Visible Light-Promoted Dihydroxylation of Styrenes with Water and Dioxygen

Bo Yang and Zhan Lu*
Department of chemistry, Zhejiang University, Hangzhou 310027, China

I. General Information S1
II. Procedures for Synthesis of Alkenes S2
III. General Procedures A for Dihydroxylation of Styrenes S5
IV. Transformations of vicinal Alcohols S18
V. Mechanistic Studies S21
VI. General Procedures B for Dioxylation of Styrenes S23
VII. References S27
VIII. NMR Spectra S29

I. General Information

THF was distilled from sodium benzophenoneketyl prior to use. $\mathrm{DCM}, \mathrm{NEt}_{3}$ and $i \mathrm{Pr}_{2} \mathrm{NEt}$ were distilled from calcium hydride. Alcohols and MeCN was used directly. The $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}$was prepared according to the literature. ${ }^{1}$ Unless otherwise noted, all the corresponding ketones from suppliers were used directly without further purification. NMR spectra were recorded on a Bruker-400 instrument. ${ }^{1} \mathrm{H}$ NMR chemical shifts were referenced tothe tetramethylsilane $(0$ ppm), ${ }^{13} \mathrm{C}$ NMR chemical shifts were referenced to the solvent resonance ($77.00 \mathrm{ppm}, \mathrm{CDCl}_{3}$). The following abbreviations (or combinations thereof) were used to explain $m \mu$ Liplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, $\mathrm{q}=$ quadruplet.$I R$ spectra were recorded on a Perkin-Elmer Spectrum One FTIR spectrometer with diamond ATR accessory. High-resolution
mass spectra (HRMS) were recorded on EI-TOF or ESI-TOF (electrospray ionization-time of flight). Unless noted, all the alkenes were prepared according to the general procedures using the corresponding ketones through wittig reaction.

II. Procedures for Synthesis of Alkenes

A general procedure to synthesis of alkenes.

To a solution of $\mathrm{PPh}_{3} \mathrm{MeBr}(36 \mathrm{mmol})$ in THF (70 mL) was added $\mathrm{NaH}(60 \%, 1.1$ equiv.), the reaction mixture was refluxed for 1 h . Then the corresponding ketones (30 mmol) in THF (20 mL) were added dropwise at $0^{\circ} \mathrm{C}$. The mixture was refluxed overnight. When the starting material was consumed (monitored by TLC), the reaction mixture was diluted by petroleum ether and filtered through a pad of silica gel. The filtrate was concentrated to give a crude product which was distilled or purified through flash column chromatography to obtain the desired product. The known products were identical to the literature.
 added dropwise.Then the reaction mixture was stirred at rt overnight. The mixture was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, diluted by $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a short pad of celite. The filtration was concentrated in vacuo to obtain the crude product which was purified by
chromatography through silica gel to obtainthe corresponding ketone ($4.7545 \mathrm{~g}, 25.3 \mathrm{mmol}, 51 \%$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.96-7.91 (m, 2H), 7.57-7.50 (m, 1 H), 7.49-7.42 (m, 2H), 3.31-3.21 (m, 1H), 1.95-1.70(m, 4H), 1.78-1.69 (m, 1H), 1.56-1.23 (m, 5H). To a solution of $\mathrm{PPh}_{3} \mathrm{MeBr}(11.17 \mathrm{~g}, 31.3 \mathrm{mmol})$ in THF $(70 \mathrm{~mL})$ was added $\mathrm{NaH}(60 \%, 1.2046 \mathrm{~g}$, 30 mmol), the reaction mixture was refluxed for 1 h , the ketone ($3.7094 \mathrm{~g}, 20 \mathrm{mmol}$) obtained above in THF (20 mL) were added dropwise at $0^{\circ} \mathrm{C}$ and then the reaction was refluxing overnight. When the starting material was consumed (monitored by TLC), the reaction was diluted by petroleum ether and filtered through a short pad of silica gel. The filtration was concentrated and distilled to obtain the product $(2.4688 \mathrm{~g}, 13.3 \mathrm{mmol}, 67 \%$ yield $)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.21(\mathrm{~m}, 5 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.65$ (m, 5H), 1.39-1.05 (m, 5H).

THF (20 mL) were added, $\mathrm{LiAlH}_{4}(0.1521 \mathrm{~g}, 4.0 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was
added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight at $0^{\circ} \mathrm{C} \cdot \mathrm{NaOH}(1.0 \mathrm{M}, 4 \mathrm{~mL})$ was added slowly followed by addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was filtrated, and the filtration was extracted by $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed and the crude product was dissolved in DCM (50 mL), PCC (1.7411 g, 8 mmol) was added and stirred overnight. The reaction mixture was monitored by TLC. When the starting material was consumed, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a pad of
silica gel. The filtrate was condensed and the residue was purified by column chromatography to obtain $1 \mathbf{i}(0.4413 \mathrm{~g}, 2.7 \mathrm{mmol}, 34 \%$ yield $)$ as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.00$ $(\mathrm{s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 5.26-5.23(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}$, $3 \mathrm{H}){ }^{13}{ }^{1} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.8,147.2,142.3,135.3,129.8,126.0,115.4,21.6$.

N, N-diethyl-4-(prop-1-en-2-yl)benzamide (1j). To aoverdried flask cooled under N_{2}, corresponding acid ($649.6 \mathrm{mg}, 4.0 \mathrm{mmol}$) and SOCl_{2} ($2.4 \mathrm{~mL}, 32.8 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 3 h . The excess SOCl_{2} was evaporated in vacuo to obtain the crudeacyl chloride. The obtainded acyl chloride was transferred to a solution of diethylamine ($1.96 \mathrm{~mL}, 19.0$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The reaction mixture stirred overnight. Water was added to quench the reaction and extracted by DCM . The combined organic layers were dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtered, the filtration was concentrated and the residue was purified by column chromatography to obtain $\mathbf{1} \mathbf{j}(757.3 \mathrm{mg}, 3.5 \mathrm{mmol}, 87 \%$ yield) as a colorless oil.IR $\mathrm{v} 2974,1628$, $1428,1380 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.41(\mathrm{~s}, 1 \mathrm{H}), 5.15-5.11(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.16(\mathrm{~m}, 4 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.02(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,142.5,141.9,136.1,126.3,125.4,113.2,43.2,39.2,21.7,14.2,14.3 ;$ HRMS (EI-TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}]^{+}: 217.1467$; Found 217.1468.

