Synthesis and shift-reagent-assisted full NMR assignment of the bacterial (Z_{8}, E_{2}, ω)-undecaprenol

Mijoon Lee, Dusan Hesek, Jaroslav Zajíček, Jed F. Fisher and Shahriar Mobashery* Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 USA

Electronic Supplementary Information

Contents

Experimental Section S2-S5
References. S5
Table S1. NMR spectroscopic data for $\mathbf{1}$ and 2 S6
Copies of NMR spectra of compounds $\mathbf{1 , 2 , 7}$, and $\mathbf{8}$ S7-S22

Experimental Section

Synthesis. Synthesis of compound $\mathbf{3}$ from E, E-farnesol was published previously by our laboratory. ${ }^{1}$ Undecaprenol 2 was purchased from American Radiolabeled Chemicals, Inc.

Compound 7. Phosphorus tribromide ($34 \mu \mathrm{~L}, 0.36 \mathrm{mmol}$) in dry ether (0.8 mL) was added dropwise to a mixture of heptaprenol $3^{2}(0.4 \mathrm{~g}, 0.8 \mathrm{mmol})$ and pyridine $(6 \mu \mathrm{~L})$ in dry ether $(2 \mathrm{~mL})$ at ice-water temperature. The resulting solution was stirred for 2 h at the same temperature. The brown mixture was poured into a mixture of ice and water and then washed with hexanes. The separated organic layer was washed with a series of aqueous solutions (water, saturated NaHCO_{3}, and brine), dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue, the resultant bromide intermediate, was purified by column chromatography on silica gel. This intermediate ($0.3 \mathrm{~g}, 0.5 \mathrm{mmol}$) was dissolved in acetonitrile:DMF:ether ($1: 1: 1,3 \mathrm{~mL}$) and the solution was added dropwise to a suspension of sodium p-toluenesulfinate ($0.18 \mathrm{~g}, 1.0 \mathrm{mmol}$) in DMF (5 mL) in an ice-water bath. The mixture was brought to room temperature over a few minutes and was allowed to stir for 6 h . The mixture was diluted with ethyl acetate and was washed sequentially with water and brine, dried over anhydrous MgSO_{4}, filtered, and the filtrate was concentrated under reduced pressure. Compound 7 was purified by column chromatography on silica gel ($0.3 \mathrm{~g}, 59 \%$ calculated from 3). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.60,1.61,1.65,1.68,1.73(8 \times \mathrm{s}, 24 \mathrm{H}), 1.75-2.14(\mathrm{~m}, 24 \mathrm{H})$, $2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\right), 3.78\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{SO}_{2} \mathrm{CH}_{2}-\right), 4.95(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-5.16$ $(\mathrm{m}, 5 \mathrm{H}), 5.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.19(\mathrm{q}), 16.20(\mathrm{q}), 17.9(\mathrm{q}), 21.8\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\right), 23.5(\mathrm{q}), 23.64(\mathrm{q}), 23.67$ $(\mathrm{q}), 23.75(\mathrm{q}), 25.9(\mathrm{q}), 26.0(\mathrm{t}), 26.5(\mathrm{t}), 26.6(\mathrm{t}), 26.8(\mathrm{t}), 26.9(\mathrm{t}), 32.18(\mathrm{t}), 32.26(\mathrm{t}), 32.32(\mathrm{t})$, $32.41(\mathrm{t}), 39.92(\mathrm{t}), 39.94(\mathrm{t}), 56.2\left(\mathrm{t},-\mathrm{SO}_{2} \mathrm{CH}_{2}-\right), 111.2\left(\mathrm{~d},-\mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right)$, $124.2\left(\mathrm{~d},-\mathrm{CH}_{2} \mathrm{CH}=\right)$,
$124.3\left(\mathrm{~d},-\mathrm{CH}_{2} \mathrm{CH}=\right), 124.4\left(\mathrm{~d},-\mathrm{CH}_{2} \mathrm{CH}=\right), 124.6\left(\mathrm{~d},-\mathrm{CH}_{2} \mathrm{CH}=\right), 125.0\left(\mathrm{~d},-\mathrm{CH}_{2} \mathrm{CH}=\right), 125.1(\mathrm{~d},-$ $\mathrm{CH}_{2} \mathrm{CH}=$), 128.6 (d), 129.8 (d), 131.5 (s), 135.1 (s), 135.4 (s), 135.57 (s$), 135.61$ (s$), 136.1$ (s), 136.2 (s), 144.6 (s), 146.0 (s); HRMS (ESI/Q-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$Calcd 655.4519 for $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{O}_{2} \mathrm{SNa}$; found 655.4528 .

