Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

Catalytic Asymmetric Chemodivergent Arylative Dearomatization of

Tryptophols

Chun Ma, Ting Zhang, Jia-Yu Zhou, Guang-Jian Mei and Feng Shi*

School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China E-mail: <u>fshi@jsnu.edu.cn</u>

Contents:

- 1. General information (S2)
- 2. Screening of catalysts and condition optimization (S2-S3)
- 3. General procedure for the synthesis of products 3 and 7 (S3-S4)
- 4. Characterization data of products 3 and 7 (85-825)
- 5. Synthetic procedure and characterization data of products 8-9 (S25-S27)
- 6. NMR spectra of products 3, 7 and 8-9 (S28-S55)
- 7. HPLC copies of products 3, 7 and 8-9 (856-883)
- 8. X-ray single crystal data for compound 8 (S84-S85)

1. General information

2

3

4

5

4b

4c

4d

4e

¹H and ¹³C NMR spectra were measured respectively at 400 and 100 MHz, respectively. The solvent used for NMR spectroscopy was CDCl₃, using tetramethylsilane as the internal reference. HRMS (ESI) was determined by a HRMS/MS instrument. Enantiomeric excesses (*ee*) were determined by chiral high-performance liquid chromatography (chiral HPLC). The chiral columns used for the determination of enantiomeric ratios by chiral HPLC were Chiralpak IA, IB, AD-H and IC columns. Optical rotation values were measured with instruments operating at $\lambda = 589$ nm, corresponding to the sodium D line at the temperatures indicated. The X-ray source used for the single crystal X-ray diffraction analysis of compound **8** was CuK α ($\lambda = 1.54178$), and the thermal ellipsoid was drawn at the 30% probability level. Analytical grade solvents for the column chromatography were distilled before use. All starting materials commercially available were used directly. Substrates **1** and **2** were synthesized according to the literature method.¹

2. Screening of catalysts and condition optimization

THF

THF

THF

THF

Table 1. Screening of Catalysts and optimization of reaction conditions^[a]

1. a) L. Han,	, C. Liu, V	V. Zhang,	ХХ.	Shi,	SL.	You,	Chem.	Commun.	2014,	50,	1231;	b)	Т
Hashimoto, H	I. Nakatsu,	Y. Takigu	uchi, K	. Mar	uoka,	J. Am	. Chem	. Soc. 2013	3 , 135,	160	10.		

1:1.2

1:1.2

1:1.2

1:1.2

20

20

20

20

34

51

31

31

>95:5

>95:5

>95:5

>95:5

89

70

96

95

6	4 f	THF	1:1.2	20	21	>95:5	96
7	4g	THF	1:1.2	20	23	>95:5	93
8	4d	EtOAc	1:1.2	20	60	>95:5	97
9	4d	CH ₃ CN	1:1.2	20	60	>95:5	92
10	4d	CHCl ₃	1:1.2	20	58	>95:5	96
11	4d	acetone	1:1.2	20	26	>95:5	90
12	4d	toluene	1:1.2	20	78	>95:5	96
13	5a	toluene	1:1.2	20	59	>95:5	96
14	<u>6a</u>	toluene	1:1.2	20	48	>95:5	-99
15	6a	toluene	1:2	20	65	>95:5	-99
16	6a	toluene	1:4	20	58	>95:5	-98
17	<u>6a</u>	toluene	2.5:1	20	99	>95:5	-99
18	6a	toluene	4:1	20	99	>95:5	-96
19	6a	toluene	2.5:1	10	99	>95:5	-98
20	6a	toluene	2.5:1	5	92	>95:5	-99

[a] Unless otherwise indicated, the reaction was carried out at the 0.05 mmol scale in a solvent (0.5mL) for 12 h. [b] Isolated yield. [c] The dr value was determined by HPLC and ¹H NMR. [d] The ee value was determined by HPLC.

3. General procedure for the synthesis of products 3 and 7

For chiral products 3 and 7:

The solution of quinone imine ketal **2** (0.25 mmol) in toluene (1 mL) was added to the mixture of tryptophol **1** (0.1 mmol), catalyst **6a** (0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography on silica gel to afford pure compound **3**.

To the mixture of tryptophol 1 (0.4 mmol), catalyst 6a (0.005 mmol) and 3 Å MS (100 mg),

was added toluene (2 mL). Then, the solution of quinone imine ketal 2 (0.1 mmol) in toluene (3 mL) was added to the above mentioned reaction mixture over 1 h by a syringe pump. During the procedure, the reaction mixture was stirred at room temperature. Next, the resultant reaction mixture was further stirred at room temperature for 10 min. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography on silica gel to afford pure compound 7.

For racemic products 3 and 7:

The solution of quinone imine ketal 2 (0.25 mmol) in toluene (1 mL) was added to the mixture of tryptophol 1 (0.1 mmol), racemic phosphoric acid **RPA** (0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography on silica gel to afford racemic compound (\pm)-3.

To the mixture of tryptophol 1 (0.4 mmol), racemic phosphoric acid **RPA** (0.005 mmol) and 3 Å MS (100 mg), was added toluene (2 mL). Then, the solution of quinone imine ketal 2 (0.1 mmol) in toluene (3 mL) was added to the above mentioned reaction mixture over 1 h by a syringe pump. During the procedure, the reaction mixture was stirred at room temperature. Next, the resultant reaction mixture was further stirred at room temperature for 10 min. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography on silica gel to afford racemic compound (\pm)-7.

4. Characterization data of products 3 and 7

di-tert-butyl

((((3a*R*,8a*R*)-2,3-dihydro-8*H*-furo[2,3-b]indole-3a,8(8a*H*)-diyl)bis(4-methoxy-3,1-phenylene)) dicarbamate (3aa):

Following the general procedure, the solution of quinone imine ketal **2a** (63.3 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of tryptophol **1a** (16.1 mg, 0.1 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer

chromatography (PE:EA =2:1) on silica gel to afford pure compound **3aa** (55.5 mg) in 92% yield as white solid.

m.p. 117–120 °C; $[\alpha]_D^{20} = +94.5$ (c 0.9, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.44 – 7.31 (m, 3H), 7.16 (d, J = 2.4 Hz, 1H), 7.09 (d, J = 7.3 Hz, 1H), 7.04 (t, J = 7.7 Hz, 1H), 6.90 (d, J = 8.8 Hz, 1H), 6.83 (d, J = 8.8 Hz, 1H), 6.71 (t, J = 7.4 Hz, 1H), 6.42 (d, J = 7.9 Hz, 1H), 6.37 (s, 1H), 6.31 (s, 1H), 6.11 (s, 1H), 4.09 (t, J = 7.8 Hz, 1H), 3.77 – 3.67 (m, 7H), 2.89 – 2.80 (m, 1H), 2.53 – 2.45 (m, 1H), 1.50 (s, 9H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 153.8, 153.1, 150.8, 148.4, 132.7, 132.3, 131.8, 131.1, 130.3, 127.7, 124.5, 118.2, 112.8, 112.2, 108.0, 102.2, 80.1, 67.1, 59.4, 55.8, 55.7, 39.8, 28.3, 28.2; IR (KBr): 2976, 1699, 1598, 1512, 1232, 1161, 1025, 847, 811, 742 cm⁻¹; ESI FTMS exact mass calcd for (C₃₄H₄₁N₃O₇+Na)⁺ requires m/z 626.2843, found m/z 626.2842; The enantiomeric excess: 99%, determined by HPLC (Daicel Chiralpak IA, hexane/ isopropanol = 70/ 30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 7.663 (major), t_R = 9.230 (minor).

di-*tert*-butyl

Following the general procedure, the solution of quinone imine ketal 2a (63.3 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of

tryptophol **1b** (19.1 mg, 0.1 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =2:1) on silica gel to afford pure compound **3ba** (47 mg) in 74% yield as white solid.

m.p. 116–118 °C; $[\alpha]_D^{20} = +51.0$ (c 0.8, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.47 (s, 1H), 7.32 (s, 2H), 7.07 (t, J = 8.0 Hz, 1H), 6.88 – 6.80 (m, 3H), 6.39 (s, 1H), 6.35 (d, J = 8.2 Hz, 1H), 6.29 (s, 1H), 6.12 (d, J = 7.9 Hz, 1H), 5.87 (s, 1H), 4.15 (t, J = 7.3 Hz, 1H), 3.79 – 3.74 (m, 4H), 3.73 (s, 3H), 3.62 (s, 3H), 2.91 – 2.81 (m, 1H), 2.67 – 2.60 (m, 1H), 1.49 (s, 9H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 156.4, 153.7, 153.2, 153.1, 150.8, 150.1, 131.7, 130.8, 130.6, 130.4, 129.2, 117.3, 113.0, 111.8, 102.8, 102.4, 101.7, 80.0, 68.1, 59.2, 55.9, 55.6, 55.2, 36.6, 28.3; IR (KBr): 2976, 1723, 1589, 1512, 1234, 1161, 1026, 810, 773, 724 cm⁻¹; ESI FTMS exact mass calcd for (C₃₅H₄₃N₃O₈+Na)⁺ requires m/z 656.2948, found m/z 656.2949; The enantiomeric excess: 95%, determined by HPLC (Daicel Chiralpak AD-H, hexane/ isopropanol = 80/ 20, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 23.807 (minor), t_R = 27.107 (major).