Ethyltriphenylphosphonium bromide $(11.17 \mathrm{~g}, 30 \mathrm{mmol})$ and THF $(100 \mathrm{~mL})$ were added at room temperature. After cooled to $0{ }^{\circ} \mathrm{C}, \mathrm{tBuOK}(3.45 \mathrm{~g}, 30 \mathrm{mmol})$ was added and the reaction mixture was stirred for 2 h . Then benzophenone ($3.65 \mathrm{~g}, 20 \mathrm{mmol}$) was added and stirred at $50{ }^{\circ} \mathrm{C}$ overnight. The reaction mixture was diluted with petroleum ether and filtered through a short pad of silica gel. The filtrate was condensed and the residue was purified by column chromatography to obtain 1aa ($2.5992 \mathrm{~g}, 13.4 \mathrm{mmol}, 67 \%$ yield) as a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.40-7.33 (m, 2H), 7.32-7.15 (m, 8H), $6.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

 THF (45 mL) as substrates to afford 1ac. IR v 3392, 2953, 2923, 2865, 1457, $1094 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{dd}, J=17.6,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.73(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{td}, J=10.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.58(\mathrm{~m}$, $2 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.81(\mathrm{~m}, 10 \mathrm{H}), 0.71(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.8,136.7,136.6,128.0,126.1,113.5,78.7,70.1,48.3,40.3,34.6,31.6,25.5,23.2$, 22.4, 21.0, 16.1; HRMS (EI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}[\mathrm{M}]^{+}: 272.2140$; Found 272.2139.

II. General procedure A for dihydroxylation of styrenes

To a 50 mL flask, $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(0.009 \mathrm{mmol}), \mathbf{1}(0.3 \mathrm{mmol}), \mathrm{Sat} . \mathrm{NaHCO}_{3}(0.25 \mathrm{~mL})$ and MeCN $(2.75 \mathrm{~mL})$ were added sequently under air. The reaction mixture was irradiated by 8 W blue LEDS at a distance of 10 cm for 6 h . To the flask, PPh_{3} (1 equiv.) was added and stirred for 30 min at room temperature. The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$ and EA . The filtrate was concentrated in vacuoand purified by flash chromatography on silica gel to afford 2.

2-phenylpropane-1,2-diol (2a) ${ }^{6}$ Prepared according to the general A procedure employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}^{-}(3.7 \mathrm{mg}, 0.009 \mathrm{mmol}), 1 \mathrm{a}(34.9 \mathrm{mg}, 0.29 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}), \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford 2a ($39.0 \mathrm{mg}, 0.26$ mmol, 87% yield) as a colourless oil using PE/EA (2:1) as eluent. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.43(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.23 \mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.59(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.50(\mathrm{~s}, .3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 144.9,128.3,127.1,125.0,74.8,70.93,25.9$.

2-(m-tolyl)propane-1,2-diol (2b) ${ }^{8}$ Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(3.8 \mathrm{mg}, 0.009 \mathrm{mmol}), \mathbf{1 b}(38.1 \mathrm{mg}$, 0.29 mmol), Sat. NaHCO_{3} (0.25 mL), $\mathrm{MeCN}\left(2.75 \mathrm{~mL}\right.$) and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 b}(31.5 \mathrm{mg}, 0.19 \mathrm{mmol}, 66 \%$ yield) as a white solid using PE/EA (2:1) as eluent. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=10.8,2.0$
$\mathrm{Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{brs}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 144.9,138.0,128.3,127.9,125.8,122.0,74.8,71.0,26.0,21.6$.

2-(4-fluorophenyl)propane-1,2-diol(2c) ${ }^{7}$ Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(4.0 \mathrm{mg}, 0.009 \mathrm{mmol}), \mathbf{1 c}(42.0 \mathrm{mg}$, $0.31 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}), \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 c}(42.8 \mathrm{mg}, 0.25 \mathrm{mmol}, 82 \%$ yield) as a colourless oil using $\mathrm{PE} / \mathrm{EA}(2: 1)$ as eluent. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.08-6.99(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.63-3.54(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.37 \mathrm{br}(\mathrm{s}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 161.9(\mathrm{~d}, J=244.0 \mathrm{~Hz}), 140.7(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 126.8(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 115.09(\mathrm{~d}, J=21.1 \mathrm{~Hz})$, 74.5, 70.9, 26.1; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-115.92.

2-(4-chlorophenyl)propane-1,2-diol (2d) ${ }^{8}$ Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}^{-}(3.6 \mathrm{mg}, 0.009 \mathrm{mmol}), \mathbf{1 d}$ ($48.0 \mathrm{mg}, 0.31 \mathrm{mmol}$), Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}) \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 d}(52.5 \mathrm{mg}, 0.28 \mathrm{mmol}, 90 \%$ yield) as a yellow oil using PE/EA (2:1) as eluent. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.27(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.5$, 133.0, 128.4, 126.6, 74.6, 70.7, 25.9.

2-(2-chlorophenyl)propane-1,2-diol (2e) Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(5.9 \mathrm{mg}, 0.015 \mathrm{mmol}), \mathbf{1 e}(45.9 \mathrm{mg}$,
$0.30 \mathrm{mmol})$, $\mathrm{Sat} . \mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}) \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 e}(28.8$ $\mathrm{mg}, 0.15 \mathrm{mmol}, 51 \%$ yield) as a yellow oil using PE/EA (3:1) as eluent.IR v3408,2928, 1466, 1431, $1038 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ $(\mathrm{d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 1 \mathrm{H}), 2.08(\mathrm{brs}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $141.3,131.3,130.8,128.8,128.6,127.1,75.4,68.1,23.9$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{OCl}$ $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 168.0342$; Found 168.0342.

2-(3-chlorophenyl)propane-1,2-diol (2f) Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}^{-}(5.9 \mathrm{mg}, 0.015 \mathrm{mmol}), \mathbf{1 f}(45.9 \mathrm{mg}$, $0.30 \mathrm{mmol}), \mathrm{Sat} . \mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}) \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 f}(28.8 \mathrm{mg}, 0.15 \mathrm{mmol}, 51 \%$ yield) as a yellow oil using PE/EA (3:1) as eluent. IR v 3372, 2928, 2360, 1470, 1417, $1046 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~s}, 1 \mathrm{H})$, 7.33-7.22 (m, 3H), $3.75(\mathrm{dd}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 1 \mathrm{H})$, 2.13 (br s, 1H), $1.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 147.2, 134.4, 129.7, 127.3, 125.6, 123.3, 74.6, 70.8, 26.0; HRMS (EI-TOF) Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{OCl}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 168.0342$; Found 168.0339.

2g

2-(4-bromophenyl)propane-1,2-diol (2g) ${ }^{9}$ Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}^{-}(3.9 \mathrm{mg}, 0.009 \mathrm{mmol}), \mathbf{1 g}$ ($62.0 \mathrm{mg}, 0.31 \mathrm{mmol}$), Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}) \mathrm{MeCN}(2.75 \mathrm{~mL})$ and
PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 g}(63.4 \mathrm{mg}, 0.27 \mathrm{mmol}, 87 \%$ yield) as a yellow oil using PE/EA (3:1) as eluent. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~d}$, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=10.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.0,131.4,127.0,121.1,74.6,70.7,25.9$.

2-(4-iodophenyl)propane-1,2-diol (2h) Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(3.5 \mathrm{mg}, 0.009 \mathrm{mmol}), \mathbf{1 h}(73.9 \mathrm{mg}$, $0.30 \mathrm{mmol})$, $\mathrm{Sat} . \mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}) \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 h}(42.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 50 \%$ yield) as a yellow oil using PE/EA (2:1) as eluent. IR $v 3384$, 2927, 1586, 1391, $1042 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.13$ $(\mathrm{m}, 2 \mathrm{H}), 3.70(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.01(\mathrm{~m}, 1 \mathrm{H})$, 1.47 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 144.7,137.4,127.2,92.8,74.6,70.7,25.9$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{IO}_{2}[\mathrm{M}]^{+}: 277.9804$; Found 277.9804.

