Visible Light-Promoted Dihydroxylation of Styrenes with Water and Dioxygen

Bo Yang and Zhan Lu*

Department of chemistry, Zhejiang University, Hangzhou 310027, China

I.	General Information	S1
II.	Procedures for Synthesis of Alkenes	S2
III.	General Procedures A for Dihydroxylation of Styrenes	S5
IV.	Transformations of vicinal Alcohols	S18
V.	Mechanistic Studies	S21
VI.	General Procedures B for Dioxylation of Styrenes	S23
VII.	References	S27
VIII.	NMR Spectra	S29

I. General Information

THF was distilled from sodium benzophenoneketyl prior to use. DCM, NEt₃ and *i*Pr₂NEt were distilled from calcium hydride. Alcohols and MeCN was used directly. The Acr⁺MesClO₄⁻ was prepared according to the literature.¹ Unless otherwise noted, all the corresponding ketones from suppliers were used directly without further purification. NMR spectra were recorded on a Bruker-400 instrument. ¹H NMR chemical shifts were referenced to the tetramethylsilane (0 ppm),¹³C NMR chemical shifts were referenced to the solvent resonance (77.00 ppm, CDCl₃). The following abbreviations (or combinations thereof) were used to explain mµLtiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad, q = quadruplet. IR spectra were recorded on a Perkin-Elmer Spectrum One FTIR spectrometer with diamond ATR accessory. High-resolution

mass spectra (HRMS) were recorded on EI-TOF or ESI-TOF (electrospray ionization-time of flight). Unless noted, all the alkenes were prepared according to the general procedures using the corresponding ketones through wittig reaction.

II. Procedures for Synthesis of Alkenes

A general procedure to synthesis of alkenes.

To a solution of PPh₃MeBr (36 mmol) in THF (70 mL) was added NaH (60%, 1.1 equiv.), the reaction mixture was refluxed for 1 h. Then the corresponding ketones (30 mmol) in THF (20 mL) were added dropwise at 0 $^{\circ}$ C.The mixture was refluxed overnight. When the starting material was consumed (monitored by TLC), the reaction mixture was diluted by petroleum ether and filtered through a pad of silica gel. The filtrate was concentrated to give a crude product which was distilled or purified through flash column chromatography to obtain the desired product. The known products were identical to the literature.

added dropwise. Then the reaction mixture was stirred at rt overnight. The mixture was quenched by saturated NH_4Cl solution, diluted by Et_2O and filtered through a short pad of celite. The filtration was concentrated in *vacuo* to obtain the crude product which was purified by chromatography through silica gel to obtain the corresponding ketone (4.7545 g, 25.3 mmol, 51% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.91 (m, 2H), 7.57-7.50 (m, 1H), 7.49-7.42 (m, 2H), 3.31-3.21 (m, 1H), 1.95-1.70 (m, 4H), 1.78-1.69 (m, 1H), 1.56-1.23 (m, 5H). To a solution of PPh₃MeBr (11.17 g, 31.3 mmol) in THF (70 mL) was added NaH (60%, 1.2046 g, 30 mmol), the reaction mixture was refluxed for 1 h, the ketone (3.7094 g, 20 mmol) obtained above in THF (20 mL) were added dropwise at 0 °C and then the reaction was refluxing overnight. When the starting material was consumed (monitored by TLC), the reaction was diluted by petroleum ether and filtered through a short pad of silica gel. The filtration was concentrated and distilled to obtain the product (2.4688 g, 13.3 mmol, 67% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.21 (m, 5H), 5.12 (s, 1H), 5.00 (s, 1H), 2.41 (t, *J* = 11.2 Hz, 1H), 1.89-1.65 (m, 5H), 1.39-1.05 (m, 5H).

added dropwise at 0°C. The mixture was stirred overnight at 0 °C.NaOH (1.0 M, 4 mL) was added slowly followed by addition of H_2O (10 mL). The mixture was filtrated, and the filtration was extracted by Et_2O and the combined organic layers were dried over Na_2SO_4 . After filtration, the solvent was removed and the crude product was dissolved in DCM (50 mL), PCC (1.7411 g, 8 mmol) was added and stirred overnight. The reaction mixture was monitored by TLC. When the starting material was consumed, the mixture was diluted with Et_2O and filtered through a pad of silica gel. The filtrate was condensed and the residue was purified by column chromatography to obtain **1i** (0.4413 g, 2.7 mmol, 34% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.61 (d, *J* = 8.0 Hz, 2H), 5.51 (s, 1H), 5.26-5.23 (m, 1H), 2.19 (s, 3H);¹³C NMR (101 MHz, CDCl₃) δ 191.8, 147.2, 142.3, 135.3, 129.8, 126.0, 115.4, 21.6.

room temperature for 3 h. The excess SOCl₂ was evaporated in vacuo to obtain the crudeacyl chloride. The obtainded acyl chloride was transferred to a solution of diethylamine (1.96 mL, 19.0 mmol) in Et₂O (20 mL). The reaction mixture stirred overnight. Water was added to quench the reaction and extracted by DCM. The combined organic layers were dried by anhydrous Na₂SO₄. After filtered, the filtration was concentrated and the residue was purified by column chromatography to obtain **1j** (757.3 mg, 3.5 mmol, 87% yield) as a colorless oil.IR v2974, 1628, 1428, 1380 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 5.41 (s, 1H), 5.15-5.11 (m, 1H), 3.63-3.16 (m, 4H), 2.16 (s, 3H), 1.34-1.02 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 142.5, 141.9, 136.1, 126.3, 125.4, 113.2, 43.2, 39.2, 21.7, 14.2, 14.3; HRMS (EI-TOF) Calcd for C₁₄H₁₉NO [M]⁺:217.1467; Found 217.1468.

$$\begin{array}{c} O \\ Ph \\ Ph \\ Ph \end{array} + Ph_{3}PEtBr \\ \hline \begin{array}{c} THF, tBuOK \\ 0 \\ \circ C-rt \\ \end{array} \end{array} \xrightarrow{Me} Ph \\ Ph \\ Ph \\ Ph \\ Ph \\ Ph \end{array}$$

Me prop-1-ene-1,1-diyldibenzene (1aa). ⁴ To a 250 mL round flask, Ph Ph 1aa Ethyltriphenylphosphonium bromide (11.17 g, 30 mmol) and THF (100 mL) were added at room temperature. After cooled to 0 °C,*t*BuOK (3.45 g, 30 mmol) was added and the reaction mixture was stirred for 2 h. Then benzophenone (3.65 g, 20 mmol) was added and stirred at 50 °C overnight. The reaction mixture was diluted with petroleum ether and filtered through a short pad of silica gel. The filtrate was condensed and the residue was purified by column chromatography to obtain **1aa** (2.5992 g, 13.4 mmol, 67% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.33 (m, 2H), 7.32-7.15 (m, 8H), 6.17 (q, *J* = 7.2 Hz, 1H), 1.76 (d, *J* = 6.8 Hz, 3H).

THF (45 mL) as substrates to afford **1ac**. IR *v* 3392, 2953, 2923, 2865, 1457, 1094 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 6.71 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.73 (d, *J* = 17.6 Hz, 1H), 5.22 (d, *J* = 10.8 Hz, 1H), 4.64 (d, *J* = 11.6 Hz, 1H), 4.39 (d, *J* = 11.6 Hz, 1H), 3.16 (td, *J* = 10.8, 4.0 Hz, 1H), 2.37-2.23 (m, 1H), 2.23-2.13(m, 1H), 1.72-1.58 (m, 2H), 1.33-1.22 (m, 1H), 1.03 -0.81 (m, 10H), 0.71 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 138.8, 136.7, 136.6, 128.0, 126.1, 113.5, 78.7, 70.1, 48.3, 40.3, 34.6, 31.6, 25.5, 23.2, 22.4, 21.0, 16.1; HRMS (EI-TOF) Calcd for C₁₉H₂₈O [M]⁺:272.2140; Found 272.2139.