Compound 8. The sulfone $7(300 \mathrm{mg}, 470 \mu \mathrm{~mol})$ was dissolved in a mixture of anhydrous THF and hexamethylphosphoramide (HMPA) (4:1, 5 mL) and the resulting solution was cooled to $-78^{\circ} \mathrm{C} . n$-Butyllithium ($0.4 \mathrm{~mL}, 640 \mu \mathrm{~mol}, 1.6 \mathrm{M}$ in hexane) was added dropwise to this solution, which was stirring for 1 h at the same temperature. A solution of bromide $\mathbf{5}^{\mathbf{2}}$ (430 mg, $700 \mu \mathrm{~mol}$) in anhydrous THF-HMPA (4:1, 2 mL) was added dropwise to the sulfone solution and the mixture was allowed to stir for an additional 3 h at $-78^{\circ} \mathrm{C}$. After warming the mixture to iced-water temperature, it was poured into a mixture of ice and water and the mixture was washed with hexanes-ether (1:1). The separated organic layer was washed with water and brine, dried over anhydrous MgSO_{4}, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford compound $8(470 \mathrm{mg}, 85 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.57-1.78(\mathrm{~m}, 38 \mathrm{H}), 1.91-2.10(\mathrm{~m}, 30 \mathrm{H}), 2.35$ - $2.70(\mathrm{~m}, 4 \mathrm{H}), 2.41,2.44\left(2 \times \mathrm{s}, 6 \mathrm{H},-\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 3.79-3.87\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CHSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$, $3.98\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OBn}\right), 4.49\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.83-5.02(\mathrm{~m}, 4 \mathrm{H}), 5.05-5.19(\mathrm{~m}$, $6 \mathrm{H}), 5.41\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCH}_{2} \mathrm{OBn}\right), 7.26-7.36(\mathrm{~m}, 9 \mathrm{H}), 7.67-7.74(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.2(\mathrm{q}), 17.9(\mathrm{q}), 21.80,21.84\left(2 \times \mathrm{q}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 23.48(\mathrm{q}), 23.50(\mathrm{q})$, 23.52 (q), 23.61 (q), 23.65 (q), 23.68 (q), 23.77 (q), 23.79 (q), 25.8 (t), 25.9 (q), 26.0 (t), $26.4(t)$,
 $32.33(\mathrm{t}), 32.4(\mathrm{t}), 39.91(\mathrm{t}), 39.93(\mathrm{t}), 63.3,63.4(2 \times \mathrm{d}, C H T s), 66.5\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{OBn}\right), 72.3(\mathrm{t}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 117.9\left(\mathrm{~d},-\mathrm{CH}_{2} \mathrm{CH}=\right), 118.0\left(\mathrm{~d},-\mathrm{CH}_{2} \mathrm{CH}=\right), 122.4\left(\mathrm{~d}, \mathrm{BnOCH}_{2} \mathrm{CH}=\right), 124.25(\mathrm{~d},-$
$\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 124.27\left(\mathrm{~d},-\mathrm{CH}_{2} \mathrm{CH}=\right), 124.4\left(\mathrm{~d},-\mathrm{CH}_{2} \mathrm{CH}=\right), 124.5\left(\mathrm{~d},-\mathrm{CH}_{2} \mathrm{CH}=\right), 124.96(\mathrm{~d},-$ $\mathrm{CH}_{2} \mathrm{CH}=$), $125.01\left(\mathrm{~d},-\mathrm{CH}_{2} \mathrm{CH}=\right), 127.7$ (d), 127.9 (d, $-\mathrm{CH}_{2} \mathrm{CH}=$), 128.0 (d), 128.3 (d, $\mathrm{CH}_{2} \mathrm{CH}=$), 128.5 (d), 129.3 (d), 129.4 (d), 129.53 (d), 129.61 (d, ArH), 130.63 (s), 130.9 (s), 131.4 (s), 135.05 (s), 135.14 (s), 135.4 (s), 135.57 (s), 135.64 (s), 135.9 (s), 138.7 (s), 140.2 (s), 144.5 (s), 144.55 (s), 144.62 (s), 144.8 (s), 145.1 (s); HRMS (ESI/Q-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{76} \mathrm{H}_{108} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Na} 1187.7530$; found 1187.7547.