4-(1,2-dihydroxypropan-2-yl)benzaldehyde (2i)Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(4.0 \mathrm{mg}, 0.009 \mathrm{mmol})$, $1 \mathbf{i}(44.3 \mathrm{mg}, 0.30 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}) \mathrm{MeCN}(2.75 \mathrm{~mL})$. and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 i}(28.3 \mathrm{mg}, 0.16 \mathrm{mmol}, 52 \%$ yield) as a white solid using PE/EA (1:1) as eluent. IR $v 3409,2924,2856,1695,1608,1216,1045 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.89(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01($ brs, 1 H$), 2.36($ brs, 1 H$), 1.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
192.1, 152.2, 135.2, 129.8, 125.9, 74.9, 70.7, 26.0; HRMS (EI-TOF) Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}$ $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 162.0681 ;$ Found 162.0681.

4-(1,2-dihydroxypropan-2-yl)-N,N-diethylbenzamide (2j) Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}$(3.7 $\mathrm{mg}, 0.009 \mathrm{mmol}), \mathbf{1 j}(66.0 \mathrm{mg}, 0.30 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL})$ $\mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 j}(44.1 \mathrm{mg}, 0.18 \mathrm{mmol}, 58 \%$ yield) as a colorless oil using DCM/MeOH (20:1) as eluent.IR v 3412, 2976, 2933, 1607, 1437, 1289, 1101, $1046 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.65$ $(\mathrm{s}, 1 \mathrm{H}), 3.61-3.40(\mathrm{~m}, 5 \mathrm{H}), 3.26(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.17(\mathrm{~m}, 3 \mathrm{H}), 1.16-1.05(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 171.5,146.8,135.2,126.0,125.3,74.4,70.5,43.3,39.3,25.7$, 14.1, 12.8; HRMS (EI-TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}]^{+}$:251.1521; Found 251.1526.

methyl 4-(1,2-dihydroxypropan-2-yl)benzoate (2k) ${ }^{10}$ Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}$(3.9 $\mathrm{mg}, 0.009 \mathrm{mmol}), \mathbf{1 k}(54.5 \mathrm{mg}, 0.31 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL})$ $\mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 k}(35.6 \mathrm{mg}, 0.17 \mathrm{mmol}, 55 \%$ yield) as a colorless oil using PE/EA (20:1) as eluent. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (br s, 1H), $2.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,150.3,129.6,128.9$, 125.2, 74.9, 70.7, 52.1, 25.9 .

2-phenylbutane-1,2-diol (2l) ${ }^{8}$ Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}^{-}(3.7 \mathrm{mg}, 0.009 \mathrm{mmol}), 11(40.0 \mathrm{mg}, 0.30 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}) \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 l}(43.2 \mathrm{mg}, 0.26 \mathrm{mmol}$, 86% yield) as a colorless oil using PE/EA (4:1) as eluent. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.31$ $(\mathrm{m}, 4 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.24$ (brs, 1 H), $1.89-1.71(\mathrm{~m}, 2 \mathrm{H}), 0.74(\mathrm{t}, J=7.6 \mathrm{~Hz}, 31 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.1,128.3$, 126.9, 125.6, 77.5, 70.3, 31.1, 7.4.

2-phenylpentane-1,2-diol (2m) ${ }^{11}$ Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}^{-}(3.9 \mathrm{mg}, 0.009 \mathrm{mmol}), 1 \mathrm{~m}(41.8 \mathrm{mg}, 0.29 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}) \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 m}$ (42.9 mg , $0.24 \mathrm{mmol}, 83 \%$ yield) as a colorless oil using PE/EA (2:1) as eluent. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=11.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.8,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 1 \mathrm{H}), 1.81-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.11-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 143.5,128.3,126.9,125.5,77.3,70.4,40.8,16.3$, 14.4.

2-(4-fluorophenyl)hexane-1,2,6-triol (2n) Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(4.0 \mathrm{mg}, 0.009 \mathrm{mmol}), \mathbf{1 n}$ ($58.8 \mathrm{mg}, 0.30 \mathrm{mmol}$), Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}) \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 n}(43.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 67 \%$ yield) as a colorless oil using PE/EA (1:1) to methanol as eluent. IR $v 3375,2942,2873,1604,1510,1228,1059 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.41-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J=8.8,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{brs}, 3 \mathrm{H}), 1.92-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 2 \mathrm{H})$, 1.44-1.30 (m, 1H), 1.18-1.02 (m, 1H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.8(\mathrm{~d}, J=244.1 \mathrm{~Hz})$, $139.1(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 127.2(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 115.2(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 76.9,70.5,62.3,37.9,32.5$, 19.3; ${ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl_{3}) δ-116.08; HRMS (EI-TOF) Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FO}$ $\left[\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}: 192.0950$; Found 192.0947.

3-methyl-2-phenylbutane-1,2-diol (20) ${ }^{8}$ Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(3.5 \mathrm{mg}, 0.008 \mathrm{mmol})$, $10(43.0 \mathrm{mg}$, $0.29 \mathrm{mmol})$, $\mathrm{Sat} . \mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}) \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford 2 o (44.9 $\mathrm{mg}, 0.25 \mathrm{mmol}, 85 \%$ yield) as a colorless oil using PE/EA (4:1)as eluent. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.42-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=10.8,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.78(\mathrm{~s}, 1 \mathrm{H}), 2.08-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{brs}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.8,128.1,126.9,126.2,79.2,68.2,35.1,17.3,16.7$.

2p procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(3.8 \mathrm{mg}, 0.009 \mathrm{mmol}), \mathbf{1 p}(54.9 \mathrm{mg}, 0.29$ mmol), Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}) \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 p}$ (48.4 mg , $0.22 \mathrm{mmol}, 75 \%$ yield) as a white solid using PE/EA (5:1) as eluent. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.43-7.31 (m, 4H), 7.30-7.23 (m, 1H), $3.99(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=10.4,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.72(\mathrm{~s}, 1 \mathrm{H}), 1.88-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.43(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-0.90(\mathrm{~m}, 5 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.0,128.1,126.9,126.1,79.2,68.1,45.5,27.2,26.8,26.6,26.4,26.3$.

3,3-dimethyl-2-phenylbutane-1,2-diol (2q)Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}^{-}(3.9 \mathrm{mg}, 0.009 \mathrm{mmol}), \mathbf{1 q}(47.6 \mathrm{mg}$, 0.30 mmol), $\mathrm{Sat} . \mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}) \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 q}$ (59.7 $\mathrm{mg}, 0.30 \mathrm{mmol}, 99 \%$ yield) as a colorless oil using PE/EA (3:1) as eluent.IR v 3444, 2962, 2360, $1478,1048 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=8.0,7.2 \mathrm{~Hz}$, 2H), 7.29-7.23 (m, 1H), $4.28(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=10.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $1.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.8,127.8,127.6,126.9,80.9,65.2$, 36.7, 25.8; HRMS (EI-TOF) Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 176.1201$; Found 176.1200.