II. General procedure A for dihydroxylation of styrenes

Ph
$$(1) 3 \text{ mol}\% \text{ Acr}^+\text{MesClO}_4^-$$

Air
MeCN/Sat.NaHCO₃ (0.1 M)
rt, 8 w blue LEDs, 6 h
2) 1 equiv. PPh₃, rt, 30 min

To a 50 mL flask, $Acr^+MesClO_4^-$ (0.009 mmol), **1** (0.3 mmol), Sat.NaHCO₃ (0.25 mL) and MeCN (2.75 mL) were added sequently under air. The reaction mixture was irradiated by 8W blue LEDS at a distance of 10 cm for 6 h. To the flask, PPh₃ (1 equiv.) was added and stirred for 30 min at room temperature. The reaction mixture was then diluted with Et₂O and filtered through a short pad of silica using Et₂O and EA. The filtrate was concentrated *in vacuo*and purified by flash chromatography on silica gel to afford **2**.

2-phenylpropane-1,2-diol (2a)⁶Prepared according to the general A procedure employing Acr⁺MesClO₄⁻ (3.7 mg, 0.009 mmol), 1a (34.9 mg, 0.29 mmol), Sat.NaHCO₃ (0.25 mL), MeCN (2.75 mL) and PPh₃ (ca. 1 equiv.) to afford 2a (39.0 mg, 0.26 mmol, 87% yield) as a colourless oil using PE/EA (2:1) as eluent.¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, J = 8.4, 1.2 Hz, 2H), 7.38-7.31 (m, 2H), 7.29-7.23 m, 1H), 3.75 (d, J = 11.2 Hz, 1H), 3.59 (d, J = 10.4 Hz, 1H), 2.97 (br s, 1H), 2.42 (br s, 1H), 1.50 (s, .3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 128.3, 127.1, 125.0, 74.8, 70.93, 25.9.

equiv.) to afford **2b**(31.5 mg, 0.19mmol, 66% yield) as a white solid using PE/EA (2:1) as eluent. ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.19 (m, 3H), 7.11-7.05 (m, 1H), 3.76 (dd, *J* = 10.8, 2.0

Hz, 1H), 3.60 (dd, *J* = 10.8, 7.2 Hz, 1H), 2.79 (s, 1H), 2.36 (s, 3H), 2.16 (brs, 1H), 1.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 138.0, 128.3, 127.9, 125.8, 122.0, 74.8, 71.0, 26.0, 21.6.

 $F = \frac{OH}{2c}$ $F = \frac{2}{2c}$ $(4-fluorophenyl)propane-1,2-diol(2c)^7 Prepared according to the general procedure A employing Acr⁺MesClO₄⁻ (4.0 mg, 0.009 mmol), 1c (42.0 mg, 0.31 mmol), Sat.NaHCO₃ (0.25 mL), MeCN (2.75 mL) and PPh₃ (ca. 1 equiv.) to afford 2c(42.8 mg, 0.25 mmol, 82% yield) as a colourless oil using PE/EA (2:1) as eluent.¹H NMR (400 MHz, CDCl₃) <math>\delta$ 7.44-7.36 (m, 2H), 7.08-6.99 (m, 2H), 3.72 (d, *J* = 11.2 Hz,

δ 161.9 (d, J = 244.0 Hz), 140.7 (d, J = 3.2 Hz), 126.8 (d, J = 7.9 Hz), 115.09 (d, J = 21.1 Hz), 74.5, 70.9, 26.1 ; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.92.

1H), 3.63-3.54 (m, 1H), 2.94 (br s, 1H), 2.37 br (s, 1H), 1.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃)

(ca. 1 equiv.) to afford **2d**(52.5 mg, 0.28 mmol, 90% yield) as a yellow oil using PE/EA (2:1) as eluent.¹H NMR (400 MHz, CDCl₃) δ 7.39-7.27 (m, 4H), 3.70 (d, J = 11.2 Hz, 1H), 3.57 (d, J = 11.2 Hz, 1H), 3.06 (br s, 1H), 2.54 (br s, 1H), 1.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 133.0, 128.4, 126.6, 74.6, 70.7, 25.9.

0.30mmol), Sat.NaHCO₃ (0.25 mL) MeCN (2.75 mL) and PPh₃ (ca. 1 equiv.) to afford **2e**(28.8 mg, 0.15mmol, 51% yield) as a yellow oil using PE/EA (3:1) as eluent.IR *v*3408,2928, 1466, 1431, 1038 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.35 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.29 (td, *J* = 7.6, 1.6 Hz, 1H), 7.21 (td, *J* = 7.6, 2.0 Hz, 1H), 4.27 (d, *J* = 11.2 Hz, 1H), 3.81 (d, *J* = 10.8 Hz, 1H), 3.27 (s, 1H), 2.08 (brs, 1H), 1.66 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 131.3, 130.8, 128.8, 128.6, 127.1, 75.4, 68.1, 23.9; HRMS (EI-TOF) Calcd for C₉H₉OCl [M-H₂O]⁺:168.0342; Found 168.0342.

equiv.) to afford **2f**(28.8 mg, 0.15 mmol, 51% yield) as a yellow oil using PE/EA (3:1) as eluent. IR v 3372, 2928, 2360, 1470, 1417, 1046 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.33-7.22 (m, 3H), 3.75 (dd, J = 11.2, 3.2 Hz, 1H), 3.61 (dd, J = 10.8, 6.8 Hz, 1H), 2.82 (s, 1H), 2.13 (br s, 1H), 1.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.2, 134.4, 129.7, 127.3, 125.6, 123.3, 74.6, 70.8, 26.0; HRMS (EI-TOF) Calcd for C₉H₉OCl [M-H₂O]⁺:168.0342; Found 168.0339.

PPh₃(ca. 1 equiv.) to afford **2g**(63.4 mg, 0.27 mmol, 87% yield) as a yellow oil using PE/EA (3:1) as eluent. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 3.70 (d, *J* = 11.2 Hz, 1H), 3.56 (dd, *J* = 10.4, 4.0 Hz, 1H), 2.98 (br s, 1H), 2.43 (br s, 1H), 1.47 (s, 3H);¹³C NMR (101 MHz, CDCl₃) δ 144.0, 131.4, 127.0, 121.1, 74.6, 70.7, 25.9.

OH 2-(4-iodophenyl)propane-1,2-diol (2h) Prepared according to the general procedure A employing Acr⁺MesClO₄⁻ (3.5 mg, 0.009 mmol), 1h (73.9 mg, 0.30mmol), Sat.NaHCO₃ (0.25 mL) MeCN (2.75 mL) and PPh₃ (ca. 1 equiv.)

to afford **2h**(42.0 mg, 0.15mmol, 50% yield) as a yellow oil using PE/EA (2:1) as eluent. IR v3384, 2927, 1586, 1391, 1042 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.4 Hz, 2H), 7.22-7.13 (m, 2H), 3.70 (d, *J* = 10.4 Hz, 1H), 3.63-3.51 (m, 1H), 3.01–2.69 (m, 1H), 2.45–2.01 (m, 1H), 1.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 137.4, 127.2, 92.8, 74.6, 70.7, 25.9; HRMS (EI-TOF) Calcd for C₉H₁₁IO₂ [M]⁺:277.9804; Found 277.9804.

