Relationship between the conformational degree of freedom of templatecontaining threads and slippage in the formation of [2]rotaxane buildingblocks

B. Riss-Yaw, C. Clavel, Ph. Laurent and F. Coutrot*

Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon 34095 Montpellier cedex 5, France. Tél : (+) 33 4 67 14 38 43 - Fax: (+) 33 4 67 63 10 46

E-mail: <u>frederic.coutrot@univ-montp2.fr</u>, homepage: <u>www.glycorotaxane.fr</u>

Table of contents

Table of contents1	
1. General methods 2	
2. Synthesis of the semi rotaxane 1 2	
 2.1. General synthetic pathway of molecular axle 1u 2.2. Synthesis of the N-carbamoylated alcohol 1A 	2 2
2.3. Synthesis of the <i>N</i>-carbamoylated bromo compound 1B2.4. Synthesis of the primary amino compound 1C	3 3
2.5. Synthesis of compound 1D	4
2.6. Synthesis of compound 1E	4
2.7. Synthesis of the molecular axle 1u	5 c
 Synthesis of the semi rotaxanes 2 and 3	0
3.1. General synthetic pathway for molecular axles 2u and 3u	6 6
3.3. Synthesis of the N-carbamoylated bromo compounds 1B and 3B	7
3.4. Synthesis of the N-methyl amines 2C and 3C	8
3.5. Synthesis of compounds 2D and 3D	9
3.6. Synthesis of compounds 2E and 3E	10
3.7. Synthesis of the semi rotavanes 2 and 3	11 12
4. Synthesis of the semi rotaxane 4	
4.1. General synthetic pathway of molecular axle 4u	13
4.2. Synthesis of the N-carbamoylated alcohol 4A	13
4.3. Synthesis of the N-carbamoylated aldehyde 4B	14
4.4. Synthesis of the <i>N</i> -methyl amine 4C	1414 1 5
4.5. Synthesis of compounds 4D	15
4.7. Synthesis of the molecular axle 4u	16
4.8. Synthesis of the semi rotaxane 4	16
5. ¹ H NMR characterization for rotaxanes 1-4	
5.1. ¹ H NMR characterization for rotaxane 1	17
5.2. ¹ H NMR characterization for rotaxane 2	17
5.3. ⁻ H NIVIK Characterization for rotaxane 3	18

5.4. ¹ H NMR characterization for rotaxane 4	
---	--

1. General methods

All reactions were carried out under an atmosphere of argon unless otherwise indicated. All reagents were used as received without further purification. Dichloromethane was distilled over P₂O₅ and was degassed by bubbling Ar for 20 min. Analytical thin-layer chromatography (TLC) was performed on silica gel 60 F254 plates. Compounds were visualized by dipping the plates in an ethanolic solution of 10% sulphuric acid, ninhydrine or an aqueous solution of KMnO₄, followed by heating. ¹H NMR and ¹³C NMR spectra were obtained on a spectrometer (respectively at 600.27, 500.17 or 400.13 MHz and 150.94, 125.77 or 100.62 MHz). Chemical shifts of ¹H NMR and ¹³C NMR are given by using CHCl₃, CH₂Cl₂ and CH₃CN as references (7.27 ppm, 5.32 ppm, and 1.94 ppm respectively for ¹H spectrum, and 77.0 ppm, 54.0 ppm, and 118.26 ppm respectively for ¹³C spectrum). ¹H assignments were deduced from 2D ¹H-¹H NMR COSY experiments. ¹³C assignments were deduced from 2D ¹³C-¹H NMR HSQC experiments. Coupling constants (J) are reported in hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: s (singlet), br (broad), d (doublet), t (triplet), q (quartet), quint (quintuplet), m (multiplet). Mass spectra (MS) and high-resolution mass spectra (HRMS) were recorded respectively on a ZQ Micromass apparatus and a Q-TOF Micro apparatus.

2. Synthesis of the semi rotaxane 1

2.1. General synthetic pathway of molecular axle 1u

2.2. Synthesis of the N-carbamoylated alcohol 1A

A solution of 4-*tert*-butylbenzaldehyde (4.18 mL, 25 mmol, 1 equiv.) and 6-aminohexanol (3.42 g, 30 mmol, 1.2 equiv.) in MeOH (105 mL) was stirred for 20h at room temperature. Boc₂O (11.78 g, 54 mmol, 2.16 equiv.) and sodium triacetoxyborohydride "STAB" (5.75 g, 27 mmol, 1.1 equiv.) were then added and the reaction mixture was stirred for a further 5h at room temperature. MeOH was evaporated under *vacuum* and the obtained crude was purified by chromatography on a silicagel column (PE/AcOEt 90:10 to 70:30) to give pure **1A** (6.13 g, 67% over 3 steps) as a light yellow oil. **R**_f: 0.52 (PE/AcOEt 6/4).

¹H NMR (400 MHz, CDCl₃, 298K): δ ppm = 7.34 (d, 2H, ${}^{3}J_{H4-H5}$ = 7.9Hz, H₄), 7.19-7.12 (m, 2H, H₅), 4.44-4.34 (m, 2H, H₇), 3.60 (t, 2H, ${}^{3}J_{H8'-H9'}$ = 6.4Hz, H₁₄), 3.24-3.06 (m, 2H, H₉), 2.09 (br s, 1H, OH), 1.58-1.41 (m, 13H, H_cH₁₀H₁₃), 1.40-1.21 (m, 4H, H₁₁H₁₂), 1.31 (s, 9H, H₁).

¹³C NMR (100 MHz, CDCl₃, 298K): δ ppm = 155.7 (C_a), 149.9 (C₃), 135.4 (C₆), 127.3 & 126.9 (C₅), 125.2 (C₄), 79.5 (C_b), 62.6 & 62.4 (C₁₄), 49.7 & 49.2 (C₇), 46.1 & 45.8 (C₉), 34.4 (C₂), 31.3 (C₁), 28.4 (C_c), 32.5 & 28.0 & 27.5 & 26.6 & 26.2 & 25.4 & 25.1 (C₁₀ C₁₁ C₁₂ C₁₃).

HRMS (ESI): [M+Na]⁺ calcd for C₂₂H₃₇NO₃Na⁺: 386.2671, found: 386.2679.

2.3. Synthesis of the N-carbamoylated bromo compound 1B

To a solution of the alcohol **1A** (11.03 g, 29.6 mmol, 1 equiv.) in CH_2Cl_2 (150 mL) was added successively PPh₃ (15.5 g, 59 mmol, 2 equiv.) and CBr_4 (19.6 g, 59 mmol, 2 equiv.). The light brown solution was stirred for 1h30 at room temperature before being concentrated and added by a solution of PE/AcOEt 95:5. The precipitate was filtered off and the filtrate concentrated. The obtained residue was purified by chromatography using a silicagel column (PE/AcOEt 100:0 to 75:35) to give the pure brominated compound **1B** (11.56 g, 89%) as a pale yellow oil. **R**_f: 0.70 (PE/AcOEt 6/4).

¹H NMR (400 MHz, CDCl₃, 298K): δ ppm = 7.35 (d, 2H, ³J_{H4-H5}= 7.9Hz, H₄), 7.21-7.14 (m, 2H, H₅), 4.45-4.36 (m, 2H, H₇), 3.39 (t, 2H, ³J_{H8²-H9²} = 6.6Hz, H₁₄), 3.24-3.08 (m, 2H, H₉), 1.88-1.78 (m, 2H, H₁₃), 1.56-1.37 (m, 13H, H_c H₁₀ H₁₂), 1.33 (s, 9H, H₁), 1.33-1.23 (m, 2H, H₁₁).

¹³C NMR (100 MHz, CDCl₃, 298K): δ ppm = 155.6 (C_a), 149.9 (C₃), 135.3 (C₆), 127.3 & 126.9 (C₅), 125.3 (C₄), 79.4 (C_b), 49.9 & 49.3 (C₇), 46.1 (C₉), 34.4 (C₂), 33.7 (C₁₄), 32.6 (C₁₃), 31.3 (C₁), 28.4 (C_c), 27.8 & 27.5 & 25.9 (C₁₀ C₁₁ C₁₂).

HRMS (ESI): [M+Na]⁺ calcd for C₂₂H₃₆NO₂BrNa⁺: 448.1827, found: 448.1824.

2.4. Synthesis of the primary amino compound 1C

To a solution of the brominated compound **1B** (6.11 g, 14 mmol, 1 equiv.) in dry DMF (78 mL) was added potassium phthalimide (3.91 g, 21 mmol, 1.5 equiv.). The solution was stirred for 2h at 70°C, then cooled to room temperature, and partially concentrated. The resulting mixture was filtered through a celite pad. After abundant washing of the celite pad with CH_2Cl_2 , the filtrate was concentrated to a pale orange oil, which was used for the next step without further purification.