1,1-diphenylethane-1,2-diol(2r) ${ }^{13}$ Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}^{-}(4.0 \mathrm{mg}, 0.009 \mathrm{mmol}), 1 \mathrm{r}(53.5 \mathrm{mg}, 0.30 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}) \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 r}(49.1 \mathrm{mg}, 0.23 \mathrm{mmol}$, 77% yield) as a white solid using PE/EA (3:1) as eluent. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.40$ $(\mathrm{m}, 4 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 1 \mathrm{H}), 1.95(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.8,128.4,127.4,126.4,78.5,69.4$.

2s

1-(hydroxymethyl)-2,3-dihydro-1H-inden-1-ol (2s) ${ }^{14}$ Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(3.6 \mathrm{mg}, 0.009 \mathrm{mmol}), \mathbf{1 s}$ (44.4 mg, 0.34 mmol$)$, Sat. $\mathrm{KH}_{2} \mathrm{PO}_{4}(0.25 \mathrm{~mL}) \mathrm{MeCN}(2.75 \mathrm{~mL})$ and $\mathrm{PPh}_{3}(\mathrm{ca} .1$ equiv.) to afford 2s ($25.5 \mathrm{mg}, 0.16 \mathrm{mmol}, 46 \%$ yield) as a white solid using PE/EA (3:1) as
eluent. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.63(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{ddd}, J=16.0,8.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dt}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.50($ brs, 1 H$), 2.48-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{brs}, 1 \mathrm{H}), 2.06(\mathrm{dt}, J=13.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.6,143.4,128.8,126.8,125.1,123.4,83.7,68.1,37.2,29.2$.

1-phenylethane-1,2-diol (2t) ${ }^{7}$ Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(3.9 \mathrm{mg}, 0.009 \mathrm{mmol}), 1 \mathbf{1 t}(35.3 \mathrm{mg}, 0.34 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}) \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford 2t ($36.8 \mathrm{mg}, 0.27 \mathrm{mmol}, 79 \%$ yield) as a yellow solid using PE/EA (2:1) as eluent. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.26(\mathrm{~m}$, $5 \mathrm{H}), 4.82-4.74(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.4,128.5,127.9,126.0,74.7,68.0$.

2u

1-(m-tolyl)ethane-1,2-diol (2u) ${ }^{13}$ Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(3.5 \mathrm{mg}, 0.008 \mathrm{mmol}), \mathbf{1 u}(35.4$ $\mathrm{mg}, 0.30 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}) \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 u}(31.4 \mathrm{mg}, 0.21 \mathrm{mmol}, 69 \%$ yield) as a colorless olil using PE/EA (2:1) as eluent. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{dd}, J=15.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 3 \mathrm{H}), 4.79-4.69(\mathrm{~m}$, $1 \mathrm{H}), 3.74-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.4,138.1,128.7,128.4,126.7,123.1,74.7,68.0,21.4$.

2v

1-(3-chlorophenyl)ethane-1,2-diol (2v) ${ }^{15}$ Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}^{-}(4.0 \mathrm{mg}, 0.009 \mathrm{mmol})$,
$\mathbf{1 v}(42.0 \mathrm{mg}, 0.30 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}), \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $2 \mathbf{v}\left(25.1 \mathrm{mg}, 0.15 \mathrm{mmol}, 48 \%\right.$ yield) as a yellow oli using PE/EA (2:1) as eluent. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.84-4.70(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.54$ (m, 1H), $3.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.5,134.5,129.8,128.1$, 126.2, 124.2, 74.0, 67.8.
 $(54.5 \mathrm{mg}, 0.30 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}), \mathrm{MeCN}(2.75 \mathrm{~mL})$. and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 w}$ ($33.8 \mathrm{mg}, 0.16 \mathrm{mmol}, 52 \%$ yield) as a white solid using PE/EA (2:1) as eluent. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 2 \mathrm{H})$, 4.83-4.71(m, 1H), 3.81-3.67(m, 1H), 3.67-3.55(m, 1H), $2.72(\mathrm{~s}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.4,131.6,127.8,121.8,74.0,67.9$.

1-(4-(2-methyl-1,3-dioxolan-2-yl)phenyl)ethane-1,2-diol (2x)Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}^{-}(3.9 \mathrm{mg}, 0.009 \mathrm{mmol}), \mathbf{1 x}(60.2 \mathrm{mg}, 0.32 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}), \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 x}(51.9 \mathrm{mg}, 0.23 \mathrm{mmol}, 73 \%$ yield) as a white solid using PE/EA (3:2) as eluent. IR $v 3318,2926,1730,1251,1193,1079$, $1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 4.84-4.78 (m, 1H), 4.09-3.97 (m, 1H), 3.82-3.71 (m, 3H), 3.70-3.60(m, 1H), $2.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.38$
($\mathrm{s}, 1 \mathrm{H}$), $1.64(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 143.1,140.1,126.0,125.5,108.7,74.4,68.0$, 64.4, 27.5; HRMS (EI-TOF) Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{3}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3}\right]^{+}$:191.0708; Found 191.0709.

4-(1,2-dihydroxyethyl)benzyl acetate (2y).Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}^{-}(3.9 \mathrm{mg}$, $0.009 \mathrm{mmol}), \quad \mathbf{1 y}(51.1 \mathrm{mg}, \quad 0.29 \mathrm{mmol}), \quad$ Sat. $\mathrm{NaHCO}_{3}(0.25$ $\mathrm{mL}), \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 y}(38.6 \mathrm{mg}, 0.18 \mathrm{mmol}, 63 \%$ yield) as a colorless oil using PE/EA (1:1) as eluent. IR v 3405, 2925, 1736, 1379, 1235, 1078, $1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.40-7.30(\mathrm{~m}, 4 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.85-4.76(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.69(\mathrm{~m}, 1 \mathrm{H})$, 3.68-3.58 (m, 1H), $2.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0$, 140.6, 135.6, 128.4, 126.3, 74.3, 68.0, 66.0, 21.0; HRMS (EI-TOF) Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$ $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 192.0786$; Found 192.0786.
 $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}), \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford $\mathbf{2 z}(30.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 66 \%$ yield, $d r 1.9 / 1$) as a colorless oil using PE/EA (3:2) as eluent. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.39-7.27 (m, 5H), 4.69-4.63 (m, 0.55 H), 4.36 (dd, $J=7.2,1.6 \mathrm{~Hz}, 0.43 \mathrm{H}), 4.05-3.90(\mathrm{~m}, 0.55 \mathrm{H})$, $3.89-3.80(\mathrm{~m}, 0.44 \mathrm{H}), 2.83(\mathrm{br} \mathrm{s}, 0.41 \mathrm{H}), 2.66(\mathrm{br}, \mathrm{s} 0.41 \mathrm{H}), 2.58(\mathrm{br} \mathrm{s}, 0.53 \mathrm{H}), 2.05(\mathrm{br} \mathrm{s}, 0.52 \mathrm{H})$, $1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1.64 \mathrm{H}), 1.05(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1.33 \mathrm{H})$.

