumetric methods with heating rate of 5 °C min⁻¹ under 1 atm argon. Differential scanning calorimetry (DSC) was performed simultaneously on a Netzsch STA 409 PC with pure argon as the purge gas. Powder X-ray diffraction (XRD) patterns were obtained with a Bruke X'PERT diffractometer (Cu Ka radiation, 16Kw). During the XRD measurement, samples were mounted in a glove box, and an amorphous polymer tape was used to cover the surface of the powder to avoid oxidation. FT-IR (Magna-IR 550 II, Nicolet) analyses were conducted to determine the chemical bond. The solid residue after thermal decomposition was characterized using solid state magic angle spinning (MAS) NMR. This was performed in a field of 6.9 T using 5 mm rotors spinning at 5 kHz. ¹¹B was examined, at 94.6 MHz and room temperature. The free induction decays (FIDs) following 3 μ s $\pi/2$ RF pulses were signal averaged over about 30 min (4000 scans), with high-power hydrogen decoupling. The shift reference was liquid BF₃·Et₂O at 0 ppm. Liquid NMR samples were prepared under argon in 5 mm Wilmad 507-PP tubes fitted with J. Young Teflon valves. ¹¹B spectra were measured on Bruker AVII-400 spectrometers. Chemical shifts are reported in ppm units, referenced to BF₃·Et₂O for ¹¹B chemical shift.

Fig. S1. ¹¹B NMR spectrum of the as-prepared BH₃·THF (δ 0 ppm).

Fig. S2. TG/DSC results of KB₃H₈ with a heating rate of 5 °C min⁻¹ in argon.

Fig. S3. TPD results of KB_3H_8 and KB_3H_8 ball-milled with AlCl₃, FeCl₃ and ZrCl₄, with a heating rate of 5 °C min⁻¹ in argon.

Fig. S4. TG (solid lines), and MS (symbols) results of KB₃H₈ (a), AlCl₃/ 3KB₃H₈ (b), FeCl₃/ 3KB₃H₈ (c) and ZrCl₄/ 4KB₃H₈ (d) composites, with a heating rate of 5 °C min⁻¹ in argon. \bullet H₂, m/e=2, \bigcirc B₂H₆, m/e=26, \diamondsuit B₅H₉, m/e=60, \precsim B₆H₁₀, m/e=71.

Fig. S5. ¹¹B NMR spectrum of gaseous products of KB₃H₈ after heated at 250 °C in THF. B₂H₆ (δ 0ppm, quart), B₅H₉ (δ -13.9ppm, -53.8ppm) B₆H₁₀ (δ 14.2 ppm) and unknown phase (δ -7.7 ppm) were detected according to this results.

Fig. S6. ¹¹B solid NMR spectrum of the solid residue of KB₃H₈ after heated at 250 °C. The main peaks are identified as BH₄⁻ (δ -38.5 ppm), B₁₂H₁₂²⁻ (δ -15.6 ppm), B₁₀H₁₀²⁻(δ -30.1, -1.67 ppm). The most distant little peaks (δ 55.2 ppm, -131.7 ppm) are spinning sidebands.

Fig. S7. Solution ¹¹B NMR spectrum of the thermal decomposition products of KB₃H₈ at 250 °C dissolved in CH₃CN. The main peaks are ascribed to $B_{10}H_{10}^{2-}$ (δ -0.13 ppm, -28.2 ppm) and $B_{12}H_{12}^{2-}$ (δ -14.7 ppm).

Fig. S8. XRD pattern of the pyrolysis products of KB_3H_8 after heated at 250 °C.

Fig. S9. DSC results of the KB_3H_8 composites ball-milled with $AlCl_3$, $FeCl_3$ and $ZrCl_4$ with a heating rate of 5 °C min⁻¹ in argon.

Fig S10. XRD results of the mixtures of KB_3H_8 ball-milled with AlCl₃ (a), FeCl₃ (b) and ZrCl₄(c) and their decomposition products. (d). FTIR spectrum of the mixtures of KB_3H_8 ball-milled with AlCl₃, FeCl₃ and ZrCl₄.

References:

s1. W. D. Chen, G. T. Wu, T. He, Z. Li, Z. P. Guo, H. K. Liu, Z. G. Huang and P. Chen, *International Journal of Hydrogen Energy*, 2016, **41**, 15471-15476.