The obtained oil was diluted in EtOH (140 mL) and added by hydrazine (2.47 g, 49 mmol, 3.5 equiv.). The reaction mixture was vigorously stirred for 2h at reflux. At the end of the reaction, an aqueous solution of KOH 1M (140 mL) was added and EtOH was evaporated. The aqueous layer was then

extracted three times with CH_2Cl_2 (3x70 mL). The combined organic layers were dried over MgSO₄ and concentrated to give **1C** (5.097 g, 99%) as a pale yellow oil. **R**_f: 0.11 (PE/AcOEt 2/8)

¹H NMR (400 MHz, CDCl₃, 298K): δ ppm = 7.34 (d, 2H, ${}^{3}J_{H4-H5}$ = 7.5Hz, H₄), 7.19-7.11 (m, 2H, H₅), 4.44-4.32 (m, 2H, H₇), 3.22-3.05 (m, 2H, H₉), 2.68 (t, 2H, ${}^{3}J_{H14-H13}$ = 6.7Hz, H₁₄), 1.74 (br s, NH₂), 1.54-1.35 (m, 13H, H_cH₁₃H₁₀), 1.34-1.21 (m, 4H, H₁₁H₁₂), 1.30 (s, 9H, H₁).

¹³C NMR (100 MHz, CDCl₃, 298K): δ ppm = 155.9 (C_b), 149.9 (C₃), 135.4 (C₆), 127.3 & 126.9 (C₅), 125.2 (C₄), 79.3 (C_b), 49.8 & 49.2 (C₇), 46.1 (C₉), 42.0 (C₁₄), 34.4 (C₂), 31.3 (C₁), 28.4 (C_c), 33.6 & 28.0 & 27.6 & 26.6 & 26.5 (C₉ C₁₀ C₁₁ C₁₂).

HRMS (ESI): $[M+H]^+$ calcd for $C_{22}H_{39}N_2O_2^+$: 363.3012, found: 363.3011.

2.5. Synthesis of compound 1D

The primary amine **1C** (1.124g, 3.1 mmol, 1 equiv.) and the *O*-benzyl-*N*-hydroxysuccinimide derivative (818 mg, 3.1 mmol, 1 equiv.) were dissolved in CH_2Cl_2 (57 mL). To this solution was added successively BOP (1.790 g, 4.0 mmol, 1.3 equiv.) and Et_3N (960 µL, 6.8 mmol, 2.2 equiv.). After checking the basicity of the solution, the mixture was stirred for 4h30 at RT. Then, an aqueous solution of HCl 1M was added until pH 1. The aqueous layer was extracted three times with CH_2Cl_2 (3x30 mL). The resulting organic layers were washed twice with a saturated aqueous NaHCO₃ solution (2x50 mL), then with brine (50 mL), dried over MgSO₄ and concentrated. The obtained crude was purified by chromatography on a silicagel column (PE/AcOEt 60:40 to 40:60) to give the pure compound **1D** (1.647 g, 87%) as a white solid.

R_f: 0.46 (PE/AcOEt 2/8)

¹**H NMR (400 MHz, CD₃Cl, 298K)**: δ ppm = 7.53-7.47 (m, 2H, H₂₆), 7.39-7.35 (m, 3H, H₂₅ H₂₇), 7.34 (d, 2H, ³J_{H4-H5} = 7.9 Hz, H₄), 7.15 (d, 2H, ³J_{H5-H4} = 7.9 Hz, H₅), 6.29 & 5.77 (2 br s, 1H, H₁₅), 5.13 (s, 2H, H₂₃), 4.42-4.34 (m, 2H, H₇), 3.24-3.06 (m, 4H, H₉ H₁₄), 3.05-2.96 (m, 1H, H₁₉), 2.84 (dd, 1H, ²J_{H20b-H20a} = 17.9 Hz, ³J_{H20b-H19} = 9.1 Hz, H_{20b}), 2.69-2.59 (m, 2H, H₁₈), 2.50 (dd, 1H, ²J_{H20a-H20b} = 17.9Hz, ³J_{H20a-H19} = 4.6Hz, H_{20a}), 1.55-1.39 (m, 4H, H₁₃ H₁₀), 1.45 (sl, 9H, H_c), 1.35-1.20 (m, 4H, H₁₁ H₁₂), 1.31 (s, 9H, H₁).

¹³C NMR (100 MHz, CDCl₃, 298K): δ ppm = 173.8 (C₁₇), 170.7 & 169.1 (C₂₁ C₂₂), 156.0 & 155.8 (C_a), 150.0 (C₃), 135.2 (C₂₄), 133.4 (C₆), 129.8 & 129.2 & 128.4 (C₂₅₋₂₇), 127.1 & 126.9 (C₅), 125.3 (C₄), 79.6 (C_b), 78.5 (C₂₃), 49.6 & 49.1 (C₇), 46.1 & 45.2 (C₉), 39.5 & 38.8 (C₁₄), 35.4 (C₁₈), 34.4 (C₂), 33.6 (C₁₉), 31.7 (C₂₀), 31.3 (C₁), 28.4 (C_c), 28.8 & 27.2 & 25.6 & 25.4 (C₉ C₁₀ C₁₁ C₁₂).

HRMS (ESI): $[M+Na]^+$ calcd for $C_{35}H_{49}N_3O_6Na^+$: 630.3519, found: 630.3523.

2.6. Synthesis of compound 1E

To the *N*-carbamoylated compound **1D** (1.752 g, 2.88 mmol, 1 equiv.) was added a 1.8M solution of HCl in Et₂O (40 mL, 72 mmol, 25 equiv.). After stirring for 3h at 0°C, the mixture was concentrated before being dissolved in a small volume of Et₂O and concentrated three times. The resulting crude was diluted in CH_2Cl_2 (20 mL), milli-Q water (20 mL) and NH_4PF_6 (1.400 g, 8.6 mmol, 3 equiv.) were added. The biphasic mixture was vigorously stirred at room temperature for 15 min. The aqueous layer was extracted three times with CH_2Cl_2 (3x15mL). The combined organic layers were dried over MgSO₄ and concentrated. The resulting white solid was purified by chromatography on a silicagel column (CH_2Cl_2 /MeOH 98:2 to 94:6) to give the pure ammonium-containing product **1E** (1.628 g, 86%) as a white solid.

R_f: 0.53 (CH₂Cl₂/MeOH 9/1)

¹H NMR (400 MHz, CD₃CN, 298K): δ ppm = 7.52-7.46 (m, 2H, H₂₆), 7.50 (d, 2H, ³J_{H4-H5} = 8.4 Hz, H₄), 7.42-7.36 (m, 3H, H₂₅ H₂₇), 7.37 (d, 2H, ³J_{H5-H4} = 8.4 Hz, H₅), 7.06-6.46 (br s, 2H, H₈), 6.52 (br t, 1H, H₁₅), 5.02 (s, 2H, H₂₃), 4.10 (s, 2H, H₇), 3.11 (q, 2H, ³J_{H14-13} = ³J₁₄₋₁₅ = 6.6 Hz, H₁₄), 3.03-2.95 (m, 3H, H₁₉ H₉), 2.77 (dd, 1H, ²J_{H20a-H20b} = 17.8Hz, ³J_{H20a-H19} = 9.2 Hz, H_{20a}), 2.66 (dd, 1H, ²J_{H18a-H18b} = 16.3Hz, ³J_{H18a-H19} = 5.9 Hz, H_{18a}), 2.57 (dd, 1H, ²J_{H18b-H18a} = 16.3Hz, ³J_{H18b-H19} = 4.6 Hz, H_{18b}), 2.34 (dd, 1H, ²J_{H20b-H20a} = 17.8Hz, ³J_{H20b-H19} = 4.4 Hz, H_{20b}), 1.63 (quint, 2H, ³J_{H10-H11} = ³J_{H10-H9} = 7.5 Hz, H₁₀), 1.43 (quint, 2H, ³J₁₃₋₁₄ = ³J₁₃₋₁₂ = 6.9 Hz, 2H, H₁₃), 1.38-1.25 (m, 4H, H₁₁H₁₂), 1.31 (s, 9H, H₁).

¹³C NMR (100 MHz, CD₃CN, 298K): δ ppm = 175.3 & 172.3 & 170.9 (C₁₇ C₂₁ C₂₂), 153.7 (C₃), 135.2 (C₂₄), 130.7 (C₅), 130.6 & 130.0 & 129.4 (C₂₅₋₂₇), 128.6 (C₆), 126.9 (C₄), 79.0 (C₂₃), 52.0 (C₇), 48.5 (C₉), 39.4 (C₁₄), 35.8 (C₁₈), 35.2 (C₂), 34.4 (C₁₉), 32.3 (C₂₀), 31.3 (C₁), 29.7 (C₁₃), 26.3 & 26.2 & 26.1 (C₁₀ C₁₁ C₁₂). HRMS (ESI): [M-PF₆]⁺ calcd for C₃₀H₄₂N₃O₄⁺: 508.3175, found: 508.3179.

2.7. Synthesis of the molecular axle 1u

To a solution of **1E** (351 mg, 0.54 mmol, 1 equiv.) in EtOH (15 mL) was added 10%-Pd/C (300 mg). The solution was stirred 15 min under a hydrogen atmosphere before filtration through a celite pad. After abundant washing of the celite pad, the filtrate was concentrated to give the pure **1u** (297 mg, 98%) without any further purification.

R_f: 0.23 (CH₂Cl₂/MeOH 9/1)

¹**H NMR (400 MHz, CD₃CN, 298K)**: δ ppm = 7.50 (d, 2H, ³J_{H4-H5} = 8.4 Hz, H₄), 7.39 (d, 2H, ³J_{H5-H4} = 8.4 Hz, H₅), 6.57 (br t, 1H, H₁₅), 4.13 (s, 2H, H₇), 3.11 (q, 2H, ³J_{H14-H13} = ³J_{H14-H15} = 6.6 Hz, H₁₄), 3.06-2.95 (m, 3H, H₁₉ H₉), 2.75 (dd, 1H, ²J_{H20a-H20b} = 17.8 Hz, ³J_{H20a-H19} = 9.0 Hz, H_{20a}), 2.63 (dd, 1H, ²J_{H18a-H18b} = 16.2 Hz, ³J_{H18a-H19} = 6.0 Hz, H_{18a}), 2.57 (dd, 1H, ²J_{H18b-H18a} = 16.2 Hz, ³J_{H18b-H19} = 4.9 Hz, H_{18b}), 2.34 (dd, 1H, ²J_{H20b-H19} = 17.8 Hz, ³J_{H10-H11} = ³J_{H10-H9} = 7.5 Hz, H₁₀), 1.43 (quint, 2H, ³J_{H13-H14} = ³J_{H13-12} = 6.9 Hz, 2H, H₁₃), 1.38-1.23 (m, 4H, H₁₁ H₁₂), 1.31 (s, 9H, H₁).

¹³C NMR (100 MHz, CD₃CN, 298K): δ ppm = 175.7 & 172.8 & 171.3 (C₁₇ C₂₁ C₂₂), 153.6 (C₃), 130.6 (C₅), 128.6 (C₆), 126.8 (C₄), 52.0 (C₇), 48.5 (C₉), 39.5 (C₁₄), 35.7 (C₁₈), 35.2 (C₂), 34.4 (C₁₉), 32.1 (C₂₀), 31.3 (C₁), 29.5 (C₁₃), 26.3 & 26.2 & 26.0 (C₁₀ C₁₁ C₁₂).

HRMS (ESI): $[M-PF_6]^+$ calcd for $C_{23}H_{36}N_3O_4^+$: 418.2706, found: 418.2694.

2.8. Preparation of semi rotaxane 1

A 0.12 M solution of the transporter thread **1u** (53.5 mg, 0.095 mmol, 1 equiv.) and DB24C8 (128.2 mg, 0.286 mmol, 3 equiv.) in dry CH_2Cl_2 (2.6 mL) was stirred 12h at rt before being concentrated. The resulting solid was purified by chromatography on lipophilic sephadex LH20 (CH_2Cl_2) to afford pure **1** (86.5 mg, 90%) as a white powder.

R_f: 0.69 (CH₂Cl₂/MeOH 9/1)

¹H NMR (400 MHz, CD₃CN, 298K): δ ppm = 7.29 (d, 2H, ${}^{3}J_{H5-H4}$ = 8.4Hz, H₅), 7.22 (d, 2H, ${}^{3}J_{H4-H5}$ = 8.4Hz, H₄), 7.18-7.03 (br s, 2H, H₈), 6.91 (s, 8H, H_A H_B), 6.37 (br t, 1H, H₁₅), 4.57-4.51 (m, 2H, H₇), 4.20-4.13 & 4.10-4.02 (2m, 2x4H, H_C H_{C'}), 3.85-3.75 (m, 8H, H_D H_{D'}), 3.68-3.59 & 3.56-3.47 (2m, 2x4H, H_E H_{E'}), 3.31-3.21 (m, 2H, H₉), 3.03-2.92 (m, 3H, H₁₉ H₁₄), 2.75 (dd, 1H, ${}^{2}J_{H20a-H20b}$ = 17.4Hz, ${}^{3}J_{H20a-H19}$ = 8.9Hz, H_{20a}), 2.65-2.52 (m, 2H, H₁₈), 2.34 (dd, 1H, ${}^{2}J_{H20b-H20a}$ = 17.9Hz, ${}^{3}J_{H20b-H19}$ = 4.1Hz, H_{20b}), 1.49-1.39 (m, 2H, H₁₀), 1.23 (s, 9H, H₁), 1.20-1.13 (m, 2H, H₁₃), 1.07-0.98 (m, 4H, H₁₁ H₁₂).

¹³C NMR (101 MHz, CD₃CN, 298K): δ ppm = 175.4 & 172.5 (C₂₁ C₂₂), 170.5 (C₁₇), 153.0 (C₃), 148.5 (C_{IV} arom DB24C8), 130.5 (C₆ C₅), 126.3 (C₄), 122.4 & 113.6 (C_A C_B), 71.6 (C_E C_{E'}), 71.1 (C_D C_{D'}), 69.0 (C_C C_{C'}), 52.8 (C₇), 48.6 (C₉), 39.6 (C₁₄), 35.8 (C₂₀), 35.1 (C₂), 34.5 (C₁₉), 32.4 (C₁₈), 31.4 (C₁), 29.7 (C₁₃), 27.1 (C₁₀), 26.7 & 26.5 (C₁₁ C₁₂).

HRMS (ESI): $[M-PF_6]^+$ calcd for $C_{47}H_{68}N_3O_{12}^+$: 866.4803, found: 866.4799.

3. Synthesis of the semi rotaxanes 2 and 3

3.1. General synthetic pathway for molecular axles 2u and 3u

3.2. Synthesis of the N-carbamoylated alcohols 1A and 3A

Synthesis of 1A has already been described in paragraph 2.2

A solution of 4-*tert*-butylbenzaldehyde (1.92 mL, 25 mmol, 1 equiv.) and 4-aminobutanol (1.02 g, 11.5 mmol, 1 equiv.) in MeOH (30 mL) was stirred for 19h at room temperature. Boc_2O (3.01 g, 13.8 mmol, 1.2 equiv.) and sodium triacetoxyborohydride "STAB" (4.87 g, 23 mmol, 2 equiv.) were then added and the reaction mixture was stirred for a further 4h30 at room temperature. MeOH was evaporated under *vacuum* and the obtained crude was purified by chromatography on a silicagel column (PE/AcOEt 85:15 to 70:30) to give pure **3A** (2.33 g, 61% over 3 steps) as a colorless oil.

R_f: 0.42 (PE/EtOAc 6/4)

¹H NMR (400 MHz, CDCl₃, 298k): δ ppm = 7.34 (d, 2H, ³J_{H4-H5} = 8.3 Hz, H₄), 7.16 (d, 2H, ³J_{H5-H4} = 8.3 Hz, H₅), 4.40 (br s, 2H, H₇), 3.62 (t, 2H, ³J_{H12-H11} = 5.9 Hz, H₁₂), 3.28-3.12 (m, 2H, H₉), 1.64-1.50 (m, 2H, H₁₀), 1.57-1.48 (m, 2H, H₁₁), 1.47 (s, 9H, H_c), 1.32 (s, 9H, H₁).

¹³C NMR (100 MHz, CDCl₃, 298K): δ ppm = 155.9 (C_a), 150.0 (C₃), 135.3 (C₆), 127.0 (C₅), 125.3 (C₄), 79.6 (C_b), 62.4 (C₁₂), 49.9 & 49.3 (C₇), 45.9 (C₉), 34.4 (C₂), 31.3 (C₁), 29.6 (C₁₁), 28.4 (C_c), 24.2 (C₁₀). **MS (ESI):** [M+H]⁺ calcd for C₂₀H₃₄NO₃⁺: 336.25, found: 336.21.

3.3. Synthesis of the N-carbamoylated bromo compounds 1B and 3B

Synthesis of 1B has already been described in paragraph 2.3

To a solution of the alcohol **3A** (413 mg, 1.23 mmol, 1 equiv.) in CH_2Cl_2 (12 mL) was added successively PPh₃ (645 mg, 2.46 mmol, 2 equiv.) and CBr_4 (836 mg, 2.46 mmol, 2 equiv.). The light brown solution was stirred for 30 min at room temperature before being concentrated. The obtained residue was purified by chromatography using a silicagel column (PE/AcOEt 90:10) to give the pure brominated compound **3B** (460 mg, 94%) as a yellow oil.

R_f: 0.43 (PE/EtOAc 9/1)

¹H NMR (400 MHz, CDCl₃, 298k): δ ppm = 7.35 (d, 2H, ³J_{H4-H5} = 8.3 Hz, H₄), 7.17 (d, 2H, ³J_{H5-H4} = 8.3 Hz, H₅), 4.41 (br s, 2H, H₇), 3.39 (t, 2H, ³J_{H12-H11} = 6.1 Hz, H₁₂), 3.28-3.12 (m, 2H, H₉), 1.89-1.75 (m, 2H, H₁₁), 1.72-1.59 (m, 2H, H₁₀), 1.49 (s, 9H, H_c), 1.33 (s, 9H, H₁).