1,1-diphenylpropane-1,2-diol (2aa) ${ }^{16}$ Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(3.9 \mathrm{mg}, 0.009 \mathrm{mmol})$, 1aa $(60.9 \mathrm{mg}, 0.31 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}), \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford 2aa ($43.3 \mathrm{mg}, 0.19 \mathrm{mmol}$, 61% yield) as a white solid using PE/EA (5:1) as eluent. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 1 \mathrm{H}), 4.86-4.73(\mathrm{~m}, 1 \mathrm{H})$, $3.05(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $145.6,143.8,128.6,128.1,127.2,126.7,126.2,125.5,79.8,71.6,16.6$.

2ab 2-phenylhex-5-ene-1,2-diol (2ab). Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(4.0 \mathrm{mg}, 0.009 \mathrm{mmol}), 1 \mathrm{ab}(43.6 \mathrm{mg}$, $0.27 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}), \mathrm{MeCN}(2.75 \mathrm{~mL})$ and PPh_{3} (ca. 1 equiv.) to afford 2ab ($24.6 \mathrm{mg}, 0.13 \mathrm{mmol}, 46 \%$ yield) as a colorless oil using PE/EA (3:1) as eluent. IR v 3409, 2930, 1736, 1379, 1235, 1078, $1031 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.24$ $(\mathrm{m}, 1 \mathrm{H}), 5.83-5.70(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.88(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.83(\mathrm{brs}, 1 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.76(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.1$, 138.6, 128.4, 127.1, 125.5, 114.6, 77.2, 70.6, 37.4, 27.5; HRMS (EI-TOF) Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 193.1229$; Found 193.1220.

$2 a c$ 1-(4-((((1R,2S,6R)-2-isopropyl-6-methylcyclohexyl)oxy) methyl)phenyl)ethane-1,2-diol (2ac)Prepared according to the general procedure A employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(4.0 \mathrm{mg}$, $0.009 \mathrm{mmol}), \mathbf{1 a c}(79.5 \mathrm{mg}, 0.29 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL}), \mathrm{MeCN}(2.75 \mathrm{~mL})$ and $\mathrm{PPh}_{3}(\mathrm{ca}$. 1 equiv.) to afford 2ac ($45.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 51 \%$ yield) as a colorless oil using PE/EA (2:1) as
eluent.IR $v 3389,2952,2923,2867,1456,1077 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.28(\mathrm{~m}$, $4 \mathrm{H}), 4.77(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{td}, J=10.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 2.33-2.23 (m, 1H), $2.18(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.04-0.79(\mathrm{~m}$, $8 \mathrm{H}), 0.71(\mathrm{~d}, J=6.8 \mathrm{z}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.7,138.8,128.1,126.0,78.9,74.4$, $70.1,68.0,48.2,40.3,34.5,31.5,25.5,23.2,22.3,21.0,16.0$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{2}\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}\right]^{+}: 275.2011 ;$ Found 275.2012.

III. Transformations of vicinal alcohols

2-azido-2-(3-chlorophenyl)propan-1-ol (3).To a 50 mL overdried flask was added $2 f(57.5 \mathrm{mg}, 0.31 \mathrm{mmol}), \mathrm{CCl}_{4}(1.5 \mathrm{~mL})$ and $\mathrm{SOCl}_{2}(161 \mathrm{uL})$ under N_{2} atmosphere. The mixture was refluxed for 1 h . After cooled to room temperature, the mixture was washed by saturated NaHCO_{3} and brine. The organic phase was dried and concentrated under reduced pressure to give the crude cyclic sulfite, which was transferred to a flask containing $\mathrm{NaN}_{3}(50.0 \mathrm{mg}, 0.77 \mathrm{mmol})$ and DMF $(2 \mathrm{~mL})$. The reaction was refluxed overnight. After being cooled to room temperature, the reaction was quenched by diluted $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}$ and saturated NaHCO_{3}. The combined organic layers was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and purified by column chromatography using PE/EA (10:1) as eluent to afford $3(38.8 \mathrm{mg}, 0.18 \mathrm{mmol}, 61 \%$ yield) as a colorless oil. IR $v 3378$, 2928, 2108, 1472, 1260, $1049 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 3 \mathrm{H})$, $3.74(\mathrm{dd}, J=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=11.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (101 MHz, CDCl_{3}) $\delta 143.0,134.7,130.0,128.1,126.4,124.2,70.4,67.3,21.3 ;$ HRMS (ESI-TOF) Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClN}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 212.0591$; Found 212.0593.

stirred overnight at room temperature. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered through a short pad of silica gel, concentrated under reduced pressure and purified through column chromatography using PE/EA (20:1) to afford $\mathbf{4}$ ($24.5 \mathrm{mg}, 0.16 \mathrm{mmol}, 51 \%$ yield) as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$.

 $\mathrm{mL})$ and $\mathrm{NEt}_{3}(0.46 \mathrm{~mL}, 3.4 \mathrm{mmol})$. The mixture was cooled to $0^{\circ} \mathrm{C}$ and then $\mathrm{TsCl}(70.2 \mathrm{mg}, 0.37 \mathrm{mmol})$ and $\operatorname{DMAP}(4.9 \mathrm{mg}, 0.04 \mathrm{mmol})$. The reaction was warmed to $50{ }^{\circ} \mathrm{C}$ and stirred for 24 h . After being cooled to room temperature, $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added to quenched the reaction. The mixture was extracted by DCM. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, concentrated and purified by column chromatography to afford $\mathbf{5}$ ($32.5 \mathrm{mg}, 0.19 \mathrm{mmol}, 61 \%$ yield) as a colorless oil using PE/EA (50:1) as eluent. ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 3 \mathrm{H}), 2.97(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 143.4,134.4,129.6,127.6,125.6,123.5,57.0,56.3,21.6$.

To a 50 mL over-dried flask, cooled under N_{2} atmosphere, were added $\mathbf{2 f}(55.8 \mathrm{mg}, 0.30 \mathrm{mmol})$, $\mathrm{DCM}(3.5 \mathrm{~mL})$ and $\mathrm{NEt}_{3}(48 \mathrm{uL}, 0.36 \mathrm{mmol})$. The mixture was cooled to $0{ }^{\circ} \mathrm{C}, \mathrm{TsCl}(69.0 \mathrm{mg}$, $0.36 \mathrm{mmol})$ and DMAP $(6.1 \mathrm{mg}, 0.05 \mathrm{mmol})$ were added. Then the reaction was stirred overnight at $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}$ was added to quench the the reaction and extracted with DCM. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by column chromatography to afford $\mathbf{6}(72.5 \mathrm{mg}, 0.21 \mathrm{mmol}, 71 \%$ yield) as a colorless oil using PE/EA (5:1) as eluents. IR $v 3524,2985,1597,1360,1179 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.23(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, 1H), $2.72(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 145.1, 134.3, 132.1, 129.9, 129.6, 127.8, 127.7, 125.4, 123.2, 76.3, 72.9, 26.0, 21.6; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 341.0614$; Found 341.0616.

