Electronic Supplementary Information

Table of Contents:

1.	General Information	2
2.	Synthesis of Starting Materials	3
3.	Optimization and Substrate Scope of Cinnamyl Aniline Compounds	19
4.	Optimization and Substrate Scope of 2-Methyl Cinnamyl Anilines	27
5.	Versatile Transformations of the Product	35
6.	X-ray Crystallographic Data of Compound 2h	38
7.	X-ray Crystallographic Data of Compound 4e	39
8.	References	42
9.	Experimental Spectra	43

1. General Information:

Unless otherwise noted, reactions were carried out in oven-dried glassware or sealed tube under atmosphere of nitrogen. Toluene and acetonitrile (CH₃CN) were distilled from calcium hydride. Tetrahydrofuran (THF) and diethyl ether (Et₂O) were dried and distilled from sodium. Methanol (MeOH) was dried under reflux with magnesium and then distilled. *N*, *N*-Dimethylformamide (DMF) was dried over calcium hydride and distilled under vacuum. Reactions were monitored by analytical thin-layer chromatography (TLC) on Merck silica gel 60 F_{254} plates (0.25 mm), visualized by ultraviolet light (254 nm) or by staining with ceric ammonium molybdate or basic potassium permanganate solutions as appropriate. ¹H NMR spectra were obtained on an Agilent 400MR or 600MR DD2 spectrometer at ambient temperature. Data were reported as follows: chemical shift on the δ scale using residual proton solvent as internal standard [δ 7.26 (CDCl₃); TMS: 0.00 ppm], multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets), integration, and coupling constant (*J*) in hertz (Hz). ¹³C NMR spectra were obtained with proton decoupling on an Agilent 400MR DD2 (100 MHz) spectrometer and were reported in ppm with residual solvent for internal standard [δ 77.16 (CDCl₃)]. High resolution mass spectra were obtained on a Bruker SolariX 7.0T spectrometer.

2. Synthesis of Starting Materials:

2.1 General Scheme for the Synthesis of Directed Groups:

2.1.1 Synthesis of N-cinnamyl-N-methylaniline (Me-1a):

Procedure SI-A^[1]:

Cinnamaldehyde (1.0 g, 1.0 equiv) and aniline (0.70 g, 1.0 equiv) were mixed in THF (20 mL), and then Amberlyst 15 (0.2 g) was added. The mixture was vigorously stirred at room temperature, and NaBH₄ (1 mmol) was added. After completion of the reaction as indicated by TLC, the mixture was filtered, and the residue was washed with Et₂O (2x15 mL). The solvent was evaporated, and the residual oil was loaded on a silica gel column and eluted with 1:20 to 1:5 ethyl acetate/petroleum ether to afford the corresponding product **SI-1** (1.02 g, 65%) as a pale yellow oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 10:1); ¹H NMR (400 MHz, CDCl₃): δ 7.29 – 7.08 (m, 7H), 6.67 – 6.51 (m, 4H), 6.24 (dt, J = 15.9, 5.8 Hz, 1H), 3.85 (d, J = 5.6 Hz, 2H), 3.26 (brs, 1H).

N-cinnamyl-N-methylaniline

To a stirred solution of **SI-1** (800.0 mg, 1.0 equiv) in dry THF was added *n*-BuLi (2.5 M in hexanes, 38.7 mL, 96.7 mmol) slowly at -78 °C. After 1 h, MeI (0.40 mL, 1.5 equiv) was added 0 °C. After completion of reaction as monitored by TLC, H₂O was

added dropwise and the reaction mixture was stirred for 10 min at 0 °C. The aqueous phase was extracted with EtOAc (20 mL x 3) and the combined organic extracts were dried over Na₂SO₄ and concentrated, then the crude material was purified by flash column chromatography (SiO₂, Hexanes / EtOAc) to afford the title compound **Me-1a** (0.5 g, 59%) as a pale yellow oil. ¹H **NMR** (400 MHz, CDCl₃): δ = 7.28 – 7.11 (m, 7H), 6.72 (d, *J* = 8.1 Hz, 2H), 6.65 (t, *J* = 7.3 Hz, 1H), 6.44 (d, *J* = 15.9 Hz, 1H), 6.17 (dt, *J* = 15.9, 5.5 Hz, 1H), 4.00 (dd, *J* = 5.5, 1.6 Hz, 2H), 2.90 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ = 149.6, 137.0, 131.4, 129.3, 128.6, 127.5, 126.4, 125.8, 116.7, 112.7, 55.0, 38.1; **HRMS** (ESI): calcd for C₁₆H₁₈N⁺ [M+H⁺]: 224.1433, found 224.1433.

2.1.2 Synthesis of N-cinnamyl-4-methyl-N-phenylbenzenesulfonamide:

To a solution of amine SI-1 (0.30 g, 1.0 equiv) in CH₂Cl₂ (0.3 M) at 0 °C was added triethylamine (3 equiv)

followed by 4-metylbenzenesulfonyl chloride (0.27 g, 1.0 equiv) and the reaction allowed to room temperature. After stirring overnight, and water was added (equivalent to amount of CH₂Cl₂ solvent in reaction), the layers separated, and the organic layer extracted once with CH₂Cl₂. The combined organics were dried over Na₂SO₄ and concentrated in vacuo. Flash chromatography, using silica gel and Hexane / AcOEt afforded to yield the corresponding *p*-toluenesulfonyl -protected amine **Ts-1a** (312 mg, 60%) as a white solid. **m.p.** = 132.5-134.0 °C; $R_f = 0.40$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.43$ (d, *J* = 8.3 Hz, 2H), 7.19 – 7.09 (m, 10H), 7.00 – 6.97 (m, 2H), 6.28 (d, *J* = 15.8 Hz, 1H), 6.01 (dt, *J* = 15.8, 6.6 Hz, 1H), 4.25 (dd, *J* = 6.6, 1.4 Hz, 2H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 143.5, 139.3, 136.4, 135.7, 133.8, 129.5, 129.0, 128.9, 128.5, 127.9, 127.8, 127.8, 126.5, 124.1, 53.3, 21.6. HRMS (ESI): calcd for C₂₂H₂₁NNaO₂S⁺ [M+Na⁺]: 386.1184, found 386.1185.

2.1.3 Synthesis of N-cinnamyl-N-phenylacetamide:

To a solution of amine SI-1 (0.29 g, 1.0 equiv) in CH₂Cl₂ (0.3 M) at 0 °C was added triethylamine (3 equiv) followed by acetyl chloride (0.28 g, 1.0 equiv) and the reaction allowed to room temperature. After stirring overnight, water was added (equivalent to amount of CH₂Cl₂ solvent in reaction), the layers separated, and the organic layer extracted once with CH₂Cl₂. The combined organics were dried over Na₂SO₄ and concentrated in vacuo. Flash chromatography, using silica gel and Hexane / AcOEt afforded to yield the corresponding *p*-toluenesulfonyl -protected amine Ac-1a (184.0 mg, 53%) as a pale brown liquid. R_f = 0.40 (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): δ = 7.33 – 7.08 (m, 10H), 6.29 (d, *J* = 15.7 Hz, 1H), 6.22 – 6.15 (m, 1H), 4.36 (d, *J* = 6.5 Hz, 2H), 1.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 170.3, 143.0, 136.8, 133.3, 129.9, 129.7, 128.6, 128.4, 128.3, 128.0, 127.7, 126.5, 126.5, 124.55, 51.6, 22.8. HRMS (ESI): calcd for C₁₇H₁₇NNaO⁺ [M+Na⁺]: 274.1205, found 274.1202.

2.2.1 General Scheme for the Synthesis of 1a-s:

Procedure SI-B^[1]: for the Synthesis of SI 1-9, 13 and 14

Cinnamaldehyde (1 mmol) and aniline (1 mmol) were mixed in THF (5 mL), and then Amberlyst 15 (0.1 g) was

added. The mixture was vigorously stirred at room temperature, and NaBH₄ (1 mmol) was added. The mixture was stirred again. After completion of the reaction as indicated by TLC, the mixture was filtered, and the residue was washed with Et_2O (2 x 15 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residual oil was loaded on a silica gel column and eluted with 1:20 to 1:5 ethyl acetate/petroleum ether to afford the corresponding product **(SI-1-9, 13 and 14)**.

Procedure SI-C^[3]: for the Synthesis of 1a-u

To a solution of the picolinic acid (2.50 mmol) in DCM (20 mL) at room temperature was added SOCl₂ (2 mL) and one drop of dry DMF. The reaction was allowed to stir at 40 °C for 4 hours. The solvent was then removed under reduced pressure to afford the corresponding crude acid chloride. Then DCM (20 mL) was added and the solution was cooled to 0°C followed by dropwise addition of NEt₃ (1.5 mL), DMAP (0.25 mmol) and amine (2.50 mmol, 1.0 eq). The reaction mixture was stirred at room temperature overnight, extracted by DCM, the organic layer was dried over Na₂SO₄ and the solvent was evaporated, then purified by flash chromatography(petroleum ether/ EtOAc = 2 : 1) to afford the corresponding product (**1a-u**).

2.2.2 General Scheme for the Synthesis of 1J-l and 1o-u: ^[2]

ocedure SI-D^[2]: for the Synthesis of SI-10,11,12 and SI 38-44

The cinnamylalcohol (1.00 equiv) is dissolved in Et_2O (16 mL/mmol) and the resulting mixture cooled to 0 °C. PBr₃ (1.05 equiv) is added and stirred at 0 °C for approximately 1 h. After completion of the reaction (monitored by TLC) the reaction is poured into ice-cooled sat. aq. NH₄Cl-solution (15 mL/mmol). The aqueous layer is extracted with Et_2O . The combined organic layers are washed with water, sat. aq. NaCl, dried over Na₂SO₄ and filtered. All volatiles are removed under reduced pressuret to afford cinnamylbromide, which was used for next

step without further purification. To a stirred solution of aniline (5 mmol) in dry CH₃CN (15 mL) was added K_2CO_3 (7.5 mmol) and stirred well at room temperature. To this solution, cinnamylbromide (5 mmol) in dry CH₃CN (10 mL) was added drop wise and stirred at room temperature for 3 h. After completion of the reaction, the reaction mixture was evaporated under reduced pressure to remove CH₃CN. The crude mixture obtained was diluted with water (10 mL) and extracted with ethyl acetate (3X10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (petroleum ether/ EtOAc = 20 : 1) to afford corresponding product (**SI-10, 11, 12 and SI 38-44**).

Procedure SI-E^[3]: for the Synthesis of 1J-l and 1o-u

To a solution of the picolinic acid (2.50 mmol) in DCM (20 mL) at room temperature was added SOCl₂ (2 mL) and one drop of dry DMF. The reaction was allowed to stir at 40 °C for 4 hours. The solvent was then removed under reduced pressure to afford the corresponding crude acid chloride. Then DCM (20 mL) was added and the solution was cooled to 0 °C followed by dropwise addition of NEt₃ (1.5 mL), DMAP (0.25 mmol) and amine (2.50 mmol, 1.0 eq). The reaction mixture was stirred at room temperature overnight, extracted by DCM, the organic layer was dried over Na₂SO₄ and the solvent was evaporated, then purified by flash chromatography(petroleum ether/ EtOAc = 2 : 1) to afford corresponding product (**1J-1 and 1o-u**).

N-cinnamyl-N-phenylpicolinamide (1a):

Prepared according to general procedure SI-C from N-cinnamylaniline SI-01 (500 mg, 2.39 mmol, 1.00 equiv) to yield 1a (638 mg, 85%) as a pale yellow oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.27$ (s, 1H), 7.49 (s, 1H), 7.36 (s, 1H), 7.27 – 7.01 (m, 11H), 6.45 – 6.28 (m, 2H), 4.62 (d, J = 6.1 Hz, 2H); ¹³C NMR

(100 MHz, CDCl₃): δ = 168.5, 154.3, 148.5, 142.9, 136.7, 136.2, 133.5, 129.0, 128.6, 127.7, 126.8, 126.6, 124.2, 124.0, 123.7, 52.6; **HRMS** (ESI): calcd for C₂₁H₁₈N₂NaO⁺ [M+Na⁺]: 337.1314, found 337.1311.

N-cinnamyl-*N*-(p-tolyl)picolinamide (1b):

Prepared according to general procedure **SI-C** from N-cinnamyl-4-methylaniline **SI-02** (500 mg, 2.24 mmol, 1.00 equiv) to yield **1b** (595 mg, 81%) as a colorless oil. R_f = 0.50 (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): δ = 8.31 (s, 1H), 7.50 (s, 1H), 7.28 – 7.14 (m, 6H), 7.06 (s, 1H), 6.88 (s, 4H), 6.45 – 6.28 (m, 2H), 4.60 (d, *J* = 6.4 Hz,

2H), 2.16 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ = 168.5, 154.4, 148.5, 136.8, 136.7, 136.3, 133.5, 129.7, 128.6, 128.4, 127.7, 127.6, 126.6, 125.9, 124.3, 123.9, 123.7, 52.6, 21.1; **HRMS** (ESI): calcd for C₂₂H₂₀N₂NaO⁺ [M+Na⁺]:

351.1469, found 351.1467.

N-cinnamyl-*N*-(4-ethylphenyl)picolinamide (1c):

Prepared according to general procedure SI-C from N-cinnamyl-4-ethylaniline SI-03 (500 mg, 2.10 mmol, 1.00 equiv) to yield 1c (577 mg, 80%) as a pale yellow oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): δ = 8.28 (s, 1H), 7.47 (s, 1H), 7.31 - 7.14 (m, 6H), 7.03 (s, 1H), 6.89 (s, 4H), 6.46 - 6.29 (m, 2H), 4.60 (d, J = 6.4 Hz, 2H), 2.46 (q, J = 7.6 Hz, 2H), 1.07 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.6, 154.5, 148.6,

142.9, 140.4, 136.8, 136.1, 133.4, 128.6, 128.4, 127.7, 127.6, 126.6, 124.3, 123.8, 123.6, 52.6, 28.3, 15.3; HRMS (ESI): calcd for C₂₃H₂₂N₂NaO⁺ [M+Na⁺]: 365.1625, found 365.1624.

N-cinnamyl-*N*-(4-isopropylphenyl)picolinamide (1d):

Prepared according to general procedure SI-C from N-cinnamyl-4-isopropylaniline SI-04 (500 mg, 1.99 mmol, 1.00 equiv) to yield 1d (496 mg, 70%) as a pale yellow oil. $R_f =$ 0.50 (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): δ = 8.28 (s, 1H), 7.47 (s, 1H), 7.28 – 7.14 (m, 6H), 7.03 (s, 1H), 6.92 (s, 4H), 6.47 – 6.31 (m, 2H), 4.60 (d, *J* = 6.3 Hz, 2H), 2.72 (t, J = 6.4 Hz, 1H), 1.08 (d, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.6, 154.5, 148.6, 147.5, 140.5, 136.8, 136.1, 133.3, 128.6, 128.4, 127.7, 127.5, 126.9, 126.6, 124.4, 123.8, 123.6, 52.5, 33.6, 23.9;

HRMS (ESI): calcd for C₂₄H₂₄N₂NaO⁺ [M+Na⁺]: 379.1782, found 379.1780.

N-(4-(tert-butyl)phenyl)-*N*-cinnamylpicolinamide (1e):

Prepared according to general procedure SI-C from 4-(tert-butyl)-N-cinnamylaniline SI-**05** (500 mg, 1.88 mmol, 1.00 equiv) to yield **1e** (439 mg, 63%) as a pale brown oil. $R_f =$ 0.50 (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): δ = 8.28 (s, 1H), 7.48 (s, 1H), 7.28 - 7.08 (m, 9H), 6.90 (s, 2H), 6.48 - 6.32 (m, 2H), 4.60 (d, J = 6.3 Hz, 2H), 1.15(s, 9H).; ¹³C NMR (100 MHz, CDCl₃): δ = 168.5, 154.5, 149.8, 148.5, 140.1, 136.8,

136.2, 133.3, 128.6, 128.4, 127.7, 127.1, 126.6, 125.9, 124.4, 123.9, 123.7, 52.5, 34.5, 31.3; HRMS (ESI): calcd for C₂₅H₂₆N₂NaO⁺ [M+Na⁺]: 393.1936, found 393.1937.

N-cinnamyl-*N*-(4-methoxyphenyl)picolinamide (1f):

N-cinnamyl-*N*-(4-fluorophenyl)picolinamide (1g):

Prepared according to general procedure SI-C from N-cinnamyl-4-fluoroaniline SI-07 (500 mg, 2.20 mmol, 1.00 equiv) to yield 1g (658 mg, 90%) as a colorless oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.26$ (s, 1H), 7.54 (s, 1H), 7.40 (s, 1H), 7.27 – 7.15 (m, 5H), 7.06 (s, 1H), 6.97 (s, 2H), 6.78 (s, 2H), 4.58 (d, J = 6.3

Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.4, 162.4, 159.9, 154.0, 148.4, 138.9, 136.6, 136.5, 133.9, 129.7, 128.6, 127.9, 126.6, 124.1, 123.8, 116.0, 115.8, 52.7; HRMS (ESI): calcd for C₂₁H₁₈FN₂O⁺ [M+H⁺]: 333.1400, found 333.1397.

N-(4-chlorophenyl)-*N*-cinnamylpicolinamide (1h):

Prepared according to general procedure SI-C from 4-chloro-N-cinnamylaniline SI-08 (500 mg, 2.05 mmol, 1.00 equiv) to yield 1h (615 mg, 86%) as a colorless oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.27$ (s, 1H), 7.56 (s, 1H), 7.46 (s, 1H), 7.27 – 7.07 (m, 8H), 6.95 (s, 2H), 6.43 – 6.25 (m, 2H), 4.59 (d, J = 6.2 Hz,

2H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.3, 153.9, 148.51, 141.6, 136.6, 133.9, 132.5, 129.2, 129.0, 128.6, 127.9, 126.6, 124.3, 123.9, 52.7; HRMS (ESI): calcd for C₂₁H₁₇ClN₂NaO⁺ [M+Na⁺]: 371.0921, found 371.0921.

N-cinnamyl-*N*-(4-(trifluoromethyl)phenyl)picolinamide (1i):

Prepared according to general procedure **SI-C** from N-cinnamyl-4-(trifluoromethyl)aniline **SI-09** (500 mg, 1.80 mmol, 1.00 equiv) to yield **1i** (413 mg, 60%) as a pale yellow oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.23$ (s, 1H), 7.56 (s, 1H), 7.48 (s, 1H), 7.27 - 6.96 (m, 10H), 6.44 - 6.26 (m, 2H),

4.60 (d, *J* = 6.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.4, 153.8, 148.4, 147.5, 147.5, 141.6, 138.8, 136.5, 133.8, 129.1, 128.6, 127.9, 126.6, 124.3, 124.2, 124.0, 123.9, 121.7, 121.3, 119.1, 52.8; HRMS (ESI): calcd for

C₂₂H₁₇F₃N₂NaO₂⁺ [M+Na⁺]: 421.1137, found 421.1134.

N-(4-acetylphenyl)-*N*-cinnamylpicolinamide (1J):

Ethyl 4-(*N*-cinnamylpicolinamido)benzoate (1k):

Prepared according to general procedure SI-E from ethyl 4-(cinnamylamino)benzoate SI-11 (500 mg, 1.77 mmol, 1.00 equiv) to yield 1k (453 mg, 66%) as a pale yellow oil. $R_f =$ 0.50 (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.23$ (d, J = 4.8 Hz, 1H), 7.79 (d, J = 8.4 Hz, 2H), 7.57 - 7.48 (m, 2H), 7.25 - 7.04 (m, 8H), 6.43 (d, J = 15.9 1k ĊO₂Et Hz, 1H), 6.32 - 6.25 (m, 1H), 4.64 (d, J = 6.3 Hz, 2H), 4.23 (q, J = 7.0 Hz, 2H), 1.25 (t, J = 7.0 Hz, 3H); ¹³C **NMR** (100 MHz, CDCl₃): $\delta = 168.3$, 165.8, 153.7, 148.4, 147.2, 136.5, 136.4, 133.7, 130.3, 128.5, 128.4, 127.8, 127.0, 126.5, 124.4, 124.0, 123.8, 61.1, 52.6, 14.3; **HRMS** (ESI): calcd for $C_{24}H_{22}N_2NaO_3^+$ [M+Na⁺]: 409.1526, found 409.1522.

N-cinnamyl-N-(4-cyanophenyl)picolinamide (11):

Prepared according to general procedure SI-E from 4-(cinnamylamino)benzonitrile SI-12 (500 mg, 2.13 mmol, 1.00 equiv) to yield 11 (478 mg, 66%) as a white solid. m.p. = 115.0-116.5 °C; $R_f = 0.50$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta =$ 8.30 (d, J = 4.7 Hz, 1H), 7.70 (s, 2H), 7.49 (d, J = 8.5 Hz, 2H), 7.34 – 7.16 (m, 8H), 6.51 $(d, J = 15.9 \text{ Hz}, 1\text{H}), 6.38 - 6.31 (m, 1\text{H}), 4.72 (d, J = 6.4 \text{ Hz}, 2\text{H}); {}^{13}\text{C} \text{NMR} (100 \text{ MHz}, \text{CDCl}_3): \delta = 168.2, 153.1,$ 148.3, 147.6, 136.9, 136.3, 133.9, 132.9, 128.6, 128.0, 127.7, 126.6, 124.9, 124.5, 123.6, 118.3, 110.0, 52.8;

HRMS (ESI): calcd for C₂₂H₁₈N₃O⁺ [M+H⁺]: 340.1441, found 340.1444.

N-cinnamyl-N-(3-methoxyphenyl)picolinamide (1m):

Prepared according to general procedure SI-B from N-cinnamyl-3-methoxyaniline SI-13 (500 mg, 2.09 mmol, 1.00 equiv) to yield 1m (582 mg, 81%) as a colorless oil. $R_f =$ 0.50 (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.39$ (s, 1H), 7.58 (s, 1H), 7.43 (s, 1H), 7.35 - 7.20 (m, 7H), 6.66 (d, J = 9.0 Hz, 3H), 6.52 (d, J = 16.0

Hz, 1H), 6.43 – 6.36 (m, 1H), 4.6 (d, J = 6.3 Hz, 2H), 3.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.4, 159.8, 154.3, 148.5, 143.8, 136.5, 136.1, 133.3, 129.5, 128.2, 128.2, 127.6, 126.4, 124.2, 123.9, 123.4, 119.7, 113.2, 112.4, 55.2, 52.4; **HRMS** (ESI): calcd for C₂₂H₂₀N₂NaO₂⁺ [M+Na⁺]: 367.1420, found 367.1417.

N-cinnamyl-*N*-(o-tolyl)picolinamide (1n):

Prepared according to general procedure SI-B from N-cinnamyl-2-methylaniline SI-14 (500 mg, 2.24 mmol, 1.00 equiv) to yield 1n (514 mg, 70%) as a pale yellow oil. $R_f =$ 0.60 (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.21$ (d, J = 4.8 Hz, 1H), 7.45 (td, J = 7.7, 1.7 Hz, 1H), 7.33 (d, J = 7.8 Hz, 1H), 7.27 - 7.14 (m, 6H), 7.01 -

6.92 (m, 5H), 6.36 (s, 1H), 4.87 – 4.83 (m, 1H), 4.16 – 4.11 (m, 1H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.54, 154.81, 154.19, 148.40, 141.29, 137.20, 136.84, 134.11, 133.42, 131.22, 130.92, 129.94, 128.63, 128.47, 128.64, 12127.83, 127.79, 126.61, 126.54, 126.41, 125.00, 124.81, 124.00, 123.74, 123.13, 54.92, 52.06, 18.34, 17.99; HRMS (ESI): calcd for C₂₂H₂₀N₂NaO⁺ [M+Na⁺]: 351.1468, found 351.1467.

(E)-N-phenyl-N-(3-(p-tolyl)allyl)picolinamide (10):

Prepared according to general procedure SI-E from (E)-N-(3-(p-tolyl)allyl)aniline SI-38 (500 mg, 2.24 mmol, 1.00 equiv) to yield 10 (603 mg, 82%) as a colorless oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.25$

(s, 1H), 7.47 (s, 1H), 7.35 (s, 1H), 7.17-7.00 (m, 10H), 6.40 – 6.23 (m, 2H), 4.60 (d, *J* = 6.3 Hz, 2H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.5, 154.4, 148.5, 142.9, 137.5, 136.2, 136.2, 133.9, 133.4, 129.2, 128.9, 127.7, 126.8, 126.4, 123.9, 123.7, 123.1, 52.6, 21.2; HRMS (ESI): calcd for C₂₂H₂₀N₂NaO⁺ [M+Na⁺]: 351.1467, found 351.1467.

(*E*)-*N*-(3-(4-methoxyphenyl)allyl)-*N*-phenylpicolinamide (1p):

Prepared according to general procedure SI-E from (E)-N-(3-(4methoxyphenyl)allyl)aniline SI-39 (500 mg, 2.09 mmol, 1.00 equiv) to yield 1p (539 mg, 75%) as a pale yellow oil. $R_f = 0.40$ (silica, hexanes: EtOAc, 2:1); ¹H **NMR** (400 MHz, CDCl₃): $\delta = 8.34$ (s, 1H), 7.57 (s, 1H), 7.43 (s, 1H), 7.27 (d, J = 8.6 Hz, 2H), 7.17 – 7.08 (m,

6H), 6.82 (d, J = 8.7 Hz, 2H), 6.44 (d, J = 15.8 Hz, 1H), 6.26 (dt, J = 15.1, 6.6 Hz, 1H), 4.66 (d, J = 6.6 Hz, 2H),

3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.5$, 159.3, 154.4, 149.3, 148.5, 142.9, 136.2, 133.0, 129.5, 128.9, 127.7, 126.8, 123.9, 123.7, 121.9, 113.9, 55.3, 52.7; HRMS (ESI): calcd for C₂₂H₂₀N₂NaO₂+ [M+Na⁺]: 367.1418, found 367.1417.

(E)-N-(3-(4-fluorophenyl)allyl)-N-phenylpicolinamide (1q):

Prepared according to general procedure SI-E (*E*)-*N*-(3-(4from fluorophenyl)allyl)aniline SI-40 (500 mg, 2.20 mmol, 1.00 equiv) to yield 1q (519 mg, 71%) as a pale yellow oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 2:1); ¹H NMR 1q $(400 \text{ MHz}, \text{CDCl}_3): \delta = 8.34 (s, 1\text{H}), 7.58 (s, 1\text{H}), 7.44 (s, 1\text{H}), 7.30 (dd, J = 8.4, 5.4 \text{ Hz}, 2\text{H}), 7.19 - 7.05 (m, 6\text{H}),$ 6.97 (t, J = 8.6 Hz, 2H), 6.47 (d, J = 16.0 Hz, 1H), 6.31 (dt, J = 15.8, 6.5 Hz, 1H), 4.68 (d, J = 6.4 Hz, 2H); 13 C **NMR** (100 MHz, CDCl₃): $\delta = 168.6$, 163.6, 161.2, 154.3, 148.5, 142.9, 136.3, 132.9, 132.3, 129.0, 128.0, 127.7, 126.8, 124.0, 123.7, 115.6, 115.4, 52.5; **HRMS** (ESI): calcd for C₂₁H₁₇FN₂NaO⁺ [M+Na⁺]: 355.1214, found 355.1217.

(*E*)-*N*-(3-(4-bromophenyl)allyl)-*N*-phenylpicolinamide (1r):

Prepared according to general procedure SI-E from (*E*)-*N*-(3-(4bromophenyl)allyl)aniline SI-41 (500 mg, 1.74 mmol, 1.00 equiv) to yield 1r (491 mg, 72%) as a pale brown oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 2:1); ¹H NMR

 $(400 \text{ MHz}, \text{CDCl}_3): \delta = 8.25 \text{ (s, 1H)}, 7.48 \text{ (s, 1H)}, 7.36 - 7.29 \text{ (m, 3H)}, 7.11 - 6.98 \text{ (m, 8H)}, 6.38 - 6.26 \text{ (m, 2H)}, 6.38 - 6.26 \text{ (m, 2H)}, 6.38 - 6.26 \text{ (m, 2H)}, 7.38 - 7.29 \text{ (m, 3H)}, 7.3$ 4.59 (d, J = 5.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.5, 154.1, 148.5, 142.8, 136.2, 135.5, 132.1, 131.6, 148.5, 1$ 129.0, 128.0, 127.5, 126.8, 125.0, 124.0, 123.6, 121.4, 52.4; **HRMS** (ESI): calcd for C₂₁H₁₇BrN₂NaO⁺ [M+Na⁺]: 415.0414, found 415.0416.

(E)-N-phenyl-N-(3-(4-(trifluoromethyl)phenyl)allyl)picolinamide (1s):

Prepared according to general procedure SI-E from (E)-N-(3-(4-(trifluoromethyl)phenyl)allyl)aniline SI-42 (500 mg, 1.80 mmol, 1.00 equiv) to yield 1s (448 mg, 65%) as a pale yellow oil. $R_f = 0.45$ (silica, hexanes: EtOAc,

2:1); ¹**H NMR** (400 MHz, CDCl₃): δ = 8.34 (s, 1H), 7.59 - 7.42 (m, 6H), 7.19 - 7.07 (m, 6H), 6.58 - 6.46 (m, 2H), 4.72 (d, *J* = 5.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.6, 154.1, 148.6, 142.8, 140.1, 136.3, 132.0, 129.6, 129.3, 129.1, 127.6, 126.9, 126.7, 125.4, 124.1, 123.7, 122.8, 52.4; HRMS (ESI): calcd for C₂₂H₁₇F₃N₂NaO⁺ [M+Na⁺]: 405.1181, found 405.1185.

(E)-N-(3-(3-methoxyphenyl)allyl)-N-phenylpicolinamide (1t):

Prepared according procedure SI-E (E)-N-(3-(3to general from methoxyphenyl)allyl)aniline SI-43 (500 mg, 2.09 mmol, 1.00 equiv) to yield 1t (561 mg, 78%) as a colorless oil. $R_f = 0.40$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400

SI-E

from

MHz, CDCl₃): $\delta = 8.26$ (s, 1H), 7.48 (s, 1H), 7.35 (s, 1H), 7.13-7.01 (m, 7H), 6.85 - 6.80 (m, 2H), 6.69 (dd, $J = 10^{-10}$ 8.2, 2.4 Hz, 1H), 6.41 - 6.28 (m, 2H), 4.61 (d, J = 5.8 Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 5.8$ Hz, 2H), 3.71 (s, 3H); 3.71 (s, 3H); $\delta = 5.8$ Hz, 2H), $\delta = 5.8$ Hz, 2H), {} \delta = 5.8 Hz, 168.5, 156.7, 154.4, 148.5, 142.8, 136.1, 128.9, 128.7, 128.3, 127.8, 127.0, 126.7, 125.7, 124.7, 123.8, 123.6, 120.6, 110.9, 55.5, 52.8; **HRMS** (ESI): calcd for $C_{22}H_{20}N_2NaO_2^+$ [M+Na⁺]: 367.1418, found 367.1417.

to

(E)-N-(3-(2-methoxyphenyl)allyl)-N-phenylpicolinamide (1u):

(E)-N-(3-(2-Prepared according general procedure methoxyphenyl)allyl)aniline SI-44 (500 mg, 2.09 mmol, 1.00 equiv) to yield 1u (474 mg, 66%) as a colorless oil. $R_f = 0.40$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 1u MHz, CDCl₃): δ = 8.35 (s, 1H), 7.57 (s, 1H), 7.40 (d, J = 7.8 Hz, 2H), 7.22 - 7.10 (m, 7H), 6.91 - 6.79 (m, 3H), 6.41 - 6.32 (m, 1H), 4.71 (d, J = 6.6 Hz, 2H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.5$, 159.8, 154.3, 148.6, 142.8, 138.1, 136.2, 133.4, 129.5, 129.0, 127.7, 126.8, 124.5, 124.0, 123.7, 119.3, 113.6, 111.6, 55.3, 52.5; HRMS (ESI): calcd for C₂₂H₂₀N₂NaO₂⁺ [M+Na⁺]: 367.1416, found 367.1417.

2.3 General Scheme for the Synthesis of 3a-i:

Procedure SI-F^[2]:

The corresponding allylic alcohol (1.00 equiv) is dissolved in Et₂O (16 mL/mmol) and the resulting mixture cooled to 0 °C. PBr₃ (1.05 equiv) is added and stirred at 0 °C for approximately 1 h. After completion of the reaction (monitored by TLC) the reaction is poured into ice-cooled sat. aq. NH₄Cl-solution (15 mL/mmol). The aqueous layer is extracted with Et₂O (3 x 10 mL/mmol). The combined organic layers are washed with water (5x 15 mL/mmol), sat. aq. NaCl (15 mL/mmol), dried over Na₂SO₄ and filtered. All volatiles are removed under reduced pressure to afford allylic bromides, which were used for next step without further purification.

To a stirred solution of aniline (5 mmol) in dry CH₃CN (15 mL) was added K₂CO₃ (7.5 mmol) and stirred well at room temperature. To this solution, allylic bromides (5 mmol) in dry CH₃CN (10 mL) was added drop wise and stirred at room temperature for 3 h. After completion of the reaction, the reaction mixture was evaporated under reduced pressure to remove CH₃CN. The crude mixture obtained was diluted with water (10 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried over anhydrous Na_2SO_4 and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (petroleum ether/ EtOAc = 20 : 1) to afford corresponding product (**SI 15-23**).

Procedure SI-G^[3]:

To a solution of the picolinic acid (2.50 mmol) in DCM (20 mL) at room temperature was added SOCl₂ (2 mL) and one drop of dry DMF. The reaction was allowed to stir at 40 °C for 4 hours. The solvent was then removed under reduced pressure to afford the corresponding crude acid chloride. Then DCM (20 mL) was added and the solution was cooled to 0 °C followed by dropwise addition of NEt₃ (1.5 mL), DMAP (0.25 mmol) and amine (2.50 mmol, 1.0 eq). The reaction mixture was stirred at room temperature overnight, extracted by DCM, the organic layer was dried over Na₂SO₄ and the solvent was evaporated, then purified by flash chromatography(petroleum ether/ EtOAc = 2 : 1) to afford corresponding product (**3a-i**).

(E)-N-(2-methyl-3-phenylallyl)-N-phenylpicolinamide (3a):

Prepared according to general procedure SI-G from (*E*)-*N*-(2-methyl-3-phenylallyl)aniline SI-15 (500 mg, 2.24 mmol, 1.00 equiv) to yield **3a** (669 mg, 91%) as a colorless oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, Benzene-*d*₆): $\delta = 8.01$ (d, J = 4.9 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.10 (d, J = 5.0

Hz, 4H), 7.05 - 6.98 (m, 3H), 6.92 - 6.87 (m, 3H), 6.80 (t, J = 7.3 Hz, 1H), 6.44 (s, 1H), 6.36 (dd, J = 7.6, 4.9 Hz, 1H), 4.67 (s, 2H), 1.91 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): $\delta = 168.9$, 154.6, 148.6, 142.7, 137.5, 136.2, 133.8, 128.9, 128.8, 128.4, 128.1, 127.5, 126.7, 126.5, 123.9, 123.6, 57.2, 16.2; **HRMS** (ESI): calcd for C₂₂H₂₀N₂NaO⁺ [M+Na⁺]: 351.1472, found 351.1467.

(E)-N-(4-methoxyphenyl)-N-(2-methyl-3-phenylallyl)picolinamide (3b):

Prepared according to general procedure **SI-G** from (*E*)-4-methoxy-*N*-(2-methyl-3-phenylallyl)aniline **SI-16** (500 mg, 1.97 mmol, 1.00 equiv) to yield **3b** (587 mg, 83%) as a colorless oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.35$ (d, J = 4.9 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.35 – 7.22 (m, 3H),

7.12 (dt, J = 31.4, 7.0 Hz, 4H), 6.95 (d, J = 8.3 Hz, 2H), 6.64 (d, J = 8.3 Hz, 2H), 6.30 (s, 1H), 4.63 (s, 2H), 3.67 (s, 3H), 1.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.9, 158.1, 154.8, 148.6, 137.6, 136.2, 135.3, 133.8, 128.9, 128.7, 128.1, 126.5, 123.7, 123.4, 114.0, 57.4, 55.4, 16.3; HRMS (ESI): calcd for C₂₃H₂₂N₂NaO₂⁺ [M+Na⁺]: 381.1575, found 381.1573.

(E)-N-(2-methyl-3-phenylallyl)-N-(p-tolyl)picolinamide (3c):

Prepared according to general procedure **SI-G** from (*E*)-4-methyl-*N*-(2-methyl-3-phenylallyl)aniline **SI-17** (500 mg, 2.10 mmol, 1.00 equiv) to yield **3c** (541 mg, 75%) as a pale yellow oil. $R_f = 0.60$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.30$ (s, 1H), 7.48 (s, 1H), 7.30 (s, 1H), 7.24 – 7.17 (m, 2H), 7.13 – 7.00

(m, 4H), 6.87 (s, 4H), 6.27 (s, 1H), 4.60 (s, 2H), 2.15 (s, 3H), 1.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.9, 154.8, 148.6, 140.0, 137.6, 136.5, 136.2, 133.9, 129.5, 128.9, 128.3, 128.1, 127.3, 126.5, 123.8, 123.5, 57.3, 21.0, 16.3; HRMS (ESI): calcd for C₂₃H₂₂N₂NaO⁺ [M+Na⁺]: 365.1626, found 365.1624.$

(*E*)-*N*-(4-ethylphenyl)-*N*-(2-methyl-3-phenylallyl)picolinamide (3d):

Prepared according to general procedure **SI-G** from (*E*)-4-ethyl-*N*-(2-methyl-3-phenylallyl)aniline **SI-18** (500 mg, 1.99 mmol, 1.00 equiv) to yield **3d** (574 mg, 81%) as a pale yellow oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, Benzene- d_6): $\delta = 8.05$ (d, J = 4.7 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.12 – 7.10 (m,

4H), 7.03 – 7.00 (m, 3H), 6.92 – 6.88 (m, 1H), 6.78 (d, J = 7.9 Hz, 2H), 6.46 (s, 1H), 6.35 (t, J = 6.2 Hz, 1H), 4.70 (s, 2H), 2.25 (q, J = 7.6 Hz, 2H), 1.95 (s, 3H), 0.92 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 169.0, 154.8, 148.7, 142.7, 140.2, 137.6, 136.1, 133.9, 128.9, 128.2, 128.1, 127.3, 126.5, 123.7, 123.5, 57.2, 28.3, 16.2, 15.3; HRMS (ESI): calcd for C₂₄H₂₄N₂NaO⁺ [M+Na⁺]: 379.1782, found 379.1780.

(E)-N-(4-isopropylphenyl)-N-(2-methyl-3-phenylallyl)picolinamide (3e):

3f ^tBu

Prepared according to general procedure **SI-G** from (*E*)-4-isopropyl-*N*-(2-methyl-3-phenylallyl)aniline **SI-19** (500 mg, 1.88 mmol, 1.00 equiv) to yield **3e** (565 mg, 81%) as a pale yellow oil. $R_f = 0.60$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, Benzene-*d*₆): $\delta = 8.05$ (s, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.12 (d, J = 4.6 Hz, 4H), 7.03

- 6.99 (m, 3H), 6.90 (t, J = 7.5 Hz, 1H), 6.83 (d, J = 7.9 Hz, 2H), 6.48 (s, 1H), 6.35 (t, J = 6.3 Hz, 1H), 4.70 (s, 2H), 2.53 (p, J = 6.9 Hz, 1H), 1.94 (s, 3H), 0.98 (d, J = 6.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 169.0, 154.8, 148.6, 147.4, 140.3, 137.6, 136.0, 133.9, 128.9, 128.1, 127.2, 126.7, 126.5, 123.7, 123.6, 57.2, 33.6, 23.9, 16.2; HRMS (ESI): calcd for C₂₅H₂₇N₂O⁺ [M+H⁺]: 371.2120, found 371.2117.

(E)-N-(4-(tert-butyl)phenyl)-N-(2-methyl-3-phenylallyl)picolinamide (3f):

Prepared according to general procedure SI-G from (E)-4-(tert-butyl)-N-(2-methyl-3-

phenylallyl)aniline **SI-20** (500 mg, 1.79 mmol, 1.00 equiv) to yield **3f** (488 mg, 71%) as a pale yellow oil. $R_f = 0.60$ (silica, hexanes: EtOAc, 2:1); ¹**H** NMR (400 MHz, CDCl₃): $\delta = 8.29$ (s, 1H), 7.47 (t, J = 7.4 Hz, 1H), 7.31 (s, 1H), 7.22 – 7.18 (m, 2H), 7.12 – 7.08 (m, 6H), 6.89 (s, 2H), 6.29 (s, 1H), 4.61 (s, 2H), 1.88 (s, 3H), 1.15 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.9$, 154.8, 149.6, 148.5, 140.0, 137.6, 136.1, 133.9, 128.9, 128.1, 126.8, 126.4, 125.7, 123.8, 123.6, 57.2, 34.5, 31.3, 16.2; **HRMS** (ESI): calcd for C₂₆H₂₈N₂NaO⁺ [M+Na⁺]: 407.2094, found 407.2093.

(E)-N-(4-fluorophenyl)-N-(2-methyl-3-phenylallyl)picolinamide (3g):

Prepared according to general procedure **SI-G** from (*E*)-4-fluoro-*N*-(2-methyl-3-phenylallyl)aniline **SI-21** (500 mg, 2.07 mmol, 1.00 equiv) to yield **3g** (617 mg, 86%) as a colorless oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.26$ (s, 1H), 7.52 (s, 1H), 7.39 (s, 1H), 7.21 (q, J = 7.1, 6.7 Hz, 2H),

7.13 – 6.95 (m, 6H), 6.77 (s, 2H), 6.24 (s, 1H), 4.59 (s, 2H), 1.89 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ = 168.8, 162.2, 159.8, 154.4, 148.5, 138.7, 137.4, 136.4, 133.5, 129.4, 128.9, 128.2, 128.1, 126.6, 124.0, 123.7, 115.8, 115.6, 57.4, 16.2; **HRMS** (ESI): calcd for C₂₂H₁₉FN₂NaO⁺ [M+Na⁺]: 369.1375, found 369.1373.

(*E*)-*N*-(4-chlorophenyl)-*N*-(2-methyl-3-phenylallyl)picolinamide (3h):

Prepared according to general procedure **SI-G** from (*E*)-4-chloro-*N*-(2-methyl-3-phenylallyl)aniline **SI-22** (500 mg, 1.94 mmol, 1.00 equiv) to yield **3h** (612 mg, 87%) as a colorless oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.27$ (s, 1H), 7.56 (t, *J* = 7.8 Hz, 1H), 7.44 (d, *J* = 7.8 Hz, 1H), 7.21 (q, *J*

= 7.8 Hz, 2H), 7.13 – 7.07 (m, 6H), 6.94 (s, 2H), 6.26 (s, 1H), 4.59 (s, 2H), 1.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.7, 154.2, 148.5, 141.4, 137.3, 136.5, 133.5, 132.3, 129.0, 128.9, 128.7, 128.2, 126.7, 124.2, 123.9, 57.4, 16.2; HRMS (ESI): calcd for C₂₂H₁₉ClN₂NaO⁺ [M+Na⁺]: 385.1080, found 385.1078.

(E)-N-(2-methyl-3-phenylallyl)-N-(4-(trifluoromethyl)phenyl)picolinamide (3i):

Prepared according to general procedure **SI-G** from (*E*)-*N*-(2-methyl-3-phenylallyl)-4-(trifluoromethyl)aniline **SI-23** (500 mg, 1.71 mmol, 1.00 equiv) to yield **3i** (619 mg, 91%) as a pale brown oil. $R_f = 0.40$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.25$ (d, J = 4.8 Hz, 1H), 7.60 (td, J = 7.6, 1.6 Hz, 1H), 7.54 (d, J = 7.7 Hz, 1H), 7.38 (d, *J* = 8.2 Hz, 2H), 7.22 (t, *J* = 7.5 Hz, 2H), 7.18 – 7.06 (m, 6H), 6.31 (s, 1H), 4.65 (s, 2H), 1.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.7, 153.8, 148.4, 146.4, 137.2, 136.7, 133.5, 128.9, 128.4, 128.2, 127.2, 126.7, 126.0, 125.9, 125.2, 124.6, 124.2, 122.5, 57.5, 16.2; HRMS (ESI): calcd for C₂₃H₁₉F₃N₂NaO⁺ [M+Na⁺]: 419.1342, found 419.1341.

2.4 General Scheme for the Synthesis of SI-24 and SI-25:

2.4.1 Procedure SI-H:

N-(2-methylallyl)aniline (SI-24)^[4]:

A mixture of aniline (300 mg, 1 mmol), 2-butene-1-ol (278 mg, 1.2 mmol), Pd(OAc)₂ (7.2 mg, 0.01 mmol), PPh₃ (33.8 mg, 0.04 mmol), Ti(OPrⁱ)₄ (229 mg, 0.25 mmol), MS4A (600 mg) and benzene (15ml) was refluxed under nitrogen at 50 °C for 3 h. After cooling, the reaction mixture was poured into aq. 10% HCl and extracted with ether. The ether layer was combined, dried over Na₂SO₄ and concentrated. The crude product was purified by column chromatography (petroleum ether/ EtOAc = 9 : 1) to afford corresponding product **SI-24** (298 mg, 63%) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.16 (dd, *J* = 8.5, 7.2 Hz, 2H), 6.69 (t, *J* = 7.3 Hz, 1H), 6.60 (d, *J* = 8.0 Hz, 2H), 4.97 (s, 1H), 4.88 (s, 1H), 3.86 (s, 1H), 3.68 (s, 2H), 1.78 (s, 3H).

2.4.2 Procedure SI-I^[3]:

N-(2-methylallyl)-N-phenylpicolinamide (SI-25):

123.5, 112.9, 55.3, 20.4; **HRMS** (ESI): calcd for C₁₆H₁₆N₂NaO⁺ [M+Na⁺]: 275.1155, found 275.1154.

2.5 General Scheme for the Synthesis of SI-26, SI-27 and SI-28:

2.5.1 Procedure SI-J:

2-phenylallyl 4-methylbenzenesulfonate (SI-26)^[5]:

To a THF (60 mL) solution of alcohol (3.0 g, 18.6 mmol) and *p*-toluenesulfonyl chloride (5.34 g, 28.0 mmol) was added KOH (7.30 g 130.2 mmol) at 0 °C, and the mixture was stirred at 0 °C for 1 h and at room temperature for 3 h. The reaction was quenched by the addition of water and extracted with EtOAc. The organic extract was washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified on a silica gel column chromatography (hexane/EtOAc = 10:1), which furnished tosylate **SI-26** (6.1 g, 95% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.76 (d, *J* = 7.9 Hz, 2H), 7.34 – 7.23 (m, 7H), 5.54 (s, 1H), 5.35 (s, 1H), 4.92 (s, 2H), 2.44 (s, 3H).

2.5.2 Procedure SI-K:

N-(2-phenylallyl)aniline (SI-27)^[6]:

To a solution of **SI-26** (508 mg, 2.0 mmol) in dry DMF (6 mL) was added aniline (783 mg, 2.2 mmol), K₂CO₃ (331 mg, 2.4 mmol). The resulting mixture was heated to 80 °C for 12 h. The mixture was cooled to room temperature, diluted with H₂O and extracted with Et₂O for two times. The combined organic phases were washed with brine, dried over Na₂SO₄. Filtration and evaporation led to a residue. Purification of the residue by flash chromatography on silica gel using PE/EA as the eluent provided the desired product **SI-27** (313 mg, 85%). ¹**H NMR** (400 MHz, CDCl₃): δ = 7.48 – 7.45 (m, 2H), 7.38 – 7.35 (m, 3H), 7.34 – 7.28 (m, 2H), 6.74 – 6.70 (m, 1H), 6.63 (dd, *J* = 8.5, 2.4 Hz, 2H), 5.48 (d, *J* = 3.3 Hz, 1H), 5.34 (d, *J* = 2.9 Hz, 1H), 4.16 (s, 2H), 3.88 (s, 1H).

2.5.3 Procedure SI-L:

N-phenyl-N-(2-phenylallyl)picolinamide (SI-28)^[3]:

To a solution of the picolinic acid (160 mg, 1.3 mmol) in DCM (20 mL) at room temperature was added $SOCl_2$ (2 mL) and one drop of dry DMF. The reaction was allowed to stir at 40 °C for 4 hours. The solvent was then removed under reduced pressure

to afford the corresponding crude acid chloride. Then DCM (20 mL) was added and the solution was cooled to 0 °C followed by dropwise addition of NEt₃ (0.83 mL, 5.0 equiv), DMAP (14.5 mg, 0.1 equiv) and amine **SI-27** (250 mg, 1.0 equiv). The reaction mixture was stirred at room temperature overnight, extracted by DCM, the organic layer was dried over Na₂SO₄ and the solvent was evaporated, then purified by flash chromatography(petroleum ether/ EtOAc = 2 : 1) to afford the corresponding product **SI-28** (6.1 g, 82% yield) as a white solid. **m.p.** = 89.0-91.5 °C; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.30 (s, 1H), 7.54 (s, 1H), 7.44 (s, 2H), 7.34 – 7.28 (m, 4H), 7.07 (s, 4H), 6.86 (s, 2H), 5.43 (s, 1H), 5.28 (s, 1H), 5.08 (s, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ = 168.6, 154.4, 148.4, 143.5, 142.3, 138.8, 136.1, 128.6, 128.4, 127.9, 127.4, 126.5, 126.4, 123.8, 123.5, 115.2, 52.6; **HRMS** (ESI): calcd for C₂₁H₁₈N₂NaO⁺ [M+Na⁺]: 337.1314, found 337.1311.

2.6 General Scheme for the Synthesis of SI-47 and 9a:

2.6.1 Procedure SI-N:

3-Benzyl-1H-indole (SI-47):

To a stirred mixture of indole (500 mg, 4.26 mmol, 1.0 equiv) and KOH (311.3 mg, 5.54 mmol, 1.3 equiv), was added benzyl alcohol (1.38 g, 12.80 mmol, 3.0 equiv). The resulting mixture was stirred at 150 °C for 24 hours. The resulting mixture was quenched with deionized water and extracted with EtOAc (3×20 mL). The organic phases were dried over

 Na_2SO_4 , followed by evaporation under reduced pressure to remove the solvent. The residue was purified by silica gel flash chromatography to give the desired product **SI-47** (812 mg) in 91% yield. The characterization data of **SI-47** matched those previously reported.⁷

2.6.2 Procedure SI-O:

(3-benzyl-1*H*-indol-1-yl)(phenyl)methanone (9a):

To a solution of the picolinic acid (2.50 mmol) in DCM (20 mL) at room temperature was added SOCl₂ (2 mL) and one drop of dry DMF. The reaction was allowed to stir at 40 °C for 4 hours. The solvent was then removed under reduced pressure to afford the corresponding

crude acid chloride. Then DCM (20 mL) was added and the solution was cooled to 0 °C followed by dropwise addition of NEt₃ (1.5 mL), DMAP (0.25 mmol) and indole (2.50 mmol, 1.0 eq). The reaction mixture was stirred at room temperature overnight, extracted by DCM, the organic layer was dried over Na₂SO₄ and the solvent was evaporated, then the residue was purified by silica gel flash chromatography to give the desired product **9a** (704 mg) in 91% yield. $R_f = 0.5$ (silica gel, petroleum ether : EtOAc = 2 : 1); ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, *J* = 4.7 Hz, 1H), 8.41 (d, *J* = 8.2 Hz, 1H), 7.93 (d, *J* = 7.9 Hz, 1H), 7.77 (td, *J* = 7.7, 1.7 Hz, 1H), 7.67 (s, 1H), 7.35 – 7.30 (m, 2H), 7.25 (d, *J* = 8.0 Hz, 1H), 7.17 – 7.12 (m, 5H), 7.09 – 7.06 (m, 1H), 3.94 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 152.5, 148.5, 139.5, 137.4, 137.1, 130.9, 128.6, 128.5, 126.3, 126.1, 126.0, 125.7, 125.1, 124.0, 121.9, 121.7, 119.4, 117.1, 31.5. HRMS (ESI): calcd for C₂₁H₁₆N₂NaO⁺ [M⁺Na⁺]: 335.1156, found 335.1154.

3. Optimization and Substrate Scope of Cinnamyl Aniline

Compounds.

	N N 1a	Pd(OAc) ₂ (PhI(OAc) ₂ (PyCICN ((110 °C, 2 [0.07 standard	0.10 equiv) (2.50 equiv) (0.40 equiv)	ACO Ph PA 2a		
entry	oxidant		result			
1	Dess-Martin reagent (2.50 equiv)		25%, soi	25%, some SM remained		
2	iodoso-benzen (2.50	equiv)	no reaction			
3	NaIO ₄ (2.50 equ	iv)	no reaction			
4	NFSI (2.50 equi	v)	no reaction			
5	Oxone (2.50 equ	iv)	no reaction			
6	TBHP (2.50 equ	iv)	no reaction			
7	benzoquinone (2.50	equiv)	no reaction			
8	Cu(OAc) ₂ (2.50 ec	luiv)	no reaction			

Table 1. Optimization using other oxidants of the arylacetoxylation reaction^{*a,b*}

^aReactions conditions: 1 (0.3 mmol), Pd(OAc)₂ (0.03 mmol), oxidant (0.75 mmol), 2-Chloro-4-cyanopyridine (0.12 mmol),

toluene (4 mL), N_2 , 2 h. ^bYield is that of the isolated product.

Scheme 1. Synthesis of indole derivatives.

General Procedure A: To a solution of 1 (0.3 mmol, 1.0 equiv) and $Pd(OAc)_2$ (0.015 mmol, 0.1 equiv) in anhydrous toluene (4 mL) at r.t. was added $PhI(OAc)_2$ (0.75 mmol, 2.5 equiv), 2-chloroisonicotinonitrile (16.6mg, 0.12 mmol, 0.4 equiv) in a 15 mL flame-dried sealed tube (purged with N₂, sealed with PTFE cap). The mixture was heated at 110 °C for 2 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography (petroleum ether / EtOAc) to give the product.

General Procedure B: To a solution of **1** (0.3 mmol, 1.0 equiv) and $Pd(OAc)_2$ (0.015 mmol, 0.1 equiv) in anhydrous toluene (4 mL) at r.t. was added $PhI(OAc)_2$ (0.75 mmol, 2.5 equiv), 2-chloroisonicotinonitrile (16.6mg, 0.12 mmol, 0.4 equiv), AcOH/Ac₂O (0.1 mL/0.1 mL, 5 equiv./5 equiv.) in a 15 mL flame-dried sealed tube (purged with N₂, sealed with PTFE cap). The mixture was heated at 110 °C for 2 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography (petroleum ether / EtOAc) to give the product.

Phenyl(1-picolinoyl-1*H*-indol-3-yl)methyl acetate (2a):

Prepared according to general procedure **A** from **1a** (48.0 mg, 0.15 mmol, 1.00 equiv) and $Pd(OAc)_2$ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **2a** (38.4 mg, 68%) as a colorless oil. When scale up of the reaction from **1a** (500.0 mg, 1.59 mmol, 1.00 equiv) and $Pd(OAc)_2$ (35.6 mg, 0.10 equiv) at 110 °C for 2 hours afforded **2a** (388.8 mg, 66%) as a

colorless oil. $R_f = 0.5$ (silica, hexanes: EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.64$ (s, 1H), 8.43 (d, J = 8.3 Hz, 1H), 8.02 (d, J = 7.9 Hz, 1H), 7.94 (s, 1H), 7.86 (td, J = 7.8, 1.8 Hz, 1H), 7.44 (ddd, J = 7.7, 4.7, 1.2 Hz, 1H), 7.41 – 7.33 (m, 3H), 7.30 – 7.24 (m, 3H), 7.21 – 7.14 (m, 2H), 7.09 (s, 1H), 2.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.2$, 165.6, 152.2, 148.6, 138.8, 137.5, 137.3, 128.8, 128.6, 128.3, 127.5, 127.2, 126.4, 126.0, 125.4, 124.3, 121.4, 120.1, 117.2, 71.1, 21.3; HRMS (ESI): calcd for C₂₃H₁₈N₂NaO₃⁺ [M+Na⁺]: 393.1210, found 393.1209.

(5-methyl-1-picolinoyl-1*H*-indol-3-yl)(phenyl)methyl acetate (2b):

Prepared according to general procedure A from 1b (50.0 mg, 0.15 mmol, 1.00 equiv)

AcC Me 2b

and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **2b** (42.7 mg, 73%) as a colorless oil. $R_f = 0.5$ (silica, hexanes: EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.70$ (d, J = 4.4 Hz, 1H), 8.37 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.96 (s, 1H), 7.94 – 7.90 (m, 1H), 7.52 – 7.50 (m, 1H), 7.49 – 7.44 (m, 2H), 7.37 – 7.30 (m, 3H), 7.20 – 7.18 (m, 2H), 7.14 (s, 1H), 2.40 (s, 3H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.3$, 165.4, 152.1, 148.5, 138.7, 137.5, 135.4, 133.9, 128.9, 128.5, 128.2, 127.5, 127.2, 126.7, 126.3, 125.9, 121.2, 119.9, 116.8, 71.0, 21.6, 21.3; HRMS (ESI): calcd for C₂₄H₂₀N₂NaO₃⁺ [M+Na⁺]: 407.1365, found 407.1366.

(5-ethyl-1-picolinoyl-1*H*-indol-3-yl)(phenyl)methyl acetate (2c):

Prepared according to general procedure **A** from **1c** (52.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **2c** (44.1 mg, 73%) as a pale yellow oil. $R_f = 0.55$ (silica, hexanes: EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃): δ = 8.69 (d, *J* = 4.4 Hz, 1H), 8.39 (d, *J* = 9.2 Hz, 1H), 8.06 (d, *J* = 8.0 Hz, 1H), 7.95 (s, 1H),

7.93 - 7.89 (m, 1H), 7.50 - 7.45 (m, 3H), 7.36 - 7.29 (m, 3H), 7.22 - 7.20 (m, 2H), 7.15 (s, 1H), 2.69 (q, J = 7.6 Hz, 2H), 2.14 (s, 3H), 1.22 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 170.3, 165.4, 152.2, 148.5, 140.5, 138.8, 137.5, 135.5, 129.0, 128.5, 128.2, 127.6, 127.3, 126.3, 125.9, 125.6, 121.4, 118.7, 116.9, 71.1, 29.0, 21.3, 16.1; HRMS (ESI): calcd for C₂₅H₂₂N₂NaO₃⁺ [M+Na⁺]: 421.1525, found 421.1522.

(5-isopropyl-1-picolinoyl-1*H*-indol-3-yl)(phenyl)methyl acetate (2d):

Prepared according to general procedure **A** from **1d** (54.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **2d** (44.3 mg, 71%) as a colorless oil. $R_f = 0.6$ (silica, hexanes: EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃): $\delta =$ 8.68 (d, *J* = 4.8 Hz, 1H), 8.39 (d, *J* = 8.8 Hz, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.96 (s, 1H),

7.92 – 7.87 (m, 1H), 7.47 (d, J = 8.0 Hz, 3H), 7.36 – 7.24 (m, 5H), 7.16 (s, 1H), 3.00 – 2.90 (m, 1H), 2.14 (s, 3H), 1.23 (d, J = 6.8 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃): $\delta = 170.3$, 165.3, 152.1, 148.5, 145.1, 138.7, 137.4, 135.6, 128.9, 128.5, 128.2, 127.5, 127.3, 126.3, 125.9, 124.2, 121.5, 117.3, 116.9, 71.1, 34.1, 24.4, 24.3, 21.3; **HRMS** (ESI): calcd for C₂₆H₂₄N₂NaO₃⁺ [M+Na⁺]: 435.1681, found 435.1679.

(5-(tert-butyl)-1-picolinoyl-1*H*-indol-3-yl)(phenyl)methyl acetate (2e):

Prepared according to general procedure **A** from **1e** (56.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **2e** (43.8 mg, 68%) as a

pale yellow oil. Rf = 0.6 (silica, hexanes: EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.69$ (d, J = 4.8 Hz, 1H), 8.37 (d, J = 8.8 Hz, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.95 (s, 1H), 7.93 - 7.89 (m, 1H), 7.50 - 7.47 (m, 3H), 7.43 -7.30 (m, 5H), 7.16 (s, 1H), 2.15 (s, 3H), 1.30 (s, 9H); 13 C NMR (100 MHz, CDCl₃): δ = 170.3, 165.4, 152.2, 148.5, 147.4, 138.8, 137.4, 135.2, 128.6, 128.5, 128.3, 127.4, 127.3, 126.3, 125.9, 123.2, 121.7, 116.6, 116.3, 71.2, 34.8, 31.54, 21.3; **HRMS** (ESI): calcd for C₂₇H₂₆N₂NaO₃⁺ [M+Na⁺]: 449.1834, found 449.1835.

(5-methoxy-1-picolinoyl-1*H*-indol-3-yl)(phenyl)methyl acetate (2f):

Prepared according to general procedure A from 1f (52.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield 2f (48.9 mg, 81%) as a colorless oil. $R_f = 0.4$ (silica, hexanes: EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃): $\delta =$ 8.70 - 8.68 (m, 1H), 8.41 (d, J = 9.0 Hz, 1H), 8.07 (d, J = 7.8 Hz, 1H), 8.01 (s, 1H),

7.91 (dt, *J* = 6.0, 1.6 Hz, 1H), 7.50 – 7.45 (m, 3H), 7.37 – 7.29 (m, 3H), 7.13 (s, 1H), 6.96 (dd, *J* = 6.3, 2.2 Hz, 1H), 6.86 (d, *J* = 2.4 Hz, 1H), 3.77 (s, 3H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 170.2, 165.1, 156.8, 152.2, 148.5, 138.7, 137.4, 131.8, 129.8, 128.6, 128.3, 127.2, 126.3, 125.9, 121.3, 118.0, 113.2, 103.4, 71.0, 55.7, 21.3; HRMS (ESI): calcd for C₂₄H₂₀N₂NaO₄⁺ [M+Na⁺]: 423.1315, found 423.1315.

(5-fluoro-1-picolinoyl-1*H*-indol-3-yl)(phenyl)methyl acetate (2g):

Prepared according to general procedure A from 1g (50.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield 2g (37.9 mg, 65%) as a pale yellow solid. **m.p.** = 110.0-111.5 °C; $R_f = 0.4$ (silica, hexanes: EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.70$ (d, J = 4.6 Hz, 1H), 8.48 (q, J = 4.6 Hz, 1H), 8.11 (t, J = 7.8, 7.2

Hz, 2H), 7.93 (t, J = 7.7 Hz, 1H), 7.53 – 7.50 (m, 1H), 7.44 (d, J = 7.2 Hz, 2H), 7.37 – 7.30 (m, 3H), 7.08 (t, J = 12.0, 8.8 Hz, 3H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 170.2, 165.2, 161.1, 158.7, 151.8, 148.6, 138.4, 137.6, 133.6, 133.6, 129.9, 129.8, 129.1, 128.7, 128.4, 127.1, 126.5, 126.1, 121.1, 121.0, 118.4, 118.3, 113.2, 112.9, 106.2, 105.9, 70.9, 21.3; **HRMS** (ESI): calcd for C₂₃H₁₇FN₂NaO₃⁺ [M+Na⁺]: 411.1115, found 411.1115.

(5-chloro-1-picolinoyl-1*H*-indol-3-yl)(phenyl)methyl acetate (2h):

Prepared according to general procedure A from 1h (52.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **2h** (41.8 mg, 68%) as a colorless oil. $R_f = 0.4$ (silica, hexanes: EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃): $\delta =$ S22

8.67 (d, J = 4.7 Hz, 1H), 8.44 (d, J = 8.8 Hz, 1H), 8.12 - 8.08 (m, 2H), 7.94 - 7.90 (m, 1H), 7.52 - 7.49 (m, 1H), 7.43 - 7.29 (m, 7H), 7.10 (s, 1H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 170.2, 165.3, 151.7, 148.6, 138.4, 137.6, 135.7, 130.0, 129.9, 128.9, 128.7, 128.4, 127.1, 126.6, 126.2, 125.6, 120.7, 119.8, 118.2, 70.8, 21.3;
HRMS (ESI): calcd for C₂₃H₁₇ClN₂NaO₃⁺ [M+Na⁺]: 427.0817, found 427.0819.

Phenyl(1-picolinoyl-5-(trifluoromethyl)-1*H*-indol-3-yl)methyl acetate (2i):

AcO

2i

Prepared according to general procedure **A** from **1i** (58.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **2i** (43.8 mg, 66%) as a pale brown oil. $R_f = 0.4$ (silica, hexanes: EtOAc, 3:1); ¹**H** NMR (400 MHz, CDCl₃): $\delta =$ 8.71 (d, J = 5.6 Hz, 1H), 8.53 (d, J = 8.8 Hz, 1H), 8.16 (s, 1H), 8.12 (d, J = 7.8 Hz, 1H),

7.97 – 7.92 (m, 1H), 7.55 – 7.51 (m, 1H), 7.44 (d, *J* = 7.2 Hz, 2H), 7.38 – 7.31 (m, 3H), 7.25 – 7.22 (m, 2H), 7.12 (s, 1H), 2.15 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ = 170.2, 165.3, 151.5, 148.6, 138.3, 137.6, 135.5, 129.3, 128.7, 128.5, 127.1, 126.7, 126.2, 121.0, 118.6, 118.1, 112.7, 70.8, 21.2; **HRMS** (ESI): calcd for C₁₉H₁₅N₄O₆⁺ [M+H⁺]: 395.0991, found 395.0986.

(5-acetyl-1-picolinoyl-1*H*-indol-3-yl)(phenyl)methyl acetate (2*J*):

138.6, 137.7, 133.5, 129.0, 128.8, 128.7, 128.7, 128.5, 127.2, 126.9, 126.8, 126.3, 125.7, 121.8, 121.0, 117.0, 70.9, 26.8, 21.3; **HRMS** (ESI): calcd for C₂₅H₂₀N₂NaO₄⁺ [M+Na⁺]: 435.1316, found 435.1315.

Ethyl 3-(acetoxy(phenyl)methyl)-1-picolinoyl-1*H*-indole-5-carboxylate (2k):

Prepared according to general procedure **B** from 1k (58.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield 2k (33.8 mg, 51%) as a colorless oil. $R_f = 0.45$ (silica, hexanes: EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.71$ (d, J = 4.5 Hz, 1H), 8.52 (d, J = 8.7 Hz, 1H), 8.16 (d, J = 1.3 Hz, 1H), 8.12 (t, J = 4.1, 3.6 Hz, 1H), 8.07 (dd, J = 7.1, 1.6 Hz, 1H), 7.94 (dt, J = 6.2, 1.5 Hz, 2H), 7.55–7.51 (m, 1H), 7.47 (d, J = 7.0 Hz, 2H), 7.37 – 7.30 (m, 3H), 7.16 (s, 1H), 4.37 (q, J = 7.1 Hz, 2H), 2.15 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.2$, 166.8, 165.5, 151.6, 148.6, 139.9, 138.6, 137.6, 128.7, 128.6, 128.6, 128.4, 127.2, 126.7, 126.7, 126.5, 126.2, 122.1, 121.7, 116.8, 71.0, 61.0, 21.3, 14.4; HRMS (ESI): calcd for C₂₆H₂₂N₂NaO₅⁺ [M+Na⁺]: 465.1424, found 465.1420.

(6-methoxy-1-picolinoyl-1*H*-indol-3-yl)(phenyl)methyl acetate (2m):

Prepared according to general procedure **A** from **1m** (52.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **2m** (45.3 mg, 75%) as a colorless oil. $R_f = 0.45$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.70$ (s, 1H), 8.13 (s, 1H), 8.06 (d, J = 7.6 Hz, 1H), 7.94–7.88 (m, 2H), 7.51 – 7.43

(m, 3H), 7.34–7.25 (m, 4H), 7.11 (s, 1H), 6.87 (d, J = 8.6 Hz, 1H), 3.88 (s, 3H), 2.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.2$, 165.8, 158.6, 152.3, 148.6, 138.8, 138.3, 137.5, 128.6, 128.2, 128.0, 127.7, 127.2, 126.5, 126.3, 126.3, 126.2, 126.0, 125.9, 125.9, 122.4, 121.4, 120.5, 113.4, 110.0, 105.4, 101.5, 71.8, 71.2, 55.8, 55.3, 21.3; HRMS (ESI): calcd for C₂₄H₂₀N₂NaO₄⁺ [M+Na⁺]: 423.1318, found 423.1315.

(7-methyl-1-picolinoyl-1*H*-indol-3-yl)(phenyl)methyl acetate (2n):

Prepared according to general procedure **A** from **1n** (50.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **2n** (38.6 mg, 66%) as a pale yellow oil. $R_f = 0.6$ (silica, hexanes: EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.76$ (d, J = 4.6 Hz, 1H), 8.17 (d, J = 8.0 Hz, 1H), 7.97 – 7.93 (m, 1H), 7.57 – 7.53 (m, 1H), 7.46 – 7.42

(m, 3H), 7.34 - 7.26 (m, 4H), 7.18 - 7.14 (m, 3H), 2.47 (s, 3H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.3$, 165.0, 151.2, 149.2, 138.8, 137.5, 136.6, 130.1, 128.5, 128.5, 128.2, 127.2, 127.90, 126.7, 126.5, 124.4, 120.8, 117.8, 71.0, 21.9, 21.3; **HRMS** (ESI): calcd for $C_{24}H_{20}N_2NaO_3^+$ [M+Na⁺]: 407.1368, found 407.1366.

(1-picolinoyl-1*H*-indol-3-yl)(p-tolyl)methyl acetate (2o):

Prepared according to general procedure **B** from **1o** (50.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **2o** (32.7 mg, 56%) as a colorless oil. $R_f = 0.5$ (silica, hexanes: EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃): $\delta =$ 8.64 (d, J = 4.5 Hz, 1H), 8.41 (d, J = 8.3 Hz, 1H), 8.00 (dd, J = 7.9, 1.2 Hz, 1H), 7.93 (s, 1H), 7.85 (td, J = 7.8, 1.8 Hz, 1H), 7.44 – 7.41 (m, 1H), 7.34 – 7.25 (m, 4H), 7.16 (d, J = 6.7 Hz, 1H), 7.06 (d, J = 8.4 Hz, 3H), 2.24 (s, 3H), 2.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.2$, 165.6, 152.2, 148.6, 138.1, 137.5, 137.3, 135.8, 129.3, 128.8, 127.3, 127.2, 126.3, 126.0, 125.4, 124.3, 121.6, 120.1, 117.1, 71.1, 21.3, 21.2; HRMS (ESI): calcd for C₂₄H₂₀N₂NaO₃⁺ [M+Na⁺]: 407.1364, found 407.1366.

(4-methoxyphenyl)(1-picolinoyl-1*H*-indol-3-yl)methyl acetate (2p):

OMe

Prepared according to general procedure **B** from **1p** (52.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **2p** (36.8 mg, 61%) as a colorless oil. $R_f = 0.40$ (silica, hexanes: EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃): δ = 8.64 (s, 1H), 8.42 (d, *J* = 8.2 Hz, 1H), 8.01 (d, *J* = 7.8 Hz, 1H), 7.92 (s, 1H), 7.88 – 7.84 (m, 1H), 7.44 (t, *J* = 6.3 Hz, 1H), 7.31 (dd, *J* = 7.3, 4.7 Hz, 3H), 7.17 (d, *J* = 7.4

Hz, 2H), 7.04 (s, 1H), 6.79 (d, J = 8.3 Hz, 2H), 3.71 (s, 3H), 2.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.3$, 165.6, 159.6, 152.2, 148.6, 137.5, 137.3, 131.6, 130.9, 128.9, 128.8, 127.0, 126.4, 126.0, 125.4, 124.3, 121.7, 120.1, 117.2, 114.0, 113.8, 71.0, 55.4, 21.3; HRMS (ESI): calcd for C₂₄H₂₀N₂NaO₄⁺ [M+Na⁺]: 423.1315, found 423.1315.

(4-fluorophenyl)(1-picolinoyl-1*H*-indol-3-yl)methyl acetate (2q):

Prepared according to general procedure **B** from **1q** (50.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **2q** (32.1 mg, 55%) as a pale brown oil. $R_f = 0.5$ (silica, hexanes: EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.63$ (d, J = 4.7 Hz, 1H), 8.42 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 7.9 Hz, 1H), 7.94 (s, 1H), 7.85 (td, J = 7.7, 1.7 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.38 – 7.34 (m, 2H), 7.29 (ddd, J = 7.5, 6.3,

1.5 Hz, 2H), 7.19 – 7.15 (m, 1H), 7.05 (s, 1H), 6.95 (t, J = 8.7 Hz, 2H), 2.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.2$, 165.5, 163.8, 161.4, 152.0, 148.5, 137.5, 137.3, 134.6, 129.2, 128.5, 127.4, 126.4, 126.0, 125.5, 124.3, 121.2, 119.9, 117.2, 115.6, 115.4, 70.5, 21.3; **HRMS** (ESI): calcd for C₂₃H₁₇FN₂NaO₃⁺ [M+Na⁺]: 411.1112, found 411.1115.

(4-bromophenyl)(1-picolinoyl-1*H*-indol-3-yl)methyl acetate (2r):

Br Prepared according to general procedure **B** from 1r (59.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield 2r (32.3 mg, 48%) as a pale brown oil. $R_f = 0.5$ (silica, hexanes: EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃): $\delta =$ 8.63 (d, J = 4.8 Hz, 1H), 8.42 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.96 (s, 1H), 7.85 (td, J = 7.8, 1.8 Hz, 1H), 7.46 – 7.36 (m, 3H), 7.32 – 7.23 (m, 4H), 7.19 – 7.14 (m, 1H), 7.02 (s, 1H), 2.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.1$, 165.5, 151.9, 148.5, 137.8, 137.5, 137.2, 131.7, 128.9, 128.4, 127.6, 126.5, 126.0, 125.5, 124.3, 122.3, 120.7, 119.9, 117.2, 70.5, 21.2; **HRMS** (ESI): calcd for C₂₃H₁₇BrN₂NaO₃⁺ [M+Na⁺]: 471.0310, found 471.0314.

(1-picolinoyl-1*H*-indol-3-yl)(4-(trifluoromethyl)phenyl)methyl acetate (2s):

Prepared according to general procedure **B** from **1s** (58.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **2s** (33.9 mg, 51%) as a pale yellow oil. $R_f = 0.40$ (silica, hexanes: EtOAc, 3:1); **¹H NMR** (400 MHz, CDCl₃): $\delta = 8.63$ (d, J = 4.8 Hz, 1H), 8.44 (d, J = 8.2 Hz, 1H), 8.04 (d, J = 7.9 Hz, 1H), 7.99 (s, 1H), 7.87 (td, J = 7.8, 1.8 Hz, 1H), 7.52 (d, J = 3.2 Hz, 4H), 7.46 – 7.43 (m, 1H), 7.31

(dd, J = 8.5, 7.0 Hz, 2H), 7.20 – 7.16 (m, 1H), 7.10 (s, 1H), 2.08 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃): $\delta = 170.1$, 165.4, 151.9, 148.5, 142.8, 137.6, 137.3, 130.5, 130.2, 128.4, 127.9, 127.4, 126.5, 126.1, 125.6, 124.4, 120.5, 119.8, 117.3, 70.4, 21.2; HRMS (ESI): calcd for C₂₄H₁₇F₃N₂NaO₃⁺ [M+Na⁺]: 461.1079, found 461.1083.

(3-methoxyphenyl)(1-picolinoyl-1*H*-indol-3-yl)methyl acetate (2t):

Prepared according to general procedure **B** from **1t** (52.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **2t** (31.4 mg, 52%) as a pale yellow oil. $R_f = 0.45$ (silica, hexanes: EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃): δ = 8.68 (d, *J* = 4.8 Hz, 1H), 8.46 (d, *J* = 8.2 Hz, 1H), 8.05 (d, *J* = 7.9 Hz, 1H), 7.94 – 7.88 (m, 2H), 7.61 (d, *J* = 7.8 Hz, 1H), 7.51 – 7.44 (m, 3H), 7.39 – 7.33 (m, 1H), 7.30 –

7.25 (m, 2H), 6.96 – 6.87 (m, 2H), 3.83 (s, 3H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 170.0, 165.6, 156.7, 152.3, 148.5, 137.4, 137.1, 129.4, 129.2, 127.7, 127.3, 127.2, 126.3, 125.9, 125.2, 124.3, 121.6, 120.6, 120.0, 117.1, 110.9, 65.9, 55.7, 21.3; **HRMS** (ESI): calcd for C₂₄H₂₀N₂NaO₄⁺ [M+Na⁺]: 423.1314, found 423.1315.

(2-methoxyphenyl)(1-picolinoyl-1*H*-indol-3-yl)methyl acetate (2u):

Prepared according to general procedure **B** from **1u** (52.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **2u** (30.8 mg, 51%) as a cplorless oil. $R_f = 0.45$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.63$ (d, J = 4.8 Hz, 1H), 8.42 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 7.9 Hz, 1H), 7.93 (s, 1H), 7.86 – 7.82 (m, 1H), 7.44 – 7.36 (m, 2H), 7.31 – 7.27 (m, 1H), 7.19 – 7.15 (m, 2H), 7.05 (s, 1H), 6.97 – 6.93 (m, 2H), 6.75 (dd, J = 8.2, 2.6 Hz, 1H), 3.69 (s, 3H), 2.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.2$, 165.5, 159.8, 152.1, 148.5, 140.3, 137.5, 137.2, 129.6, 128.7, 127.5, 126.4, 126.0, 125.4, 124.3, 121.3, 120.0, 119.5, 117.1, 113.5, 113.0, 70.9, 55.3, 21.3; HRMS (ESI): calcd for C₂₄H₂₀N₂NaO₄⁺ [M+Na⁺]: 423.1321, found 423.1315.

Attempted acetoxylation on 3-benzylindole (9a):

Procedure D: To a solution of **9a** (0.3 mmol, 1.0 equiv) and $Pd(OAc)_2$ (0.015 mmol, 0.1 equiv) in anhydrous toluene (4 mL) at r.t. was added $PhI(OAc)_2$ (0.75 mmol, 2.5 equiv), 2-chloroisonicotinonitrile (0.12 mmol, 0.4 equiv) in a 15 mL flame-dried sealed tube (purged with N₂, sealed with PTFE cap). After heating at 110 °C for 2 hours, by TLC analysis, starting material remained and observed multiple spots. Heating for longer time at same temperature did not afford the desired product.

4. Optimization and Substrate Scope of 2-methyl cinnamyl Anilines

Scheme 2. Synthesis of indoline derivatives.

4.1 Procedure SI-M:

To a solution of **3** (0.3 mmol, 1.0 equiv) and Pd(OAc)₂ (0.015 mmol, 0.1 equiv) in anhydrous toluene (4 mL) at r.t. was added PhI(OAc)₂ (0.75 mmol, 2.5 equiv), 2-chloroisonicotinonitrile (16.6mg, 0.12 mmol, 0.4 equiv) in a 15 mL flame-dried sealed tube (purged with N₂, sealed with PTFE cap). The mixture was heated at 110 °C for 2 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was

purified by silica gel flash chromatography (petroleum ether / EtOAc) to give the corresponding product (SI 29-

37).

(3-methyl-1-picolinoylindolin-3-yl)(phenyl)methyl acetate (SI-29):

Prepared according to general procedure **SI-M** from **3a** (50.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **SI-29** (44.1 mg, 75%) as a colorless oil in 2:1 dr. R_f = 0.60 (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): δ = 8.57 (s, 1H), 8.04 (dd, *J* = 20.5, 8.1 Hz, 1H), 7.78 (q, *J* = 8.4 Hz, 1H), 7.67 (d, *J* = 8.6

Hz, 1H), 7.34 (q, J = 5.8 Hz, 1H), 7.26 – 7.02 (m, 6H), 6.79 (dd, J = 25.5, 7.5 Hz, 2H), 5.67 (s, 1H), 4.36 (dd, J = 20.2, 11.9 Hz, 1H), 3.94 (dd, J = 12.0, 8.7 Hz, 1H), 1.95 (d, J = 34.6 Hz, 3H), 1.37 (d, J = 15.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.8$, 169.7, 165.3, 165.2, 154.2, 154.2, 148.0, 147.9, 143.7, 143.6, 137.0, 136.6, 136.4, 135.7, 135.5, 128.6, 128.5, 128.3, 128.1, 127.9, 127.6, 127.5, 126.9, 125.1, 124.4, 124.2, 124.1, 124.0, 118.1, 118.0, 80.0, 79.5, 60.1, 59.7, 48.2, 48.0, 22.9, 22.3, 21.1, 21.0; HRMS (ESI): calcd for C₂₄H₂₂N₂NaO₃⁺ [M+Na⁺]: 409.1510, found 409.1522.

(5-methoxy-3-methyl-1-picolinoylindolin-3-yl)(phenyl)methyl acetate (SI-30)

Prepared according to general procedure **SI-M** from **3b** (54.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **SI-30** (57.1 mg, 91%) as a colorless oil in 3:2 dr. Rf = 0.50 (silica, hexanes: EtOAc, 2:1); ¹H **NMR** (400 MHz, CDCl₃): δ = 8.61 (dt, *J* = 8.0, 3.1 Hz, 1H), 8.05 (dd, *J* = 18.2, 8.8 Hz, 1H), 7.83 (dtd, *J* = 9.6, 7.7, 1.8 Hz, 1H), 7.73 (dd, *J* = 11.1, 7.8 Hz, 1H), 7.41 –

7.34 (m, 1H), 7.24 – 7.10 (m, 3H), 6.93 – 6.80 (m, 3H), 6.65 (dd, J = 9.7, 2.7 Hz, 1H), 5.74 (d, J = 5.0 Hz, 1H), 4.45 (dd, J = 22.8, 12.1 Hz, 1H), 4.00 (dd, J = 12.1, 2.3 Hz, 1H), 3.79 (d, J = 4.0 Hz, 3H), 2.02 (d, J = 29.7 Hz, 3H), 1.42 (d, J = 13.5 Hz, 3H); ¹³C **NMR** (100 MHz, CDCl₃): $\delta = 169.8$, 169.7, 164.7, 164.5, 156.7, 156.6, 154.3, 154.2, 148.0, 147.8, 137.3, 137.2, 137.1, 137.0, 136.9, 136.6, 136.3, 128.3, 128.1, 127.8, 127.6, 127.5, 126.9, 125.0, 124.4, 124.2, 118.9, 118.7, 113.5, 113.3, 110.2, 109.9, 79.9, 79.4, 60.3, 60.0, 55.7, 55.7, 48.3, 48.1, 22.8, 22.2, 21.1, 21.0; **HRMS** (ESI): calcd for C₂₅H₂₄N₂NaO₄⁺ [M+Na⁺]: 439.1624, found 439.1628.

(3,5-dimethyl-1-picolinoylindolin-3-yl)(phenyl)methyl acetate (SI-31):

Prepared according to general procedure **SI-M** from **3c** (52.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **SI-31** (50.4 mg, 83%) as a colorless oil in 3:2 dr. $R_f = 0.60$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.61$ (t, J = 6.1 Hz, 1H), 7.99 (dd, J = 28.0, 8.2 Hz, 1H), 7.83 (tt, J = 8.1, 4.1 Hz, 1H), 7.72 (t, J = 5.4 Hz, 1H), 7.38 (dq, J = 8.6, 4.6 Hz, 1H), 7.24 - 7.09 (m, 4H), 6.93 - 6.89 (m, 2H), 6.82 (d, J = 6.8) (m, 2H), 6.83 J = 7.6 Hz, 1H), 5.73 (s, 1H), 4.44 (d, J = 12.1 Hz, 1H), 3.97 (t, J = 12.0 Hz, 1H), 2.36 (d, J = 5.2 Hz, 3H), 2.01 (d, J = 5.2 Hz, 3H), 3.01 (d, J = 5.2 Hz, 3H), 3H, 3H), 3H, 3H), 3H, 3H), 3H, 3H), 3H, 3H), 3 J = 36.2 Hz, 3H), 1.41 (d, J = 22.8 Hz, 3H).; ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.9$, 169.8, 165.1, 164.8, 154.4, 154.3, 148.0, 147.9, 141.4, 141.2, 136.9, 136.7, 136.4, 135.7, 135.7, 133.9, 133.8, 129.1, 129.0, 128.3, 128.1, 127.8, 127.5, 126.8, 125.0, 124.6, 124.5, 124.4, 124.2, 117.8, 117.7, 79.9, 79.5, 60.1, 59.8, 48.2, 48.0, 22.8, 22.3, 21.3, 21.3, 21.1, 21.0; **HRMS** (ESI): calcd for C₂₅H₂₄N₂NaO₃⁺ [M+Na⁺]: 423.1677, found 423.1679.

(5-ethyl-3-methyl-1-picolinoylindolin-3-yl)(phenyl)methyl acetate (SI-32):

Prepared according to general procedure SI-M from 3d (54.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield SI-32 (52.1 mg, 83%) as a pale yellow oil in 2:1 dr. $R_f = 0.60$ (silica, hexanes: EtOAc, 2:1); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: $\delta = 8.62$ (t, J = 7.0 Hz, 1H), 8.03 (dd, J = 25.0, 8.2 Hz, 1H), 7.87 –

7.71 (m, 2H), 7.38 (q, J = 5.9 Hz, 1H), 7.24 – 7.09 (m, 4H), 6.92 – 6.82 (m, 3H), 5.73 (s, 1H), 4.44 (t, J = 12.1 Hz, 1H), 3.98 (t, *J* = 12.7 Hz, 1H), 2.64 (q, *J* = 7.6 Hz, 2H), 2.00 (d, *J* = 31.2 Hz, 3H), 1.42 (d, *J* = 16.9 Hz, 3H), 1.23 (t, J = 7.6 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃): $\delta = 169.9, 169.8, 165.1, 164.9, 154.4, 154.3, 148.0, 147.9, 141.6, 154.3, 148.0, 147.9, 141.6, 154.3, 148.0, 147.9, 141.6, 154.3, 148.0, 147.9, 141.6, 154.3, 148.0, 147.9, 141.6, 154.3, 148.0, 147.9, 141.6, 154.3, 154.$ 141.4, 140.5, 140.4, 137.0, 136.7, 136.4, 135.6, 135.6, 128.2, 128.1, 128.0, 127.8, 127.6, 127.0, 125.0, 124.4, 124.2, 123.5, 123.4, 117.9, 117.7, 80.1, 79.4, 60.3, 60.1, 48.3, 48.0, 28.7, 22.5, 22.3, 21.1, 21.0, 16.0; HRMS (ESI): calcd for C₂₆H₂₆N₂NaO₃⁺ [M+Na⁺]: 437.1845, found 437.1835.

(5-ethyl-3-methyl-1-picolinoylindolin-3-yl)(phenyl)methyl acetate (SI-33):

Prepared according to general procedure SI-M from 3e (56.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield SI-33 (52.4 mg, 81%) as a pale yellow oil in 2:1 dr. $R_f = 0.60$ (silica, hexanes: EtOAc, 2:1); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: $\delta = 8.63 \text{ (d}, J = 5.1 \text{ Hz}, 1\text{H}), 8.04 \text{ (dd}, J = 22.9, 8.3 \text{ Hz}, 1\text{H}), 7.88 - 100 \text{ Hz}, 100$

7.74 (m, 2H), 7.38 (q, J = 6.3 Hz, 1H), 7.17 (ddd, J = 24.8, 12.2, 7.3 Hz, 4H), 6.93 - 6.82 (m, 3H), 5.74 (s, 1H), 4.45 (dd, *J* = 19.0, 12.0 Hz, 1H), 4.00 (t, *J* = 12.7 Hz, 1H), 2.91 (p, *J* = 7.2 Hz, 1H), 2.00 (d, *J* = 35.3 Hz, 3H), 1.42 (d, J = 12.3 Hz, 3H), 1.28 – 1.20 (m, 6H).; ¹³C NMR (100 MHz, CDCl₃): δ = 170.0, 169.7, 165.2, 164.9, 154.4, 154.3, 148.0, 147.9, 145.1, 145.0, 141.7, 141.4, 137.0, 136.7, 136.4, 135.5, 135.4, 128.2, 128.1, 127.8, 127.6, 127.6, 127.1, 126.8, 126.6, 125.0, 124.5, 124.2, 122.0, 121.9, 117.8, 117.7, 80.3, 79.3, 60.4, 60.3, 48.4, 48.0, 33.9, 24.5, 23.9, 21.2, 21.0; HRMS (ESI): calcd for C₂₇H₂₈N₂NaO₃⁺ [M+Na⁺]: 451.1988, found 451.1992.

(5-(tert-butyl)-3-methyl-1-picolinoylindolin-3-yl)(phenyl)methyl acetate (SI-34):

SI-34

Prepared according to general procedure SI-M from 3f (58.0 mg, 0.15 mmol, 1.00 S29

equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **SI-34** (47.3 mg, 71%) as a pale brown oil in 2:1 dr. $R_f = 0.60$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.63$ (s, 1H), 8.06 (dd, J = 18.4, 8.5 Hz, 1H), 7.86 – 7.78 (m, 2H), 7.41 – 7.11 (m, 5H), 6.98 – 6.84 (m, 3H), 5.74 (s, 1H), 4.46 (dd, J = 26.8, 11.9 Hz, 1H), 4.01 (t, J = 11.3 Hz, 1H), 2.00 (d, J = 31.9 Hz, 3H), 1.30 (d, J = 12.1 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.0$, 169.7, 165.2, 165.0, 154.3, 154.3, 148.0, 147.9, 147.3, 147.2, 141.4, 141.1, 137.0, 136.8, 136.5, 135.0, 134.9, 128.2, 128.1, 127.8, 127.6, 127.1, 125.5, 125.3, 125.0, 124.5, 124.2, 121.3, 121.1, 117.5, 117.3, 80.4, 79.2, 60.6, 60.5, 48.5, 48.1, 34.7, 31.5, 22.3, 22.0, 21.1, 21.0; HRMS (ESI): calcd for C₂₈H₃₀N₂NaO₃⁺ [M+Na⁺]: 465.2145, found 465.2148.

(5-fluoro-3-methyl-1-picolinoylindolin-3-yl)(phenyl)methyl acetate (SI-35):

Prepared according to general procedure SI-M from 3g (52.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield SI-35 (45.5 mg, 75%) as a colorless oil in 3:2 dr. $R_f = 0.60$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz,

CDCl₃): $\delta = 8.62$ (dd, J = 10.7, 4.8 Hz, 1H), 8.08 (td, J = 6.1, 4.9, 2.1 Hz, 1H), 7.90 -

7.68 (m, 2H), 7.44 – 7.36 (m, 1H), 7.19 (dt, J = 33.2, 7.3 Hz, 3H), 6.99 (qd, J = 8.8, 2.6 Hz, 1H), 6.93 – 6.76 (m, 3H), 5.71 (d, J = 6.0 Hz, 1H), 4.48 (dd, J = 43.0, 12.1 Hz, 1H), 4.04 (dd, J = 12.1, 8.6 Hz, 1H), 2.03 (d, J = 20.0 Hz, 3H), 1.43 (d, J = 4.2 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃): $\delta = 169.8$, 169.7, 165.0, 158.5, 158.4, 154.0, 153.9, 148.0, 147.9, 139.7, 137.8, 137.8, 137.1, 137.0, 136.3, 136.1, 128.5, 128.3, 128.0, 127.8, 127.4, 126.9, 125.3, 125.2, 124.5, 124.3, 119.2, 119.1, 119.0, 118.9, 115.2, 115.1, 115.0, 114.9, 111.6, 111.4, 111.2, 79.7, 79.4, 60.5, 60.2, 48.2, 48.1, 22.9, 22.0, 21.1, 21.0; **HRMS** (ESI): calcd for C₂₄H₂₁FN₂NaO₃⁺ [M+Na⁺]: 427.1424, found 427.1428.

(5-chloro-3-methyl-1-picolinoylindolin-3-yl)(phenyl)methyl acetate (SI-36):

Prepared according to general procedure **SI-M** from **3h** (55.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield **SI-36** (49.7 mg, 78%) as a colorless oil in 3:2 dr. R_f = 0.60 (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): δ = 8.61 (ddd, *J* = 10.3, 4.8, 1.6 Hz, 1H), 8.05 (dd, *J* = 8.7, 3.0 Hz, 1H),

7.87 – 7.68 (m, 2H), 7.44 – 7.37 (m, 1H), 7.29 – 7.11 (m, 5H), 6.89 (t, *J* = 7.7 Hz, 2H), 5.71 (d, *J* = 9.5 Hz, 1H),

4.48 (dd, J = 41.6, 12.1 Hz, 1H), 4.04 (t, J = 6.1 Hz, 1H), 2.03 (d, J = 17.2 Hz, 3H), 1.42 (d, J = 4.9 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃): $\delta = 169.7$, 169.7, 165.1, 153.8, 153.7, 148.0, 147.9, 142.3, 137.6, 137.4, 137.1, 137.0, 136.3, 136.0, 129.1, 129.0, 128.6, 128.5, 128.3, 128.0, 127.8, 127.4, 127.0, 125.3, 125.3, 124.5, 124.4, 119.1, 118.9, 79.7, 79.4, 60.4, 60.1, 48.2, 48.1, 22.8, 22.0, 21.0, 21.0; **HRMS** (ESI): calcd for C₂₄H₂₁ClN₂NaO₃⁺ [M+Na⁺]: 443.1129, found 443.1132.

(3-methyl-1-picolinoyl-5-(trifluoromethyl)indolin-3-yl)(phenyl)methyl acetate (SI-37):

Prepared according to general procedure SI-M from 3i (60.0 mg, 0.15 mmol, 1.00 equiv) and Pd(OAc)₂ (3.4 mg, 0.10 equiv) at 110 °C for 2 hours to yield SI-37 (46.7 mg, 68%) as a pale yellow oil in 3:2 dr. $R_f = 0.50$ (silica, hexanes: EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.63$ (dd, J = 11.6, 4.7 Hz, 1H), 8.22 (s, 1H), 7.87 – 7.82 (m, 2H), 7.58 (s, 1H), 7.45 – 7.40 (m, 1H), 7.27 – 7.14 (m, 4H), 6.88 (dd, J = 29.3,

7.5 Hz, 2H), 5.73 (d, J = 10.6 Hz, 1H), 4.55 (dd, J = 57.0, 12.1 Hz, 1H), 4.09 (t, J = 14.1 Hz, 1H), 2.02 (d, J = 14.4 Hz, 3H), 1.47 (d, J = 3.4 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃): $\delta = 169.7$, 169.6, 165.7, 165.7, 153.5, 153.4, 148.1, 148.0, 146.6, 146.5, 138.9, 137.2, 137.1, 136.1, 135.9, 128.6, 128.4, 128.0, 127.8, 127.3, 127.1, 126.1, 126.0, 125.60, 125.5, 124.6, 124.4, 123.0, 121.6, 121.5, 117.8, 117.7, 79.7, 79.3, 60.6, 60.4, 48.1, 47.9, 22.5, 21.8, 21.0, 20.9; **HRMS** (ESI): calcd for C₂₅H₂₁F₃N₂NaO₃⁺ [M+Na⁺]: 477.1392, found 477.1396.

4.2 General Procedure C: To a solution of SM (SI-29-37) (0.10 mmol, 1.0 equiv) in MeOH/H₂O (1:1, 0.1 M) was added K_2CO_3 (0.30 mmol, 3.0 equiv) and stirred for 3h at room temperature. After completion of the reaction, as indicated by TLC, the reaction mixture was diluted with H₂O and extracted into EtOAc. The combined organics were dried over Na₂SO₄ and concentrated in vacuo to yield the crude hydroxyl compound which was used in next step without purification. The residue was dissolved in DCM (0.05 M) and added DMP (0.15 mmol, 1.50 equiv) at °C. The reaction was stirred at room temperature for 2 hours. Then water was added, the layers separated, and the aqueous layer extracted once with DCM (5 mL). The combined organics were dried over Na₂SO₄, concentrated and purified by flash chromatography (petroleum ether/ EtOAc = 10:1) to afford the corresponding product.

(3-benzoyl-3-methylindolin-1-yl)(pyridin-2-yl)methanone (4a):

Prepared according to general procedure **C** from **SI-29** (39.0 mg, 0.10 mmol, 1.00 equiv) to yield **4a** (29.3 mg, 85%) as a colorless oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 3:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.47$ (d, J = 4.7 Hz, 1H), 8.37 (d, J = 8.2 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.75 (t, J = 7.7 Hz, 1H), 7.42 (d, J = 7.8 Hz, 2H), 7.32 (dt, J = 18.9, 7.0 Hz, 3H),

7.22 (d, *J* = 7.7 Hz, 2H), 7.02 (s, 2H), 4.87 (d, *J* = 12.3 Hz, 1H), 4.29 (d, *J* = 12.3 Hz, 1H), 1.56 (s, 3H); ¹³C NMR

(100 MHz, CDCl₃): δ = 200.8, 166.0, 153.8, 148.0, 142.8, 137.3, 136.9, 132.2, 129.1, 128.5, 125.4, 124.6, 123.8, 118.7, 61.9, 56.3, 26.6; HRMS (ESI): calcd for C₂₂H₁₈N₂NaO₂⁺ [M+Na⁺]: 365.1260, found 365.1260.

(3-benzoyl-5-methoxy-3-methylindolin-1-yl)(pyridin-2-yl)methanone (4b):

Prepared according to general procedure **C** from **SI-30** (42.0 mg, 0.10 mmol, 1.00 equiv) to yield **4b** (33.0 mg, 88%) as a pale yellow oil. $R_f = 0.40$ (silica, hexanes: EtOAc, 3:1); ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.44$ (d, J = 4.8 Hz, 1H), 8.30 (d, J = 8.8 Hz, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.72 (td, J = 7.8, 1.8 Hz, 1H), 7.44 (d, J = 7.5

Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 7.29 – 7.17 (m, 3H), 6.83 (dd, J = 8.9, 2.7 Hz, 1H), 6.56 (d, J = 2.6 Hz, 1H), 4.86 (d, J = 12.4 Hz, 1H), 4.31 (d, J = 12.4 Hz, 1H), 3.66 (s, 3H), 1.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 200.7$, 165.4, 157.4, 153.9, 147.9, 138.3, 137.1, 136.5, 135.9, 132.2, 129.1, 128.5, 125.2, 124.6, 119.5, 114.0, 109.4, 62.1, 56.4, 55.7, 26.5; HRMS (ESI): calcd for C₂₃H₂₀N₂NaO₃⁺ [M+Na⁺]: 395.1366, found 395.1366.

(3-benzoyl-3,5-dimethylindolin-1-yl)(pyridin-2-yl)methanone (4c):

Prepared according to general procedure **C** from **SI-31** (40.0 mg, 0.1 mmol, 1.00 equiv) to yield **4c** (30.6 mg, 86%) as a colorless oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 3:1); ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.45$ (d, J = 4.8 Hz, 1H), 8.24 (d, J = 8.3 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.76 – 7.70 (m, 1H), 7.42 (d, J = 7.8 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H),

7.27 (dd, J = 7.5, 5.0 Hz, 1H), 7.24 – 7.18 (m, 2H), 7.10 (d, J = 8.3 Hz, 1H), 6.83 (s, 1H), 4.84 (d, J = 12.4 Hz, 1H), 4.28 (d, J = 12.3 Hz, 1H), 2.20 (s, 3H), 1.53 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): $\delta = 200.9$, 165.7, 153.9, 148.0, 140.5, 137.2, 136.9, 136.0, 135.1, 132.2, 129.6, 129.1, 128.4, 125.3, 124.6, 124.2, 118.4, 62.0, 56.3, 26.7, 21.2; **HRMS** (ESI): calcd for C₂₃H₂₁N₂O₂⁺ [M+H⁺]: 357.1599, found 357.1597.

(3-benzoyl-5-ethyl-3-methylindolin-1-yl)(pyridin-2-yl)methanone (4d):

Prepared according to general procedure **C** from **SI-32** (42.0 mg, 0.10 mmol, 1.00 equiv) to yield **4d** (32.6 mg, 87%) as a colorless oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 3:1); ¹H **NMR** (400 MHz, CDCl₃): $\delta = 8.46$ (d, J = 4.7 Hz, 1H), 8.26 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.73 (t, J = 7.8 Hz, 1H), 7.40 (d, J = 7.8 Hz, 2H), 7.34 (t, J = 7.4 Hz,

1H), 7.27 (dd, *J* = 7.5, 5.0 Hz, 1H), 7.24 – 7.18 (m, 2H), 7.13 (d, *J* = 8.3 Hz, 1H), 6.85 (s, 1H), 4.83 (d, *J* = 12.3 Hz, 1H), 7.27 (dd, *J* = 7.5, 5.0 Hz, 1H), 7.24 – 7.18 (m, 2H), 7.13 (d, *J* = 8.3 Hz, 1H), 6.85 (s, 1H), 4.83 (d, *J* = 12.3 Hz, 1H), 7.13 (d, *J* = 8.3 Hz, 1H), 7.14 (d, *J* = 12.3 Hz, 1H), 7.14 (d, *J* = 8.3 Hz, 1H), 7.14 (d, *J* = 12.3 Hz, 1H), 7.14 (d, J = 12.3

1H), 4.29 (d, J = 12.3 Hz, 1H), 2.51 (q, J = 7.6 Hz, 2H), 1.55 (s, 3H), 1.08 (t, J = 7.6 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.2$, 165.7, 153.9, 148.0, 141.6, 140.7, 137.2, 136.8, 136.2, 132.1, 129.0, 128.4, 125.3, 124.6, 123.1, 118.4, 62.0, 56.4, 28.6, 26.6, 15.7; HRMS (ESI): calcd for C₂₄H₂₂N₂NaO₂⁺ [M+Na⁺]: 393.1574, found 393.1573.

(3-benzoyl-5-isopropyl-3-methylindolin-1-yl)(pyridin-2-yl)methanone (4e):

Prepared according to general procedure **C** from **SI-33** (43.0 mg, 0.10 mmol, 1.00 equiv) to yield **4e** (33.5 mg, 87%) as a pale yellow oil. $R_f = 0.60$ (silica, hexanes: EtOAc, 3:1); ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.46$ (d, J = 4.8 Hz, 1H), 8.26 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.78 – 7.69 (m, 1H), 7.35 (dd, J = 19.4, 7.6 Hz, 3H),

7.27 (dd, J = 7.5, 5.0 Hz, 1H), 7.23 – 7.14 (m, 3H), 6.86 (d, J = 1.8 Hz, 1H), 4.83 (d, J = 12.3 Hz, 1H), 4.28 (d, J = 12.3 Hz, 1H), 2.76 (h, J = 6.9 Hz, 1H), 1.55 (s, 3H), 1.09 (t, J = 6.3 Hz, 6H).; ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.4$, 165.7, 153.9, 148.0, 146.4, 140.8, 137.2, 136.7, 136.3, 132.0, 129.0, 128.4, 127.0, 125.3, 124.6, 121.7, 118.4, 62.0, 56.5, 33.9, 26.4, 24.1; HRMS (ESI): calcd for C₂₅H₂₄N₂NaO₂⁺ [M+Na⁺]: 407.1731, found 407.1730. (**3-benzoyl-5-(tert-butyl)-3-methylindolin-1-yl)(pyridin-2-yl)methanone (4f):**

Prepared according to general procedure **C** from **SI-34** (45.0 mg, 0.10 mmol, 1.00 equiv) to yield **4f** (33.6 mg, 83%) as a pale yellow oil. $R_f = 0.60$ (silica, hexanes: EtOAc, 3:1); ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.46$ (d, J = 4.9 Hz, 1H), 8.24 (d, J = 8.5 Hz, 1H), 7.81 (d, J = 7.9 Hz, 1H), 7.72 (t, J = 7.7 Hz, 1H), 7.36 – 7.25 (m, 5H),

7.21 – 7.17 (m, 2H), 7.00 (s, 1H), 4.83 (d, J = 12.3 Hz, 1H), 4.29 (d, J = 12.3 Hz, 1H), 1.55 (s, 3H), 1.16 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.6$, 165.7, 153.9, 148.7, 148.0, 140.5, 137.1, 136.4, 132.0, 128.9, 128.3, 125.9, 125.3, 124.6, 120.7, 118.0, 62.0, 56.6, 34.7, 31.5, 26.4; HRMS (ESI): calcd for C₂₆H₂₆N₂NaO₂⁺ [M+Na⁺]: 421.1886, found 421.1886.

(3-benzoyl-5-fluoro-3-methylindolin-1-yl)(pyridin-2-yl)methanone (4g):

Prepared according to general procedure **C** from **SI-35** (41.0 mg, 0.10 mmol, 1.00 equiv) to yield **4g** (28.1 mg, 77%) as a colorless oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 3:1); ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.54$ (d, J = 4.8 Hz, 1H), 8.42 (dd, J = 8.9, 4.8 Hz, 1H), 7.93 (d, J = 7.9 Hz, 1H), 7.82 (td, J = 7.7, 1.8 Hz, 1H), 7.53 (d, J = 7.7 Hz, 2H), 7.48 –

7.42 (m, 1H), 7.39 – 7.28 (m, 3H), 7.06 (td, *J* = 8.9, 2.7 Hz, 1H), 6.81 (dd, *J* = 7.9, 2.7 Hz, 1H), 5.00 (d, *J* = 12.4

Hz, 1H), 4.43 (d, J = 12.4 Hz, 1H), 1.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 200.1$, 165.8, 161.3, 158.8, 153.5, 148.0, 138.9, 138.8, 138.7, 137.3, 135.5, 132.5, 129.0, 128.6, 125.5, 124.7, 119.7, 119.6, 115.6, 115.4, 111.4, 111.2, 62.1, 56.2, 26.7; HRMS (ESI): calcd for C₂₂H₁₈FN₂O₂⁺ [M+Na⁺]: 361.1348, found 361.1346.

(3-benzoyl-5-chloro-3-methylindolin-1-yl)(pyridin-2-yl)methanone (4h):

Prepared according to general procedure **C** from **SI-36** (42.0 mg, 0.10 mmol, 1.00 equiv) to yield **4h** (30.0 mg, 80%) as a colorless oil. $R_f = 0.50$ (silica, hexanes: EtOAc, 3:1); ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.54$ (d, J = 4.8 Hz, 1H), 8.39 (d, J = 8.7 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.86 – 7.80 (m, 1H), 7.53 (d, J = 7.7 Hz, 2H), 7.45 (t, J = 7.4 Hz, 1H),

7.40 – 7.29 (m, 4H), 7.08 (d, J = 2.2 Hz, 1H), 5.00 (d, J = 12.4 Hz, 1H), 4.43 (d, J = 12.4 Hz, 1H), 1.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 199.8$, 165.8, 153.2, 147.9, 141.3, 138.5, 137.1, 135.3, 132.3, 129.8, 128.9, 128.4, 125.4, 124.6, 124.0, 119.3, 61.9, 55.9, 26.7; HRMS (ESI): calcd for C₂₂ H₁₇ClN₂NaO₂⁺ [M+Na⁺]: 399.0872, found 399.0870.

(3-benzoyl-3-methyl-5-(trifluoromethyl)indolin-1-yl)(pyridin-2-yl)methanone (4i):

Prepared according to general procedure **C** from **SI-37** (46.0 mg, 0.10 mmol, 1.00 equiv) to yield **4i** (34.4 mg, 83%) as a pale brown oil. $R_f = 0.45$ (silica, hexanes: EtOAc, 3:1); ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.56$ (d, J = 4.9 Hz, 2H), 7.94 (d, J = 8.0 Hz, 1H), 7.85 (td, J = 7.7, 1.8 Hz, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.56 – 7.28 (m,

7H), 5.05 (d, J = 12.3 Hz, 1H), 4.51 (s, 0H), 1.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 200.1$, 166.4, 153.1, 148.2, 137.3, 135.5, 132.5, 128.9, 128.6, 126.6, 125.8, 125.4, 124.8, 122.7, 121.3, 118.3, 62.1, 56.0, 27.0; HRMS (ESI): calcd for C₂₃H₁₇F₃N₂NaO₂+ [M⁺Na⁺]: 433.1134, found 433.1134.

5. Versatile Transformations of the Product

5.1 General Scheme for the Synthesis of 5a:

(1H-indol-3-yl)(phenyl)methanol (SI-45):

To a mixture of THF/H₂O (1.0/1.0 mL) was added compound **2a** (200 mg, 0.27 mmol, 1.0 equiv) and NaOH (43.2 mg, 1.08 mmol, 2.0 equiv) at 0 °C. The mixture was stirred at same temperature for 1 hour. Water was added and the mixture was extracted with EtOAc. The combined organic layers was washed with water and brine, dried over anhydrous Na₂SO₄,

and concentrated in vacuo. The residue was purified by silica gel flash chromatography to give the desired product **SI-45** (66.2 mg) in 55% yield. $R_f = 0.4$ (silica gel, petroleum ether : EtOAc = 2 : 1). ¹H NMR (400 MHz, DMSOd₆) δ 10.85 (s, 1H), 7.46 (dd, J = 7.7, 4.6 Hz, 3H), 7.32 – 7.26 (m, 3H), 7.23 – 7.15 (m, 1H), 7.10 (d, J = 2.4 Hz, 1H), 7.04 – 7.00 (m, 1H), 6.91 – 6.87 (m, 1H), 5.95 (d, J = 4.4 Hz, 1H), 5.56 (d, J = 4.4 Hz, 1H). ¹³C NMR (101 MHz, DMSO-d₆) δ 146.2, 136.9, 128.2, 126.8, 126.7, 126.0, 123.0, 121.3, 120.0, 119.9, 118.7, 111.7, 69.3.

tert-butyl 3-(hydroxy(phenyl)methyl)-1H-indole-1-carboxylate (SI-46):

5a

Indole **SI-45** (38.0 mg, 17 mmol, 1.0 equiv) was dissolved in dry THF (10 mL) followed by the addition of DMAP (2.0 mg, 0.17 mmol, 0.1 equiv) and (Boc)₂O (41 mg, 18.7 mmol, 1.1 equiv). The reaction mixture was stirred at room temperature for 2 h, after which it was purified by silica gel flash chromatography to give the desired product **SI-46** (42.9 mg) in 78%

yield. $R_f = 0.6$ (silica gel, petroleum ether : EtOAc = 2 : 1); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.4 Hz, 1H), 7.50 – 7.42 (m, 4H), 7.36 (dd, J = 8.2, 6.6 Hz, 2H), 7.34 – 7.28 (m, 2H), 7.15 (t, J = 7.5 Hz, 1H), 6.08 (d, J = 3.7 Hz, 1H), 2.19 (d, J = 4.1 Hz, 1H), 1.66 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 142.5, 136.0, 128.6, 128.0, 126.8, 124.6, 123.6, 122.7, 120.1, 115.4, 83.9, 70.5, 28.3.

tert-butyl 3-benzoyl-1H-indole-1-carboxylate 5a:

The hydroxyl compound SI-46 (40.0 mg, 12 mmol, 1.0 equiv) was dissolved in DCM (10 mL)

and added DMP (157.0 mg, 0.37 mmol, 3.0 equiv) at 0 °C. The reaction was stirred at same temperature for 3 hours, after which it was purified by silica gel flash chromatography to give the desired product **5a** (36.1 mg) in 91% yield. $R_f = 0.6$ (silica gel, petroleum ether : EtOAc = 3 : 1); ¹H NMR (400 MHz, CDCl₃) δ 8.36 – 8.33 (m, 1H), 8.15 (d, J = 7.6 Hz, 1H), 8.06 (s, 1H), 7.88 – 7.85 (m, 2H), 7.61 – 7.56 (m, 1H), 7.51 (td, J = 7.3, 6.8, 1.4 Hz, 2H), 7.44 – 7.36 (m, 2H), 1.68 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 191.4, 149.3, 139.7, 135.6, 134.0, 132.1, 129.0, 128.6, 128.4, 125.7, 124.4, 122.7, 119.5, 115.1, 85.5, 28.2. HRMS (ESI): calcd for C₂₀H₁₉NNaO₃⁺ [M⁺Na⁺]: 344.1259, found 344.1257.

5.2 Synthesis of 6a:

To a solution of compound **2a** (50 mg, 0.13 mmol, 1.0 equiv) in MeOH/H₂O (1.0/1.0 mL) was added NaOH (10.8 mg, 0.26 mmol, 2.0 equiv) and the mixture was stirred for 1 hour. Water was added and the mixture was extracted with EtOAc. The combined organic layers was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel flash chromatography to give the desired product **6a** (28.1 mg) in 88% yield. $R_f = 0.6$ (silica gel, petroleum ether : EtOAc = 2 : 1); ¹H NMR (400 MHz, CD₃CN) δ 7.49 (d, *J* = 8.0 Hz, 1H), 7.45 – 7.43 (m, 2H), 7.38 – 7.36 (m, 1H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.25 – 7.22 (m, 1H), 7.11 – 7.07 (m, 2H), 6.98 – 6.95 (m, 1H), 5.56 (s, 1H), 3.32 (s, 3H). ¹³C NMR (101 MHz, CD₃CN) δ 143.7, 137.8, 129.1, 129.0, 128.0, 127.7, 126.8, 124.5, 122.7, 120.5, 120.0, 117.7, 112.4, 80.2, 56.7. HRMS (ESI): calcd for C₁₆H₁₅NNaO⁺ [M⁺Na⁺]: 260.1046, found 260.1045.

5.3 Synthesis of 7a:

To a solution of compound 2a (50 mg, 0.13 mmol, 1.0 equiv) and propane-2-thiol (102.9 mg, 1.35 mmol, 10.0 equiv) in DMF/H₂O (1.0/1.0 mL) was added NaOH (10.8 mg, 0.26 mmol, 2.0 equiv) and the mixture was stirred for 3 hour. Water was added and the mixture was extracted with EtOAc. The combined organic layers was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by silica
gel flash chromatography to give the desired product **7a** (28.1 mg) in 75% yield. $R_f = 0.6$ (silica gel, petroleum ether : EtOAc = 2 : 1); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.44 (d, J = 7.5 Hz, 2H), 7.24 (q, J = 7.7 Hz, 3H), 7.12 (dt, J = 18.3, 7.6 Hz, 2H), 7.07 – 6.94 (m, 2H), 5.41 (s, 1H), 2.69 (hept, J = 6.7 Hz, 1H), 1.24 (d, J = 6.7 Hz, 3H), 1.15 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.4, 136.7, 128.5, 128.4, 127.0, 126.5, 123.2, 122.4, 119.7, 119.7, 117.2, 111.2, 45.1, 35.1, 23.4, 23.3. HRMS (ESI): calcd for C₁₈H₁₉NNaS⁺ [M⁺Na⁺]: 304.1133, found 304.1130.

5.4 Synthesis of 8a:

To a solution of compound **2a** (50 mg, 0.13 mmol, 1.0 equiv) and benzylamine (144.7 mg, 1.35 mmol, 10.0 equiv) in DMF/H₂O (1.0/1.0 mL) was added NaOH (10.8 mg, 0.26 mmol, 2.0 equiv) and the mixture was stirred for 3 hour. Water was added and the mixture was extracted with EtOAc. The combined organic layers was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel flash chromatography to give the desired product **8a** (28.1 mg) in 81% yield. $R_f = 0.4$ (silica gel, petroleum ether : EtOAc = 2 : 1); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 7.5 Hz, 2H), 7.35 – 7.28 (m, 6H), 7.25 – 7.20 (m, 2H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.07 – 7.02 (m, 2H), 5.17 (s, 1H), 3.81 (d, *J* = 2.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 140.8, 136.6, 128.5, 128.3, 127.7, 127.0, 127.0, 126.3, 122.2, 122.2, 119.8, 119.6, 111.2, 59.2, 52.0. HRMS (ESI): calcd for C₂₂H₂₁N₂⁺ [M⁺]: 313.1700, found 313.1699.

6. X-ray Crystallographic Data of Compound 2h:

The crystal **2n** were prepared from the solution of **2h** in DCM/ hexane at ambient temperature 6.1 X-ray Crystallographic Data of Compound **2h**:

Figure 1. X-ray derived ORTEP representation of **2h**

Crystal data and structure refinement for 2h (CCDC:

1562681)

Identification code	$C_{23}H_{17}CIN_2O_3$
Empirical formula	C ₂₃ H ₁₇ ClN ₂ O ₃
Formula weight	404.09
Temperature/K	293.15
Crystal system	monoclinic
Space group	P 2 ₁ /n
a/Å	9.6917(10)
b/Å	7.5033(7)
c/Å	27.151(2)
a/°	90
β/°	93.018(8)
γ/°	90
Volume/Å3	1971.7(3)
Z	4
Dx,g cm-3	1.364

μ/mm-1	0.221
F(000)	840.0
Crystal size/mm3	0.4 imes 0.15 imes 0.04
Radiation	${ m MoK}^{lpha}$ (λ = 0.71073)
20 range for data collection/°	6.004 to 52.742
Index ranges	$-12 \le h \le 10, -9 \le k \le 9, -32 \le l \le 33$
Reflections collected	10239
Independent reflections	4036 [$R_{int} = 0.0339$, $R_{sigma} = 0.0541$]
Data/restraints/parameters	4036/0/263
Goodness-of-fit on F ²	1.027
Final R indexes [I>=2σ (I)]	R1 = 0.0575, wR ₂ = 0.1291
Final R indexes [all data]	$R1 = 0.0949, wR_2 = 0.1509$
Largest diff. peak/hole / e Å- ³	0.24/-0.24

7. X-ray Crystallographic Data of Compound 4e:

The crystal 2n were prepared from the solution of 4e in DCM/ hexane at ambient temperature

- NOMOVE FORCED Prob = 295H127 H127 H
- 7.1 X-ray Crystallographic Data of Compound 4e:

Figure 2. X-ray derived ORTEP representation of 4e

Crystal data and structure refinement for 2h (CCDC:

1562684)

Identification code	$C_{25}H_{24}N_2O_2$
Empirical formula	$C_{25}H_{24}N_2O_2$
Formula weight	384.46
Temperature/K	295 (2)
Crystal system	triclinic
Space group	P 1
a/Å	8.3765(5)
b/Å	11.2190(6)
c/Å	12.1776(7)
$\alpha/^{\circ}$	70.266 (5)
β/°	73.173(5)
γ/°	82.063(4)
Volume/Å3	1030.04(11)
Z	2
Dx,g cm-3	1.240
μ/mm-1	0.079
F(000)	408.0
Crystal size/mm3	$0.45 \times 0.43 \times 0.4$
Radiation	$MoK^{\alpha} (\lambda = 0.71073)$
2Θ range for data collection/°	7.014 to 52.736
Index ranges	$-10 \le h \le 10, -14 \le k \le 14, -15 \le l \le 15$
Reflections collected	13983
Independent reflections	4213 [$R_{int} = 0.0270, R_{sigma} = 0.0281$]
Data/restraints/parameters	4213/0/265
Goodness-of-fit on F ²	1.045
Final R indexes [I>=2σ (I)]	$R1 = 0.0578, wR_2 = 0.1476$
Final R indexes [all data]	$R1 = 0.0782, wR_2 = 0.1648$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.26

8. References:

^[1] H. Alinezhad, M. Tajbakhsh and N. Mahdavi, Synth. Commun., 2010, 40, 951 - 956.

- [2] T. N. T. Nguyen, N. O. Thiel, F. Pape and J. F. Teichert, Org. Lett., 2016, 18, 2455 2458.
- [3] J. Zhou, B. Li, Z.-C. Qian and B.-F. Shi, Adv. Synth. Catal., 2014, 356, 1038 1046.
- [4] S.-C. Yang and C.-W. Hung, J. Org. Chem., 1999, 64, 5000 5001.
- [5] E. Okazaki, R. Okamoto, Y. Shibata, K. Noguchi and K. Tanaka, *Angew. Chem. Int. Ed.*, 2012, 51, 6722 6727.
- [6] W. Guo, L. Martínez-Rodríguez, R. Kuniyil, E. Martin, E. C. Escudero-Adán, F. Maseras and A. W.
- Kleij, J. Am. Chem. Soc., 2016, 138, 11970 11978.
- [7] R. Cano. M, Yus, D. J. Ramón, Tetrahedron Letters, 2013, 54, 3394 3397.

9. Experimental Spectra:

9.1 Experimental Spectra of Arylacetoxylation 1.

S44

S52

S62

S68

S85

S89

S91

S109

S111