Compound 1. Ethylamine (50 mL) was added to a flask containing lithium ($100 \mathrm{mg}, 8.6$ $\mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ and ether (10 mL) was added. After stirring for 10 min at $-78^{\circ} \mathrm{C}$, an ethereal solution of compound $\mathbf{8}(470 \mathrm{mg}, 400 \mu \mathrm{~mol}$ in 10 mL$)$ was added dropwise to the blue solution over 20 min . After stirring for 40 min at $-78^{\circ} \mathrm{C}$, the reaction was quenched by the addition of isoprene (5 mL) and $\mathrm{MeOH}(10 \mathrm{~mL})$. After addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$, the reaction mixture was washed with ethyl acetate. The combined ethyl acetate layer was washed with brine, dried over anhydrous MgSO_{4}, filtered through a layer of silica gel, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford the desired product $\mathbf{1}(190 \mathrm{mg}, 61 \%)$. The complete assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR is given in Table S1. HRMS (ESI/Q-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$Calcd 789.6884 for $\mathrm{C}_{55} \mathrm{H}_{90} \mathrm{ONa}$; found 789.6842.

NMR Spectroscopy. The structures of undecaprenol 1 and 2 [10 mg of each was dissolved in $600 \mu \mathrm{~L} \mathrm{C}_{6} \mathrm{D}_{6}\left(100 \%, 99.96\right.$ atom \% D) containing $\left.10 \mathrm{mg} \mathrm{Eu}(\mathrm{hfc})_{3}\right]$ were determined by interpretation of the 2D homonuclear DQF-COSY, TOCSY, ROESY and heteronuclear ${ }^{1} \mathrm{H}$ ${ }^{13} \mathrm{C}$ HSQC, HSQC-TOCSY, HMBC NMR spectra. All NMR spectra were recorded at $25{ }^{\circ} \mathrm{C}$ on a four-channel Bruker AVANCE II spectrometer at field strength of 18.79 T using a 5-mm inverse triple-resonance (TCI) ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}$, z -axis PFG cryoprobe, and running the TopSpin 3.2, pl6
software. The above spectra were measured by employing ordinary pulse sequences in the Bruker pulse sequence library. To enhance spectral resolution, linear prediction and zero filling were applied to the time domain data. Also, the squared shifted sine weighting window functions were used before 2D Fourier transformation. The homonuclear spectra and the ${ }^{1} \mathrm{H}$ dimension in heteronuclear spectra were referenced to the residual solvent signal $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta_{\mathrm{H}} 7.15 \mathrm{ppm}\right)$. The ${ }^{13} \mathrm{C}$ dimension in the heteronuclear spectra was referenced indirectly. ${ }^{2}$ Resonance signals in the measured spectra exhibited slight downfield shifts as the samples stayed in the magnet longer. Consequently, Table S1 contains values of the proton and carbon chemical shifts for carbons with directly attached protons corresponding to the positions of the crosspeaks in the HSQC spectra. The chemical-shift values for the quaternary carbons then correspond to the positions of the crosspeaks in the HMBC spectra.