PPh₃ (ca. 1 equiv.) to afford **2i**(28.3 mg, 0.16mmol, 52% yield) as a white solid using PE/EA (1:1) as eluent. IR v 3409, 2924, 2856, 1695, 1608, 1216, 1045 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 3.73 (d, *J* = 10.8 Hz, 1H), 3.61 (d, *J* = 10.8 Hz, 1H), 3.01 (brs, 1H), 2.36 (brs, 1H), 1.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ

192.1, 152.2, 135.2, 129.8, 125.9, 74.9, 70.7, 26.0; HRMS (EI-TOF) Calcd for $C_{10}H_{10}O_2$ [M-H₂O]⁺:162.0681; Found 162.0681.

MeCN (2.75 mL) and PPh₃ (ca. 1 equiv.) to afford **2j**(44.1 mg, 0.18 mmol, 58% yield) as a colorless oil using DCM/MeOH (20:1) as eluent.IR *v* 3412, 2976, 2933, 1607, 1437, 1289, 1101, 1046 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 3.65 (s, 1H), 3.61–3.40 (m, 5H), 3.26 (d, *J* = 5.6 Hz, 2H), 1.44 (s, 3H), 1.29-1.17 (m, 3H), 1.16-1.05 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 146.8, 135.2, 126.0, 125.3, 74.4, 70.5, 43.3, 39.3, 25.7, 14.1, 12.8; HRMS (EI-TOF) Calcd for C₁₄H₂₁NO₃ [M]⁺:251.1521; Found 251.1526.

MeCN (2.75 mL) and PPh₃ (ca. 1 equiv.) to afford **2k** (35.6 mg, 0.17 mmol, 55% yield) as a colorless oil using PE/EA (20:1) as eluent. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.8 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 3.91 (s, 3H), 3.78 (d, *J* = 11.2 Hz, 1H), 3.65 (d, *J* = 10.8 Hz, 1H), 3.01 (br s, 1H), 2.34 (br s, 1H), 1.53 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 150.3, 129.6, 128.9, 125.2, 74.9, 70.7, 52.1, 25.9.

2-phenylpentane-1,2-diol (2m)¹¹Prepared according to the general procedure A employing Acr⁺MesClO₄⁻ (3.9 mg, 0.009 mmol), **1m** (41.8 mg, 0.29mmol), Sat.NaHCO₃ (0.25 mL) MeCN (2.75 mL) and PPh₃ (ca. 1 equiv.) to afford **2m** (42.9 mg, 0.24mmol, 83% yield) as a colorless oil using PE/EA (2:1) as eluent.¹H NMR (400 MHz, CDCl₃) δ 7.41-7.31 (m, 4H), 7.28-7.21 (m, 1H), 3.77 (dd, *J* = 11.2, 2.4 Hz, 1H), 3.63 (dd, *J* = 10.8, 7.2 Hz, 1H), 2.93 (s, 1H), 2.32 (s, 1H), 1.81-1.63 (m, 2H), 1.37-1.21 (m, 1H), 1.11-0.95 (m, 1H), 0.83 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 128.3, 126.9, 125.5, 77.3, 70.4, 40.8, 16.3, 14.4.

2-(4-fluorophenyl)hexane-1,2,6-triol (**2n**) Prepared according to the general procedure A employing $Acr^+MesClO_4^-$ (4.0 mg, 0.009 mmol), **1n** (58.8 mg, 0.30mmol), Sat.NaHCO₃ (0.25 mL) MeCN (2.75 mL) and PPh₃

(ca. 1 equiv.) to afford **2n** (43.2 mg, 0.20mmol, 67% yield) as a colorless oil using PE/EA (1:1) to methanol as eluent. IR v 3375, 2942, 2873, 1604, 1510, 1228, 1059 cm⁻¹; ¹H NMR (400 MHz,

CDCl₃) δ 7.41-7.32 (m, 2H), 7.04 (dd, J = 8.8, 8.4 Hz, 2H), 3.76 (d, J = 11.2 Hz, 1H), 3.67 (d, J = 11.2 Hz, 1H), 3.57 (t, J = 6.4 Hz, 2H), 2.34 (brs, 3H), 1.92-1.71 (m, 2H), 1.54-1.44 (m, 2H), 1.44-1.30 (m, 1H), 1.18-1.02 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 161.8 (d, J = 244.1 Hz), 139.1 (d, J = 3.2 Hz), 127.2 (d, J = 8.0 Hz), 115.2 (d, J = 21.1 Hz), 76.9, 70.5, 62.3, 37.9, 32.5, 19.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.08; HRMS (EI-TOF) Calcd for C₁₂H₁₃FO [M-2H₂O]⁺:192.0950; Found 192.0947.

 $\begin{array}{l} \begin{array}{c} \begin{array}{c} \mathsf{OH} \\ \mathsf{OH} \\ \mathsf{2o}^{i}\mathsf{Pr} \end{array} & \textbf{3-methyl-2-phenylbutane-1,2-diol} & (2o)^{8}\mathsf{Prepared} & \operatorname{according} & \mathrm{to} & \mathrm{the} & \mathrm{general} \\ \end{array} \\ \begin{array}{c} \mathsf{procedure} & \mathsf{A} & \mathrm{employing} & \mathsf{Acr}^{+}\mathsf{MesClO_4}^{-} & (3.5 \ \mathrm{mg}, \ 0.008 \mathrm{mmol}), \ \mathbf{1o} & (43.0 \ \mathrm{mg}, \\ 0.29 \mathrm{mmol}), \ \mathsf{Sat.NaHCO_3} & (0.25 \ \mathrm{mL}) & \mathsf{MeCN} & (2.75 \ \mathrm{mL}) & \mathrm{and} & \mathsf{PPh_3} & (\mathrm{ca. 1 \ equiv.}) & \mathrm{to} & \mathrm{afford} & \mathbf{2o} & (44.9 \ \mathrm{mg}, \ 0.25 \mathrm{mmol}), \ \mathsf{Sat.NaHCO_3} & (0.25 \ \mathrm{mL}) & \mathsf{MeCN} & (2.75 \ \mathrm{mL}) & \mathrm{and} & \mathsf{PPh_3} & (\mathrm{ca. 1 \ equiv.}) & \mathrm{to} & \mathrm{afford} & \mathbf{2o} & (44.9 \ \mathrm{mg}, \ 0.25 \mathrm{mmol}), \ \mathsf{Sat.NaHCO_3} & (0.25 \ \mathrm{mL}) & \mathsf{MeCN} & (2.75 \ \mathrm{mL}) & \mathrm{and} & \mathsf{PPh_3} & (\mathrm{ca. 1 \ equiv.}) & \mathrm{to} & \mathrm{afford} & \mathbf{2o} & (44.9 \ \mathrm{mg}, \ 0.25 \mathrm{mmol}), \ \mathsf{Solution} & \mathsf{S5\%} & \mathrm{yield} & \mathrm{as} & \mathrm{a} & \mathrm{colorless} & \mathrm{oil} & \mathrm{using} & \mathsf{PE/EA} & (4:1) \mathrm{as} & \mathrm{eluent.}^{-1} \mathrm{H} & \mathsf{NMR} & (400 \ \mathrm{MHz}, \ \mathsf{CDCl_3}) & \delta & 7.42 - 7.30 & (\mathrm{m}, \ 4\mathrm{H}), \ 7.29 - 7.21 & (\mathrm{m}, \ 1\mathrm{H}), \ 3.94 & (\mathrm{d}, \ J = 11.6 \mathrm{Hz}, \ 1\mathrm{H}), \ 3.77 & (\mathrm{dd}, \ J = 10.8, \ 7.6 \ \mathrm{Hz}, \ 1\mathrm{H}), \ 2.78 & (\mathrm{s}, \ 1\mathrm{H}), \ 2.08 - 1.94 & (\mathrm{m}, \ 1\mathrm{H}), \ 1.87 & (\mathrm{brs}, \ 1\mathrm{H}), \ 0.91 & (\mathrm{d}, \ J = 6.8 \ \mathrm{Hz}, \ 3\mathrm{H}), \ 0.74 & (\mathrm{d}, \ J = 7.2 \ \mathrm{Hz}, \ 3\mathrm{H}); \ ^{13} \mathsf{C} & \mathsf{NMR} & (101 \ \mathrm{MHz}, \ \mathsf{CDCl_3}) & \delta & 142.8, \ 128.1, \ 126.9, \ 126.2, \ 79.2, \ 68.2, \ 35.1, \ 17.3, \ 16.7. \end{array}$