To a 50 mL over-dried flask, cooled under N_{2} atmosphere, were added $6(71.2 \mathrm{mg}, 0.21 \mathrm{mmol})$, DMF (2 mL), $\mathrm{NaN}_{3}(48.2 \mathrm{mg}, 0.74 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{NI}(12.1 \mathrm{mg}, 0.033 \mathrm{mmol})$. The mixture was heated to $80{ }^{\circ} \mathrm{C}$ and stirred overnight. After cooled to room temperature, $\mathrm{H}_{2} \mathrm{O}$ was added and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed by $\mathrm{H}_{2} \mathrm{O}$ and dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After being filtered, concentrated, the reaction mixture was purified by column chromatography to afford $7(39.8 \mathrm{mg}, 0.19 \mathrm{mmol}, 90 \%$ yield $)$ as a colorless oil using PE/EA (20:1)
as eluents. IR $v 3449,2105,1573,1295 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~s}, 1 \mathrm{H})$, 7.34-7.23 (m, 3H), $3.58(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}^{\text {NMR }}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.8,134.5,129.7,127.6,125.4,123.1,74.3,61.9,27.1 ;$ HRMS (ESI-TOF) Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClN}_{3} \mathrm{O}\left[\mathrm{M}+\mathrm{H}^{+}: 212.0591\right.$; Found 212.0590.

IV. Mechanistic studies

1-cyclopropyl-1-phenylethane-1,2-diol (9)To a 50 mL flask, $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}^{-}{ }^{-}(3.9$
$\mathrm{mg}, 0.009 \mathrm{mmol}), \mathbf{8}(43.1 \mathrm{mg}, 0.30 \mathrm{mmol})$,Sat. $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL})$ and $\mathrm{MeCN}(2.75$
mL) were added sequencely under air. The reaction mixture was irradiated by 8 W blue LEDS at a distance of 10 cm for 6 h . To the flask, PPh_{3} (1 equiv.) was added and stirred for 30 min at room temperature. The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$ and EA . The filtrate was concentrated in vacuoand purified by flash chromatography on silica gel to afford $\mathbf{9}\left(19.7 \mathrm{mg}, 0.11 \mathrm{mmol}, 37 \%\right.$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=8.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 1 \mathrm{H})$, $3.94(\mathrm{dd}, J=11.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=11.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 1 \mathrm{H}), 1.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.14-1.12$ $(\mathrm{m}, 1 \mathrm{H}), 0.55-42(\mathrm{~m}, 2 \mathrm{H}), 0.40-0.25(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.6, 128.2, 127.2, 125.7, 75.1, 70.5, 18.3, 0.8, -0.2

To a 50 mL flask, $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(3.9 \mathrm{mg}, 0.009 \mathrm{mmol}), \mathbf{1}(34.9 \mathrm{mg}, 0.30 \mathrm{mmol})$, TEMPO (70.8 $\mathrm{mg}, 0.45 \mathrm{mmol})$, $\mathrm{Sat} . \mathrm{NaHCO}_{3}(0.25 \mathrm{~mL})$ and $\mathrm{MeCN}(2.75 \mathrm{~mL})$ were added sequencely under air. The reaction mixture was irradiated by 8 W blue LEDS at a distance of 10 cm for 6 h . To the flask, PPh_{3} (1 equiv.) was added and stirred for 30 min at room temperature. The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$ and EA . The filtrate was concentrated in vacuo and monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The results demonstrated that No 2a was obtained.

To a 50 mL over-dried flask, $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}^{-}(3.7 \mathrm{mg}, 0.009 \mathrm{mmol}), \mathbf{1}(34.9 \mathrm{mg}, 0.3 \mathrm{mmol})$, Sat. $\mathrm{NaHCO}_{3}\left(0.25 \mathrm{~mL}, \mathrm{H}_{2}{ }^{18} \mathrm{O}\right)$ and $\mathrm{MeCN}(2.75 \mathrm{~mL})$ were added sequencely under air. The reaction mixture was irradiated by 8 W blue LEDS at a distance of 10 cm for 6 h . To the flask, PPh_{3} (1 equiv.) was added and stirred for 30 min at room temperature. The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$ and EA . The filtrate was concentrated in vacuoand purified by flash chromatography on silica gel to afford $\mathbf{1 1}$ (38.2 $\mathrm{mg}, 0.25 \mathrm{mmol}, 84 \%$ yield) as a colorless oil.HRMS (ESI-TOF) Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 177.0777$; Found 177.0772.

12
procedure employing $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(3.9 \mathrm{mg}, 0.009 \mathrm{mmol}), \mathbf{1 a}(36.7 \mathrm{mg}, 0.31 \mathrm{mmol})$, $\mathrm{Sat} . \mathrm{NaHCO}_{3}$ $(0.25 \mathrm{~mL})$ and $\mathrm{MeCN}(2.75 \mathrm{~mL})$. After 6 h , the reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$ and EA . The filtrate was concentrated in vacuo and purified by flash chromatography on silica gel to afford $\mathbf{1 2}(42.7 \mathrm{mg}, 0.25 \mathrm{mmol}, 82 \%$ yield $)$ as a colourless oil using PE/EA (2:1) as eluent. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53$ (br s, 1H), 7.47-7.27 (m, 5H), $4.03(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.56(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.2,128.6,127.8,125.6,86.2,66.7,21.7$.

V. General Procedures B for Dioxylation of styrenes

To a 50 mL flask, $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}^{-}(0.015 \mathrm{mmol}), \mathbf{1}(0.3 \mathrm{mmol})$, alcohol $(0.5 \mathrm{~mL})$ and $\mathrm{MeCN}(5.5$ mL) were added sequencely under O_{2} balloon. The reaction mixture was irradiated by 8 W blue LEDS at a distance of 10 cm for 3 h . The reaction mixture was reduced by $\mathrm{PPh}_{3}(0.3 \mathrm{mmol})$ stirred for 30 min at room temperaturebefore it was purified by flash chromatography on silica gel to afford 13.
 1-methoxy-2-phenylpropan-2-ol (13a) ${ }^{\mathbf{2 0}}$. Prepared according to the general procedure B employing $\mathbf{1 a}(35.8 \mathrm{mg}, 0.30 \mathrm{mmol}), \mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(6.0 \mathrm{mg}, 0.015$ $\mathrm{mmol}), 4 \AA \mathrm{MS}(70.7 \mathrm{mg}), \mathrm{MeCN}(5.5 \mathrm{~mL})$ and $\mathrm{MeOH}(0.5 \mathrm{~mL})$. After $3 \mathrm{~h}, \mathrm{PPh}_{3}(78.1 \mathrm{mg}, 0.30$ mmol) was added and stirred at rt for 30 min. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica gel. The filtrate was condensed and purified by flash column chromatography using PE/EA (10:1) as an eluent to afford 13a ($31.7 \mathrm{mg}, 0.19 \mathrm{mmol}, 63 \%$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}$, 2H), 7.28-7.23 (m, 1H), $3.59(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~s}$,