¹³C NMR (100 MHz, CDCl₃, 298K): δ ppm = 155.8 (C_a), 150.1 (C₃), 135.2 (C₆), 127.4 & 127.1 (C₅), 125.4 (C₄), 79.7 (C_b), 49.9 & 49.3 (C₇), 45.2 (C₉), 34.4 (C₂), 33.3 (C₁₂), 31.3 (C₁), 30.0 (C₁₁), 28.4 (C_c), 26.4 (C₁₀). **MS (ESI):** $[M+H]^+$ calcd for C₂₀H₃₃BrNO₂⁺: 398.17, found: 398.12.

3.4. Synthesis of the N-methyl amines 2C and 3C

General procedure:

To a 40% solution of methylamine in water (35 equiv) in THF (5 mL) was added dropwise a solution of bromide **2-3B** (1 equiv) in THF (10 mL). The mixture was stirred overnight before addition of dichloromethane (30 mL) and NaOH 1M (30 mL). The two layers were partitioned and the aqueous layer was further extracted with dichloromethane (4 x 30 mL). The organic layers were combined, dried over MgSO₄ and concentrated to give the amines **2-3C** as a colourless oil without any further purification.

Methyl amine **2C** (1.17 g, quantitative) was obtained as a colorless oil from bromide **1B** (2.33g, 3.12 mmol).

R_f: 0.17 (CH₂Cl₂/CH₃OH 9/1)

¹H NMR (400 MHz, CDCl₃, 298k): δ ppm = 7.33 (d, 2H, ³J_{H4-H5} = 8.2 Hz, H₄), 7.15 (br d, 2H, H₅), 6.95 (br s, 1H, H₁₅), 4.38 (br s, 2H, H₇), 3.21-2.95 (m, 2H, H₉), 2.85 & 2.41 (2br t, 2H, H₁₄), 2.62 & 2.27 (2s, 3H, H₁₆), 1.83-1.73 & 1.56-1.29 (2m, 4H, H₁₀ H₁₃), 1.46 (s, 9H, H_c), 1.31 (s, 9H, H₁), 1.32-1.20 (m, 4H, H₁₁ H₁₂).

¹³C NMR (100 MHz, CDCl₃, 298K): δ ppm = 156.0 & 155.6 (C_a), 149.9 (C₃), 135.4 (C₆), 127.3 & 126.9 (C₅), 125.3 (C₄), 80.7 & 79.4 (C_b), 55.3 & 49.8 & 49.5 & 49.3 (C₇ C₁₄), 46.2 & 46.1 & 46.0 (C₉), 40.4 (C_{16-cis}), 34.4 (C₂), 33.1 (C_{16-trans}), 31.3 (C₁), 28.4 (C_c), 28.0 & 27.7 & 27.5 & 27.1 & 26.7 & 26.4 & 26.2 (C₁₀ C₁₁ C₁₂ C₁₃).

MS (ESI): $[M+H]^+$ calcd for $C_{23}H_{41}N_2O_2^+$: 377.32, found: 377.30.

Methyl amine **3C** (376 mg, 94%) was obtained as a colorless oil from bromide **3B** (440 mg, 1.15 mmol).

R_f: 0.15 (CH₂Cl₂/CH₃OH 9/1)

¹H NMR (400 MHz, CDCl₃, 298k): δ ppm = 7.34 (d, 2H, ³J_{H4-H5} = 8.3 Hz, H₄), 7.16 (br d, 2H, H₅), 4.40 (br s, 2H, H₇), 3.27-3.10 (m, 2H, H₉), 2.55 (t, 2H, ³J_{H12-H11} = 6.9 Hz, H₁₃), 2.41 (s, 3H, H₁₂), 1.58-1.38 (m, 4H, H₁₀ H₁₁), 1.47 (s, 9H, H_c), 1.32 (s, 9H, H₁).

¹³C NMR (100 MHz, CDCl₃, 298K): δ ppm = 155.8 & 155.4 (C_a), 149.8 (C₃), 135.3 (C₆), 127.2 & 126.8 (C₅), 125.1 (C₄), 79.2 (C_b), 51.5 (C₁₂), 49.8 & 49.2 (C₇), 46.0 (C₉), 36.1(C₁₃), 34.2 (C₂), 31.2 (C₁), 28.3 (C_c), 26.8 (C₁₁), 25.7 & 25.4 (C₁₀).

MS (ESI): $[M+H]^+$ calcd for $C_{21}H_{37}N_2O_2^+$: 349.28, found: 349.25.

3.5. Synthesis of compounds 2D and 3D

General procedure:

The primary amine **2-3C** (1 equiv.) and the *O*-benzyl-*N*-hydroxysuccinimide derivative (1 equiv.) were dissolved in CH_2Cl_2 (20 mL for 1.15 mmol of amine). To this solution was added successively BOP (1.3 equiv.) and Et_3N (2.2 equiv.). After checking the basicity of the solution, the mixture was stirred for 4h30 at room temperature. Then, an 1M aqueous solution of HCl was added until the pH reached 1. The aqueous layer was extracted three times with dichloromethane (3 x 30 mL) and the resulting organic layers were washed with a saturated NaHCO₃ aqueous solution (3 x 30 mL). The aqueous layer was then extracted with dichloromethane (3 x 30 mL) and the combined organic layers were dried over MgSO₄ and concentrated. The crude was purified by chromatography on a silica gel column (PE/AcOEt 1/1) to give compound **2-3D**.

Compound **2D** (1.54 g, 79%) was obtained as a white solid from methyl amine **2C** (1.17 g, 3.12 mmol). **R**_f: 0.77 (CH₂Cl₂/CH₃OH 9/1)

¹H NMR (500 MHz, CDCl₃, 298k): δ ppm = 7,55-7.50 (m, 2H, H₂₅), 7.40-7.31 (m, 5H, H₄ H₂₆ H₂₇), 7.19-7.12 (m, 2H, H₅), 5.19-5.11 (m, 2H, H₂₃), 4.45-4.33 (m, 2H, H₇), 3.40-3.32 & 3.28-3.05 (2m, 4H, H₉ H₁₄), 3.04-2.97 (m, 1H, H₁₉), 2.93 & 2.88 (2s, 3H, H_{16-trans} H_{16-cis}), 2.92-2.81 (m, 1H, H_{20a}), 2.82-2.70 (m, 2H, H₁₈), 2.48 (dd, 1H, ²J_{H20b-H20a} = 17.8 Hz, ³J_{H20b-H19} = 4.7 Hz, H_{20b}), 1.58-1.39 (m, 13H, H_c H₁₀ H₁₃), 1.32 & 1.31 (2s, 9H, H₁), 1.32-1.21 (m, 4H, H₁₁ H₁₂).

¹³C NMR (125 MHz, CDCl₃, 298K): δ ppm = 174.1 (C₁₇), 171.0 & 170.9 & 168.7 & 168.7 (C₂₁ C₂₂), 156.0 & 155.6 (C_a), 150.0 & 149.9 (C₃), 135.4 (C₆), 133.7 & 133.7 (C₂₄), 129.9 & 129.8 (C₂₅), 129.1 & 129.1 (C₂₇), 128.4 (C₂₆), 127.3 & 126.9 (C₅), 125.3 (C₄), 79.4 & 78.6 (C_b), 78.4 (C₂₃), 49.9 & 49.7 & 49.2 & 47.7 (C₇ C₁₄), 46.1 & 46.0 (C₉), 35.0 (C_{16-trans}), 34.4 (C₂), 33.8 (C₁₉), 33.3 & 33.2 (C_{16-cis} C₁₈), 32.4 & 32.4 (C₂₀), 31.3 (C₁), 28.4 (C_c), 28.2 & 28.0 & 27.6 & 27.1 & 26.5 (C₁₀ C₁₁ C₁₂ C₁₃).

MS (ESI): $[M+H]^+$ calcd for $C_{36}H_{52}N_3O_6^+$: 622.39, found: 622.37.

Compound **3D** (602 mg, 88%) was obtained as a yellow oil from methyl amine **3C** (404 mg, 1.15 mmol).

R_f: 0.51 (PE/AcOEt 2/8)

¹**H NMR (500 MHz, CDCl₃, 298k):** δ ppm = 7,55-7.50 (m, 2H, H₂₃), 7.40-7.31 (m, 5H, H₄ H₂₄ H₂₅), 7.19-7.12 (m, 2H, H₅), 5.18-5.11 (m, 2H, H₂₁), 4.44-4.33 (m, 2H, H₇), 3.43-3.32 & 3.28-3.09 (2m, 4H, H₉ H₁₂), 3.04-2.97 (m, 1H, H₁₇), 2.91 & 2.85 (2s, 3H, H_{14-trans} H_{14-cis}), 2.91-2.80 (m, 1H, H_{18a}), 2.85-2.70 (m, 2H, H₁₆), 2.51-2.44 (m, 1H, H_{18b}), 1.54-1.40 (m, 13H, H_c H₁₀ H₁₁), 1.32 & 1.31 (2s, 9H, H₁).