di-tert-butyl

((((3a*R*,8a*R*)-4-methyl-2,3-dihydro-8*H*-furo[2,3-b]indole-3a,8(8a*H*)-diyl)bis(4-methoxy-3,1-ph enylene))dicarbamate (3ca):

Following the general procedure, the solution of quinone imine ketal **2a** (63.3 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of tryptophol **1c** (17.5 mg, 0.1 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer

chromatography (PE:EA =2:1) on silica gel to afford pure compound 3ca (52.1 mg) in 84% yield as white solid.

m.p. 117–119 °C; $[\alpha]_D^{20} = +141.6$ (c 0.8, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.43 (s, 1H), 7.38 – 7.28 (m, 2H), 7.24 – 7.15 (m, 1H), 6.97 (t, J = 7.7 Hz, 1H), 6.89 – 6.81 (m, 2H), 6.50 (d, J = 7.4 Hz, 1H), 6.41 (s, 1H), 6.37 (s, 1H), 6.26 (d, J = 7.8 Hz, 1H), 5.87 (s, 1H), 4.13 (t, J

= 6.8 Hz, 1H), 3.85 – 3.79 (m, 1H), 3.67 (s, 3H), 3.65 (s, 3H), 3.00 – 2.89 (m, 1H), 2.47 – 2.39 (m, 1H), 2.07 (s, 3H), 1.49 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 154.1, 153.1, 151.2, 148.9, 143.3, 131.8, 131.0, 130.4, 130.3, 127.7, 120.6, 112.9, 112.6, 105.6, 103.4, 80.2, 59.3, 55. 9, 55.8, 50.4, 36.9, 28.4, 18.7; IR (KBr): 2927, 1698, 1588, 1514, 1234, 1162, 1026, 811, 767 cm⁻¹; ESI FTMS exact mass calcd for (C₃₅H₄₃N₃O₇+Na)⁺ requires m/z 640.2999, found m/z 640.3001; The enantiomeric excess: 94%, determined by HPLC (Daicel Chiralpak IB, hexane/ isopropanol = 90/ 10, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 12.200 (minor), t_R = 14.873 (major).

di-tert-butyl

((((3a*S*,8a*R*)-4-bromo-2,3-dihydro-8*H*-furo[2,3-b]indole-3a,8(8a*H*)-d iyl)bis(4-methoxy-3,1-phenylene))dicarbamate (3da):

Following the general procedure, the solution of quinone imine ketal **2a** (63.3 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of tryptophol **1d** (23.9 mg, 0.1 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C

for 12 h, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =2:1) on silica gel to afford pure compound 3da (42.4 mg) in 62% yield as white solid.

m.p. 120–123 °C; $[\alpha]_D^{20} = +377$ (c 0.1, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.43 – 7.35 (m, 2H), 7.17 (d, J = 2.5 Hz, 1H), 7.09 (d, J = 7.3 Hz, 1H), 7.03 (t, J = 7.6 Hz, 1H), 6.89 (d, J = 8.9 Hz, 1H), 6.82 (d, J = 8.8 Hz, 1H), 6.70 (t, J = 7.4 Hz, 1H), 6.42 (d, J = 7.6 Hz, 2H), 6.37 (s, 1H), 6.11 (s, 1H), 4.09 (t, J = 7.8 Hz, 1H), 3.75 – 3.68 (m, 7H), 2.89 – 2.79 (m, 1H), 2.51 – 2.44 (m, 1H), 1.50 (s, 9H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 153.7, 153.2, 150.8, 148.4, 148.3, 132.7, 132.2, 131.8, 131.1, 130.3, 127.7, 124.5, 118.2, 112.8, 112.2, 108.1, 102.2, 80.1, 39.8, 28.3; IR (KBr): 2927, 1704, 1598, 1513, 1232, 1161, 1025, 847, 743 cm⁻¹; ESI FTMS exact mass calcd for (C₃₄H₄₀BrN₃O₇+Na)⁺ requires m/z 704.1947, 706.1927, found m/z 704.1941, 706.1922; The enantiomeric excess: 97%, determined by HPLC (Daicel Chiralpak IA, hexane/ isopropanol = 70/ 30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 7.607 (major), t_R = 9.203 (minor). di-tert-butyl

((((3a*R*,8a*R*)-5-methyl-2,3-dihydro-8*H*-furo[2,3-b]indole-3a,8(8a*H*)-diyl)bis(4-methoxy-3,1-ph enylene))dicarbamate (3ea):

Following the general procedure, the solution of quinone imine ketal **2a** (63.3 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of tryptophol **1e** (17.5 mg, 0.1 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =2:1) on silica gel to afford pure compound **3ea** (57.6 mg) in 93% yield as white solid.

m.p. 120–123 °C; $[\alpha]_D^{20} = +115.8$ (c 0.7, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.51 – 7.30 (m, 3H), 7.21 (d, J = 2.3 Hz, 1H), 6.93 – 6.83 (m, 4H), 6.46 – 6.37 (m, 3H), 6.13 (s, 1H), 4.11 (t, J = 7.7 Hz, 1H), 3.77 – 3.71 (m, 7H), 2.89 – 2.80 (m, 1H), 2.53 – 2.47 (m, 1H), 2.27 (s, 3H), 1.53 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm):

153.7, 153.2, 153.1, 150.5, 146.1, 132.9, 132.4, 131.8, 131.1, 130.8, 128.1, 127.4, 125.1, 112.8, 112.2, 108.1, 102.4, 80.1, 67.1, 59.5, 55.8, 55.7, 39.8, 28.4, 20.9; IR (KBr): 2976, 1722, 1605, 1511, 1231, 1162, 1026, 809, 769, 731 cm⁻¹; ESI FTMS exact mass calcd for $(C_{35}H_{43}N_3O_7+Na)^+$ requires m/z 640.2999, found m/z 640.3013; The enantiomeric excess: 98%, determined by HPLC (Daicel Chiralpak IB, hexane/ isopropanol = 95/ 5, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 29.567 (minor), t_R = 34.590 (major).

di-tert-butyl

((((3a*R*,8a*R*)-5-fluoro-2,3-dihydro-8*H*-furo[2,3-b]indole-3a,8(8a*H*)-diyl)bis(4-methoxy-3,1-phe BocHN nylene))dicarbamate (3fa):

Following the general procedure, the solution of quinone imine ketal **2a** (63.3 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of tryptophol **1f** (17.9 mg, 0.1 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h,

which indicated the completion of the reaction. Subsequently, the reaction mixture was directly

purified through preparative thin layer chromatography (PE:EA =2:1) on silica gel to afford pure compound **3fa** (39.1 mg) in 63% yield as white solid.

m.p. 126–129 °C; $[\alpha]_D^{20} = -72.0$ (c 0.6, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.55 – 7.27 (m, 3H), 7.19 (d, J = 2.6 Hz, 1H), 6.89 (d, J = 8.9 Hz, 1H), 6.86 – 6.79 (m, 2H), 6.76 – 6.69 (m, 1H), 6.41 (s, 1H), 6.37 (s, 1H), 6.34 – 6.29 (m, 1H), 6.11 (s, 1H), 4.09 (t, J = 7.6 Hz, 1H), 3.79 – 3.67 (m, 7H), 2.85 – 2.74 (m, 1H), 2.54 – 2.43 (m, 1H), 1.50 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 156.6 (d, J = 233.3 Hz), 153.6, 153.1 (d, J = 13.6 Hz), 150.6, 144.4, 134.3 (d, J = 7.4 Hz), 113.8 (d, J = 23.0 Hz), 131.2, 130.4, 113.9, 113.7, 112.8, 112.2, 111.6 (d, J = 24.0 Hz), 108.2 (d, J = 7.9 Hz), 102.6, 80.2, 67.1, 59.5, 59.4, 55.8, 55.6, 39.7, 28.4; IR (KBr): 2977, 1723, 1601, 1513, 1231, 1162, 1027, 809, 770, 731 cm⁻¹; ESI FTMS exact mass calcd for (C₃₄H₄₀FN₃O₇+Na)⁺ requires m/z 644.2748, found m/z 644.2756; The enantiomeric excess: 98%, determined by HPLC (Daicel Chiralpak IA, hexane/ isopropanol = 70/ 30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 6.710 (major), t_R = 8.080 (minor).

di-tert-butyl

((((3a*R*,8a*R*)-5-chloro-2,3-dihydro-8*H*-furo[2,3-b]indole-3a,8(8a*H*)-diyl)bis(4-methoxy-3,1-ph enylene))dicarbamate (3ga):

Following the general procedure, the solution of quinone imine ketal **2a** (63.3 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of tryptophol **1g** (19.5 mg, 0.1 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the reaction. Subsequently, the

reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =2:1) on silica gel to afford pure compound 3ga (48.1 mg) in 76% yield as white solid.

m.p. 117–119 °C; $[\alpha]_D^{20} = +157.3$ (c 0.8, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.48 – 7.41 (m, 1H), 7.40 – 7.27 (m, 2H), 7.25 – 7.21 (m, 1H), 6.99 (s, 1H), 6.97 – 6.93 (m, 1H), 6.89 (d, J = 8.9 Hz, 1H), 6.82 (d, J = 8.8 Hz, 1H), 6.43 (s, 1H), 6.40 (s, 1H), 6.28 (d, J = 8.4 Hz, 1H), 6.12 (s, 1H), 4.08 (t, J = 7.8 Hz, 1H), 3.82 – 3.71 (m, 4H), 3.70 (s, 3H), 2.85 – 2.74 (m, 1H), 2.50 – 2.43 (m, 1H), 1.51 (s, 9H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 153.6, 153.1, 153.0, 150.8, 147.1, 134.7, 131.9, 131.7, 131.2, 129.6, 127.5, 124.3, 122.3, 112.7, 112.2, 108.5,

102.5, 80.2, 66.7, 59.3, 55.7, 55.6, 39.8, 28.3; IR (KBr): 2976, 1703, 1596, 1512, 1231, 1161, 1026, 809, 767, 729 cm⁻¹; ESI FTMS exact mass calcd for $(C_{34}H_{40}ClN_3O_7+Na)^+$ requires m/z 660.2452, 661.2486, found m/z 660.2487, 661.2514; The enantiomeric excess: 90%, determined by HPLC (Daicel Chiralpak IB, hexane/ isopropanol = 90/ 10, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 15.723 (minor), t_R = 18.183 (major).

di-tert-butyl

((((3a*R*,8a*R*)-6-methyl-2,3-dihydro-8*H*-furo[2,3-b]indole-3a,8(8a*H*)-diyl)bis(4-methoxy-3,1-ph enylene))dicarbamate (3ha):

Following the general procedure, the solution of quinone imine ketal **2a** (63.3 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of tryptophol **1h** (17.5 mg, 0.1 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =2:1) on silica gel to afford pure compound **3ha** (61.5 mg) in 99% yield as white solid.

1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 153.7, 153.2, 150.9, 148.5, 137.6, 132.3, 131.8, 131.0, 130.4, 129.9, 124.3, 119.1, 112.9, 112.2, 108.8, 102.5, 80.1, 67.3, 59.2, 55.8, 55.7, 39.8, 28.3, 21.6; IR (KBr): 2996, 1723, 1600, 1513, 1223, 1162, 1026, 808 cm⁻¹; ESI FTMS exact mass calcd for (C₃₅H₄₃N₃O₇+Na)⁺ requires m/z 640.2999, found m/z 640.3035; The enantiomeric excess: 98%, determined by HPLC (Daicel Chiralpak AD-H, hexane/ isopropanol = 90/ 10, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 34.143 (major), t_R = 42.883 (minor).

di-tert-butyl

$(((3aR,8aR)-6-fluoro-2,3-dihydro-8H-furo \cite[2,3-b]\cite[2,3-b$

nylene))dicarbamate (3ia):

Following the general procedure, the solution of quinone imine ketal **2a** (63.3 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of tryptophol **1i** (17.9 mg, 0.1 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the reaction. Subsequently,

the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =2:1) on silica gel to afford pure compound **3ia** (29.9 mg) in 48% yield as white solid.

m.p. 115–117 °C; $[\alpha]_{D^{20}} = +94.3$ (c 0.2, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.45 – 7.28 (m, 3H), 7.25 – 7.22 (m, 1H), 6.95 – 6.88 (m, 2H), 6.82 (d, J = 8.8 Hz, 1H), 6.46 (s, 1H), 6.40 (s, 1H), 6.36 – 6.30 (m, 1H), 6.14 (s, 1H), 6.05 (d, J = 10.4 Hz, 1H), 4.09 (t, J = 7.9 Hz, 1H), 3.77 – 3.71 (m, 4H), 3.70 (s, 3H), 2.85 – 2.74 (m, 1H), 2.46 – 2.38 (m, 1H), 1.50 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 163.5 (d, J = 239.5 Hz), 153.7, 153.1 (d, J = 18.9 Hz), 150.9, 150.1 (d, J = 12.2 Hz), 149.2, 144.9, 132.3, 132.1, 131.9, 131.2, 129.3, 128.3 (d, J = 1.9 Hz), 124.7 (d, J = 10.5 Hz), 119.7, 119.1, 118.0, 117.5, 112.7, 112.3, 111.5, 104.0 (d, J = 22.8 Hz), 102.9, 95.4 (d, J = 27.2 Hz), 66.9, 58.9, 55.8, 55.7, 39.9, 28.4; IR (KBr): 2977, 1703, 1605, 1514, 1232, 1162, 1026, 945, 810, 764 cm⁻¹; ESI FTMS exact mass calcd for (C₃₄H₄₀FN₃O₇+Na)⁺ requires m/z 644.2748, found m/z 644.2769; The enantiomeric excess: 90%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/ 10, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 31.667 (major), t_R = 41.277 (minor).

di-tert-butyl

((((3a*R*,8a*R*)-6-chloro-2,3-dihydro-8*H*-furo[2,3-b]indole-3a,8(8a*H*)-diyl)bis(4-methoxy-3,1-ph enylene))dicarbamate (3ja):

Following the general procedure, the solution of quinone imine ketal 2a (63.3 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of tryptophol 1j (19.5 mg, 0.1 mmol), catalyst 6a (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the

reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =2:1) on silica gel to afford pure compound 3ja (33.8 mg) in 53% yield as white solid.

m.p. 120–123 °C; $[\alpha]_D^{20} = -32.8$ (c 0.7, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.43 – 7.29 (m, 3H), 7.23 (d, J = 2.4 Hz, 1H), 6.96 – 6.89 (m, 2H), 6.83 (d, J = 8.8 Hz, 1H), 6.65 – 6.59 (m, 1H), 6.38 (s, 1H), 6.33 (s, 1H), 6.30 (s, 1H), 6.12 (s, 1H), 4.09 (t, J = 7.8 Hz, 1H), 3.82 – 3.72 (m, 4H), 3.70 (s, 3H), 2.85 – 2.76 (m, 1H), 2.46 – 2.39 (m, 1H), 1.50 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 153.7, 152.5, 151.0, 150.9, 149.7, 133.4, 132.0, 131.9, 131.4, 131.1, 129.2, 124.9, 117.7, 112.8, 112.2, 107.6, 105.3, 102.7, 80.3, 66.8, 59.0, 55.8, 55.7, 39.8, 28.3; IR (KBr): 2976, 1723, 1597, 1513, 1232, 1161, 1026, 765 cm⁻¹; ESI FTMS exact mass calcd for (C₃₄H₄₀ClN₃O₇+Na)⁺ requires m/z 660.2452, 661.2486, found m/z 660.2449, 661.2507; The enantiomeric excess: 95%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 80/ 20, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 9.373 (major), t_R = 10.627 (minor).

di-tert-butyl

((((3a*R*,8a*R*)-6-bromo-2,3-dihydro-8*H*-furo[2,3-b]indole-3a,8(8a*H*)-diyl)bis(4-methoxy-3,1-ph enylene))dicarbamate (3ka):

Following the general procedure, the solution of quinone imine ketal **2a** (63.3 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of tryptophol **1k** (23.9 mg, 0.1 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the reaction. Subsequently, the

reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =2:1) on silica gel to afford pure compound **3ka** (46.6 mg) in 68% yield as white solid.

m.p. 86–89 °C; $[\alpha]_D^{20} = -98.1$ (c 0.5, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.41 (d, J = 2.6 Hz, 1H), 7.39 – 7.26 (m, 2H), 7.26 – 7.13 (m, 1H), 7.12 – 7.05 (m, 2H), 6.89 (d, J = 8.9 Hz, 1H), 6.82 (d, J = 8.8 Hz, 1H), 6.42 (s, 1H), 6.40 (s, 1H), 6.24 (d, J = 8.2 Hz, 1H), 6.12 (s, 1H), 4.08 (t, J = 7.8 Hz, 1H), 3.76 – 3.70 (m, 4H), 3.69 (s, 3H), 2.86 – 2.74 (m, 1H), 2.52 – 2.41 (m, 1H), 1.51 (s, 9H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 153.7, 153.2, 153.00, 151.0, 149.9, 132.0, 131.9, 131.1, 129.1, 125.4, 121.5, 120.6, 112.8, 112.2, 110.4, 102.7, 80.2,

66.7, 59.1, 55.7, 55.7, 39.8, 28.3; IR (KBr): 2952, 1718, 1654, 1522, 1248, 1159, 1023, 819, 789, 726 cm⁻¹; ESI FTMS exact mass calcd for $(C_{34}H_{40}BrN_3O_7+Na)^+$ requires m/z 704.1947, 706.1927, found m/z 704.1943, 706.1936; The enantiomeric excess: 98%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/ 10, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 30.547 (minor), t_R = 34.123 (major).

di-tert-butyl

((((3a*R*,8a*R*)-2,3-dihydro-8*H*-furo[2,3-b]indole-3a,8(8a*H*)-diyl)bis(4-ethoxy-3,1-phenylene))di carbamate (3ab):

Following the general procedure, the solution of quinone imine ketal **2b** (70.3 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of tryptophol **1a** (16.1 mg, 0.1 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the reaction. Subsequently, the reaction

mixture was directly purified through preparative thin layer chromatography (PE:EA =2:1) on silica gel to afford pure compound **3ab** (62.6 mg) in 99% yield as white solid.