13b 1-methoxy-2-(o-tolyl)propan-2-ol (13b). Prepared according to the general procedure B employing the 1-methyl-2-(prop-1-en-2-yl)benzene 13bs (38.6 $\mathrm{mg}, 0.29 \mathrm{mmol}), \mathrm{Acr}^{+} \mathrm{MesClO}_{4}^{-}(6.4 \mathrm{mg}, 0.015 \mathrm{mmol}), 4 \AA \mathrm{MS}(80.7 \mathrm{mg})$, $\mathrm{MeCN}(5.5 \mathrm{~mL})$ and $\mathrm{MeOH}(0.5 \mathrm{~mL})$. After $3 \mathrm{~h}, \mathrm{PPh}_{3}(77.9 \mathrm{mg}, 0.30 \mathrm{mmol})$ was added and stirred at rt for 30 min . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica gel. The filtrate was condensed and purified by flash column chromatography using PE/EA $(10: 1)$ as an eluent to afford $\mathbf{1 3 b}(24.9 \mathrm{mg}, 0.14 \mathrm{mmol}, 47 \%$ yield $)$ as a yellow oil. IR $v 3460,2928$, $1455,1108 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 142.3,136.0,132.6,127.2,126.1,125.6,79.3,74.9,59.3,25.8,22.3$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}]^{+}: 180.1150$; Found 180.1145.

1-methoxy-2-(m-tolyl)propan-2-ol (13c). Prepared according to the general procedure B employing $\mathbf{1 b}(38.7 \mathrm{mg}, 0.29 \mathrm{mmol}), \mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}$ ($6.4 \mathrm{mg}, 0.015 \mathrm{mmol}$), $4 \AA \mathrm{MS}(75.1 \mathrm{mg}), \mathrm{MeCN}(5.5 \mathrm{~mL})$ and MeOH (0.5 mL). After $3 \mathrm{~h}, \mathrm{PPh}_{3}(80.6 \mathrm{mg}, 0.30 \mathrm{mmol})$ was added and stirred at rt for 30 min . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica gel. The filtrate was condensed and purified by flash column chromatography using PE/EA (10:1) as an eluent to afford $\mathbf{1 3 c}\left(39.7 \mathrm{mg}, 0.22 \mathrm{mmol}, 75 \%\right.$ yield) as a colorless oil. IR v 3459, 2926, 1455, $1107 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~d}$,
$J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 145.3,137.7,128.1,127.7,125.6,121.9,80.7,73.8,59.4,26.7,21.6 ;$ HRMS (EI-TOF) Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}]^{+}: 180.1150$; Found 180.1150.

13d

1-methoxy-2-(p-tolyl)propan-2-ol (13d). Prepared according to the general procedure B employing 1-methyl-4-(prop-1-en-2-yl)benzene13ds $(40.4 \mathrm{mg}, 0.30 \mathrm{mmol}), \mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(6.4 \mathrm{mg}, 0.015 \mathrm{mmol}), 4 \AA \mathrm{MS}$ $(76.4 \mathrm{mg}), \mathrm{MeCN}(5.5 \mathrm{~mL})$ and $\mathrm{MeOH}(0.5 \mathrm{~mL})$. After $3 \mathrm{~h}, \mathrm{PPh}_{3}(77.2 \mathrm{mg}, 0.30 \mathrm{mmol})$ was added and stirred at rt for 30 min . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica gel. The filtrate was condensed and purified by flash column chromatography using PE/EA (10:1) as an eluent to afford $\mathbf{1 3 d}(33.1 \mathrm{mg}, 0.18 \mathrm{mmol}, 60 \%$ yield) as a colorless oil. IR v 3463, 2926, 1453, $1106 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}$, 3H), 1.49 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.4,136.4,128.8,124.8,80.7,73.7,59.3$, 26.7, 21.0; HRMS (EI-TOF) Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}]^{+}: 180.1150$; Found 180.1154.

2-(4-chlorophenyl)-1-methoxypropan-2-ol (13e). Prepared according to the general procedure B employing $\mathbf{1 d}(46.8 \mathrm{mg}, 0.31 \mathrm{mmol})$, $\mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(6.5 \mathrm{mg}, 0.015 \mathrm{mmol}), 4 \AA \mathrm{MS}(90.9 \mathrm{mg}), \mathrm{MeCN}(5.5 \mathrm{~mL})$ and $\mathrm{MeOH}(0.5 \mathrm{~mL})$. After $3 \mathrm{~h}, \mathrm{PPh}_{3}(80.1 \mathrm{mg}, 0.31 \mathrm{mmol})$ was added and stirred at rt for 30 min . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica gel. The filtrate was condensed and purified by flash column chromatography using PE/EA (10:1) as an
eluent to afford $\mathbf{1 3 e}(47.0 \mathrm{mg}, 0.23 \mathrm{mmol}, 76 \%$ yield) as a colorless oil. IR $v 3445,2930,1491$, $1093 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.54$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 144.0,132.7,128.2,126.5,80.5,73.5,59.4,26.6$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Cl}[\mathrm{M}]^{+}$:200.0604; Found 200.0606.

$13 f$

1-ethoxy-2-phenylpropan-2-ol (13f) ${ }^{\mathbf{2 0}}$. Prepared according to the general procedure B employing $\mathbf{1 a}(35.7 \mathrm{mg}, 0.30 \mathrm{mmol}), \mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(6.3 \mathrm{mg}, 0.015$ mmol), $4 \AA \mathrm{MS}(70.8 \mathrm{mg}), \mathrm{MeCN}(5.5 \mathrm{~mL})$ and $\mathrm{MeOH}(0.5 \mathrm{~mL})$. After 3 h , $\mathrm{PPh}_{3}(79.3 \mathrm{mg}, 0.30 \mathrm{mmol})$ was added and stirred at rt for 30 min . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica gel. The filtrate was condensed and purified by flash column chromatography using PE/EA (30:1) as an eluent to afford $\mathbf{1 3 f}$ (34.5 mg , $0.19 \mathrm{mmol}, 63 \%$ yield) as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34(\mathrm{dd}, J=7.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.474(\mathrm{~m}, 4 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}), 1.52(\mathrm{~s}$, $3 \mathrm{H}), 1.17(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.6,128.1,126.8,125.0,78.4$, 73.7, 67.0, 26.7, 15.0.

13g $\quad 0.014 \mathrm{mmol}), 4 \AA \mathrm{MS}(70.8 \mathrm{mg}), \mathrm{MeCN}(5.5 \mathrm{~mL})$ and $\mathrm{MeOH}(0.5 \mathrm{~mL})$. After 3 diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica gel. The filtrate was condensed and purified by flash column chromatography using PE/EA (30:1) as an eluent to afford $\mathbf{1 3 g}(30.6 \mathbf{m g}$,
$0.16 \mathrm{mmol}, 51 \%$ yield) as a colorless oil. IR $v 3455,2974,1449,1372,1127,1085 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=7.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.62-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 1 \mathrm{H}), 1.52(\mathrm{~s}$, $3 \mathrm{H}), 1.15(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.7$, $128.0,126.8,125.0,76.2,73.6,72.5,26.7,22.00,21.97$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ $[\mathrm{M}]^{+}: 194.1307$; Found 194.1306.