¹³C NMR (125 MHz, CDCl₃, 298K): δ ppm = 174.1 (C₁₅), 171.0 & 168.8 (C₁₉ C₂₀), 155.8 (C_a), 150.3 & 150.0 (C₃), 135.4 & 135.2 (C₆), 133.7 & 133.7 (C₂₂), 129.9 & 129.9 (C₂₃), 129.1 & 129.1 (C₂₅), 128.4

 $\begin{array}{l} (C_{24}),\,127.4 \&\,127.0 \; (C_5),\,125.4 \&\,125.3 \; (C_4),\,79.9 \&\,79.6 \; (C_b),\,78.4 \; (C_{21}),\,50.0 \&\,49.8 \&\,49.3 \&\,47.4 \; (C_7 \\ C_{12}),\,45.8 \&\,45.7 \&\,45.4 \; (C_9),\,35.0 \; (C_{14\text{-trans}}),\,34.5 \&\,34.4 \; (C_2),\,33.8 \&\,33.8 \; (C_{16} \; C_{17}),\,33.2 \; (C_{14\text{-cis}}),\,32.4 \&\,32.4 \; (C_{18}),\,31.3 \; (C_1),\,28.4 \; (C_c),\,25.4 \&\,25.1 \&\,24.9 \&\,24.4 \; (C_{10} \; C_{11}). \\ \end{array}$

3.6. Synthesis of compounds 2E and 3E

General procedure:

To a solution of *O*-benzylsuccinimide **2-3D** in EtOH (60 mL for 2,25 mmol of D) was added 10%-Pd/C (40% in mass). The solution was stirred 10 min under a hydrogen atmosphere before filtration through a celite pad. After abundant washing of the celite pad, the filtrate was concentrated to give **2-3E**.

Compound **2E** (969 mg, 79%) was obtained as a white solid after purification by chromatography using a silicagel column (CH₂Cl₂/MeOH 100:0 to 96:4) from compound **2D** (1.40 g, 2.25 mmol). **R**_f: 0.53 (CH₂Cl₂/CH₃OH 9/1)

¹H NMR (400 MHz, CDCl₃, 298k): δ ppm = 7.36-7.31 (m, 2H, H₄), 7.15 (br d, 2H, H₅), 4.38 (br s, 2H, H₇), 3.39-3.09 (2m, 4H, H₉ H₁₄), 3.09-3.02 (m, 1H, H₁₉), 2.95 & 2.88 (2s, 3H, H_{16-trans} H_{16-cis}), 2.92-2.77 (m, 3H, H_{20a} H₁₈), 2.50 (br dd, 1H, H_{20b}), 1.59-1.39 (m, 13H, H_c H₁₀ H₁₃), 1.31 (s, 9H, H₁), 1.33-1.21 (m, 4H, H₁₁ H₁₂).

¹³C NMR (100 MHz, CDCl₃, 298K): δ ppm = 174.9 & 174.8 (C₁₇), 171.9 & 169.6 & 169.4 (C₂₁ C₂₂), 155.7 (C_a), 150.0 & 149.9 (C₃), 135.3 (C₆), 127.3 & 126.9 (C₅), 125.3 (C₄), 79.6 (C_b), 50.0 & 49.2 & 47.9 (C₇ C₁₄), 46.2 & 46.0 (C₉), 35.2 (C_{16-trans}), 34.4 (C₂), 33.7 & 33.4 (C₁₉ C_{16-cis}), 32.8 (C₁₈), 32.1 & 32.0 (C₂₀), 31.3 (C₁), 28.4 (C_c), 28.0 & 27.5 & 27.0 (C₁₀ C₁₃), 26.4 (C₁₁ C₁₂).

MS (ESI): [M-Boc+2H]⁺ calcd for C₂₄H₃₈N₃O₄⁺: 432.29, found: 432.27.

Compound **3E** (598 mg, 94%) was obtained as a white oil without any purification from compound **3D** (745 mg, 2.25 mmol).

R_f: 0.77 (CH₂Cl₂/CH₃OH 9/1)

¹**H NMR (400 MHz, CDCl₃, 298k):** δ ppm = 7.37-7.31 (m, 2H, H₄), 7.15 (br d, 2H, H₅), 4.31 (br s, 2H, H₇), 3.36-3.11 (m, 4H, H₉ H₁₂), 3.10-3.01 (m, 1H, H₁₇), 2.93 & 2.86 (2s, 3H, H_{14-trans} H_{14-cis}), 2.94-2.80 (m, 1H, H_{18a}), 2.87-2.74 (m, 2H, H₁₆), 2.54-2.43 (m, 1H, H_{18b}), 1.54-1.41 (m, 13H, H_c H₁₀ H₁₁), 1.31 & 1.31 (2s, 9H, H₁).

¹³C NMR (100 MHz, CDCl₃, 298K): δ ppm = 175.0 & 174.9 (C₁₅), 171.9 & 169.5 (C₁₉ C₂₀), 155.9 (C_a), 150.2 & 150.0 (C₃), 135.3 & 135.1 (C₆), 127.3 & 127.0 (C₅), 125.4 & 125.3 (C₄), 80.1 & 79.8 (C_b), 50.0 &

 $\begin{array}{l} 49.8 \& 49.6 \& 47.7 \ (C_7 \ C_{12}), \ 45.8 \& 45.5 \ (C_9), \ 35.2 \ (C_{14\text{-trans}}), \ 34.4 \& \ 34.4 \ (C_2), \ 33.8 \& \ 33.6 \& \ 33.5 \& \ 32.9 \ (C_{14\text{-cis}} \ C_{16} \ C_{17}), \ 32.1 \& \ 32.1 \ (C_{18}), \ 31.3 \ (C_1), \ 28.4 \ (C_c), \ 25.4 \& \ 25.1 \& \ 24.8 \& \ 24.4 \ (C_{10} \ C_{11}). \end{array} \\ \begin{array}{l} \textbf{MS (ESI): } [M+H]^+ \ calcd \ for \ C_{27}H_{42}N_3O_6^{+:} \ 504.31, \ found: \ 504.29. \end{array}$

3.7. Synthesis of the molecular axles 2u and 3u

General procedure:

To the *N*-carbamoylated compound **2-3D** (1 equiv.) was added a 1.8M solution of HCl in Et₂O (25 equiv.). After stirring for 2h at 0°C, the mixture was concentrated before being dissolved in a small volume of Et₂O and concentrated three times. The resulting crude was diluted in CH₂Cl₂ (20 mL), milli-Q water (20 mL) and NH₄PF₆ (3 equiv.) were added. The biphasic mixture was vigorously stirred at room temperature for 30 min. The aqueous layer was extracted three times with CH₂Cl₂ (3x15mL). The combined organic layers were dried over MgSO₄ and concentrated to give the pure ammonium-containing product **2u-3u**.

Compound **2u** (907 mg, 89%) was obtained as a white solid without any purification from compound **2D** (869 mg, 1.60 mmol).

R_f: 0.43 (CH₂Cl₂/CH₃OH 9/1)

¹H NMR (500 MHz, CD₃CN, 298k): δ ppm = 7.53-7.48 (m, 2H, H₄), 7.39 (d, 2H, ³J_{H5-H4} = 8.3 Hz, H₅), 6.91 (br s, 2H, H₈), 4.14 & 4.13 (2s, 2H, H_{7-trans} H_{7-cis}), 3.29 (t, 0.65x2H, ³J_{H14-H13} = 7.2 Hz, H_{14-trans}) & 3.24 (td, 0.35x2H, ³J_{H14-H13} = 7.2 Hz, ⁴J_{H14-H12} = 3.6 Hz, H_{14-cis}), 3.05-2.96 (m, 2H, H₉), 3.01-2.95 (m, 1H, H₁₉), 2.91 & 2.79 (2s, 3H, H_{16-trans} H_{16-cis}), 2.89-2.78 (m, 2H, H₁₈), 2.79 & 2.75 (2dd, 1H, ²J_{H20a-H20b} = 17.6 Hz, ³J_{H20a-H19} = 9 Hz, H_{20a-cis} H_{20a-trans}), 2.33 & 2.35 (2dd, 1H, ²J_{H20b-H20a} = 17.6 Hz, ³J_{H20b-H19} = 4.5 Hz, H_{20b-cis} H_{20b-trans}), 1.70-1.60 (m, 2H, H₁₀), 1.55 & 1.47 (2quint., 2H, ³J_{H13-H12} = ³J_{H13-H14} = 7.2 Hz, H_{13-cis} H_{13-trans}), 1.40-1.32 (m, 2H, H₁₁), 1.32 (s, 9H, H₁), 1.35-1.25 (m, 2H, H_{12-cis}), 1.28-1.17 (m, 2H, H_{12-trans}).