Ph $\stackrel{\text{OH}}{\text{Cy}}$ **1-cyclohexyl-1-phenylethane-1,2-diol** (**2p**)¹² Prepared according to the general procedure A employing Acr⁺MesClO₄⁻ (3.8 mg, 0.009mmol), **1p** (54.9 mg, 0.29 mmol), Sat.NaHCO₃ (0.25 mL) MeCN (2.75 mL)and PPh₃ (ca. 1 equiv.) to afford **2p** (48.4 mg, 0.22mmol, 75% yield) as a white solid using PE/EA (5:1) as eluent. ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.31 (m, 4H), 7.30-7.23 (m, 1H), 3.99 (d, *J* = 10.8 Hz, 1H), 3.83 (dd, *J* = 10.4, 8.0 Hz, 1H), 2.72 (s, 1H), 1.88-1.54 (m, 6H), 1.43 (d, *J* = 12.4 Hz, 1H), 1.29 -0.90 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 128.1, 126.9, 126.1, 79.2, 68.1, 45.5, 27.2, 26.8, 26.6, 26.4, 26.3.

3,3-dimethyl-2-phenylbutane-1,2-diol (**2q**)Prepared according to the general procedure A employing Acr⁺MesClO₄⁻ (3.9 mg, 0.009 mmol), **1q** (47.6 mg, 0.30mmol), Sat.NaHCO₃ (0.25 mL) MeCN (2.75 mL) and PPh₃ (ca. 1 equiv.) to afford **2q** (59.7 mg, 0.30mmol, 99% yield) as a colorless oil using PE/EA (3:1) as eluent.IR *v* 3444, 2962, 2360, 1478, 1048 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 7.6 Hz, 2H), 7.34 (dd, *J* = 8.0, 7.2 Hz, 2H), 7.29-7.23 (m, 1H), 4.28 (d, *J* = 11.2 Hz, 1H), 3.81 (dd, *J* = 10.8, 9.6 Hz, 1H), 2.89 (br s, 1H), 1.54 (br s, 1H), 0.90 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 141.8, 127.8, 127.6, 126.9, 80.9, 65.2, 36.7, 25.8; HRMS (EI-TOF) Calcd for C₁₂H₁₆O [M-H₂O]⁺:176.1201; Found 176.1200.

 $\begin{array}{l} \begin{array}{c} \text{OH} \\ \text{Ph} \\ \textbf{2r} \\ \textbf{Ph} \end{array} & \textbf{1,1-diphenylethane-1,2-diol(2r)^{13}} Prepared according to the general procedure A \\ employing Acr^+MesClO_4^- (4.0 mg, 0.009 mmol), 1r (53.5 mg, 0.30 mmol), \\ \text{Sat.NaHCO}_3 (0.25 mL) MeCN (2.75 mL) and PPh_3 (ca. 1 equiv.) to afford 2r (49.1 mg, 0.23 mmol, \\ \textbf{77\% yield} as a white solid using PE/EA (3:1) as eluent. ^1H NMR (400 MHz, CDCl_3) & 7.47-7.40 \\ (m, 4H), 7.38-7.30 (m, 4H), 7.30-7.23 (m, 2H), 4.15 (d,$ *J* $= 6.0 Hz, 2H), 3.23 (s, 1H), 1.95 (br s, \\ 1H); ^{13}C NMR (101 MHz, CDCl_3) & 143.8, 128.4, 127.4, 126.4, 78.5, 69.4. \\ \end{array}$

1-(hydroxymethyl)-2,3-dihydro-1H-inden-1-ol (**2s**)¹⁴Prepared according to the general procedure A employing Acr⁺MesClO₄⁻ (3.6 mg, 0.009 mmol), **1s** (44.4 mg, 0.34mmol), Sat.KH₂PO₄(0.25 mL) MeCN (2.75 mL) and PPh₃ (ca. 1

equiv.) to afford 2s (25.5 mg, 0.16mmol, 46% yield) as a white solid using PE/EA (3:1) as

eluent.¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 6.8 Hz, 1H), 7.31-7.21 (m, 3H), 3.73 (d, *J* = 11.2 Hz, 1H), 3.63 (d, *J* = 10.8 Hz, 1H), 3.02 (ddd, *J* = 16.0, 8.8, 3.6 Hz, 1H), 2.84 (dt, *J* = 16.0, 8.0 Hz, 1H), 2.50 (brs, 1H), 2.48-2.39 (m, 1H), 2.25 (brs, 1H), 2.06 (dt, *J* = 13.2, 8.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 144.6, 143.4, 128.8, 126.8, 125.1, 123.4, 83.7, 68.1, 37.2, 29.2.

 $\begin{array}{c} \begin{array}{c} \mathsf{OH} \\ \mathsf{Ph} \\ \mathbf{2t} \end{array} & \begin{array}{c} \mathbf{1} \text{-phenylethane-1,2-diol} & (\mathbf{2t})^{7} \mathrm{Prepared} & \operatorname{according} & \mathrm{to} & \mathrm{the} & \mathrm{general} & \mathrm{procedure} & \mathrm{A} \\ \end{array} \\ \begin{array}{c} \mathsf{employing} & \mathrm{Acr}^{+} \mathrm{MesClO_4}^{-} & (3.9 \text{ mg}, 0.009 \text{ mmol}), & \mathbf{1t} & (35.3 \text{ mg}, 0.34 \text{mmol}), & \mathrm{Sat.} \\ \end{array} \\ \begin{array}{c} \mathsf{NaHCO_3} & (0.25 \text{ mL}) & \mathsf{MeCN} & (2.75 \text{ mL}) & \mathrm{and} & \mathsf{PPh_3} & (\mathrm{ca.} & 1 \text{ equiv.}) & \mathrm{to} & \mathrm{afford} & \mathbf{2t} & (36.8 \text{ mg}, 0.27 \text{mmol}), & \mathbf{79\%} \\ \end{array} \\ \begin{array}{c} \mathsf{yield} & \mathrm{as} & \mathrm{a} & \mathrm{yellow} & \mathrm{solid} & \mathrm{using} & \mathsf{PE/EA} & (2:1) & \mathrm{as} & \mathrm{eluent.}^{1} \mathrm{H} & \mathsf{NMR} & (400 \text{ MHz}, \mathrm{CDCl_3}) & \delta & \mathbf{7.37-7.26} & (\mathrm{m}, \\ \mathrm{5H}), & 4.82 \cdot 4.74 & (\mathrm{m}, & 1\mathrm{H}), & 3.77 \cdot 3.67 & (\mathrm{m}, & 1\mathrm{H}), & 3.67 \cdot 3.56 & (\mathrm{m}, & 1\mathrm{H}), & 3.42 & (\mathrm{br} \text{ s}, & 1\mathrm{H}), & 3.02 & (\mathrm{br} \text{ s}, & 1\mathrm{H}); \\ \mathrm{NMR} & (101 \text{ MHz}, \mathrm{CDCl_3}) & \delta & 140.4, & 128.5, & 127.9, & 126.0, & 74.7, & 68.0. \end{array} \end{array}$

1 equiv.) to afford **2u** (31.4 mg, 0.21mmol, 69% yield) as a colorless olil using PE/EA (2:1) as eluent.¹H NMR (400 MHz, CDCl₃) δ 7.23 (dd, *J* = 15.2, 7.6 Hz, 1H), 7.16-7.06 (m, 3H), 4.79-4.69 (m, 1H), 3.74-3.66 (m, 1H), 3.65-3.57 (m, 1H), 3.44 (br s, 1H), 3.08 (br s, 1H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 138.1, 128.7, 128.4, 126.7, 123.1, 74.7, 68.0, 21.4.

1v(42.0 mg, 0.30mmol), Sat. NaHCO₃ (0.25 mL), MeCN (2.75 mL) and PPh₃ (ca. 1 equiv.) to afford **2v** (25.1 mg, 0.15mmol, 48% yield) as a yellow oli using PE/EA (2:1) as eluent.¹H NMR (400 MHz, CDCl₃) δ 7.36 (s, 1H), 7.32-7.17 (m, 3H), 4.84-4.70 (m, 1H), 3.81-3.67 (m, 1H), 3.66-3.54 (m, 1H), 3.25 (br s, 1H), 2.62 (br s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 142.5, 134.5, 129.8, 128.1, 126.2, 124.2, 74.0, 67.8.

1-(4-bromophenyl)ethane-1,2-diol $(2\mathbf{w})^7$ Prepared according to the general procedure A employing Acr⁺MesClO₄⁻ (3.7 mg, 0.009mmol), $1\mathbf{w}$

(54.5 mg, 0.30mmol), Sat. NaHCO $_3$ (0.25 mL), MeCN (2.75 mL). and

PPh₃ (ca. 1 equiv.) to afford **2w** (33.8 mg, 0.16 mmol, 52% yield) as a white solid using PE/EA (2:1) as eluent.¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.4 Hz, 2H), 7.29-7.21 (m, 2H), 4.83-4.71 (m, 1H), 3.81-3.67 (m, 1H), 3.67-3.55 (m, 1H), 2.72 (s, 1H), 2.19 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 139.4, 131.6, 127.8, 121.8, 74.0, 67.9.

1-(4-(2-methyl-1,3-dioxolan-2-yl)phenyl)ethane-1,2-diol (**2x**)Prepared according to the general procedure A employing $Acr^{+}MesClO_{4}^{-}$ (3.9 mg, 0.009mmol), **1x** (60.2 mg, 0.32mmol), Sat.

NaHCO₃ (0.25 mL),MeCN (2.75 mL)and PPh₃ (ca. 1 equiv.) to afford **2x** (51.9 mg, 0.23 mmol, 73% yield) as a white solid using PE/EA (3:2) as eluent. IR *v* 3318, 2926, 1730, 1251, 1193, 1079, 1037 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 4.84-4.78 (m, 1H), 4.09-3.97 (m, 1H), 3.82-3.71 (m, 3H), 3.70-3.60 (m, 1H), 2.82 (br s, 1H), 2.38

(s, 1H), 1.64 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 140.1, 126.0, 125.5, 108.7, 74.4, 68.0,
64.4, 27.5; HRMS (EI-TOF) Calcd for C₁₁H₁₁O₃ [M-H₂O-CH₃]⁺:191.0708; Found 191.0709.

mL),MeCN (2.75 mL)and PPh₃ (ca. 1 equiv.) to afford **2y**(38.6 mg, 0.18mmol, 63% yield) as a colorless oil using PE/EA (1:1) as eluent. IR *v* 3405, 2925, 1736, 1379, 1235, 1078, 1031 cm⁻¹;¹H NMR (400 MHz, CDCl₃) δ 7.40-7.30 (m, 4H), 5.09 (s, 2H), 4.85-4.76 (m, 1H), 3.80-3.69 (m, 1H), 3.68-3.58 (m, 1H), 2.89 (br s, 1H), 2.42 (br s, 1H), 2.09 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 140.6, 135.6, 128.4, 126.3, 74.3, 68.0, 66.0, 21.0; HRMS (EI-TOF) Calcd for C₁₁H₁₂O₃ [M-H₂O]⁺:192.0786; Found 192.0786.

^{OH} Ph 2z ^{OH} employing Acr⁺MesClO₄⁻ (4.0 mg, 0.009mmol), **1z** (35.7 mg, 0.30mmol), Sat. NaHCO₃ (0.25 mL),MeCN (2.75 mL)and PPh₃ (ca. 1 equiv.) to afford **2z** (30.5 mg, 0.20 mmol, 66% yield, *dr*1.9/1) as a colorless oil using PE/EA (3:2) as eluent.¹H NMR (400 MHz, CDCl₃) δ 7.39-7.27 (m, 5H), 4.69-4.63 (m, 0.55 H), 4.36 (dd, *J* = 7.2, 1.6 Hz, 0.43 H), 4.05-3.90 (m, 0.55H), 3.89-3.80 (m, 0.44H), 2.83 (br s, 0.41H), 2.66 (br, s 0.41H), 2.58 (br s, 0.53H), 2.05 (br s, 0.52 H), 1.08 (d, *J* = 6.4 Hz, 1.64 H), 1.05 (d, *J* = 6.4 Hz, 1.33 H).

NaHCO₃ (0.25 mL),MeCN (2.75 mL)and PPh₃ (ca. 1 equiv.) to afford **2aa** (43.3 mg, 0.19 mmol, 61% yield) as a white solid using PE/EA (5:1) as eluent. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.2 Hz, 2H), 7.42 (d, *J* = 7.2 Hz, 2H), 7.38-7.22 (m, 5H), 7.22-7.14 (m, 1H), 4.86-4.73 (m, 1H), 3.05 (d, *J* = 1.2 Hz, 1H), 1.94 (s, 1H), 1.09 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 143.8, 128.6, 128.1, 127.2, 126.7, 126.2, 125.5, 79.8, 71.6, 16.6.

2-phenylhex-5-ene-1,2-diol (**2ab**). Prepared according to the general procedure A employing Acr⁺MesClO₄⁻ (4.0 mg, 0.009 mmol), **1ab** (43.6 mg, 0.27 mmol), Sat. NaHCO₃ (0.25 mL), MeCN (2.75 mL) and PPh₃ (ca. 1 equiv.) to afford **2ab** (24.6 mg, 0.13 mmol, 46% yield) as a colorless oil using PE/EA (3:1) as eluent. IR v 3409, 2930, 1736, 1379, 1235, 1078, 1031 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.33 (m, 4H), 7.30-7.24 (m, 1H), 5.83-5.70 (m, 1H), 4.99-4.88 (m, 1H), 3.81 (d, J = 11.2 Hz, 1H), 3.68 (d, J = 11.2 Hz, 1H), 2.83 (brs, 1H), 2.13-2.02 (m, 1H), 2.02-1.76 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 138.6, 128.4, 127.1, 125.5, 114.6, 77.2, 70.6, 37.4, 27.5; HRMS (EI-TOF) Calcd for C₁₂H₁₆O₂ [M+H]⁺:193.1229; Found 193.1220.

0.009mmol), **1ac** (79.5 mg, 0.29mmol), Sat. NaHCO₃ (0.25 mL), MeCN (2.75 mL) and PPh₃ (ca. 1 equiv.) to afford **2ac** (45.6 mg, 0.15 mmol, 51% yield) as a colorless oil using PE/EA (2:1) as

eluent.IR *v* 3389, 2952, 2923, 2867, 1456, 1077 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.28 (m, 4H), 4.77 (d, *J* = 6.0 Hz, 1H), 4.64 (d, *J* = 11.6 Hz, 1H), 4.38 (d, *J* = 11.2 Hz, 1H), 3.69 (d, *J* = 10.4 Hz, 1H), 3.64-3.53 (m, 1H), 3.17 (td, *J* = 10.8, 4.0 Hz, 1H), 2.85 (br s, 1H), 2.43 (br s, 1H), 2.33-2.23 (m, 1H), 2.18 (d, *J* = 12.0 Hz, 1H), 1.71-1.56 (m, 1H), 1.45-1.21 (m, 2H), 1.04-0.79 (m, 8H), 0.71 (d, *J* = 6.8z, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.7, 138.8, 128.1, 126.0, 78.9, 74.4, 70.1, 68.0, 48.2, 40.3, 34.5, 31.5, 25.5, 23.2, 22.3, 21.0, 16.0; HRMS (EI-TOF) Calcd for C₁₈H₂₇O₂ [M-CH₂OH]⁺:275.2011; Found 275.2012.

III. Transformations of vicinal alcohols

room temperature, the mixture was washed by saturated NaHCO₃ and brine. The organic phase was dried and concentrated under reduced pressure to give the crude cyclic sulfite, which was transferred to a flask containing NaN₃ (50.0 mg, 0.77 mmol) and DMF (2 mL). The reaction was refluxed overnight. After being cooled to room temperature, the reaction was quenched by diluted H₂SO₄, H₂O and saturated NaHCO₃. The combined organic layers was dried over anhydrous Na₂SO₄, concentrated under reduced pressure and purified by column chromatography using PE/EA (10:1) as eluent to afford **3** (38.8 mg, 0.18 mmol, 61% yield) as a colorless oil. IR ν 3378, 2928, 2108, 1472, 1260, 1049 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 7.42-7.32 (m, 3H), 3.74 (dd, *J* = 11.6, 6.0 Hz, 1H), 3.67 (dd, *J* = 11.2, 7.6 Hz, 1H), 2.01 (br s, 1H), 1.77 (s, 3H); ¹³C

NMR (101 MHz, CDCl₃) δ 143.0, 134.7, 130.0, 128.1, 126.4, 124.2, 70.4, 67.3, 21.3; HRMS (ESI-TOF) Calcd for C₉H₁₁ClN₃O [M+H]⁺:212.0591; Found 212.0593.

0.32 mmol), PCC (129.3 mg, 0.6 mmol) and DCM (10 mL). The mixture was stirred overnight at room temperature. The reaction mixture was diluted with

Et₂O, filtered through a short pad of silica gel, concentrated under reduced pressure and purified through column chromatography using PE/EA (20:1) to afford 4 (24.5 mg, 0.16 mmol, 51% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.83 (d, J = 7.6 Hz, 1H), 7.54 (d, J = 7.6Hz, 1H), 7.41 (dd, *J* = 15.6, 7.6 Hz, 1H), 2.60 (s, 3H).

TsCl (70.2 mg, 0.37 mmol) and DMAP (4.9 mg, 0.04 mmol). The reaction was warmed to 50 °C and stirred for 24 h. After being cooled to room temperature, H₂O (3 mL) was added to quenched the reaction. The mixture was extracted by DCM. The combined organic layers were dried over anhydrous MgSO₄, filtered, concentrated and purified by column chromatography to afford 5 (32.5 mg, 0.19 mmol, 61% yield) as a colorless oil using PE/EA (50:1) as eluent. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (s, 1H), 7.30-7.22 (m, 3H), 2.97 (d, *J* = 5.6 Hz, 1H), 2.77 (d, *J* = 5.6 Hz, 1H), 1.71 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 134.4, 129.6, 127.6, 125.6, 123.5, 57.0, 56.3, 21.6.

To a 50 mL over-dried flask, cooled under N₂ atmosphere, were added **2f** (55.8 mg, 0.30 mmol), DCM (3.5 mL) and NEt₃ (48 uL, 0.36 mmol) . The mixture was cooled to 0 °C,TsCl (69.0 mg, 0.36 mmol) and DMAP (6.1 mg, 0.05 mmol) were added. Then the reaction was stirred overnight at 0 °C. H₂O was added to quench the the reaction and extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, concentrated and purified by column chromatography to afford **6** (72.5 mg, 0.21 mmol, 71% yield) as a colorless oil using PE/EA (5:1) as eluents. IR *v* 3524, 2985, 1597, 1360, 1179 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 3H), 7.23 (s, 3H), 4.07 (d, *J* = 10.0 Hz, 1H), 4.05 (d, *J* = 10.4 Hz, 1H), 2.72 (s, 1H), 2.44 (s, 3H), 1.52 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.1, 134.3, 132.1, 129.9, 129.6, 127.8, 127.7, 125.4, 123.2, 76.3, 72.9, 26.0, 21.6; HRMS (ESI-TOF) Calcd for C₁₆H₁₈ClO₄S [M+H]⁺:341.0614; Found 341.0616.

To a 50 mL over-dried flask, cooled under N₂ atmosphere, were added **6** (71.2 mg, 0.21 mmol), DMF (2 mL), NaN₃ (48.2 mg, 0.74 mmol) and Bu₄NI (12.1 mg, 0.033 mmol). The mixture was heated to 80 $^{\circ}$ C and stirred overnight. After cooled to room temperature, H₂O was added and extracted with Et₂O. The combined organic layers were washed by H₂O and dried by anhydrous Na₂SO₄. After being filtered, concentrated, the reaction mixture was purified by column chromatography to afford **7** (39.8 mg, 0.19 mmol, 90% yield) as a colorless oil using PE/EA (20:1)

as eluents. IR ν 3449, 2105, 1573, 1295 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.34-7.23 (m, 3H), 3.58 (d, J = 12.4 Hz, 1H), 3.44 (d, J = 12.4 Hz, 1H), 2.38 (s, 1H), 1.57 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.8, 134.5, 129.7, 127.6, 125.4, 123.1, 74.3, 61.9, 27.1; HRMS (ESI-TOF) Calcd for C₉H₁₁ClN₃O [M+H]⁺:212.0591; Found 212.0590.

IV. Mechanistic studies

mL) were added sequencely under air. The reaction mixture was irradiated by 8W blue LEDS at a distance of 10 cm for 6 h. To the flask, PPh₃ (1 equiv.) was added and stirred for 30 min at room temperature. The reaction mixture was then diluted with Et₂O and filtered through a short pad of silica using Et₂O and EA. The filtrate was concentrated *in vacuo*and purified by flash chromatography on silica gel to afford **9**(19.7 mg, 0.11 mmol, 37% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.2 Hz, 2H), 7.36 (dd, *J* = 8.4, 7.2 Hz, 2H), 7.31-7.24 (m, 1H), 3.94 (dd, *J* = 11.6, 5.2 Hz, 1H), 3.78 (dd, *J* = 11.2, 6.8 Hz, 1H), 2.54 (s, 1H), 1.86 (br s, 1H), 1.14-1.12 (m, 1H), 0.55-.42 (m, 2H), 0.40-0.25 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 143.6, 128.2, 127.2, 125.7, 75.1, 70.5, 18.3, 0.8, -0.2

To a 50 mL flask, $Acr^+MesClO_4^-$ (3.9 mg, 0.009 mmol), **1** (34.9 mg, 0.30mmol), TEMPO (70.8 mg, 0.45 mmol), Sat.NaHCO₃ (0.25 mL) and MeCN (2.75 mL) were added sequencely under air. The reaction mixture was irradiated by 8W blue LEDS at a distance of 10 cm for 6 h. To the flask, PPh₃ (1 equiv.) was added and stirred for 30 min at room temperature. The reaction mixture was then diluted with Et₂O and filtered through a short pad of silica using Et₂O and EA. The filtrate was concentrated *in vacuo* and monitored by ¹H NMR spectroscopy. The results demonstrated that

No 2a was obtained.

To a 50 mL over-dried flask, $Acr^+MesClO_4^-$ (3.7 mg, 0.009 mmol), **1** (34.9 mg, 0.3 mmol), Sat.NaHCO₃ (0.25 mL, H₂¹⁸O) and MeCN (2.75 mL) were added sequencely under air. The reaction mixture was irradiated by 8W blue LEDS at a distance of 10 cm for 6 h. To the flask, PPh₃ (1 equiv.) was added and stirred for 30 min at room temperature. The reaction mixture was then diluted with Et₂O and filtered through a short pad of silica using Et₂O and EA. The filtrate was concentrated *in vacuo*and purified by flash chromatography on silica gel to afford **11** (38.2 mg, 0.25 mmol, 84% yield) as a colorless oil.HRMS (ESI-TOF) Calcd for C₉H₁₂O₂ [M+Na]⁺:177.0777; Found 177.0772.

procedure employing Acr⁺MesClO₄⁻ (3.9 mg, 0.009 mmol), **1a** (36.7 mg, 0.31 mmol), Sat.NaHCO₃ (0.25 mL) and MeCN (2.75 mL). After 6h, the reaction mixture was then diluted with Et₂O and filtered through a short pad of silica using Et₂O and EA. The filtrate was concentrated *in vacuo* and purified by flash chromatography on silica gel to afford **12**(42.7 mg, 0.25mmol, 82% yield) as a colourless oil using PE/EA (2:1) as eluent.¹H NMR (400 MHz, CDCl₃) δ 8.53 (br s, 1H), 7.47-7.27 (m, 5H), 4.03 (d, *J* = 12.0 Hz, 1H), 3.88 (d, *J* = 12.0 Hz, 1H), 2.61 (br s, 1H), 1.56 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 141.2, 128.6, 127.8, 125.6, 86.2, 66.7, 21.7.

V. General Procedures B for Dioxylation of styrenes

To a 50 mL flask, $Acr^+MesClO_4^-$ (0.015mmol), **1** (0.3 mmol), alcohol (0.5 mL) and MeCN (5.5 mL) were added sequencely under O₂ balloon. The reaction mixture was irradiated by 8W blue LEDS at a distance of 10 cm for 3 h. The reaction mixture was reduced by PPh₃ (0.3 mmol) stirred for 30 min at room temperaturebefore it was purified by flash chromatography on silica gel to afford **13**.

^{OMe} 1-methoxy-2-phenylpropan-2-ol (13a) ²⁰ .Prepared according to the general procedure B employing 1a (35.8 mg, 0.30 mmol), Acr⁺MesClO₄⁻ (6.0 mg, 0.015 mmol), 4Å MS (70.7 mg), MeCN (5.5 mL) and MeOH (0.5 mL). After 3 h, PPh₃ (78.1 mg, 0.30 mmol) was added and stirred at rt for 30 min. The reaction mixture was diluted with Et₂O and passed through a short pad of silica gel. The filtrate was condensed and purified by flash column chromatography using PE/EA (10:1) as an eluent to afford 13a (31.7 mg, 0.19 mmol, 63% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.0 Hz, 2H), 7.35 (dd, *J* = 7.6, 7.6 Hz, 2H), 7.28-7.23 (m, 1H), 3.59 (d, *J* = 9.2 Hz, 1H), 3.48 (d, *J* = 9.2 Hz, 1H), 3.37 (s, 3H), 2.93 (s,

1H), 1.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 128.1, 126.9, 124.9, 80.7, 73.8, 59.3, 26.7.

Me OH OH OH procedure B employing the 1-methyl-2-(prop-1-en-2-yl)benzene 13bs (38.6 mg, 0.29 mmol), Acr⁺MesClO₄⁻ (6.4 mg, 0.015 mmol), 4Å MS (80.7 mg),

MeCN (5.5 mL) and MeOH (0.5 mL). After 3 h, PPh₃ (77.9 mg, 0.30 mmol) was added and stirred at rt for 30 min. The reaction mixture was diluted with Et₂O and passed through a short pad of silica gel. The filtrate was condensed and purified by flash column chromatography using PE/EA (10:1) as an eluent to afford **13b** (24.9 mg, 0.14 mmol, 47% yield) as a yellow oil. IR *v* 3460, 2928, 1455, 1108 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.38 (m, 1H), 7.21-7.12 (m, 3H), 3.84 (d, *J* = 9.2 Hz, 1H), 3.51 (d, *J* = 9.2 Hz, 1H), 3.42 (s, 3H), 2.92 (s, 1H), 2.56 (s, 3H), 1.56 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.3, 136.0, 132.6, 127.2, 126.1, 125.6, 79.3, 74.9, 59.3, 25.8, 22.3; HRMS (EI-TOF) Calcd for C₁₁H₁₆O₂ [M]⁺:180.1150; Found 180.1145.

1-methoxy-2-(m-tolyl)propan-2-ol (13c). Prepared according to the general procedure B employing **1b** (38.7 mg, 0.29 mmol), Acr⁺MesClO₄⁻ (6.4 mg, 0.015 mmol), 4Å MS (75.1 mg), MeCN (5.5 mL) and MeOH

(0.5 mL). After 3 h, PPh₃ (80.6 mg, 0.30 mmol) was added and stirred at rt for 30 min. The reaction mixture was diluted with Et₂O and passed through a short pad of silica gel. The filtrate was condensed and purified by flash column chromatography using PE/EA (10:1) as an eluent to afford **13c** (39.7 mg, 0.22 mmol, 75% yield) as a colorless oil. IR *v* 3459, 2926, 1455, 1107 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (s, 1H), 7.24 (d, *J* = 4.8 Hz, 2H), 7.10-7.04 (m, 1H), 3.58 (d,

J= 9.2 Hz, 1H), 3.47 (d, J = 9.2 Hz, 1H), 3.38 (s, 3H), 2.89 (s, 1H), 2.36 (s, 3H), 1.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.3, 137.7, 128.1, 127.7, 125.6, 121.9, 80.7, 73.8, 59.4, 26.7, 21.6; HRMS (EI-TOF) Calcd for C₁₁H₁₆O₂ [M]⁺:180.1150; Found 180.1150.

OMe OH OH OH**1.methoxy-2-(p-tolyl)propan-2-ol** (13d). Prepared according to the general procedure B employing 1-methyl-4-(prop-1-en-2-yl)benzene13ds (40.4 mg, 0.30 mmol), Acr⁺MesClO₄⁻ (6.4 mg, 0.015 mmol), 4Å MS (76.4 mg), MeCN (5.5 mL) and MeOH (0.5 mL). After 3 h, PPh₃ (77.2 mg, 0.30 mmol) was added and stirred at rt for 30 min. The reaction mixture was diluted with Et₂O and passed through a short pad of silica gel. The filtrate was condensed and purified by flash column chromatography using PE/EA (10:1) as an eluent to afford **13d** (33.1 mg, 0.18 mmol, 60% yield) as a colorless oil. IR *v* 3463, 2926, 1453, 1106 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* =

8.0 Hz, 2H), 3.58 (d, J = 9.2 Hz, 1H), 3.46 (d, J = 9.2 Hz, 1H), 3.37 (s, 3H), 2.87 (s, 1H), 2.33 (s, 3H), 1.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.4, 136.4, 128.8, 124.8, 80.7, 73.7, 59.3, 26.7, 21.0; HRMS (EI-TOF) Calcd for C₁₁H₁₆O₂ [M]⁺:180.1150; Found 180.1154.

The reaction mixture was diluted with Et_2O and passed through a short pad of silica gel. The filtrate was condensed and purified by flash column chromatography using PE/EA (10:1) as an

eluent to afford **13e** (47.0 mg, 0.23 mmol, 76% yield) as a colorless oil. IR *v* 3445, 2930, 1491, 1093 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.8 Hz, 2H), 7.30 (d, *J* = 8.8 Hz, 2H), 3.54 (d, *J* = 9.2 Hz, 1H), 3.45 (d, *J* = 9.2 Hz, 1H), 3.37 (s, 3H), 2.91 (s, 1H), 1.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 132.7, 128.2, 126.5, 80.5, 73.5, 59.4, 26.6; HRMS (EI-TOF) Calcd for C₁₀H₁₃O₂Cl [M]⁺:200.0604; Found 200.0606.

OEt 1-ethoxy-2-phenylpropan-2-ol $(13f)^{20}$. Prepared according to the general procedure B employing 1a (35.7 mg, 0.30 mmol), Acr⁺MesClO₄⁻ (6.3 mg, 0.015 13f mmol), 4Å MS (70.8 mg), MeCN (5.5 mL) and MeOH (0.5 mL). After 3 h, PPh₃ (79.3 mg, 0.30 mmol) was added and stirred at rt for 30 min. The reaction mixture was diluted with Et₂O and passed through a short pad of silica gel. The filtrate was condensed and purified by flash column chromatography using PE/EA (30:1) as an eluent to afford 13f (34.5 mg, 0.19 mmol, 63% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.0 Hz, 2H), 7.34 (dd, *J* = 7.6, 7.2 Hz, 2H), 7.25 (t, *J* = 6.4 Hz, 1H), 3.60-3.474 (m, 4H), 2.93 (s, 1H), 1.52 (s, 3H), 1.17 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 128.1, 126.8, 125.0, 78.4, 73.7, 67.0, 26.7, 15.0.

0.16 mmol, 51% yield) as a colorless oil. IR *v* 3455, 2974, 1449, 1372, 1127, 1085 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.6 Hz, 2H), 7.34 (dd, *J* = 7.6, 7.2 Hz, 2H), 7.24 (t, *J* = 7.2 Hz, 1H), 3.62-3.56 (m, 1H), 3.54 (d, *J* = 8.8 Hz, 1H), 3.49 (d, *J* = 9.2 Hz, 1H), 2.98 (s, 1H), 1.52 (s, 3H), 1.15 (dd, *J* = 6.4 Hz, 3H), 1.12 (dd, *J* = 6.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.7, 128.0, 126.8, 125.0, 76.2, 73.6, 72.5, 26.7, 22.00, 21.97; HRMS (EI-TOF) Calcd for C₁₂H₁₈O₂ [M]⁺:194.1307; Found 194.1306.

Of Bu OH OH i (tert-butoxy)-2-phenylpropan-2-ol (13h). Prepared according to the general procedure B employing 1a (36.0 mg, 0.30 mmol), $Acr^{+}MesClO_{4}^{-}$ (6.7 13h mg, 0.016 mmol), 4Å MS (71.0 mg), MeCN (5.5 mL) and MeOH (0.5 mL). After 3 h, PPh₃ (79.7 mg, 0.30 mmol) was added and stirred at rt for 30 min. The reaction mixture was diluted with Et₂O and passed through a short pad of silica gel. The filtrate was condensed and purified by flash column chromatography using PE/EA (10:1) as an eluent to afford 13h (21.1 mg, 0.10 mmol, 33% yield) as a colorless oil. IR v 3563, 2975, 1365, 1194, 1089 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.0 Hz, 2H), 7.34 (dd, *J* = 7.6, 7.6 Hz, 2H), 7.27-7.21 (m, 1H), 3.45 (d, *J* = 8.4 Hz, 1H), 3.41 (d, *J* = 8.8 Hz, 1H), 3.06 (s, 1H), 1.51 (s, 3H), 1.16 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 145.9, 128.0, 126.7, 125.0, 73.4, 73.2, 69.8, 27.5, 26.6; HRMS (EI-TOF) Calcd for C₁₃H₂₀O₂ [M]⁺:208.1463; Found 208.1459.

VII.Reference

¹ D. S. Hamilton, D. A. Nicewicz, J. Am. Chem. Soc. 2012, 134, 18577.

² C. (Dennis) Huang, A. G. Doyle, J. Am. Chem. Soc. 2015, 137, 5638.

³ F. J. Barrios, B. C. Springer, D. A. Colby, Org. Lett. 2013, 15, 3082.

⁴M. Brown, R. Kumar, J. Rehbein, T. Wirth, *Chem. Eur. J.* **2016**, *22*, 4030.
⁵P. Lu, T. Hou, X. Gu, P. Li. *Org. Lett.* **2015**, *17*, 1954

⁶A. Theodorou, I.Triandafillidi, C. G. Kokoto. Eur. J. Org. Chem. 2017, 1502.

⁷ A. Wang, H. Jiang. J. Org. Chem. **2010**, 75, 2321.

⁸J. H. Kim, I. Čorić, C. Palumbo, B. List J. Am. Chem. Soc. 2015, 137, 1778.

⁹ M. Cleij, A. Archelas, R. Furstoss. J. Org. Chem. **1999**, 64, 5029.

¹⁰J. D. Weaver, D. K. Morris, J. A. Tunge. *Synlett* **2010**, 470.

¹¹ R. P. Hof, R. M. Kellogg. J. Chem. Soc. Perkin Transactions 1: Organic and Bio-Organic

Chemistry (1996), (16), 2051-2060. Publisher: (Royal Society of Chemistry,) CODEN:JCPRB4 ISSN:0300-922X.

¹² M. Dochnahl, G. C. Fu. Angew. Chem. Int. Ed. 2009,48, 2391.

¹³ K. M. Jones, N. C. O. Tomkinson, J. Org. Chem. 2012, 77, 921.

¹⁴ J. Koyanagi. *Chem. Pharm. Bull.* **2014**, 62, 816.

¹⁵K. Sarma, N. Borthakur, A. Goswami. *Tetrahedron Lett.***2007**, *48*, 6776.

¹⁶Z. Hou, K.Takamine, O. Aoki, H.Shiraishi, Y.Fujiwara, H. Taniguchi. J. Org. Chem. 1988, 53,

6077.

¹⁷ X. Jing, D. Yuan, L. Yu. Adv. Synth. Catal. 2017, 359, 1194.

¹⁸E. J. Gilbert, W. J. Greenlee, M. W. Miller, J. D. Scott, A. W. A. Stamford. U.S. Pat. Appl. Publ., 20130072468, 21 Mar 2013

¹⁹X. Yan, C. Qiao, Z. Guo. *Synlett* 2013, 24, 502.
²⁰A. Duchene, D. Mouko-Mpegna, Quintard, P. Jean, *Journal fuerPraktischeChemie (Leipzig)*, 1985, 5, 787.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S40

-80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -2 fl (ppm)

S49

S55

S75