m.p. 113–115 °C; $[\alpha]_D^{20} = -84.6$ (c 0.6, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.52 – 7.27 (m, 3H), 7.13 – 7.08 (m, 2H), 7.04 (t, J = 7.6 Hz, 1H), 6.88 (d, J = 8.8 Hz, 1H), 6.81 (d, J = 8.8 Hz, 1H), 6.70 (t, J = 7.3 Hz, 1H), 6.51 (d, J = 7.9 Hz, 1H), 6.43 (s, 1H), 6.34 (s, 1H), 6.19 (s, 1H), 4.12 – 4.01 (m, 2H), 3.96 – 3.89 (m, 2H), 3.89 – 3.83 (m, 1H), 3.77 – 3.69 (m, 1H), 2.96 – 2.86 (m, 1H), 2.52 – 2.43 (m, 1H), 1.50 (s, 9H), 1.49 (s, 9H), 1.29 (t, J = 7.0 Hz, 3H), 1.16 (t, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 153.2, 153.1, 149.9, 148.3, 133.1, 132.1, 131.7, 130.7, 130.4, 127.6, 124.6, 118.1, 114.1, 112.6, 108.1, 102.1, 80.1, 67.4, 64.2, 64.0, 59.4, 39.5, 28.4, 28.3, 14.7, 14.5; IR (KBr): 2977, 1717, 1596, 1521, 1226, 1161, 806, 741, 789, 668 cm⁻¹; ESI FTMS exact mass calcd for (C₃₆H₄₅N₃O₇+H)⁺ requires m/z 632.3336, found m/z 632.3337; The enantiomeric excess: 97%, determined by HPLC (Daicel Chiralpak IA, hexane/isopropanol = 70/ 30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 8.200 (major), t_R = 19.237 (minor).

di-tert-butyl

((((3a*R*,8a*R*)-2,3-dihydro-8*H*-furo[2,3-b]indole-3a,8(8a*H*)-diyl)bis(4-butoxy-3,1-phenylene))di carbamate (3ac):

Following the general procedure, the solution of quinone imine ketal **2c** (84.3 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of tryptophol **1a** (16.1 mg, 0.1 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer

chromatography (PE:EA =2:1) on silica gel to afford pure compound **3ac** (51.5 mg) in 75% yield as white solid.

m.p. 92–94 °C; $[\alpha]_D^{20} = +56.9$ (c 0.6, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.48 (s, 1H), 7.41 – 7.27 (m, 2H), 7.18 – 7.14 (m, 1H), 7.08 – 7.02 (m, 1H), 6.94 (d, J = 1.8 Hz, 1H), 6.89 – 6.82 (m, 2H), 6.78 – 6.70 (m, 1H), 6.50 (d, J = 7.9 Hz, 1H), 6.37 (s, 1H), 6.24 (s, 1H), 6.10 (s, 1H), 4.12 (t, J = 7.6 Hz, 1H), 4.01 – 3.93 (m, 1H), 3.89 – 3.68 (m, 4H), 3.04 – 2.93 (m, 1H), 2.48 – 2.40 (m, 1H), 1.80 – 1.68 (m, 2H), 1.50 (s, 9H), 1.47 (s, 9H), 1.47 – 1.38 (m, 4H), 1.21 – 1.12 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H), 0.76 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 153.1, 150.0, 148.3, 132.6, 131.6, 131.4, 130.7, 130.2, 127.7, 125.0, 118.2, 113.7, 112.3, 108.4, 102.1, 80.1, 68.2, 68.1, 67.9, 59.6, 39.5, 31.3, 31.2, 28.4, 28.3, 19.3, 18.9, 13.9, 13.8; IR (KBr): 2956, 1718, 1647, 1575, 1466, 1201, 1120, 973, 860, 785 cm⁻¹; ESI FTMS exact mass calcd for (C₄₀H₅₃N₃O₇+Na)⁺ requires m/z 710.3782, found m/z 710.3793; The enantiomeric excess: 98%, determined by HPLC (Daicel Chiralpak AD-H, hexane/ isopropanol = 80/ 20, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 9.567 (major), t_R = 13.367 (minor).

dibenzyl

((((3a*R*,8a*R*)-2,3-dihydro-8H-furo[2,3-b]indole-3a,8(8a*H*)-diyl)bis(4-me thoxy-3,1-phenylene))dicarbamate (3ad):

Following the general procedure, the solution of quinone imine ketal **2d** (71.8 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of tryptophol **1a** (16.1 mg, 0.1 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and

3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =2:1) on silica gel to afford pure compound **3ad** (54.6 mg) in 81% yield as white solid.

m.p. 98–100 °C; $[\alpha]_D^{20} = -77.3$ (c 0.3, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.50 (d, J = 2.0 Hz, 1H), 7.42 – 7.28 (m, 13H), 7.09 (d, J = 6.8 Hz, 1H), 7.04 (t, J = 7.7 Hz, 1H), 6.88 (d, J = 8.9 Hz, 1H), 6.82 (d, J = 8.6 Hz, 2H), 6.75 – 6.68 (m, 2H), 6.45 (d, J = 7.9 Hz, 1H), 6.14 (s, 1H), 5.17 (s, 4H), 4.08 (t, J = 7.8 Hz, 1H), 3.75 – 3.67 (m, 7H), 2.88 – 2.75 (m, 1H), 2.51 – 2.44 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 156.7, 154.1, 151.1, 148.3, 136.2, 132.8, 132.4, 131.2, 130.5, 128.6, 128.5, 128.3, 128.2, 128.1, 127.8, 124.5, 120.1, 119.2, 118.4, 117.7, 116.9, 112.7, 112.2, 108.2, 102.2, 67.1, 66.9, 66.8, 59.5, 55.8, 55.6, 39.7; IR (KBr): 2949, 1651, 1574, 1440, 1206, 1083, 975, 860, 750 cm⁻¹; ESI FTMS exact mass calcd for (C₄₀H₃₇N₃O₇+H)⁺ requires m/z 672.2710, found m/z 672.2715; The enantiomeric excess: 98%, determined by HPLC (Daicel Chiralpak IA, hexane/ isopropanol = 70/ 30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 28.040 (major), t_R = 38.327 (minor).

di-tert-butyl

((((3a*R*,8a*R*)-1-tosyl-1,2,3,8a-tetrahydropyrrolo[2,3-b]indole-3a,8-diyl)bis(4-methoxy-3,1-phe nylene))dicarbamate (3na):

Following the general procedure, the solution of quinone imine ketal **2a** (63.3 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of tryptamine **1n** (31.4 mg, 0.1 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =2:1) on silica gel to afford pure compound **3na** (58.4 mg) in 77% yield as white solid.

BocHNL $(procHole = 100 \text{ °C}; [\alpha]_D^{20} = -96.1 (c 1.2, Acetone); ^1H NMR (400 MHz, CDCl₃) <math>\delta$ $(procHole = 100 \text{ °C}; [\alpha]_D^{20} = -96.1 (c 1.2, Acetone); ^1H NMR (400 MHz, CDCl₃) <math>\delta$ $(procHole = 100 \text{ °C}; [\alpha]_D^{20} = -96.1 (c 1.2, Acetone); ^1H NMR (400 MHz, CDCl₃) <math>\delta$ $(procHole = 100 \text{ °C}; [\alpha]_D^{20} = -96.1 (c 1.2, Acetone); ^1H NMR (400 MHz, CDCl₃) <math>\delta$ $(procHole = -96.1 (c 1.2, Acetone); ^1H NMR (400 MHz, CDCl₃) <math>\delta$ $(procHole = -7.2 \text{ Hz}, 1\text{ H}), 7.40 (s, 1\text{ H}), 7.17 (d, <math>J = 8.2 \text{ Hz}, 2\text{ H}), 7.12 (d, <math>J = 2.6 \text{ Hz}, 1\text{ H}), 7.07 (d, <math>J = 7.2 \text{ Hz}, 1\text{ H}), 7.04 - 7.00 (m, 3\text{ H}), 6.91 (s, 1\text{ H}), 6.90 - 6.85 (m, 2\text{ H}), 6.73 - 7.07 (d, <math>J = 7.2 \text{ Hz}, 1\text{ H}), 7.04 - 7.00 (m, 3\text{ H}), 6.91 (s, 1\text{ H}), 6.90 - 6.85 (m, 2\text{ H}), 6.73 - 7.07 (d, <math>J = 7.2 \text{ Hz}, 1\text{ H}), 7.04 - 7.00 (m, 3\text{ H}), 6.91 (s, 1\text{ H}), 6.90 - 6.85 (m, 2\text{ H}), 6.73 - 7.07 (d, <math>J = 7.2 \text{ Hz}, 1\text{ H}), 7.04 - 7.00 (m, 3\text{ H}), 6.91 (s, 1\text{ H}), 6.90 - 6.85 (m, 2\text{ H}), 6.73 - 7.07 (d, <math>J = 7.2 \text{ Hz}, 1\text{ H}), 7.04 - 7.00 (m, 3\text{ H}), 6.91 (s, 1\text{ H}), 6.90 - 6.85 (m, 2\text{ H}), 6.73 - 7.07 (d, <math>J = 7.2 \text{ Hz}, 1\text{ H}), 7.04 - 7.00 (m, 3\text{ H}), 6.91 (s, 1\text{ H}), 6.90 - 6.85 (m, 2\text{ H}), 6.73 - 7.07 (m, 2\text{ H}), 6.50 (s, 1\text{ H}), 6.36 (s, 1\text{ H}), 7.04 - 7.00 (m, 3\text{ H}), 6.91 (s, 1\text{ H}), 6.90 - 6.85 (m, 2\text{ H}), 6.73 - 7.07 (m, 2\text{ H}), 6.50 (s, 1\text{ H}), 6.36 (s, 1\text{ H}), 7.02 - 7.24 (m, 1\text{ H}), 1.52 (s, 9\text{ H}), 1.49 (s, 9\text{ H}); 3.09 - 2.99 (m, 1\text{ H}), 2.81 - 2.69 (m, 1\text{ H}), 2.32 (s, 3\text{ H}), 2.29 - 2.24 (m, 1\text{ H}), 1.52 (s, 9\text{ H}), 1.49 (s, 9\text{ H}); 1^3\text{C}$ $^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta (\text{ppm}): 148.6, 147.9, 147.6, 146.6, 143.3, 137.2, 133.1, 126.2, 125.8, 125.7, 124.3, 123.9, 123.1, 121.6, 119.9, 112.9, 107.5, 106.9, 102.3, 82.0, 74.9, 54.8, 50.5, 50.4, 42.7, 34.2, 23.3, 23.2, 16.2; \text{ IR} (\text{KBr}): 2949, 1645, 1575, 1440, 1185, 1010, 974, 858, 756 \text{ cm}^{-1}; \text{ ESI}$ FTMS exact mass calcd for (C₄₁H₄₈N₄O₈S+Na)⁺ requires m/z 779.3091, found m/z 7