References

(1) Hesek, D.; Lee, M.; Zajíček, J.; Fisher, J. F.; Mobashery, S. J. Am. Chem. Soc. 2012, 134, 13881-13888.
(2) Wishart, D. S.; Bigam, C. G.; Yao, J.; Abildgaard, F.; Dyson, H. J.; Oldfield, E.; Markley, J. L.; Sykes, B. D. J. Biomol. NMR 1995, 6, 135-140.

Table S1. NMR spectroscopic data for $\mathbf{1}$ (synthetic sample) and 2 (from Magnolin kobus) in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K (800.13 MHz). ${ }^{a, b}$

$\mathbf{1 + E u (h f c) ~}{ }_{\mathbf{3}}$					$2+\mathrm{Eu}(\mathrm{hfc})_{3}$				
unit		${ }^{13} \mathrm{C} \delta[\mathrm{ppm}]^{\text {c,d }}$	${ }^{1} \mathrm{H} \delta[\mathrm{ppm}]^{\text {c }}$	HMBC connectivities	unit		${ }^{13} \mathrm{C} \delta[\mathrm{ppm}]^{\mathrm{c}, d}$	${ }^{1} \mathrm{H} \delta[\mathrm{ppm}]^{\text {c }}$	HMBC connectivities
CH_{2}-1			14.37		CH_{2}-1			18.02	
CH-2	Z	129.09	11.50		CH-2	Z	129.51	10.35	
C-3		143.62			C-3		142.98		
$\mathrm{CH}_{2}-4$		35.42	4.83	2, 3, 5, 6, 55	$\mathrm{CH}_{2}-4$		34.90	4.01	2, 3, 5, 6, 55
$\mathrm{CH}_{2}-5$		28.33	3.77	3, 4, 6, 7	$\mathrm{CH}_{2}-5$		28.21	3.48	3, 4, 6, 7
CH-6	Z	126.54	6.70	4, 5, 7, 8, 54	CH-6	Z	126.33	6.41	4, 5, 8, 54
C-7		137.08			C-7		137.14		
$\mathrm{CH}_{2}-8$		33.35	2.88	6, 7, 9, 10, 54	$\mathrm{CH}_{2}-8$		33.27	2.74	6, 7, 9, 10, 54
$\mathrm{CH}_{2}-9$		27.41	2.70	7, 8, 10, 11	$\mathrm{CH}_{2}-9$		27.34	2.61	7, 8, 10, 11
CH-10	Z	126.02	5.71	8, 9, 11, 12, 53	CH-10	Z	125.93	5.65	$8,9,11,12,53$
C-11		135.83			C-11		136.02		
$\mathrm{CH}_{2}-12$		32.97	2.45	10, 11, 13, 14, 53	CH_{2}-12		32.90	2.40	10, 11, 13, 53
CH_{2}-13		27.19	2.41	11, 12, 14, 15	CH_{2}-13		27.14	2.40	11, 12, 14, 15
CH-14	Z	125.83	5.47	12, 13, 15, 16, 52	CH-14	Z	125.82	5.45	12, 13, 52
C-15		135.58			C-15		135.83		
CH_{2}-16		32.85	2.33	14, 15, 17, 18, 52	CH_{2}-16		32.83	2.29	14, 17, 18, 52
CH_{2}-17		27.09	2.32		$\mathrm{CH}_{2}-17$		27.10	2.30	15, 16, 18, 19
CH-18	Z	125.79	5.39	16, 17, 19, 20, 51	CH-18	Z	125.75	5.37	16, 17, 19, 20, 51
C-19		135.46			C-19		135.73		
CH_{2}-20		32.77	2.25	21,51	$\mathrm{CH}_{2}-20$		32.76	2.23	${ }^{e}$
CH_{2}-21		27.07	2.26	19, 20, 22, 23	$\mathrm{CH}_{2}-21$		27.07	2.25	${ }^{e}$