¹³C NMR (125 MHz, CD₃CN, 298K): δ ppm = 176.1 & 175.9 (C₁₇), 173.0 & 172.9 & 171.0 & 170.5 (C₂₁ C₂₂), 153.8 (C₃), 130.7 (C₅), 128.7 & 128.6 (C₆), 126.9 (C₄), 52.1 & 52.0 (C₇), 50.0 & 47.3 (C₁₄), 48.7 & 48.5 (C₉), 35.3 (C_{16-trans}), 34.6 (C₂), 34.4 (C₁₉), 34.0 (C₁₈), 33.5 & 33.3 (C_{16-cis}), 32.7 & 32.6 (C₂₀), 31.4 (C₁), 28.3 (C_{13-cis}), 27.2 (C_{13-trans}), 26.6 & 26.5 & 26.3 & 26.1 & 26.0 (C₁₀ C₁₁ C₁₂).

HRMS (ESI): $[M-PF_6]^+$ calcd for $C_{24}H_{38}N_3O_4^+$: 432.2861, found: 432.2862.

Compound **3u** (629 mg, 99%) was obtained as a white solid without any purification from compound **3D** (584 mg, 1.16 mmol).

R_f: 0.52 (CH₂Cl₂/CH₃OH 9/1)

¹H NMR (500 MHz, CD₃CN, 298k): δ ppm = 7.53-7.47 (m, 2H, H₄), 7.40 (d, 2H, ³J_{H5-H4} = 8.3 Hz, H₅), 4.14-4.08 (m, 2H, H₇), 3.38-3.31 & 3.30-3.21 (2m, 2H, H₁₂) 3.09-2.98 (m, 3H, H₉ H₁₇), 2.93 & 2.79 (2s, 3H, H_{14-trans} H_{14-cis}), 2.89-2.78 (m, 2H, H₁₆), 2.79-2.71 (m, 1H, H_{18a}), 2.37 & 2.34 (2dd, 1H, ²J_{H18b-H18a} =

17.7 Hz, ${}^{3}J_{H18b-H17}$ = 4.5 Hz, H_{18b}), 1.78-1.70 & 1.68-1.49 (2m, 2H, H₁₀ H₁₁), 1.32 & 1.31 (2s, 9H, H_{1-cis} H_{1-trans}).

¹³C NMR (125 MHz, CD₃CN, 298K): δ ppm = 176.2 & 176.0 (C₁₅), 173.0 & 171.9 & 170.6 (C₁₉ C₂₀), 153.9 & 153.7 (C₃), 130.7 (C₅), 128.8 (C₆), 126.9 (C₄), 52.1 & 52.1 (C₇), 49.4 & 46.5 (C₁₂), 48.1 (C₉), 35.5 & 35.3 (C_{14-trans}), 34.5 & 34.5 (C₂ C₁₇), 33.9 (C₁₆), 33.5 & 33.3 (C_{14-cis}), 32.7 (C₁₈), 31.4 (C₁), 25.6 & 24.5 & 23.7 & 22.9 (C₁₀ C₁₁).

HRMS (ESI): $[M-PF_6]^+$ calcd for $C_{22}H_{34}N_3O_4^+$: 404.2553, found: 404.2549.

3.8. Synthesis of the semi rotaxanes 2 and 3

General procedure:

To a 0.12M solution of molecular axle 2u/3u (1 equiv) in amylene-stabilized dichloromethane was added dibenzo-24-crown-8 (3 equiv). The reaction mixture was stirred at room temperature before being concentrated. The crude residue was extensively triturated with toluene (20 x 10 mL) in order to remove most of the DB24C8 excess before being purified by chromatography on a lipophilic sephadex LH20 (CH₂Cl₂) to give pure semi rotaxane **2/3** as a white solid.

Semi rotaxane **2** (807 mg, 64%) was obtained after 209h of stirring from compound **2u** (707 mg, 1.22 mmol).

R_f: 0.67 (CH₂Cl₂/CH₃OH 9/1)

¹H NMR (500 MHz, CD₃CN, 298k): δ ppm = 7.32-7.27 (m, 2H, H₅), 7.25-7.20 (m, 2H, H₄), 7.13 (br s, 2H, H₈), 6.94-6.88 (m, 8H, H_A H_B), 4.57-4.51 (m, 2H, H₇), 4.21-4.13 & 4.10-4.02 (2m, 8H, H_C H_C), 3.86-3.75 (m, 8H, H_D H_{D'}), 3.69-3.60 & 3.57-3.48 (2m, 8H, H_E H_{E'}), 3.34-3.23 (2m, 2H, H₉), 3.17-3.03 (m, 2H, H₁₄), 3.01-2.94 (m, 1H, H₁₉), 2.86 & 2.75 (2s, 3H, H_{16-trans} H_{16-cis}), 2.85-2.69 (m, 3H, H₁₈ H_{20a}), 2.31 (dd, 1H, ²J_{H20b-H20a} = 17.6 Hz, ³J_{H20b-H19} = 4.3 Hz, H_{20b}), 1.49-1.39 (m, 2H, H₁₀), 1.30-1.15 (m, 2H, H₁₃), 1.23 & 1.24 (2s, 9H, H_{1-cis} H_{1-trans}), 1.08-1.00 (m, 2H, H₁₁), 1.02-0.92 (m, 2H, H₁₂).

¹³C NMR (125 MHz, CD₃CN, 298K): δ ppm = 175.9 (C₁₇), 173.0 & 170.5 & 170.3 (C₂₁ C₂₂), 153.1 & 153.0 (C₃), 148.5 (C_{IV DB24C8}), 130.4 (C₅ C₆), 126.4 & 126.3 (C₄), 122.4 & 122.3 & 113.6 (C_A C_B), 71.5 (C_E C_{E'}), 71.1 (C_D C_{D'}), 69.0 (C_C C_{C'}), 52.7 (C₇), 50.0 (C_{14-cis}), 49.6 (C₉), 47.8 (C_{14-trans}), 35.4 & 35.1 (C_{16-trans}), 34.6 & 34.5 (C₂ C₁₉), 34.0 (C₁₈), 33.5 & 33.3 (C_{16-cis}), 32.8 & 32.7 (C₂₀), 31.4 (C₁), 28.4 (C_{13-cis}), 27.3 & 27.2 & 27.1 (C₁₀ C_{13-trans}), 26.8 & 26.6 & 26.6 (C₁₁ C₁₂).

HRMS (ESI): [M-PF₆]⁺ calcd for C₄₈H₇₀N₃O₁₂⁺: 880.4967, found: 880.4959.

Semi rotaxane **3** (694 mg, 60%) was obtained after 136h of stirring from compound **3u** (629 mg, 1.15 mmol).

R_f: 0.63 (CH₂Cl₂/CH₃OH 9/1)

¹H NMR (500 MHz, CD₃CN, 298k): δ ppm = 7.32-7.24 (m, 2H, H₅), 7.21 (br d, 2H, H₄), 7.15 (br s, 2H, H₈), 6.96-6.88 (m, 8H, H_A H_B), 4.55-4.48 (m, 2H, H₇), 4.22-4.13 & 4.11-4.02 (2m, 8H, H_c H_{c'}), 3.85-3.75 (m, 8H, H_D H_{D'}), 3.68-3.61 & 3.56-3.48 (2m, 8H, H_E H_{E'}), 3.37-3.25 (2m, 2H, H₉), 3.13-2.90 (3m, 3H, H₁₂ H₁₇), 2.70 & 2.58 (2s, 3H, H_{14-trans} H_{14-cis}), 2.80-2.52 (m, 3H, H₁₆ H_{18a}), 2.30-2.22 (m, 1H, H_{18b}), 1.45-1.35 (m, 2H, H₁₀), 1.25 & 1.23 (2s, 9H, H_{1-cis} H_{1-trans}), 1.30-1.16 (m, 2H, H₁₁).

¹³C NMR (125 MHz, CD₃CN, 298K): δ ppm = 175.7 & 175.7 (C₁₅), 172.7 & 170.6 & 170.2 (C₁₉ C₂₀), 153.2 & 153.0 (C₃), 148.5 (C_{IV DB24C8}), 130.5 & 130.5 & 130.6 (C₅ C₆), 126.4 & 126.3 (C₄), 122.5 & 122.4 & 113.7 & 113.6 (C_A C_B), 71.5 (C_E C_{E'}), 71.1 (C_D C_{D'}), 69.1 & 69.1 (C_C C_{C'}), 52.8 & 52.8 (C₇), 49.4 & 49.4 & 49.2 (C₉ C_{12-cis}), 47.4 (C_{12-trans}), 35.2 & 35.1 (C_{14-trans}), 34.5 & 34.3 (C₂ C₁₉), 33.9 (C₁₆), 33.4 & 33.2 (C_{14-cis}), 32.7 & 32.6 (C₁₈), 31.4 (C₁), 25.6 & 24.9 & 24.9 & 24.6 (C₁₁ C₁₂).

HRMS (ESI): $[M-PF_6]^+$ calcd for $C_{46}H_{66}N_3O_{12}^+$: 852.4651, found: 852.4646.

4. Synthesis of the semi rotaxane 4

4.1. General synthetic pathway of molecular axle 4u

4.2. Synthesis of the N-carbamoylated alcohol 4A

A solution of 4-*tert*-butylbenzaldehyde (2.70 mL, 16.2 mmol, 1.01 equiv.) and 2-aminoethanol (0.98 g, 16 mmol, 1 equiv.) in MeOH (27 mL) was stirred for 7h at room temperature. Boc₂O (3.49 g, 16 mmol, 1 equiv.) and sodium triacetoxyborohydride "STAB" (3.39 g, 16 mmol, 1 equiv.) were then added and the reaction mixture was stirred for a further 12h at room temperature. MeOH was

evaporated under *vacuum* and the obtained crude was purified by chromatography on a silicagel column (PE/AcOEt 85/15) to give pure **4A** (6.13 g, 64% over 3 steps) as a colorless oil which solidified at low temperature.

R_f: 0.68 (PE/EtOAc 7/3)

¹H NMR (500 MHz, CDCl₃, 298k): δ ppm = 7.36 (d, 2H, ³J_{H4-H5} = 8.2 Hz, H₄), 7.18 (d, 2H, ³J_{H5-H4} = 8.2 Hz, H₅), 4.45 (br s, 2H, H₇), 3.70 (br t, 2H, H₁₀), 3.39 (br s, 2H, H₉), 3.11 (br s, 1H, H₁₁), 1.49 (s, 9H, H_c), 1.32 (s, 9H, H₁).

¹³C NMR (125 MHz, CDCl₃, 298K): δ ppm = 157.4 (C_a), 150.3 (C₃), 135.0 (C₆), 127.1 (C₅), 125.4 (C₄), 80.5 (C_b), 62.1 & 61.2 (C₁₀), 51.6 & 50.6 (C₇), 49.6 & 49.0 (C₉), 34.4 (C₂), 31.3 (C₁), 28.4 (C_c). **MS (ESI):** [M+Na]⁺ calcd for C₁₈H₂₉NNaO₃⁺: 330.20, found: 330.20.

4.3. Synthesis of the N-carbamoylated aldehyde 4B

To a solution of alcohol **4A** (3.14 g, 10.2 mmol, 1 equiv.) in dichloromethane (100 mL) was added pyridinium chlorochromate "PCC" (8.70 g, 40.4 mmol, 4 equiv.). The orange solution was stirred for 5h at room temperature before being concentrated. The crude was purified by chromatography on a silica gel column (PE/EtOAc 15/85) to give pure aldehyde **4B** (1.14 g, 37%) as a colorless oil. **R**_f: 0.79 (PE/EtOAc 3/7)

¹H NMR (400 MHz, CDCl₃, 298k): δ ppm = 9.50 & 9.44 (2br s, 1H, H₁₀), 7.40-7.30 (m, 2H, H₄), 7.24-7.11 (2br d, 2H, H₅), 4.53 & 4.48 (2br s, 2H, H₇), 3.92 & 3.79 (2br s, 2H, H₉), 1.52 & 1.48 (2br s, 9H, H_c), 1.32 (s, 9H, H₁).

¹³C NMR (100 MHz, CDCl₃, 298K): δ ppm = 199.1 & 199.0 (C₁₀), 155.9 & 155.4 (C_a), 150.7 (C₃), 134.1 & 134.0 (C₆), 127.9 & 127.4 (C₅), 125.6 (C₄), 80.9 (C_b), 56.3 & 56.2 (C₉), 51.6 & 51.1 (C₇), 34.5 (C₂), 31.3 (C₁), 28.3 & 28.2 (C_c).

MS (ESI): $[M-Boc+2H]^+$ calcd for $C_{13}H_{20}NO^+$: 206.15, found: 206.15.

4.4. Synthesis of the *N*-methyl amine 4C

To a solution of aldehyde **4B** (0.99 g, 3.3 mmol, 1 equiv.) and methylamine hydrochloride (1.10 g, 16.3 mmol, 5 equiv.) in MeOH (12 mL) was added triethylamine (4.5 mL, 29.6 mmol, 9.3 equiv.) and the mixture was stirred for 6h at room temperature. The solution was then cooled with an ice bath before addition of sodium borohydride (0.13 g, 3.3 mmol, 1 equiv.). The reaction mixture was allowed to warm up until room temperature and stirred for 19h before being concentrated. The crude was then purified by chromatography on a silica gel column (CH₂Cl₂/CH₃OH 95/5) to give pure *N*-methylamine **4C** (0.59 g, 56 %) as a yellow viscous oil.

R_f: 0.54 (CH₂Cl₂/CH₃OH 96/4)

¹H NMR (400 MHz, CDCl₃, 298k): δ ppm = 7.32 (d, 2H, ${}^{3}J_{H4-H5}$ = 8.2 Hz, H₄), 7.18 (br d, 2H, H₅), 4.43 (br s, 2H, H₇), 3.57 (br t, 2H, ${}^{3}J_{H10-H9}$ = 6.5 Hz, H₁₀), 3.14-2.90 (m, 2H, H₉), 2.64 (br s, 3H, H₁₂), 1.47 (s, 9H, H_c), 1.29 (s, 9H, H₁).

¹³C NMR (100 MHz, CDCl₃, 298K): δ ppm = 156.4 (C_a), 150.5 (C₃), 134.3 (C₆), 127.3 (C₅), 125.6 (C₄), 81.1 (C_b), 51.4 & 50.4 (C₇), 47.7 & 47.1 (C₉), 43.1(C₁₀), 34.4 (C₂), 32.9 (C₁₂), 31.3 (C₁), 28.3 (C_c). **MS (ESI):** [M+H]⁺ calcd for C₁₉H₃₃N₂O₂⁺: 321.25, found: 321.25.

4.5. Synthesis of compounds 4D

A solution of *N*-methylamine **4C** (0.30 g, 0.9 mmol, 1 equiv) and *O*-benzyl-NHS acid derivative (0.24 g, 0.9 mmol, 1 equiv) in dichloromethane (16 mL) was cooled with an ice bath before successive addition of BOP (0.53 g, 1.2 mmol, 1.3 equiv) and Et₃N (0.20 g, 1.9 mmol, 2.1 equiv). After checking the basicity of the solution, the reaction mixture was stirred for 16h30 at room temperature. Then, an 1M aqueous solution of HCl was added until the pH reached 1. The aqueous layer was extracted three times with dichloromethane (3 x 10 mL) and the resulting organic layers were washed with a saturated NaHCO₃ aqueous solution (2 x 10 mL). The aqueous layer was then extracted with a dichloromethane (3 x 10 mL) and the combined organic layers were dried over MgSO₄ and concentrated. The crude was purified by chromatography on a silica gel column (PE/AcOEt 1/1) to give compound **4D** (0.41 g, 79 %) as a slightly orange solid.

R_f: 0.53 (PE/AcOEt 8/2)

¹H NMR (500 MHz, CDCl₃, 298k): δ ppm = 7,56-7.50 (m, 2H, H₂₁), 7.40-7.29 (m, 5H, H₄ H₂₂ H₂₃), 7.22-7.10 (m, 2H, H₅), 5.16 (br s, 2H, H₁₇), 4.37 (br s, 2H, H₇), 3.63-3.18 (m, 4H, H₉ H₁₀), 3.04-2.69 (m, 7H, H₁₂ H₁₄ H₁₅ H_{16a}), 2.53-2.40 (m, 1H, H_{16b}), 1.50 & 1.47 (2br s, 9H, H_c), 1.32 & 1.30 (2s, 9H, H₁).

¹³C NMR (100 MHz, CDCl₃, 298K): δ ppm = 174.1 (C₁₃), 171.0 & 169.3 (C₁₇ C₁₈), 155.7 (C_a), 150.8 & 150.2 (C₃), 135.0 (C₆), 133.7 (C₂₀), 129.9 & 129.8 (C₂₁), 129.2 & 129.1 (C₂₃), 128.4 (C₂₂), 127.2 (C₅), 125.6 & 125.4 (C₄), 80.6 & 80.0 (C_b), 78.4 & 78.3 (C₁₉), 51.8 & 50.7 & 50.1 (C₇), 48.1 & 47.5 (C₉), 44.8 & 44.1 & 43.8 & 43.1 (C₁₀), 35.8 (C₁₅), 34.5 & 34.4 (C₂), 33.8 & 33.7 & 33.6 (C₁₂), 32.7 (C₁₄), 32.3 & 32.2 (C₁₆), 31.3 (C₁), 28.4 (C_c).

MS (ESI): $[M+H]^+$ calcd for $C_{32}H_{44}N_3O_6^+$: 566.32, found: 566.32.

4.6. Synthesis of compound 4E

To a solution of compound **4D** (0.76 g, 1.4 mmol) in EtOH (36 mL) was added 10%-Pd-C (550 mg). The solution was stirred 10 min under a hydrogen atmosphere before filtration through a celite pad. The resulting filtrate was concentrated to give pure compound **4E** (0.64 g, quantitative) as white solid without any further purification.

R_f: 0.55 (CH₂Cl₂/CH₃OH 9/1)

¹H NMR (400 MHz, CDCl₃, 298k): δ ppm = 7.38-7.31 (m, 2H, H₄), 7.22-7.10 (m, 2H, H₅), 4.37 (br s, 2H, H₇), 3.71-3.11 (m, 4H, H₉ H₁₀), 3.10-2.68 (m, 7H, H₁₂ H₁₄ H₁₅ H_{16a}), 2.55-2.38 (m, 1H, H_{16b}), 1.50 & 1.47 & 1.44 (3s, 9H, H_c), 1.30 (2s, 9H, H₁).

¹³C NMR (100 MHz, CDCl₃, 298K): δ ppm = 175.0 & 174.8 (C₁₃), 172.0 & 171.9 & 170.1 (C₁₇ C₁₈), 155.8 & 155.6 (C_a), 150.8 & 150.3 (C₃), 135.0 & 134.5 (C₆), 127.8 & 127.6 & 127.2 (C₅), 125.6 & 125.4 (C₄), 80.7 & 80.2 (C_b), 51.8 & 50.6 & 50.3 (C₇), 48.3 & 47.7 (C₉), 44.7 & 44.2 & 43.9 & 43.3 (C₁₀), 34.5 & 34.4 (C₂), 36.0 & 34.0 & 33.6 & 33.4 & 32.4 & 32.0 & 31.8 (C₁₂, C₁₄, C₁₅, C₁₆), 31.3 (C₁), 28.4 (C_c). MS (ESI): [M+H]⁺ calcd for C₂₅H₃₈N₃O₆⁺: 476.28, found: 476.28.

4.7. Synthesis of the molecular axle 4u

To compound **4E** (0.29 g, 0.62 mmol, 1 equiv.) was added a 2.5 M solution chloride acid in Et₂O (6.9 mL, 28 equiv.) and the mixture was stirred at room temperature until TLC analysis revealed no trace of the starting material (1h30). The mixture was evaporated to dryness and the residue was partitioned between dichloromethane (3.3 mL) and MilliQ H₂O (3.3 mL). NH₄PF₆ (0.30 g, 1.8 mmol, 3 equiv.) was added and the biphasic mixture was vigorously stirred for 30 minutes. The aqueous layer was extracted with dichloromethane (12 x 10 mL) and the combined organic layers were dried over MgSO₄ before being concentrated to afford the molecular axle **4u** (0.30 g, 92%) as white solid without further purification.

R_f: 0.24 (CH₂Cl₂/CH₃OH 9/1)

¹H NMR (400 MHz, CD₃CN, 298k): δ ppm = 7.51 (d, 2H, ${}^{3}J_{H4-H5}$ = 8.3 Hz, H₄), 7.35 (d, 2H, ${}^{3}J_{H5-H4}$ = 8.3 Hz, H₅), 4.15 (br s, 2H, H₇), 3.73-3.63 & 3.51-3.41 (2m, 2H, H₁₀), 3.22-3.16 (m, 2H, H₉), 3.09-3.02 (m, 1H, H₁₅), 2.95 (s, 3H, H₁₂), 2.87-2.82 (m, 2H, H₁₄), 2.79 (dd, 1H, ${}^{2}J_{H16a-H16b}$ = 17.8 Hz, ${}^{3}J_{H16a-H15}$ = 8.9 Hz, H_{16a}), 2.41 (dd, 1H, ${}^{2}J_{H16b-H16a}$ = 17.8 Hz, ${}^{3}J_{H16b-H15}$ = 4.5 Hz, H_{16b}), 1.32 (2s, 9H, H₁).

¹³C NMR (100 MHz, CD₃CN, 298K): δ ppm = 175.6 (C₁₃), 174.7 & 172.7 (C₁₇ C₁₈), 153.7 (C₃), 130.6 (C₄), 128.7 (C₆), 127.1 (C₅), 51.9 (C₇), 48.0 (C₉), 46.2 (C₁₀), 36.8 (C₁₂), 35.2 (C₂), 34.3 & 34.1 (C₁₄, C₁₅), 32.4 (C₁₆), 31.3 (C₁).

HRMS (ESI): [M-PF₆]⁺ calcd for C₂₀H₃₀N₃O₄⁺: 376.2234, found: 376.2236.

4.8. Synthesis of the semi rotaxane 4

To a 0.12M solution of molecular axle **4u** (0.18 g, 0.3 mmol, 1 equiv) in amylene-stabilized dichloromethane (2.9 mL) was added dibenzo-24-crown-8 (0.46 g, 1.0 mmol, 3 equiv). The reaction mixture was stirred for 28 h at room temperature before being concentrated. The crude residue was extensively triturated with toluene (20 x 10 mL) in order to remove most of the DB24C8 excess before being purified by chromatography on a lipophilic sephadex LH20 (CH_2Cl_2) to give pure semi rotaxane **4** (0.22 g, 66%) as a white solid.

R_f: 0.58 (CH₂Cl₂/CH₃OH 9/1)

¹H NMR (500 MHz, CD₃CN, 298k): δ ppm = 7.22 (br d, 2H, H₅), 7.18 (br d, 2H, H₄), 6.93-6.89 (m, 8H, H_A H_B), 4.54-4.49 & 4.49-4.43 (2m, 2H, H_{7-cis} H_{7-trans}), 4.23-4.13 & 4.13-4.03 (2m, 8H, H_C H_C), 3.92-3.73 (m, 8H, H_D H_D), 3.74-3.55 (2m, 8H, H_E H_E'), 3.67-3.49 & 3.31-3.23 (2m, 2H, H₁₀), 3.57-3.43 (m, 2H, H₉), 2.95-2.88 & 2.86-2.80 (2m, 1H, H_{15-trans} H_{15-cis}), 2.72 & 2.68 (2s, 3H, H_{12-trans} H_{12-cis}), 2.73-2.65 (m, 1H, H_{16a}), 2.68-2.54 (m, 2H, H₁₄), 2.27 & 2.16 (2dd, 1H, ²J_{H16b-H16a} = 17.6 Hz, ³J_{H16b-H15} = 4.5 Hz, H_{16b-trans} H_{16b-cis}), 1.23 & 1.22 (2s, 9H, H_{1-cis} H_{1-trans}).

¹³C NMR (125 MHz, CD₃CN, 298K): δ ppm = 175.4 (C₁₃), 172.7 & 171.6 (C₁₇ C₁₈), 153.2 (C₃), 148.5 & 148.4 (C_{IV DB24C8}), 130.7 & 130.4 (C₅), 129.6 (C₆), 126.5 & 126.3 (C₄), 122.5 & 122.4 & 122.3 & 113.8 & 113.6 (C_A C_B), 71.6 (C_E C_{E'}), 71.3 & 71.1 (C_D C_{D'}), 69.0 (C_C C_{C'}), 53.1 (C₇), 46.6 & 46.2 (C₉), 45.1 (C₁₀), 37.5 (C₁₂), 35.2 (C₂), 34.3 (C₁₅), 33.7 (C₁₄), 32.5 (C₁₆), 31.3 (C₁).

HRMS (ESI): $[M-PF_6]^+$ calcd for $C_{44}H_{62}N_3O_{12}^+$: 824.4340, found: 824.4333.

5. ¹H NMR characterization for rotaxanes 1-4

The interlocked structures of these compounds were unambiguously demonstrated by comparison between ¹H NMR spectra of free DB24C8, uncomplexed threads **2u-4u** and rotaxanes **2-4**. The following tables list the influence of DB24C8 on the 1H NMR chemical shifts of the encircle threads in the rotaxanes **2-4**.

5.1. ¹H NMR characterization for rotaxane 1

Characterization of rotaxane **1** has already been described in a previous article¹.

5.2. ¹H NMR characterization for rotaxane 2

¹H NMR spectra (500 MHz, CD₃CN, 298K) of: (a) DB24C8, (b) the rotaxane **2** and (c) the uncomplexed thread **2u**.

¹H NMR spectra (500 MHz, CD₃CN, 298K) of: (a) DB24C8, (b) the rotaxane **3** and (c) the uncomplexed thread **3u**.

5.4. ¹H NMR characterization for rotaxane 4

¹H NMR spectra (500 MHz, CD₃CN, 298K) of: (a) DB24C8, (b) the rotaxane **4** and (c) the uncomplexed thread **4u**.

rotaxane structure due to the nonsymmetrical ends of the thread

 H_{12} : $\Delta \delta$ = 0.23 ppm $H_{14}: \Delta \delta = 0.24 \text{ ppm}$ $H_{14} : \Delta \delta = 0.24 \text{ ppm}$ $H_{15} : \Delta \delta = 0.14 \text{ ppm}$ $H_{16a} : \Delta \delta = 0.10 \text{ ppm}$ H_{16b} : $\Delta \delta$ = 0.14 ppm

NMR SPECTRA

¹ S. Chao, C. Romuald, K. Fournel-Marotte, C. Clavel, F. Coutrot, *Angew. Chem. Int. Ed.* **2014**, *53*, 6914–6919.