13h

1-(tert-butoxy)-2-phenylpropan-2-ol (13h). Prepared according to the general procedure B employing $\mathbf{1 a}(36.0 \mathrm{mg}, 0.30 \mathrm{mmol}), \mathrm{Acr}^{+} \mathrm{MesClO}_{4}{ }^{-}(6.7$ $\mathrm{mg}, 0.016 \mathrm{mmol}), 4 \AA \mathrm{MS}(71.0 \mathrm{mg}), \mathrm{MeCN}(5.5 \mathrm{~mL})$ and $\mathrm{MeOH}(0.5 \mathrm{~mL})$.

After $3 \mathrm{~h}, \mathrm{PPh}_{3}(79.7 \mathrm{mg}, 0.30 \mathrm{mmol})$ was added and stirred at rt for 30 min . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica gel. The filtrate was condensed and purified by flash column chromatography using PE/EA (10:1) as an eluent to afford $\mathbf{1 3 h}(21.1 \mathrm{mg}$, $0.10 \mathrm{mmol}, 33 \%$ yield) as a colorless oil. IR $v 3563,2975,1365,1194,1089 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.9,128.0,126.7,125.0,73.4,73.2,69.8,27.5,26.6 ;$ HRMS (EI-TOF) Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}]^{+}$:208.1463; Found 208.1459.

VII.Reference

[^0]${ }^{3}$ F. J. Barrios, B. C. Springer, D. A. Colby, Org. Lett. 2013, 15, 3082.
${ }^{4}$ M. Brown, R. Kumar, J. Rehbein, T. Wirth, Chem. Eur. J. 2016, 22, 4030.
${ }^{5}$ P. Lu, T. Hou, X. Gu, P. Li. Org. Lett. 2015, 17, 1954
${ }^{6}$ A. Theodorou, I.Triandafillidi,C. G. Kokoto. Eur. J. Org. Chem. 2017, 1502.
${ }^{7}$ A. Wang, H. Jiang. J. Org. Chem. 2010, 75, 2321.
${ }^{8}$ J. H. Kim, I. Čorić, C. Palumbo, B. List J. Am. Chem. Soc. 2015, 137, 1778.
${ }^{9}$ M. Cleij, A. Archelas, R. Furstoss. J. Org. Chem. 1999, 64, 5029.
${ }^{10}$ J. D. Weaver, D. K. Morris, J. A. Tunge. Synlett 2010, 470.
${ }^{11}$ R. P. Hof, R. M. Kellogg. J. Chem. Soc. Perkin Transactions 1: Organic and Bio-Organic Chemistry (1996), (16), 2051-2060. Publisher: (Royal Society of Chemistry,) CODEN:JCPRB4 ISSN:0300-922X.
${ }^{12}$ M. Dochnahl, G. C. Fu. Angew. Chem. Int. Ed. 2009,48, 2391.
${ }^{13}$ K. M. Jones, N. C. O. Tomkinson, J. Org. Chem. 2012, 77, 921.
${ }^{14}$ J. Koyanagi. Chem. Pharm. Bull. 2014, 62, 816.
${ }^{15}$ K. Sarma, N. Borthakur, A. Goswami. Tetrahedron Lett.2007, 48, 6776.
${ }^{16}$ Z. Hou, K.Takamine, O. Aoki, H.Shiraishi, Y.Fujiwara, H. Taniguchi. J. Org. Chem.1988, 53, 6077.
${ }^{17}$ X. Jing, D. Yuan, L. Yu. Adv. Synth. Catal. 2017, 359, 1194.
${ }^{18}$ E. J. Gilbert, W. J. Greenlee, M. W. Miller, J. D. Scott, A. W. A. Stamford. U.S. Pat. Appl. Publ., 20130072468, 21 Mar 2013
${ }^{19}$ X. Yan, C. Qiao, Z. Guo. Synlett 2013, 24, 502.
${ }^{20}$ A. Duchene, D. Mouko-Mpegna, Quintard, P. Jean, Journal fuerPraktischeChemie (Leipzig), 1985, 5, 787.
VIII. NMR Spectra

2c
${ }^{1} \mathrm{H}$ NMR 400 M Hz
CDCl_{3}
 il λ \sim \sim 1 1

					$\stackrel{\substack{\frac{T}{\sigma} \\-}}{ }$	T								$\begin{aligned} & T \\ & \stackrel{T}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{y}{\circ} \end{aligned}$		$\begin{aligned} & \text { T' } \\ & \text { ¢ } \\ & \text { ¢ } \end{aligned}$			
. 0	9.5	9.0	8. 5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{array}{r} 5.0 \\ \mathrm{f1} \end{array}$	$\text { 4. } 5$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

${ }^{13} \mathrm{C}$ NMR 100 M Hz CDCl_{3}

용웁운웅
Fisw

[^1]

2c
${ }^{19}$ F NMR
376 MHz
CDCl_{3}

${ }^{1} \mathrm{H}$ NMR
400 M Hz
CDCl_{3}

${ }^{13} \mathrm{C}$ NMR 100 M Hz CDCl_{3}

鱼

2i

| 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| fl | (pgm) | | | | | | | | | | |

00	190	180	170	160	150	140	130	120	110	$\underset{r}{100}$	90
$\mathrm{fl}(\mathrm{pgm})$											

2n
${ }^{13} \mathrm{C}$ NMR
100 M Hz
CDCl_{3}

${ }^{13}$ C NMR
100 M Hz
CDCl_{3}

30	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-

0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Fivi

${ }^{13} \mathrm{C}$ NMR
100 M Hz
CDCl_{3}

${ }^{13} \mathrm{C}$ NMR
100 M Hz CDCl_{3}

闌辟解

${ }^{13} \mathrm{C}$ NMR
100 M Hz
CDCl_{3}

2 ac
${ }^{13} \mathrm{C}$ NMR
100 M Hz
CDCl_{3}

${ }^{1} \mathrm{H}$ NMR 400 M Hz CDCl_{3}

$\stackrel{\stackrel{8}{3}}{\stackrel{\circ}{1}}$

5
${ }^{13} \mathrm{C}$ NMR 100 M Hz CDCl_{3}

${ }^{13} \mathrm{C}$ NMR
100 MHz
CDCl_{3}

13b
${ }^{13} \mathrm{C}$ NMR
100 MHz
CDCl_{3}

00	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \text { f1 } \end{gathered}$	$\underset{(\mathrm{ppm})}{ }{ }^{90}$	80	70	60	50	40	30	20	10	0

$\stackrel{\infty}{\circ}$	比	갱		E	$\stackrel{\infty}{\sim}$		
$\stackrel{\text { ¢ }}{\sim}$	第			\%	\%		
1	\|	\|r		\| W		\|	I

13c
${ }^{13} \mathrm{C}$ NMR 100 MHz CDCl_{3}

[^0]: ${ }^{1}$ D. S. Hamilton, D. A. Nicewicz, J. Am. Chem. Soc. 2012, 134, 18577.
 ${ }^{2}$ C. (Dennis) Huang, A. G. Doyle, J. Am. Chem. Soc. 2015, 137, 5638.

[^1]:

