Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information for:

A Novel Homobimetallic Nickel Complex for Asymmetric Direct

Mannich Reaction of Imines: A Practical Method on a Multi-Gram

Scale

Shixiong Zhang, Ping Deng, Jing Zhou, Mouxiong Liu, Guojuan Liang, Yan Xiong, and Hui Zhou*

hzhou@cqmu.edu.cn

School of Pharmaceutical Science, Chongqing Medical University, and School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China

Contents:

1. General information	S2
2. General preparation procedure and characterization of the ligands	S2
3. Other optimizations of the Mannich reaction	S5
4. General procedure for the catalytic Mannich reaction	S7
5. General procedure for the synthesis of azirdines	S8
6. Miscellaneous analyses of the complexes	S9
6.1 ESI-MS analysis of the complexes6.2 The structure of the dinuclear Ni-aminophenol sulfonamide complex optimized by DFT	S9 S15
7. The X-ray data for 2k	S17
8. Postulated working model	S18
9. Characterization of products	S18
10. Copies of NMR spectra	S31

1. General information

All reagents were obtained from Acros, Adamas, or TCI etc. without further purification unless otherwise noted. High resolution mass spectra were recorded with a Bruker SolariX FT-ICR-MS system. NMR spectra were recorded on commercial instruments and operating at 500 MHz for ¹H NMR and 125 MHz for ¹³C NMR. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, $\delta = 7.26$ or (CD₃)₂SO $\delta = 2.50$) in ¹H NMR spectra and Chemical shifts were reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, $\delta = 77.0$ or (CD₃)₂SO $\delta = 39.5$) in ¹³C NMR spectra. Spectra are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration, and assignment. The enantiomeric excess (*ee*) was determined by HPLC analysis. Analytical HPLC was performed on a Shimadzu liquid chromatography, using a chiral DAICEL CHIRALCEL OD-H or CHIRALPAK IA or AD-H column at 220 nm. Optical rotations were measured on a commercial polarimeter and are reported as follows: [α]_D^T (*c* = g/100 mL, solvent).

2. General preparation procedure and characterization of the ligands

To a solution of **4** (3.6 mmol) in 50 mL ethanol was slowly added the dialdehyde (1.8 mmol), and the mixture was stirred at room temperature until the reaction proceed completely detected by TLC. Sodium borohydride (14.4 mmol) was then added in small portions at 0 °C. And then the reaction was allowed to warm to ambient temperature and detected by TLC. It was poured over 120 mL of water and extracted with CH_2Cl_2 . The combined organic phase was washed with Sat. NaCl and dried with anhydrous Na_2SO_4 , and the solvents were removed in vacuo and purified through column chromatography (petroleum ether /AcOEt = 4 : 1) on silica gel to obtain L1-8.

L9 and L10 were synthesized by the analogy of L1-8.

L1: White solid; $[\alpha]_D^{25} = -51.8$ (*c* 0.74, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 8.1, 4H), 7.18-7.13 (m, 6H), 7.06 (d, *J* = 6.4, 4H), 6.95-6.86 (m, 10H), 6.77 (d, *J* = 7.0, 4H), 6.66 (s, 2H), 4.40 (d, *J* = 9.3, 2H), 3.92 (d, *J* = 9.4, 2H), 3.74 (d, *J* = 12.9, 2H), 3.60 (d, *J* = 12.9, 2H), 2.24

(s, 6H), 2.17 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.3, 141.2, 137.7, 136.5, 136.1, 127.72, 127.65, 126.9, 126.6, 126.4, 126.2, 126.14, 126.11, 125.7, 125.6, 122.6, 66.5, 62.5, 48.0, 20.0, 19.0; ESI-HRMS calcd for C₅₁H₅₃N₄O₅S₂⁺ [M + H]⁺: 865.3452, found 865.3454.

L2: White solid; $[\alpha]_D^{25} = -48.9$ (*c* 0.92, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, *J* = 7.9, 4H), 7.16-7.05 (m, 15H), 6.86-6.79 (m, 6H), 6.69 (s, 6H), 4.34 (d, *J* = 9.4, 2H), 4.01 (d, *J* = 9.5, 2H), 3.74 (d, *J* = 12.8, 2H), 3.61 (d, *J* = 12.8, 2H), 2.18 (s, 3H), 1.20 (s, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 154.5, 153.8, 138.1, 136.5, 136.2, 128.1, 127.2, 127.0, 126.7, 126.5, 126.4, 126.4, 125.9, 125.9, 124.3, 122.9, 66.7, 63.0, 48.4, 33.8, 30.0, 19.3; ESI-HRMS calcd for C₅₇H₆₅N₄O₅S₂⁺ [M + H]⁺: 949.4391, found 949.4347.

L3: White solid; $[\alpha]_D^{25} = -62.0$ (*c* 0.64, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, *J* = 8.4, 4H), 7.17-7.15 (m, 6H), 7.05 (d, *J* = 6.4, 4H), 6.93-6.89 (m, 6H), 6.76 (d, *J* = 6.7, 4H), 6.66 (s, 2H), 6.57 (d, *J* = 8.4, 4H), 4.36 (d, *J* = 9.2, 2H), 3.69 (d, *J* = 9.3, 2H), 3.73 (d, *J* = 13.0, 2H), 3.70 (s, 6H), 3.59 (d, *J* = 12.9, 2H), 2.17 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 161.2, 153.6, 138.0, 136.8, 131.1, 128.1, 128.0, 127.2, 126.9, 126.8, 126.5, 126.5, 126.4, 126.0, 123.0, 112.6, 66.8, 62.9, 54.4, 48.3, 19.3; ESI-HRMS calcd for C₅₁H₅₃N₄O ₇S₂⁺ [M + H]⁺: 897.3350, found 897.3318.

L4: Yellow solid; $[\alpha]_D^{25} = -33.8$ (*c* 0.40, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.2, 4H), 7.69 (d, *J* = 8.2, 4H), 7.24-7.14 (m, 6H), 7.06 (d, *J* = 5.9, 4H), 6.99-6.91 (m, 6H), 6.84 (d, *J* = 7.1, 4H), 6.64 (s, 2H), 4.50 (d, *J* = 8.7, 2H), 3.94 (d, *J* = 8.7, 2H), 3.76 (d, *J* = 12.8, 2H), 3.63 (d, *J* = 12.8, 2H), 2.14 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.3, 148.3, 145.2, 137.4, 136.2, 128.2, 127.5, 127.2, 127.1, 127.0, 126.8, 126.6, 126.5, 122.9, 122.5, 66.9, 62.9, 48.8, 19.3; ESI-HRMS calcd for C₄₉H₄₇N₆O₉S₂⁺ [M + H]⁺: 927.2840, found 927.2834.

L5: Yellow solid; $[\alpha]_D^{25} = -21.6$ (*c* 0.44, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.23 (s, 2H), 8.09 (d, *J* = 8.1, 2H), 7.91 (d, *J* = 7.7, 2H), 7.33 (t, *J* = 7.8, 2H), 7.16-7.2 (m, 6H), 7.08 (d, *J* = 6.6, 4H), 6.90-6.84 (m, 10H), 6.65 (s, 2H), 4.53 (d, *J* = 9.0, 2H), 3.96 (d, *J* = 9.0, 2H), 3.76 (d, *J* = 12.8, 2H), 3.65 (d, *J* = 12.9, 2H), 2.14 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.4, 146.5, 141.5, 137.5, 135.9, 131.5, 128.7, 128.2, 127.5, 127.1, 126.9, 126.8, 126.7, 126.5, 125.3, 122.9, 121.4, 66.9, 63.0, 48.8, 19.3; ESI-HRMS calcd for C₄₉H₄₇N₆O₉S₂⁺ [M + H]⁺: 927.2840, found 927.2849.

L6: White solid; $[\alpha]_D^{25} = -38.7$ (*c* 0.78, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 7.6, 4H), 7.26-7.23 (m, 2H), 7.15-7.03 (m, 14H), 6.89-6.83 (m, 6H), 6.74 (d, *J* = 6.9, 4H), 6.65 (s, 2H), 4.39 (d, *J* = 9.2, 2H), 3.97 (d, *J* = 9.3, 2H), 3.73 (d, *J* = 12.9, 2H), 3.59 (d, *J* = 12.8, 2H), 2.15 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.6, 139.3, 138.0, 136.6, 130.9, 128.1, 127.4, 127.3, 126.9, 126.8, 126.6, 126.5, 126.4, 126.1, 126.0, 122.9, 66.8, 62.9, 48.4, 19.3; ESI-HRMS calcd for

 $C_{49}H_{49}N_4O_5S_2^+[M + H]^+$: 837.3139, found 837.3100.

L7: White solid; $[\alpha]_D^{25} = +53.3$ (*c* 0.40, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.64 (d, *J* = 8.5, 2H), 7.94 (d, *J* = 7.1, 2H), 7.76 (d, *J* = 8.0, 2H), 7.69 (d, *J* = 8.0, 2H), 7.36 (t, *J* = 7.0, 2H), 7.22-7.16 (m, 4H), 7.08 (s, 6H), 6.94-6.93 (m, 4H), 6.91-6.72 (m, 2H), 6.67-6.65 (m, 10H), 4.36 (d, *J* = 8.9, 2H), 3.88 (d, *J* = 8.9, 2H), 3.75 (d, *J* = 12.9, 2H), 3.60 (d, *J* = 13.0, 2H), 2.20 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.4, 137.8, 136.3, 134.1, 132.8, 132.6, 128.4, 127.9, 127.4, 127.2, 127.0, 126.8, 126.7, 126.5, 126.4, 126.4, 126.1, 125.9, 125.4, 123.7, 123.1, 122.7, 66.8, 62.9, 48.5, 19.4; ESI-HRMS calcd for C₅₇H₅₃N₄O₅S₂⁺ [M + H]⁺: 937.3452, found 937.3408.

L8: White solid; $[\alpha]_D^{25} = -90.0$ (*c* 1.00, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.14 (s, 2H), 7..68 (d, *J* = 8.0, 2H), 7.57 (d, *J* = 8.1, 4H), 7.52-7.47 (m, 4H), 7.44-7.41 (m, 2H), 7.15-7.04 (m, 10H), 6.78-6.69 (m, 12H), 4.48 (d, *J* = 9.2, 2H), 4.02 (d, *J* = 9.3, 2H), 3.76 (d, *J* = 12.9, 2H), 3.65 (d, *J* = 12.9, 2H), 2.19 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.7, 138.0, 136.6, 136.3, 133.3, 130.7, 128.0, 127.7, 127.4, 127.2, 126.8, 126.7, 126.6, 126.5, 126.4, 126.4, 126.0, 125.9, 123.1, 121.3, 66.9, 63.0, 48.5, 19.3; ESI-HRMS calcd for C₅₇H₅₃N₄O₅S₂⁺ [M + H]⁺: 937.3452, found 937.3464.

L9: Pale yellow solid; $[\alpha]_D^{25} = +164.6$ (*c* 0.47, CH₃OH); ¹H NMR (500 MHz, (CD₃)₂SO) δ 8.01 (d, J = 8.0, 2H), 7.66 (d, J = 7.8, 2H), 7.10-7.02 (m, 6H), 6.94-6.82 (m, 6H), 6.73 (d, J = 7.6, 1H), 6.67-6.65 (m, 1H), 4.44 (d, J = 7.6, 1H), 3.85 (d, J = 7.9, 1H), 3.39 (s, 2H); ¹³C NMR (125 MHz, (CD₃)₂SO) δ 156.0, 148.7, 146.7, 139.5, 138.6, 128.6, 128.1, 127.8, 127.8, 127.4, 127.0, 126.6, 125.2, 123.7, 118.5, 115.0, 66.7, 63.4, 47.2; ESI-HRMS calcd for C₂₇H₂₆N₃O₅S⁺ [M + H]⁺: 504.1588, found 504.1587.

L10: Yellow solid; $[\alpha]_D^{25} = +32.6$ (*c* 0.86, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.2, 2H), 7.63 (d, *J* = 8.2, 2H), 7.23 (s, 1H), 7.18 (s, 3H), 7.02-6.90 (m, 5H), 6.70 (d, *J* = 7.2, 2H), 6.65 (s, 1H), 4.71 (d, *J* = 7.9, 1H), 3.89 (d, *J* = 7.9, 1H), 3.83 (d, *J* = 13.3, 1H), 3.56 (d, *J* = 13.3, 1H), 1.47 (s, 9H), 1.22 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 152.7, 148.4, 144.9, 140.0, 135.7, 135.3, 134.9, 127.6, 127.2, 127.1, 127.0, 126.9, 126.5, 122.7, 122.3, 120.4, 65.2, 61.8, 49.8, 33.9, 33.1, 30.6, 28.6; ESI-HRMS calcd for C₃₅H₄₂N₃O₅S⁺[M + H]⁺: 616.2840, found 616.2830.

S4

3. Other optimizations of the Mannich reaction

Table S1: Metal effects.^[a]

N ^{-Ts} + 1a	COOEt COOEt COOEt Metal salt 2 mol% L4 1 mol% THF 0 °C	NHTs COOEt COOEt 2a	Ph NH OH HN NH Ph Ph''' NH HN Ph $O = \overset{I}{S} = O O = \overset{I}{S} = O$ Ar Ar L4: Ar = 4-NO ₂ -C ₆ H ₄
Entry	Metal salt	Yield ^[b] (%)	$ee^{[c]}$ (%)
1	Ni(OAc) ₂	94	96
2	Fe(OAc) ₂	14	1
3	Cu(OAc) ₂	21	5
4	Co(OAc) ₂	38	3
5	CuOAc	30	3
6	$Mn(OAc)_2$	54	1
7	Mn(OAc) ₃	37	3
8	Zn(OAc) ₂	26	13

[a] Unless otherwise noted, all reactions were performed with metal salt (2 mol%) and ligand (1 mol%), **1a** (1.0 mmol), and diethyl malonate (1.0 mmol) in THF (5.0 mL) under air atmosphere at 0 °C for 16-17h. [b] Isolated yield. [c] Determined by HPLC analysis on a chiral stationary phase.

Entry	Solvent	Yield ^[b] (%)	<i>ee</i> ^[c] (%)
1	THF	94	96
2	CH ₂ Cl ₂	10	5
3	AcOEt	56	58
4	CH ₃ OH	50	14
5	Toluene	6	22

 Table S2: Solvent effects.^[a]

[a] Unless otherwise noted, all reactions were performed with $Ni(OAc)_2 \cdot 4H_2O$ (2 mol%) and L4 (1 mol%), 1a (1.0 mmol), and diethyl malonate (1.0 mmol) in the specified solvent (5.0 mL) under air atmosphere at 0 °C for 16-17h. [b] Isolated yield. [c] Determined by HPLC analysis on a chiral stationary phase.

Entry	The concentration of imine (M)	Yield ^[b] (%)	<i>ee</i> ^[c] (%)
1	0.20	94	96
2	0.25	92	97
3	0.33	88	91
4	0.50	84	90
5	1.0	89	83

Table S3: The effects of concentration of imine.^[a]

[a] Unless otherwise noted, all reactions were performed with Ni(OAc)₂·4H₂O (2 mol%) and L4 (1 mol%), **1a** (1.0 mmol), and diethyl malonate (1.0 mmol) in THF (5.0-1.0 mL) under air atmosphere at 0 °C for 16-17h. [b] Isolated yield. [c] Determined by HPLC analysis on a chiral stationary phase.

Table S4: The effects of the molar ratio of the imine / diethyl malonate.^[a]

Entry	The molar ratio of the imine / diethyl malonate.	Yield ^[b] (%)	<i>ee</i> [c] (%)
1	1:1	92	97
2	1:1.2	94	97
3	1:1.4	95	96

[a] Unless otherwise noted, all reactions were performed with Ni(OAc)₂·4H₂O (2 mol%) and L4 (1 mol%), **1a** (1.0 mmol), and diethyl malonate (1.0-1.4 mmol) in THF (4.0 mL) under air atmosphere at 0 °C for 16-17h. [b] Isolated yield. [c] Determined by HPLC analysis on a chiral stationary phase.

Table S5: The effects of the reaction temperature.^[a]

Entry	Т (°С).	Time (h)	Yield ^[b] (%)	ee ^[c] (%)
1	0	16	92	97
2	-15	40	89	89

[a] Unless otherwise noted, all reactions were performed with $Ni(OAc)_2 \cdot 4H_2O$ (2 mol%) and L4 (1 mol%), 1a (1.0 mmol), and diethyl malonate (1.2 mmol) in THF (4.0 mL) under air atmosphere at 0 °C for 16-17h. [b] Isolated yield. [c] Determined by HPLC analysis on a chiral stationary phase.

Table S	56: Ac	ditive	effects.	[a]
----------------	--------	--------	----------	-----

Entry	Additive.	Yield ^[b] (%)	$ee^{[c]}$ (%)
1	none	85	96
2	3Å MS (15.0 mg) ^[d]	90	95

3	4Å MS (15.0 mg) ^[d]	90	97
4	5Å MS (15.0 mg) ^[d]	92	95
5	4- <i>t</i> Bu-phenol (0.5 mol%)	91	94

[a] The reaction was performed with Ni(OAc)₂·4H₂O (1 mol%) and L4 (0.5 mol%), 1a (2.0 mmol) and diethyl malonate (2.4 mmol) in THF (8.0 mL) under air atmosphere at 0 °C for 16-17h. [b] Isolated yield. [c] Determined by HPLC analysis on a chiral stationary phase. [d] 1.5 g/mmol, relative to the ligand.

4. General procedure for the catalytic Mannich reaction

4.1 (5 mmol scale): The mixture of Ni(OAc)₂·4H₂O (0.01 mmol, 0.2 mol%), 4Å MS (7.5 mg) and L4 (0.005 mmol, 0.1 mol%) was stirred in THF (15.0 mL) at 35 °C for 1.5 h. The mixture was cooled to 0 °C, then the imine 1 (5.0 mmol) and THF (3.0 mL) were added. After stirring for 30 min at 0 °C, diethyl malonate (6.0 mmol) and THF (2.0 mL) were added. The mixture continued to stir at 0 °C for the time indicated in Table 2. The resulting solution concentrated under reduced pressure and purified by column chromatography (petroleum ether / AcOEt, 5:1 to 8:1) on silica gel to afford the products.

4.2 (20 mmol scale): The mixture of Ni(OAc)₂·4H₂O (0.04 mmol, 0.2 mol%), 4Å MS (30 mg) and L4 (0.02 mmol, 0.1 mol%) was stirred in THF (60 mL) at 35 °C for 1.5 h. The mixture was cooled to 0 °C, and then the imine **1h** (20.0 mmol) and THF (10.0 mL) were added. After stirring for 30 min at 0 °C, diethyl malonate (24.0 mmol) and THF (10.0 mL) were added. The mixture continued to stir at 0 °C for 24 h. The resulting solution was filtered through a short pad of silica gel (15 g) and washed with CH_2Cl_2 , and the solution concentrated under reduced pressure. The crude product was recrystallized from petroleum ether and AcOEt to afford **2h**.

4.3 (50 mmol scale): The mixture of Ni(OAc)₂·4H₂O (0.1 mmol, 0.2 mol%), 4Å MS (75 mg) and L4 (0.05 mmol, 0.1 mol%) was stirred in THF (160 mL) at 35 °C for 1.5 h. The mixture was cooled to 0 °C, and then the imine **1h** (50.0 mmol) and THF (20.0 mL) were added. After stirring for 30 min at 0 °C, diethyl malonate (60.0 mmol) and THF (20.0 mL) were added. The mixture continued to stir at 0 °C for 96 h. The reaction mixture was diluted by CH_2Cl_2 / petroleum ether (400 mL, 1:1, v/v) and filtered through a short pad of silica gel (70 g). The resulting solution was concentrated to 15-20 mL under reduced pressure, then petroleum ether (200 mL) was added to the residue with vigorous stirring to afford the crude product (97% *ee*). The crude product was recrystallized from petroleum ether and AcOEt to afford **2h**.

5. General procedure for the synthesis of azirdines^[1]

To the solution of **2** (0.2 mmol) in anhydrous CH_3CN (1.0 mL), $PhI(OAc)_2$ (0.4 mmol) and Bu_4NBr (0.4 mmol) were added. The resulted mixture was warmed up and stirred at 30 °C for 30-40 min. The mixture directly purified by column chromatography (petroleum ether / AcOEt, 10:1 to 15:1) on silica gel to provide the corresponding aziridine.

^[1] R. Fan, Y. Ye, Adv. Synth. Catal. 2008, 350, 1526-1530.

6. Miscellaneous analyses of the complexes

6.1 ESI-MS analysis of the complexes

Calcd. $C_{53}H_{49}N_6Ni_2O_{13}S_2 [M_{L4} - 2H + Ni_2(OAc)_2 - H]^-: 1157.15$

Found: 1157.31

Figure S1. ESI-MS of Ni(OAc)₂/L4 = 1:1 mixture generated in THF (a, b)

Calcd. $C_{53}H_{49}N_6Ni_2O_{13}S_2 [M_{L4} - 2H + Ni_2(OAc)_2 - H]^-: 1157.15$

Found: 1157.30

Figure S2. ESI-MS of Ni(OAc)₂/L4 = 2:1 mixture generated in THF (c, d)

Calcd. C₅₃H₄₉N₆Ni₂O₁₃S₂ [M_{L4} -2H + Ni₂(OAc)₂ -H]⁻: 1157.15115

Found: 1157.15010

Figure S3. ESI-HRMS of Ni(OAc)₂/L4 = 2:1 mixture generated in THF (e)

Figure S4. The observed distribution pattern of m/z 1157 and the calculated distribution pattern of $C_{53}H_{49}N_6Ni_2O_{13}S_2$ (f, g, h)

Figure S5. ESI-MS of Ni(OAc)₂/L4 = 2:1 mixture generated in CH_2Cl_2 (i)

Figure S6. ESI-MS of Ni(OAc) $_2/L4 = 2:1$ mixture generated in toluene (j)

6.2 The structure of the dinuclear Ni-aminophenol sulfonamide complex optimized by DFT

Figure S7. The geometry of Ni₂/L4 optimized by density functional theory (DFT)

Computational Methods: DFT calculations were carried out using the Gaussian 09 software package^[2]. Considering both the desired precision of structures and available computer resources, the geometry optimizations were performed using the Becke's three-parameter nonlocal exchange function^[3] and the Lee, Yang, and Parr nonlocal correlation function (LYP)^[4] at a mixed basis set level. The Lan2DZ basis set^[5] with the associated effective core potential was used for Ni, while the 6-31G(d) basis set^[6] was used for all other atoms (C, H, O, N, S).

6.2.1 Selected bond length (nm)

Ni ₁ -N ₃	Ni ₁ -O _a	Ni ₁ -O ₆	Ni ₂ -O ₆	Ni ₂ -N ₇	Ni ₂ -N ₈	Ni ₂ -O _c	Ni ₁ -O _b	Ni ₁ -Ni ₂
0.1962	0.1955	0.1878	0.1932	0.1948	0.1917	0.1893	0.1916	0.3185

6.2.2 Selected dihedral angles (°)

∠Ni ₁ N ₃ N ₄ O ₅	$\angle N_3N_4O_5O_6$	∠Ni ₂ O ₆ N ₇ N ₈	$\angle O_6 N_7 N_8 O_9$	∠Ni ₁ O ₆ Ni ₂ O ₉	$\angle N_3N_4O_6O_9$	∠N ₃ Ni ₁ O ₆ Ni ₂
123.71	-13.90	4.11	68.74	91.42	-121.54	-107.89

^[2] M. J. Frisch, G. W., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian 09, revision D.01; Gaussian, Inc.: Wallingform, CT, 2009.

^[3] W. Kohn, A. D. Becke, R. G. Parr, J. Phys. Chem. 1996, 100, 12974-12980.

^[4] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.

^{[5] (}a) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270-283. (b) W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985,

^{82, 284-298. (}c) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299-310.

^[6] P. C. Hariharan, J. A. Pople, Theoretica. Chimica. Acta. 1973, 28, 213-222.

7. The X-ray data for 2k

Crystal data for **2k**: C₂₁H₂₄BrNO₆S, M = 498.38, a = 9.7594(11) Å, b = 12.6345(14) Å, c = 17.835(2) Å, $a = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 2199.1(4) Å³, T = 100(2) K, space group *P*212121, Z = 4, μ (MoK α) = 2.001 mm⁻¹, 24629 reflections measured, 6517 independent reflections ($R_{int} = 0.0415$). The final R_1 values were 0.0446 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.1001 ($I > 2\sigma(I)$). The final R_1 values were 0.0596 (all data). The final $wR(F^2)$ values were 0.1059 (all data). The goodness of fit on F^2 was 1.072. Flack parameter = 0.020(4).

CCDC No. 1567111

Figure S8. View of a molecule of **2k** with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure S7. View of the pack drawing of 2k. Hydrogen-bonds are shown as dashed

lines.

8. Postulated working model

Figure S8. The proposed working model

Based on the geometry of Ni₂/L4 optimized by DFT and the absolute configuration of the products, four plausible transition states **TS1-4** (Figure S8) were proposed to elucidate the asymmetric induction. **TS2** and **TS4** were speculated to be more favorable than **TS2** or **TS4** due to the steric repulsion between Ar and the complex, affording (R)-2.

9. Characterization of products

The absolute configuration of **2k** was determined by X-ray crystallographic analysis. The absolute configuration of **2a-2j**, **2l-2n** was determined by analogy.

127.3, 126.7, 125.9, 125.7, 61.1, 60.9, 56.9, 56.0, 20.4, 12.8, 12.8; The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 85/15, flow rate = 1.0 mL/min, 220 nm, $t_r = 24.15$ min (minor) and $t_r = 26.05$ min (major); ESI-HRMS Calcd for $C_{21}H_{25}NNaO_6S^+[M + Na]^+$: 442.1295, found 442.1293.

Dool/#	Ret Area		Unight	A roa%
r cak#	Time	Alca	ficigiit	Alca/0
1	24.151	258267	5580	1.709
2	26.051	14852579	357985	98.291

2b: White solid; 2.121 g, 98% yield, 96% ee; $[\alpha]_D^{25} = +22.9$ (c 0.87, COOEt CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, J = 7.9, 2H), 7.01-6.97 (m, 5H), 6.87 (t, J = 7.2, 1H), 6.48 (d, J = 9.1, 1H), 5.39-5.36 (m, 1H), 2b 4.17-4.02 (m, 4H), 3.67 (d, J = 5.5, 1H), 2.33 (s, 3H), 2.28 (s, 3H), 1.19-1.12 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 167.9, 166.5, 142.9, 137.9, 135.6, 134.9, 130.5, 129.1, 127.7, 126.8, 126.5, 126.1, 62.2, 62.0, 56.4, 53.3, 21.4, 19.1, 13.9, 13.9; The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 70/30, flow rate = 1.0 mL/min, 220 nm, t_r = 12.66 min (minor) and t_r = 13.84 min (major); ESI-HRMS Calcd for C₂₂H₂₇NNaO₆S⁺[M + Na]⁺: 456.1451, found 456.1451.

Peak#	Ret Time	Area	Height	Area%
1	12.660	258372	12112	1.927
2	13.843	13148502	533570	98.073

(m, 1H), 4.13-4.03 (m, 4H), 3.75 (d, J = 5.5, 1H), 2.31 (s, 3H), 2.14 (s, 3H), 1.20-1.12 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 166.8, 165.4, 141.8, 136.9, 136.8, 136.3, 128.0, 127.4, 127.2, 126.4, 126.0, 122.8, 61.1, 60.8, 56.8, 56.0, 20.3, 20.2, 12.9, 12.8; The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 80/20, flow rate = 1.0 mL/min, 220 nm, t_r = 14.99 min (minor) and t_r = 16.49 min (major); ESI-HRMS Calcd for C₂₂H₂₇NNaO₆S⁺[M + Na]⁺: 456.1451, found 456.1462.

Peak#	Ret Time	Area	Height	Area%
1	14.996	256329	9941	1.662
2	16.491	15167245	545335	98.338

2d: White solid; 1.949 g, 90% yield, 96% ee;
$$[\alpha]_D^{25} = +36.0$$
 (c 0.70,
CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, $J = 7.7, 2H$), 7.05 (d,
 $J = 7.7, 2H$), 6.97 (d, $J = 7.5, 2H$), 6.91 (d, $J = 7.6, 2H$), 6.35 (d, $J = 9.4, 1H$), 5.09 (t, $J = 7.4, 1H$), 4.14-3.96 (m, 4H), 3.74 (d, $J = 5.6, 1H$),
2.31(s, 3H), 2.23 (s, 3H), 1.15 (m, 6.53, 6H); ¹³C NMR (125 MHz,

CDCl3) δ 166.1, 164.8, 141.1, 136.2, 135.7, 132.9, 127.4, 127.3, 125.3, 125.0, 60.4, 60.2, 56.2, 55.1, 19.7, 19.3, 12.2, 12.2; The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 80/20, flow rate = 1.0 mL/min, 220 nm, t_r = 23.02 min (minor) and t_r = 27.06 min (major); ESI-HRMS Calcd for C₂₂H₂₇NNaO₆S⁺ [M + Na]⁺: 456.1451, found 456.1443.

1	23.019	254068	6054	1.878
2	27.057	13271744	281134	98.122

4.01 (m, 4H), 4.0-3.94 (m, 1H), 2.15 (s, 3H), 1.13 (t, J = 7.1, 3H), 1.05 (t, J = 7.1, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.9, 166.7, 142.8, 137.7, 133.6, 132.9, 130.0, 129.0, 128.9, 128.5, 126.9, 126.8, 125.8, 125.0, 125.0, 122.0, 62.3, 61.9, 56.8, 53.1, 21.3, 13.9, 13.9; The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 70/30, flow rate = 1.0 mL/min, 220 nm, t_r = 15.64 min (major) and t_r = 18.93 min (minor); ESI-HRMS Calcd for C₂₅H₂₇NNaO₆S⁺[M + Na]⁺: 492.1451, found 492.1457.

Peak#	Ret Time	Area	Height	Area%
1	15.641	43542497	1504971	95.126
2	18.928	2231239	65718	4.874

2f: White solid; 2.210 g, 94% yield, 97% *ee*; $[\alpha]_D^{25} = +56.3$ (c 1.26, COOEt CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.73-7.72 (m, 1H), 7.62-OOEt 7.59 (m, 2H), 7.47-7.41 (m, 5H), 7.24 (d, *J* = 8.5, 1H), 6.86 (d, *J* =

7.8, 2H), 6.53 (d, J = 9.5, 1H), 5.34-5.31 (m, 1H), 4.16-4.01 (m,

4H), 3.89 (d, J = 5.5, 1H), 2.09 (s, 3H), 1.18 (t, J = 7.1, 3H), 1.12 (t, J = 7.1, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.8, 165.4, 141.9, 136.7, 133.5, 131.8, 131.6, 128.0, 127.2, 126.9, 126.4, 125.9, 125.4, 125.2, 125.1, 123.2, 61.2, 60.9, 56.7, 56.2, 20.1, 12.9, 12.8; The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 80/20, flow rate = 1.0 mL/min, 220 nm, t_r = 24.85 min (minor) and t_r = 27.15 min (major); ESI-HRMS Calcd for C₂₅H₂₇NNaO₆S⁺[M + Na]⁺: 492.1451, found 492.1439.

Peak#	Ret Time	Area	Height	Area%
1	24.847	1849960	41045	1.658
2	27.153	109699000	1966771	98.342

2g: White solid; 1.798 g, 80% yield, 95% *ee*; $[\alpha]_D^{25} = +35.9$ (c 0.74, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 7.9, 2H), 7.02 (d, J = 7.85, 2H), 6.98 (d, J = 8.2, 2H), 6.58 (d, J = 8.3, 2H), 6.37 (d, J = 9.4, 1H), 5.07-5.04 (m, 1H), 4.13-3.95 (m, 4H), 3.74 (d, J = 6.6, 1H), 3.66 (s, 3H), 2.27 (s, 3H), 1.15-1.08 (m,

6H); ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 164.3, 157.0, 140.7, 135.9, 127.6, 127.1, 126.1, 125.0, 111.6, 59.9, 59.8, 56.1, 54.6, 53.1, 19.3, 11.8, 11.8; The *ee* was determined by HPLC analysis using a CHIRALPAK AD-H column, hexane/2-propanol 70/30, flow rate = 1.0 mL/min, 220 nm, $t_r = 22.34$ min (minor) and $t_r = 26.30$ min (major); ESI-HRMS Calcd for $C_{22}H_{27}$ NNaO₇S⁺ [M + Na]⁺: 472.1400, found 472.1394.

Peak#	Ret Time	Area	Height	Area%
1	22.339	1533253	32876	2.518
2	26.296	59360076	1025443	97.482

1H), 4.16-3.95 (m, 4H), 3.73 (d, J = 6.2, 1H), 2.31 (s, 3H), 1.14 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 166.6, 165.2, 161.1 (d, J = 245.4), 142.1, 136.7, 132.4 (d, J = 3.0), 128.2, 127.7, 127.7, 126.0, 114.2, 114.1, 61.1, 61.0, 56.9, 55.4, 20.4, 12.8; The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 70/30, flow rate = 1.0 mL/min, 220 nm, t_r = 16.67 min (minor) and t_r = 19.39 min (major); ESI-HRMS Calcd for C₂₁H₂₄FNNaO₆S⁺ [M + Na]⁺: 460.1201, found 460.1208.

Peak#	Ret Time	Area	Height	Area%
1	16.670	114236	3887	1.235
2	19.394	9132991	250877	98.765

2h: White solid; 99% ee, $[\alpha]_D^{25} = +24.5$ (*c* 0.40, CH₂Cl₂); The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 70/30, flow rate = 1.0 mL/min, 220 nm, t_r = 12.75 min (minor) and t_r = 15.40 min (major).

Peak#	Ret Time	Area	Height	Area%
1	12.746	40628	2047	0.260
2	15.395	15556490	569147	99.740

1.14-1.08 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 166.3, 165.1, 158.7 (d, J = 244.6), 142.1, 136.6,

128.6 (d, J = 8.4), 128.2, 128.1 (d, J = 3.4), 126.0, 123.7 (d, J = 12.6), 123.0 (d, J = 3.2), 114.3 (d, J = 21.4), 61.1, 60.9, 55.4, 50.9, 20.3, 12.8, 12.8 ppm. The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 70/30, flow rate = 1.0 mL/min, 220 nm, t_r = 13.54 min (major) and t_r = 15.74 min (minor); ESI-HRMS Calcd for C₂₁H₂₄FNNaO₆S⁺[M + Na]⁺: 460.1201, found 460.1209.

Peak#	Ret Time	Area	Height	Area%
1	13.535	18435529	832944	95.356
2	15.744	897783	34437	4.644

2j: White solid; 2.256 g, 99% yield, 95% *ee*; $[\alpha]_D^{25} = +29.8$ (*c* 0.88, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 8.0, 2H), 7.06-7.03 (m, 6H), 6.48 (d, *J* = 9.4, 1H), 5.10-5.07 (m, 1H), 4.16-3.94 (m, 4H), 3.74 (d, *J* = 6.4, 1H), 2.31 (s, 3H), 1.13 (m, 6H); ¹³C NMR (125)

MHz, CDCl₃) δ 166.4, 165.2, 142.2, 136.7, 135.2, 132.6, 128.2, 127.5, 127.4, 126.0, 61.1, 61.1, 56.7, 55.5, 20.4, 12.8; The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 70/30, flow rate = 1.0 mL/min, 220 nm, t_r = 19.28 min (minor) and t_r = 23.99 min (major); ESI-HRMS Calcd for C₂₁H₂₄ClNNaO₆S⁺[M + Na]⁺: 476.0905, found 476.0927.

Peak#	Ret Time	Area	Height	Area%
1	19.282	943038	25240	2.230
2	23.994	41341347	760197	97.770

1H), 2.34 (s, 3H), 1.16 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 167.6, 166.2, 143.3, 137.7, 136.7, 131.5, 129.3, 128.8, 127.0, 121.9, 62.3, 62.1, 57.6, 56.6, 21.5, 13.9, 13.9; The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 70/30, flow rate = 1.0 mL/min, 220 nm, t_r = 17.52 min (minor) and t_r = 21.18 min (major); ESI-HRMS Calcd for C₂₁H₂₄BrNNaO₆S⁺[M + Na]⁺: 520.0400, found 520.0393.

Peak#	Ret Time	Area	Height	Area%
1	17.516	1467603	45375	3.414
2	21.175	41520285	876707	96.586

21: White solid; 2.386 g, 98% yield, 90% *ee*; $[\alpha]_D^{25} = +14.6$ (c 3.80, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 7.6, 2H), 7.33 (d, J = 7.7, 2H), 7.22 (d, J = 7.7, 2H), 7.01 (d, J = 7.7, 2H), 6.57 (d, J = 9.5, 1H), 5.20-5.17 (m, 1H), 4.19-3.98 (m, 4H), 3.77 (d, J = 5.7,

1H), 2.28 (s, 3H), 1.15 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 166.4, 165.1, 142.3, 140.5, 136.5, 128.2, 126.6, 125.9, 124.2 (d, *J* = 3.7), 61.3, 61.2, 56.5, 55.7, 20.2, 12.8, 12.8; The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 80/20, flow rate = 1.0 mL/min, 220 nm, t_r = 21.70 min (minor) and t_r = 23.77 min (major); ESI-HRMS Calcd for C₂₂H₂₄F₃NNaO₆S⁺ [M + Na]⁺: 510.1167, found 510.1164.

Peak#	Ret Time	Area	Height	Area%
1	21.704	1043607	28276	4.859
2	23.772	20433254	427576	95.141

2m: White solid; 2.220 g, 98% yield, 90% *ee*; $[\alpha]_D^{25} = +28.3$ (c 3.30, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 7.6, 2H), 7.08-7.04 (m, 5H), 6.96 (s, 1H), 6.42 (d, J = 9.3, 1H), 5.12-5.09 (m, 1H), 4.18-4.00 (m, 4H), 3.73 (d, J = 4.5, 1H), 2.32 (s, 3H), 1.20-1.14 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 167.6, 166.2, 143.3, 139.5, 137.6, 134.3, 129.7, 129.3, 128.0, 127.2, 127.0, 125.2, 62.4, 62.2, 57.6, 56.6, 21.5, 13.9, 13.9; The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 70/30, flow rate = 1.0 mL/min, 220 nm, t_r = 9.10 min (minor) and t_r = 10.54 min (major); ESI-HRMS Calcd for C₂₁H₂₄ClNNaO₆S⁺ [M + Na]⁺: 476.0905, found 476.0907.

Peak#	Ret Time	Area	Height	Area%
1	9.104	475704	31994	5.135
2	10.543	8787826	505583	94.865

2n: White solid; 2.180 g, 92% yield, 92% *ee*; $[\alpha]_D^{25} = +16.8$ (*c* 2.00, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 8.0, 2H), 7.12 (d, *J* = 7.9, 2H), 7.00-6.94 (m, 1H), 6.78-6.72(m, 1H), 6.36 (d, *J* = 9.7,

1H), 5.30-5.26 (m, 1H), 4.18-3.95 (m, 4H), 3.79 (d, J = 6.3, 1H),

2.32(s, 3H), 1.16 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 166.2, 164.9, 142.6, 136.4, 128.3, 125.9, 116.4 (d, J = 4.8), 116.2 (d, J = 4.9), 104.6, 104.4 (d, J = 6.7), 104.3, 61.3, 61.2, 55.0, 49.9, 20.3, 12.8; The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 70/30, flow rate = 1.0 mL/min, 220 nm, t_r = 8.98 min (minor) and t_r = 13.04 min (major); ESI-HRMS Calcd for C₂₁H₂₂F₃NNaO₆S⁺ [M + Na]⁺: 496.1012, found 496.1003.

Peak#	Ret Time	Area	Height	Area%
1	8.977	564297	35655	3.973
2	13.039	13639619	587321	96.027

1H), 2.37 (s, 3H), 1.55-1.49 (m, 1H), 1.47-1.41 (m, 1H), 1.25-1.20 (m, 5H), 1.16 (t, J = 7.1, 3H), 1.13-1.05 (m, 4H); 0.76 (t, J = 7.0, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.0, 167.4, 143.1, 138.5, 129.4, 126.9, 61.7, 61.6, 54.8, 53.5, 33.6, 31.1, 25.6, 22.3, 21.4, 13.9, 13.9, 13.8; The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 85/15, flow rate = 1.0 mL/min, 220 nm, t_r = 9.23 min (minor) and t_r = 11.59 min (major); ESI-HRMS Calcd for C₂₀H₃₁NNaO₆S + [M + Na]⁺: 436.1764, found 436.1761.

Peak#	Ret Time	Area	Height	Area%
1	9.227	4814832	346798	9.973
2	11.590	43461534	2239275	90.027

3a: Colorless oil; 78.0 mg, 93% yield, 93% *ee*; $[\alpha]_D^{25} = -4.6$ (*c* 1.15, CH₂Cl₂); N COOEt ¹H NMR (500 MHz, (CD₃)₂SO) δ 7.93 (d, *J* = 7.9, 2H), 7.46 (d, *J* = 7.8, 2H), COOEt 7.29-7.24 (m, 5H), 4.91 (s, 1H), 4.32-4.31 (m, 2H), 3.91-3.90 (m, 2H), 2.39 **3a** (s, 3H), 1.27 (t, J = 6.8, 3H), 0.78 (t, J = 6.8, 3H); The *ee* was determined by HPLC analysis using a Chiralcel OD-H column, hexane/2-propanol 90/10, flow rate = 1.0 mL/min, 220 nm, t_r = 8.28 min (minor) and t_r = 8.81 min (major).

Peak#	Ret Time	Area	Height	Area%
1	8.278	480569	31430	3.514
2	8.812	13194858	784859	96.486

3b: White solid; 77.7 mg, 90% yield, 94% *ee*; $[\alpha]_D^{25} = +12.3$ (*c* 0.90 COOEt COOEt **3b**: White solid; 77.7 mg, 90% yield, 94% *ee*; $[\alpha]_D^{25} = +12.3$ (*c* 0.90 CH₂Cl₂); ¹H NMR (500 MHz, (CD₃)₂SO) δ 7.96 (d, *J* = 8.3, 2H), 7.50 (d, *J* = 8.1, 2H), 7.21-7.15 (m, 2H), 7.04 (t, *J* = 7.1, 1H), 6.89 (d, *J* = 7.7, 1H), 4.83 (s, 1H), 4.31 (q, *J* = 7.0, 2H), 3.83 (q, *J* = 7.1, 2H), 2.41 (s, 3H),

2.38 (s, 3H), 1.26 (t, J = 7.1, 3H), 0.67 (t, J = 7.1, 3H) ppm. The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 90/10, flow rate = 1.0 mL/min, 220 nm, t_r = 8.63 min (major) and t_r = 9.69 min (minor).

1 8.630 17354728 1370731 97.358	
2 9.685 470904 32411 2.642	

3c: Colorless oil; 78.5 mg, 91% yield, 92% *ee*; $[\alpha]_D^{25} = -5.4$ (*c* 0.94, CH₂Cl₂); ¹H NMR (500 MHz, (CD₃)₂SO) δ 7.92 (d, *J* = 7.7, 2H), 7.47 (d, *J* = 7.7, 2H), 7.20-6.99 (m, 4H), 4.83 (s, 1H), 4.31-4.29 (m, 2H), 3.94-

3.92 (m, 2H), 2.40 (s, 3H), 2.21 (s, 3H), 1.26 (t, J = 6.7, 3H), 0.80 (t, J = 6.7, 3H); The *ee* was determined by HPLC analysis using a CHIRALPAK IA column, hexane/2-propanol 90/10, flow rate = 1.0 mL/min, 220 nm, t_r = 9.98 min (minor) and t_r = 13.01 min (major).

Peak#	Ret Time	Area	Height	Area%
1	9.982	1127719	80616	3.934
2	13.013	27540963	1500012	96.066

Ţs

Ń

3h

3f: Colorless oil; 87.9 mg, 94% yield, 90% *ee*; $[\alpha]_D^{25} = -4.8$ (c 0.66, CH₂Cl₂); ¹H NMR (500 MHz, (CD₃)₂SO) δ 7.98 (d, *J* = 8.3, 2H), 7.87-7.82 (m, 4H), 7.51-7.47 (m, 4H), 7.34-7.32 (m, 1H), 5.07 (s, 1H), 4.39-4.28 (m, 2H), 3.93-3.81 (m, 2H), 2.38 (s, 3H), 1.28 (t, *J*)

= 7.1, 3H), 0.71 (t, J = 7.1, 3H); The *ee* was determined by HPLC analysis using a Chiralcel OD-H column, hexane/2-propanol 90/10, flow rate = 1.0 mL/min, 220 nm, t_r = 10.17 min (minor) and t_r = 11.20 min (major).

Peak#	Ret Time	Area	Height	Area%
1	10.170	757654	32100	4.937
2	11.196	14588686	588308	95.063

4.32-4.29 (m, 2H), 3.95-3.92 (m, 2H), 2.38 (s, 3H), 1.26 (t, J = 6.9, 3H), 0.81 (t, J = 6.8, 3H) ppm. The *ee* was determined by HPLC analysis using a Chiralcel OJ-H column, hexane/2-propanol 70/30, flow rate = 1.0 mL/min, 220 nm, t_r = 10.91 min (major) and t_r = 15.34 min (minor).

Peak#	Ret Time	Area	Height	Area%
1	10906	14015804	214097	98.288
2	15.340	244104	1904	1.712

10. Copies of NMR spectra

S43

S44

2a

2b

2b

2c

2d

2d

2e

-700 -1200 -600 -500 CH₃ -1100 2.0891 4.1363 4.1199 4.1055 4.0977 4.0829 .0692 -400 .0545 035 -300 -1000 0 -200 -100 -900 M HN -0 8 9 CH3 -800 4.3 4.2 4.1 4.0 3.9 3.8 3.7 f1 (ppm) ö -700 7.6052 7.5904 7.4659 7.4527 7.4523 7.4523 7.4523 7.4180 7.4180 7.72563 7.72563 7.72194 6.8749 6.85414 6.5414 6.52255 7.7298 7.7180 7.6226 7.7245 1.1355 1.1214 1.1990 1.1849 1.1707 -600 -500 -400 -300 3.8975 3.8866 4.1055 4.0692 4.0545 4.1561 4.1363 4.1199 4.0829 4.0357 4.0196 5.3387 5.3224 5.3092 -200 -100 -0 1.98-<u>T</u> 0.97 3.99 2.98 3.00社 P.86.0 --100 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 5.5 5.0 4.5 4.0 f1 (ppm)

2f

2f

2g

2g

2h

2h

S67

2i

2i

2j

2k

2k

21

21

2m

2n

2n

S79

S80

3b

3c

3f

3h