di-tert-butyl

((((3a*R*,8a*R*)-5-bromo-1-tosyl-1,2,3,8a-tetrahydropyrrolo[2,3-b]indole-3a,8-diyl)bis(4-methox y-3,1-phenylene))dicarbamate (3oa):

Following the general procedure, the solution of quinone imine ketal **2a** (63.3 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of tryptamine **1o** (39.2 mg, 0.1 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =2:1) on silica gel to afford pure compound **3na** (57.9 mg) in 69% yield as white solid.

BecHN m.p. 117–120 °C; $[\alpha]_D^{20} = -340.3$ (c 1.1, Acetone); ¹H NMR (400 MHz, CDCl₃) Bree HN m.p. 117–120 °C; $[\alpha]_D^{20} = -340.3$ (c 1.1, Acetone); ¹H NMR (400 MHz, CDCl₃) b (ppm): 7.48 (s, 1H), 7.41 (s, 1H), 7.16 (d, J = 8.2 Hz, 2H), 7.10 – 7.06 (m, 2H), 7.04 – 7.02 (m, 2H), 6.93 – 6.84 (m, 3H), 6.75 – 6.67 (m, 2H), 6.50 (s, 1H), 6.25 (s, 1H), 6.21 (s, 1H), 3.83 (s, 3H), 3.81 – 3.76 (m, 1H), 3.65 (s, 3H), 3.09 – 3.01 (m, 1H), 2.80 – 2.72 (m, 1H), 2.32 (s, 3H), 2.30 – 2.25 (m, 1H), 1.52 (s, 9H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 153.5, 147.6, 142.6, 137.8, 133.8, 131.5, 131.1, 130.8, 129.2, 128.8, 127.4, 126.8, 112.7, 112.3, 108.7, 80.3, 59.8, 55.6, 39.3, 29.7, 28.5, 28.4, 21.4; IR (KBr): 3169, 2950, 1647, 1576, 1438, 1200, 1095, 974, 859, 787 cm⁻¹; ESI FTMS exact mass calcd for (C₄₁H₄₇BrN₄O₈S+Na)⁺ requires m/z 857.2196, 859.2175 , found m/z 857.2201, 859.2224; The enantiomeric excess: 97%, determined by HPLC (Daicel Chiralpak IA, hexane/ isopropanol = 70/ 30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 6.060 (minor), t_R = 6.670 (major).

di-tert-butyl

((((3a*R*,8a*R*)-5-methoxy-1-tosyl-1,2,3,8a-tetrahydropyrrolo[2,3-b]indole-3a,8-diyl)bis(4-metho xy-3,1-phenylene))dicarbamate (3pa):

Following the general procedure, the solution of quinone imine ketal **2a** (63.3 mg, 0.25 mmol) in toluene (1 mL) was added to the mixture of tryptamine **1p** (34.4 mg, 0.1 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg). Then, the reaction mixture was stirred at 30 °C for 12 h, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =2:1) on silica gel to afford pure compound **3pa** (57 mg) in 73% yield as white solid.

BOCHN m.p. 117–120 °C; $[\alpha]_D^{20} = -48.1$ (c 1.1, Acetone); ¹H NMR (400 MHz, CDCl₃) H_{SCO} \rightarrow (ppm): 7.45 (s, 1H), 7.36 (s, 1H), 7.16 (d, J = 8.2 Hz, 2H), 7.12 (s, 1H), 7.06 – 6.98 (m, 3H), 6.86 (t, J = 9.4 Hz, 2H), 6.78 – 6.70 (m, 2H), 6.64 – 6.58 (m, 1H), 6.46 (d, J = 8.5 Hz, 1H), 6.32 (s, 1H), 6.29 (s, 1H), 3.84 (s, 3H), 3.81 – 3.76 (m, 1H), 3.74 (s, 3H), 3.65 (s, 3H), 3.07 – 2.99 (m, 1H), 2.79 – 2.70 (m, 1H), 2.32 (s, 3H), 2.30 – 2.25 (m, 1H), 1.52 (s, 9H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 153.7, 153.1, 152.8, 151.7, 142.8, 142.3, 138.4, 132.4, 131.3, 131.1, 130.9, 130.3, 129.2, 126.9, 113.1, 112.7, 112.2, 112.1, 107.9, 87.5, 80.2, 60.3, 56.1, 55.6, 55.5, 48.0, 39.3, 28.5, 28.4, 21.4; IR (KBr): 3031, 2948, 1646, 1569, 1438, 1215, 1095, 975, 862, 771 cm⁻¹; ESI FTMS exact mass calcd for (C4₂H₅₀N₄O₉S+H)⁺ requires m/z 787.3376, found m/z 787.3377; The enantiomeric excess: 96%, determined by HPLC (Daicel Chiralpak IA, hexane/ isopropanol = 80/ 20, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 14.590 (minor), t_R = 17.110 (major).

tert-butyl

(4-methoxy-3-((3a*R*,8a*R*)-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3a-yl)phenyl)carbamate (7aa):

Following the general procedure, to the mixture of tryptophol **1a** (64.4 mg, 0.4 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg), was added toluene (2 mL). Then, the solution of quinone imine ketal **2a** (25.3 mg, 0.1 mmol) in toluene (3 mL) was added to the above mentioned reaction mixture over 1 h by a syringe pump. During the procedure, the reaction mixture was stirred at room temperature. Next, the resultant reaction mixture was further stirred at room

temperature for 10 min, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =4:1) on silica gel to afford pure compound **7aa** (23.1 mg) in 60% yield as white solid.

m.p. 88–89 °C; $[\alpha]_D^{20} = +123.6$ (c 1.5, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.40 (s,

1H), 7.11 – 7.05 (m, 2H), 7.01 (d, J = 2.3 Hz, 1H), 6.83 (d, J = 8.8 Hz, 1H), 6.76 (t, J = 7.4 Hz, 1H), 6.63 (d, J = 7.7 Hz, 1H), 6.38 (s, 1H), 5.80 (s, 1H), 4.67 (s, 1H), 4.10 (t, J = 7.8 Hz, 1H), 3.72 (s, 3H), 3.68 – 3.60 (m, 1H), 2.90 – 2.80 (m, 1H), 2.44 – 2.36 (m, 1H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 153.7, 153.1, 149.7, 132.3, 131.8, 131.2, 128.2, 125.1, 119.0, 112.4, 108.8, 98.4, 80.2, 67.5, 60.7, 55.8, 39.5, 28.3; IR (KBr): 2950, 1643, 1573, 1438, 1201, 1097, 973, 859, 758 cm⁻¹; ESI FTMS exact mass calcd for (C₂₂H₂₆N₂O₄+Na)⁺ requires m/z 405.1791, found m/z 405.1795; The enantiomeric excess: 95%, determined by HPLC (Daicel Chiralpak IA, hexane/ isopropanol = 70/ 30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 10.663 (major), t_R = 16.277 (minor).

tert-butyl

(4-methoxy-3-((3a*R*,8a*R*)-4-methyl-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3a-yl)phenyl)ca rbamate (7ca):

Following the general procedure, to the mixture of tryptophol 1c (70 mg, 0.4 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg), was added toluene (2 mL). Then, the solution of quinone imine ketal **2a** (25.3 mg, 0.1 mmol) in toluene (3 mL) was added to the above mentioned

reaction mixture over 1 h by a syringe pump. During the procedure, the reaction mixture was stirred at room temperature. Next, the resultant reaction mixture was further stirred at room temperature for 10 min, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =4:1) on silica gel to afford pure compound **7ca** (27.8 mg) in 70% yield as white solid.

m.p. 120–123 °C; $[\alpha]_D^{20} = +126.3$ (c 0.1, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.47 (s, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.84 (d, J = 8.8 Hz, 1H), 6.79 (s, 1H), 6.57 (d, J = 7.5 Hz, 1H), 6.51 (d, J = 7.7 Hz, 1H), 6.29 (s, 1H), 5.55 (s, 1H), 4.65 (s, 1H), 4.18 – 4.09 (m, 1H), 3.81 – 3.75 (m, 1H), 3.67 (s, 3H), 2.95 – 2.85 (m, 1H), 2.42 – 2.34 (m, 1H), 2.08 (s, 3H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 153.9, 153.0, 149.8, 134.8, 131.2, 130.3, 128.2, 121.4, 112.6, 106.7, 99.3, 80.2, 66.9, 60.6, 55.8, 37.1, 28.3, 18.7; IR (KBr): 2949, 1643, 1573, 1435, 1201, 1097, 973, 859, 786 cm⁻¹; ESI FTMS exact mass calcd for (C₂₃H₂₈N₂O₄+Na)⁺ requires m/z 419.1947, found m/z 419.1950; The enantiomeric excess: 90%, determined by HPLC (Daicel Chiralpak IA,

hexane/ isopropanol = 70/ 30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 9.893 (major), t_R = 15.617 (minor).

tert-butyl

(4-methoxy-3-((3a*R*,8a*R*)-5-methyl-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3a-yl)phenyl)ca rbamate (7ea):

mentioned reaction mixture over 1 h by a syringe pump. During the procedure, the reaction mixture was stirred at room temperature. Next, the resultant reaction mixture was further stirred at room temperature for 10 min, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =4:1) on silica gel to afford pure compound **7ea** (29 mg) in 73% yield as white solid.

m.p. 92–94 °C; $[\alpha]_D^{20} = +426.4$ (c 0.7, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.38 (s, 1H), 7.03 (d, J = 2.5 Hz, 1H), 6.90 – 6.85 (m, 2H), 6.83 (d, J = 8.8 Hz, 1H), 6.56 (d, J = 8.4 Hz, 1H), 6.33 (s, 1H), 5.78 (s, 1H), 4.56 (s, 1H), 4.09 (t, J = 7.3 Hz, 1H), 3.72 (s, 3H), 3.67 – 3.61 (m, 1H), 2.88 – 2.79 (m, 1H), 2.42 – 2.35 (m, 1H), 2.25 (s, 3H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 148.5, 147.9, 142.3, 127.4, 126.8, 126.0, 123.4, 123.2, 120.5, 113.7, 107.2, 103.7, 93.6, 75.0, 62.2, 55.6, 50.6, 34.3, 23.1, 15.7; IR (KBr): 2949, 1641, 1573, 1435, 1201, 1097, 973, 859, 786 cm⁻¹; ESI FTMS exact mass calcd for (C₂₃H₂₈N₂O₄+Na)⁺ requires m/z 419.1947, found m/z 419.1946; The enantiomeric excess: 97%, determined by HPLC (Daicel Chiralpak IA, hexane/ isopropanol = 70/ 30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 7.917 (major), t_R = 15.700 (minor).

tert-butyl

(3-((3a*R*,8a*R*)-5-chloro-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3a-yl)-4-methoxyphenyl)ca rbamate (7ga):

Following the general procedure, to the mixture of tryptophol 1g (78 mg, 0.4 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg), was added toluene (2 mL). Then, the solution of quinone imine ketal **2a** (25.3 mg, 0.1 mmol) in toluene (3 mL) was added to the above

mentioned reaction mixture over 1 h by a syringe pump. During the procedure, the reaction mixture was stirred at room temperature. Next, the resultant reaction mixture was further stirred at room temperature for 10 min, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =4:1) on silica gel to afford pure compound **7ga** (41 mg) in 99% yield as white solid.

m.p. 130–133 °C; $[\alpha]_{D}^{20} = -180.2$ (c 0.5, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.37 (s, 1H), 7.09 (d, J = 2.3 Hz, 1H), 7.01 (s, 2H), 6.83 (d, J = 8.8 Hz, 1H), 6.56 – 6.51 (m, 1H), 6.37 (s, 1H), 5.82 (s, 1H), 4.72 (s, 1H), 4.32 – 3.87 (m, 1H), 3.70 (s, 3H), 3.67 – 3.62 (m, 1H), 2.85 – 2.77 (m, 1H), 2.44 – 2.38 (m, 1H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 148.4, 147.9, 143.1, 129.3, 126.2, 126.1, 122.8, 119.8, 118.2, 113.9, 107.2, 104.2, 93.6, 75.1, 61.9, 55.5, 50.6, 34.2, 23.1; IR (KBr): 2950, 1641, 1573, 1435, 1201, 1097, 973, 859, 786 cm⁻¹; ESI FTMS exact mass calcd for (C₂₂H₂₅ClN₂O₄+Na)⁺ requires m/z 439.1401, 441.1371, found m/z 439.1396, 441.1383; The enantiomeric excess: 96%, determined by HPLC (Daicel Chiralpak IA, hexane/ isopropanol = 70/ 30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 7.353 (major), t_R = 16.103 (minor).

tert-butyl

(4-methoxy-3-((3a*R*,8a*R*)-6-methyl-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3a-yl)phenyl)ca rbamate (7ha):

Following the general procedure, to the mixture of tryptophol **1h** (70 mg, 0.4 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg), was added toluene (2 mL). Then, the solution of quinone imine ketal **2a** (25.3 mg, 0.1 mmol) in toluene (3 mL) was added to the above

mentioned reaction mixture over 1 h by a syringe pump. During the procedure, the reaction mixture was stirred at room temperature. Next, the resultant reaction mixture was further stirred at room temperature for 10 min, which indicated the completion of the reaction. Subsequently, the

reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =4:1) on silica gel to afford pure compound **7ha** (29.9 mg) in 76% yield as white solid.

m.p. 90–93 °C; $[\alpha]_D^{20} = +129.1$ (c 0.7, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.42 (s, 1H), 6.98 (d, J = 7.7 Hz, 2H), 6.83 (d, J = 8.8 Hz, 1H), 6.59 (d, J = 7.5 Hz, 1H), 6.47 (s, 1H), 6.33 (s, 1H), 5.78 (s, 1H), 4.61 (s, 1H), 4.09 (t, J = 7.7 Hz, 1H), 3.75 (s, 3H), 3.68 – 3.62 (m, 1H), 2.89 – 2.80 (m, 1H), 2.40 – 2.34 (m, 1H), 2.28 (s, 3H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 153.7, 153.1, 149.8, 138.2, 131.8, 131.2, 129.3, 124.9, 119.9, 112.3, 109.7, 98.6, 80.1, 67.6, 60.4, 55.7, 39.5, 28.3, 21.5; IR (KBr): 2950, 1641, 1573, 1439, 1201, 1097, 973, 860, 787 cm⁻¹; ESI FTMS exact mass calcd for (C₂₃H₂₈N₂O₄+Na)⁺ requires m/z 419.1947, found m/z 419.1945; The enantiomeric excess: 97%, determined by HPLC (Daicel Chiralpak IA, hexane/ isopropanol = 70/ 30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 10.093 (major), t_R = 18.787 (minor).

tert-butyl

(3-((3a*R*,8a*R*)-6-chloro-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3a-yl)-4-methoxyphenyl)ca rbamate (7ja):

Following the general procedure, to the mixture of tryptophol **1j** (78 mg, 0.4 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg), was added toluene (2 mL). Then, the solution of quinone imine ketal **2a** (25.3 mg, 0.1 mmol) in toluene (3 mL) was added to the

above mentioned reaction mixture over 1 h by a syringe pump. During the procedure, the reaction mixture was stirred at room temperature. Next, the resultant reaction mixture was further stirred at room temperature for 10 min, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =4:1) on silica gel to afford pure compound **7ja** (29.4 mg) in 71% yield as white solid.

m.p. 93–95 °C; $[\alpha]_D^{20} = -22.2$ (c 0.7, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.35 (s, 1H), 7.07 (d, J = 2.2 Hz, 1H), 6.94 (d, J = 7.9 Hz, 1H), 6.82 (d, J = 8.8 Hz, 1H), 6.68 (d, J = 7.9 Hz, 1H), 6.58 (s, 1H), 6.39 (s, 1H), 5.81 (s, 1H), 4.75 (s, 1H), 4.09 (t, J = 7.8 Hz, 1H), 3.71 (s, 3H), 3.67 – 3.61 (m, 1H), 2.86 – 2.77 (m, 1H), 2.38 – 2.31 (m, 1H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 153.6, 153.1, 150.8, 133.7, 131.5, 131.3, 131.0, 125.7, 118.7, 112.4, 108.5, 98.6, 80.3, 67.2, 60.1, 55.7, 39.4, 28.3; IR (KBr): 2950, 1640, 1573, 1443, 1201, 1097, 973, 820, 788

cm⁻¹; ESI FTMS exact mass calcd for $(C_{22}H_{25}ClN_2O_4+Na)^+$ requires m/z 439.1401, 441.1371, found m/z 439.1393, 441.1378; The enantiomeric excess: 91%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 70/ 30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 5.653 (major), t_R = 12.990 (minor).

tert-butyl

(4-methoxy-3-((3a*R*,8a*R*)-7-methyl-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3a-yl)phenyl)ca rbamate (7la):

Following the general procedure, to the mixture of tryptophol **11** (70 mg, 0.4 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg), was added toluene (2 mL). Then, the solution of quinone imine ketal **2a** (25.3 mg, 0.1 mmol) in toluene (3 mL) was added to the above mentioned

reaction mixture over 1 h by a syringe pump. During the procedure, the reaction mixture was stirred at room temperature. Next, the resultant reaction mixture was further stirred at room temperature for 10 min, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =4:1) on silica gel to afford pure compound **7la** (24.4 mg) in 62% yield as white solid.

m.p. 110–111 °C; $[\alpha]_D^{20} = +132.5$ (c 0.9, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.42 (s, 1H), 6.98 – 6.90 (m, 3H), 6.83 (d, J = 8.8 Hz, 1H), 6.72 (t, J = 7.4 Hz, 1H), 6.34 (s, 1H), 5.81 (s, 1H), 4.47 (s, 1H), 4.12 – 4.07 (m, 1H), 3.73 (s, 3H), 3.68 – 3.61 (m, 1H), 2.91 – 2.83 (m, 1H), 2.43 – 2.35 (m, 1H), 2.17 (s, 3H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 148.5, 147.9, 143.1, 126.6, 126.3, 126.0, 123.8, 117.5, 114.1, 113.1, 107.2, 93.1, 74.9, 62.5, 55.9, 50.6, 34.2, 23.1, 11.6; IR (KBr): 2983, 1699, 1541, 1473, 1163, 1027, 951, 747, 668 cm⁻¹; ESI FTMS exact mass calcd for (C₂₃H₂₈N₂O₄+Na)⁺ requires m/z 419.1947, found m/z 419.1942; The enantiomeric excess: 93%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 70/ 30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 5.770 (major), t_R = 13.047 (minor).

tert-butyl

(4-ethoxy-3-((3a*R*,8a*R*)-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3a-yl)phenyl)carbamate (7ab):

Following the general procedure, to the mixture of tryptophol **1a** (64.4 mg, 0.4 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg), was added toluene (2 mL). Then, the solution of quinone imine ketal **2b** (28.1 mg, 0.1 mmol) in toluene (3 mL) was added to the above mentioned reaction mixture over 1 h by a syringe pump. During the procedure, the reaction mixture was stirred at room temperature. Next, the resultant reaction mixture was further stirred at room temperature for 10 min, which indicated the completion of the reaction. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography (PE:EA =4:1) on silica gel to afford pure compound **7ab** (20.1 mg) in 51% yield as white solid.

tert-butyl

(4-butoxy-3-((3a*R*,8a*R*)-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3a-yl)phenyl)carbamate (7ac):

Following the general procedure, to the mixture of tryptophol **1a** (64.4 mg, 0.4 mmol), catalyst **6a** (3.4 mg, 0.005 mmol) and 3 Å MS (100 mg), was added toluene (2 mL). Then, the solution of quinone imine ketal **2c** (33.7 mg, 0.1 mmol) in toluene (3 mL) was added to the above mentioned

reaction mixture over 1 h by a syringe pump. During the procedure, the reaction mixture was stirred at room temperature. Next, the resultant reaction mixture was further stirred at room temperature for 10 min, which indicated the completion of the reaction. Subsequently, the reaction

mixture was directly purified through preparative thin layer chromatography (PE:EA =4:1) on silica gel to afford pure compound 7ac (23.9 mg) in 56% yield as white solid.

m.p. 100–102 °C; $[\alpha]_D^{20} = +51.6$ (c 0.3, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.37 (s, 1H), 7.16 – 7.05 (m, 2H), 7.02 (d, J = 2.1 Hz, 1H), 6.80 (d, J = 8.8 Hz, 1H), 6.75 (t, J = 7.4 Hz, 1H), 6.62 (d, J = 8.0 Hz, 1H), 6.31 (s, 1H), 5.85 (s, 1H), 4.63 (s, 1H), 4.09 (t, J = 7.8 Hz, 1H), 3.98 – 3.88 (m, 1H), 3.85 – 3.75 (m, 1H), 3.71 – 3.60 (m, 1H), 2.96 – 2.83 (m, 1H), 2.43 – 2.32 (m, 1H), 1.76 – 1.66 (m, 2H), 1.47 (s, 9H), 1.45 – 1.38 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 153.2, 149.8, 132.4, 131.5, 130.8, 128.1, 125.1, 118.9, 112.3, 108.7, 98.5, 80.2, 68.1, 67.4, 60.7, 39.6, 31.3, 28.3, 19.3, 13.9; IR (KBr): 2951, 1642, 1572, 1434, 1201, 1096, 974, 860, 762 cm⁻¹; ESI FTMS exact mass calcd for (C₂₅H₃₂N₂O₄+Na)⁺ requires m/z 447.2260, found m/z 447.2265; The enantiomeric excess: 95%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 70/ 30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 5.653 (major), t_R = 11.307 (minor).

5. Synthetic procedure and characterization data of products 8-9

To the mixture of **7aa** (38.2 mg, 0.1 mmol), 4-nitrobenzoyl chloride (18.9 mg, 0.102 mmol) and DMAP (2.5 mg, 0.02 mmol) was added newly distilled dichloromethane (1 mL). In an ice-water bath, trimethylamine (17 μ L,0.12 mmol) was added to the reaction mixture. Then, the reaction mixture was stirred at room temperature for 4 h and was monitored by TLC, which indicated the incompletion of the reaction. Subsequently, another parts of 4-nitrobenzoyl chloride (74.3 mg, 0.4 mmol) and trimethylamine (56 μ L, 0.4 mmol) were added to the reaction mixture, which was further stirred at room temperature for another 8 h. After the completion of the reaction indicated by TLC, the reaction mixture was quenched by the saturated aqueous solution of NaHCO₃, which was extracted by dichloromethane. The organic layer was washed with brine and combined together, which was dried by anhydrous sodium sulfate. Finally, the organic layer was

evaporated under the reduced pressure to give a residue, which was further purified through preparative thin layer chromatography on silica gel to give pure product 8 (38.3 mg) in 72% yield as white solid.

tert-butyl

(4-methoxy-3-((3a*R*,8a*R*)-8-(4-nitrobenzoyl)-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3a-yl) phenyl)carbamate (8): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 2/1; Reaction time = 12 h; yield: 72% (38.3 mg); white solid; m.p. 94–97 °C; $[\alpha]_D^{20}$ = +160.1 (c 0.6, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.30 (d, *J* = 8.9 Hz, 2H), 8.20 – 8.11 (m, 1H), 8.03 (d, *J* = 8.2 Hz, 2H), 7.42 (s, 1H), 7.34 – 7.28 (m, 1H), 7.16 – 7.05 (m, 3H), 6.70 (d, *J* = 8.8 Hz, 1H), 6.43 (s, 1H), 5.84 (s, 1H), 4.10 (t, *J* = 7.9 Hz, 1H), 3.63 – 3.56 (m, 1H), 3.48 (s, 3H), 2.81 – 2.71 (m, 1H), 2.53 – 2.47 (m, 1H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 168.4, 153.3, 153.1, 148.7, 142.7, 142.3, 135.0, 131.8, 131.1, 129.4, 128.2, 125.3, 124.1, 123.4, 117.3, 112.6, 98.9, 80.4, 67.0, 59.4, 56.2, 39.2, 28.3; IR (KBr): 3169, 1648, 1571, 1437, 1201, 1097, 973, 860, 750 cm⁻¹; ESI FTMS exact mass calcd for (C₂₉H₂₉N₃O₇+Na)⁺ requires m/z 554.1904, found m/z 554.1923; The enantiomeric excess: 94%, determined by HPLC (Daicel Chiralpak IA, hexane/ isopropanol = 70/ 30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 12.163 (major), t_R = 18.120 (minor).

To the solution of **7aa** (38.2 mg, 0.1 mmol) in dichloromethane was slowly added TFA (150 mg, 1.3 mmol), which was stirred at room temperature for 3 h. After the completion of the reaction indicated by TLC, the reaction mixture was quenched by the saturated aqueous solution of NaHCO₃ and modulated to pH = 7-8. Then, the mixture was extracted by dichloromethane, and the organic layer was combined together, which was dried by anhydrous sodium sulfate. Finally, the organic layer was evaporated under the reduced pressure to give a residue, which was further purified through column chromatography on silica gel (washed by Et₃N in advance) to give pure product **9** (18.7 mg) in 66% yield as brown solid.

4-methoxy-3-((3a*R*,8a*R*)-2,3,8,8a-tetrahydro-3a*H*-furo[2,3-b]indol-3a-yI)aniline (9): Flash chromatography, dichloromethane/ethyl acetate = 1/1; Reaction time = 3 h; yield: 66% (18.7 mg); brown solid; m.p. 83–85 °C; $[\alpha]_D^{20} = +189.9$ (c 0.4, Acetone); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.26 – 7.12 (m, 1H), 7.12 – 7.06 (m, 2H), 6.79 – 6.72 (m, 2H), 6.64 (d, J = 7.8 Hz, 1H), 6.61 (d, J = 2.8 Hz, 1H), 6.58 – 6.52 (m, 1H), 5.81 – 5.76 (m, 1H), 4.13 – 4.08 (m, 1H), 3.77 – 3.50 (m, 5H), 2.89 – 2.82 (m, 1H), 2.41 – 2.36 (m, 1H), 2.34 – 2.24 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 151.0, 149.7, 139.7, 132.6, 132.4, 128.1, 125.3, 119.1, 116.1, 114.3, 113.4, 108.9, 98.6, 67.6, 60.8, 56.1, 39.6; IR (KBr): 3358, 2947, 2360, 1655, 1454, 1114, 1042, 952, 668 cm⁻¹; ESI FTMS exact mass calcd for (C₁₇H₁₈N₂O₂+Na)⁺ requires m/z 305.1266, found m/z 305.1267; The enantiomeric excess: 95%, determined by HPLC (Daicel Chiralpak AD-H, hexane/ isopropanol = 70/ 30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 21.873 (major), t_R = 72.047 (minor).

6. NMR spectra of products 3, 7 and 8-9

^1H NMR (400 MHz, CDCl_3) of compound 3aa

¹³C NMR (100 MHz, CDCl₃) of compound **3aa**

¹H NMR (400 MHz, CDCl₃) of compound **3ba**

¹H NMR (400 MHz, CDCl₃) of compound **3ca**

¹³C NMR (100 MHz, CDCl₃) of compound **3ca**

¹³C NMR (100 MHz, CDCl₃) of compound **3da**

¹H NMR (400 MHz, CDCl₃) of compound **3ea**

¹³C NMR (100 MHz, CDCl₃) of compound **3ea**

¹³C NMR (100 MHz, CDCl₃) of compound **3fa**

^{13}C NMR (100 MHz, CDCl₃) of compound 3ga

¹H NMR (400 MHz, CDCl₃) of compound **3ga**

¹H NMR (400 MHz, CDCl₃) of compound **3ha**

 ^{13}C NMR (100 MHz, CDCl_3) of compound **3ha**

¹³C NMR (100 MHz, CDCl₃) of compound **3ia**

¹³C NMR (100 MHz, CDCl₃) of compound **3ja**

¹H NMR (400 MHz, CDCl₃) of compound **3ka**

 ^{13}C NMR (100 MHz, CDCl₃) of compound 3ka

¹H NMR (400 MHz, CDCl₃) of compound **3ab**

¹³C NMR (100 MHz, CDCl₃) of compound **3ab**

¹H NMR (400 MHz, CDCl₃) of compound **3ac**

^{13}C NMR (100 MHz, CDCl₃) of compound 3ac

¹H NMR (400 MHz, CDCl₃) of compound **3ad**

¹³C NMR (100 MHz, CDCl₃) of compound **3ad**

¹³C NMR (100 MHz, CDCl₃) of compound **3na**

¹³C NMR (100 MHz, CDCl₃) of compound **30a**

¹H NMR (400 MHz, CDCl₃) of compound **3pa**

¹³C NMR (100 MHz, CDCl₃) of compound **3pa**

¹³C NMR (100 MHz, CDCl₃) of compound 7aa

¹H NMR (400 MHz, CDCl₃) of compound 7aa

¹H NMR (400 MHz, CDCl₃) of compound 7ca

¹³C NMR (100 MHz, CDCl₃) of compound 7ca

¹H NMR (400 MHz, CDCl₃) of compound 7ea

¹³C NMR (100 MHz, CDCl₃) of compound 7ea

¹H NMR (400 MHz, CDCl₃) of compound 7ga

 ^{13}C NMR (100 MHz, CDCl₃) of compound 7ga

¹H NMR (400 MHz, CDCl₃) of compound 7ha

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl_3) of compound 7ha

¹H NMR (400 MHz, CDCl₃) of compound 7ja

¹³C NMR (100 MHz, CDCl₃) of compound 7ja

¹H NMR (400 MHz, CDCl₃) of compound 7la

 ^{13}C NMR (100 MHz, CDCl_3) of compound 71a

¹H NMR (400 MHz, CDCl₃) of compound 7ab

¹³C NMR (100 MHz, CDCl₃) of compound **7ab**

¹H NMR (400 MHz, CDCl₃) of compound 7ac

 ^{13}C NMR (100 MHz, CDCl_3) of compound 7ac

^{13}C NMR (100 MHz, CDCl_3) of compound $\boldsymbol{8}$

¹H NMR (400 MHz, CDCl₃) of compound 8

3aa 1000 875-750-BocHN OCH₃ 625-Absorbance [mAU] OCH3 500-1 - 7.613 BocHN 375 2 - 9.033 250 125-0--50-2.0 6.0 4.0 10.0 12.0 0.0 8.0 14.0 14.8 Time [min] Integration Results Height mAU 420.695 Relative Height No. Peak Name Relative Area % Retention Time Amount Area mAU*min min n.a. 57.91 7.613 224.182 49.28 n.a. 305.768 50.72 42.09 2 9.033 230.731 n.a. Total: 454.913 726.463 100.00 100.00 488 400 BocHN 1 - 7.663 300-Absorbance [mAU] псн BocHt 100 2 - 9.230 0 -50-6.0 Time [min] 4.0 8.0 12.0 13.0 0.0 2.0 10.0 Integration Results Height mAU 360.812 No. Peak Name Relative Area % **Retention Time** Area Relative Height Amount mAU*min min % n.a. 7.663 149.917 99.68 99.78 n.a. 2

7. HPLC copies of products 3, 7 and 8-9

0.483

150.401

0.795

361.606

0.32

100.00

0.22

100.00

n.a.

9.230

Total:

			Tin	ne [min]				
Integration Results								
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.	
1		7.607	1239.358	2986.863	98.55	99.04	n.a.	
2		9.203	18.297	28.891	1.45	0.96	n.a.	
Tota	1:		1257.656	3015.754	100.00	100.00		

Integ	ntegration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.	
1		35.423	853.851	462.698	49.87	56.86	n.a.	
2		44.480	858.437	351.060	50.13	43.14	n.a.	
Total:		1712.289	813.758	100.00	100.00			

Integ	Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.	
1		35.280	979.876	506.070	99.00	99.15	n.a.	
2		44.943	9.856	4.358	1.00	0.85	n.a.	
Total			989.732	510.428	100.00	100.00		

Integ	ntegration Results								
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.		
1		8.063	533.354	877.354	49.99	78.65	n.a.		
2		18.620	533.532	238.228	50.01	21.35	n.a.		
Tota			1066.885	1115.582	100.00	100.00			

miles	Regiation Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.	
1		8.200	1263.439	2868.452	98.57	99.62	n.a.	
2		19.237	18.273	11.029	1.43	0.38	n.a.	
Total:			1281.712	2879.481	100.00	100.00		

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1		9.323	1388.720	1123.481	49.55	64.04	n.a.
2		12.870	1414.024	630.846	50.45	35.96	n.a.
Total	:		2802.744	1754.327	100.00	100.00	

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1		14.287	347.992	298.743	49.61	45.91	n.a.
2		17.070	353.522	351.926	50.39	54.09	n.a.
Total:			701.513	650.670	100.00	100.00	

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1		7.933	66.700	208.011	51.30	67.64	n.a.
2		15.683	63.328	99.537	48.70	32.36	n.a.
Total:			130.028	307.548	100.00	100.00	

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1		7.917	380.827	1205.902	98.64	99.25	n.a.
2		15.700	5.236	9.107	1.36	0.75	n.a.
Total:			386.063	1215.009	100.00	100.00	

S75

S77

S78

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1		5.737	144.721	688.702	50.03	69.36	n.a.
2		12.617	144.537	304.284	49.97	30.64	n.a.
Total:			289.258	992.986	100.00	100.00	

No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mao min	IIIAU	70	70	n.a.
1		5.770	107.963	555.707	96.58	98.60	n.a.
2		13.047	3.824	7.891	3.42	1.40	n.a.
Total:			111.788	563.598	100.00	100.00	

No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		6.533	37.052	187.120	50.10	75.42	n.a.
2		16.340	36.898	60.978	49.90	24.58	n.a.
Total			73.950	248.098	100.00	100.00	

Compound 8

Compound 9:

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1		21.873	253.870	238.000	50.42	77.37	n.a.
2		71.700	249,595	69.608	49.58	22.63	n.a.
Total			503.464	307.608	100.00	100.00	

8. X-ray single crystal data for compound 8

The thermal ellipsoid was drawn at the 30% probability level.

Identification code	cu_d8v17103_0m				
Empirical formula	C29 H31 N3 O8				
Formula weight	549.57				
Temperature	293.15 K				
Wavelength	1.54184 Å				
Crystal system	Monoclinic				
Space group	P 1 21 1				
Unit cell dimensions	a = 13.172(3) Å	<i>α</i> = 90°.			
	b = 6.6186(8) Å	β=112.481(18)°.			
	c = 16.673(3) Å	$\gamma = 90^{\circ}$.			
Volume	1343.1(4) Å ³				
Z	2				
Density (calculated)	1.359 Mg/m ³				
Absorption coefficient	0.831 mm ⁻¹				

F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 67.684° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole

580 0.2 x 0.1 x 0.02 mm³ 2.868 to 68.274°. -15<=h<=14, -7<=k<=7, -20<=l<=19 17501 4854 [R(int) = 0.0620] 100.0 % Semi-empirical from equivalents 0.7531 and 0.5524 Full-matrix least-squares on F² 4854 / 1 / 373 1.113 R1 = 0.0401, wR2 = 0.0846R1 = 0.0498, wR2 = 0.09120.00(14) n/a 0.150 and -0.197 e.Å-3