CH-22	Z	125.73	5.34	20, 21, 23, 24, 50	CH-22	Z	125.72	5.33	20, 21, 24, 50
C-23		135.45			C-23		135.69		
CH_{2}-24		32.72	2.23	25, 50	$\mathrm{CH}_{2}-24$		32.75	2.23	e
$\mathrm{CH}_{2}-25$		27.03	2.23	24	$\mathrm{CH}_{2}-25$		27.04	2.24	${ }^{e}$
CH-26	Z	125.72	5.32	24, 25, 27, 28, 49	CH-26	Z	125.65	5.31	24, 25, 28, 49
C-27		135.43			C-27		135.76		
CH_{2}-28		32.74	2.30	${ }^{e}$	CH2-28		32.45	2.19	e
CH_{2}-29		27.03	2.21	${ }^{e}$	$\mathrm{CH}_{2}-29$		27.14	2.20	${ }^{e}$
CH-30	Z	125.60	5.29	28, 29, 31, 32, 48	CH-30	E	124.76	5.33	28, 29, 32, 48
C-31		135.49			C-31		135.69		
$\mathrm{CH}_{2}-32$		32.46	2.18	${ }^{e}$	CH2-32		40.30	2.12	e
CH_{2}-33		27.14	2.19	${ }^{e}$	$\mathrm{CH}_{2}-33$		27.21	2.20	${ }^{e}$
CH-34	E	124.78	5.32	32, 33, 35, 36, 47	CH-34	E	124.85	5.31	32, 33, 36, 47
C-35		135.38			C-35		135.38		
CH_{2}-36		40.30	2.12	34, 35, 37, 47	$\mathrm{CH}_{2}-36$		40.30	2.12	${ }^{e}$
$\mathrm{CH}_{2}-37$		27.19	2.21		$\mathrm{CH}_{2}-37$		27.21	2.21	${ }^{e}$
CH-38	E	124.87	5.29	36, 37, 39, 40, 46	CH-38	E	124.90	5.30	36, 37, 40, 46
C-39		135.12			C-39		135.25		
$\mathrm{CH}_{2}-40$		40.30	2.10	38, 39, 41, 42, 46	$\mathrm{CH}_{2}-40$		40.30	2.11	${ }^{e}$
$\mathrm{CH}_{2}-41$		27.32	2.19		$\mathrm{CH}_{2}-41$		27.30	2.19	${ }^{e}$
CH-42	ω	125.02	5.25	40, 41, 43, 44, 45	CH-42	ω	125.03	5.25	40, 41, 44, 45
C-43		131.21			C-43		131.46		
$\mathrm{CH}_{3}-44$	ω	17.82	1.58	42, 43, 45	$\mathrm{CH}_{3}-44$	ω	25.91	1.69	42, 43, 45
$\mathrm{CH}_{3}-45$	ω	25.92	1.69	42, 43, 44	$\mathrm{CH}_{3}-45$	ω	17.82	1.58	42, 43, 44
$\mathrm{CH}_{3}-46$	E	16.20	1.62	38, 39, 40	$\mathrm{CH}_{3}-46$	E	16.20	1.62	38, 39, 40
$\mathrm{CH}_{3}-47$	E	16.19	1.64	34, 35, 36	$\mathrm{CH}_{3}-47$	E	16.20	1.63	34, 35, 36
$\mathrm{CH}_{3}-48$	Z	23.73	1.75	30, 31, 32	$\mathrm{CH}_{3} \mathbf{- 4 8}$	E	16.20	1.65	30, 31, 32
$\mathrm{CH}_{3}-49$	Z	23.76	1.77	26, 27, 28	$\mathrm{CH}_{3}-49$	Z	23.76	1.76	26, 27, 28
$\mathrm{CH}_{3}-50$	Z	23.80	1.79	22, 23, 24	$\mathrm{CH}_{3}-50$	Z	23.78	1.78	22, 23, 24
$\mathrm{CH}_{3}-51$	Z	23.82	1.82	18, 19, 20	$\mathrm{CH}_{3}-51$	Z	23.81	1.81	18, 19, 20
$\mathrm{CH}_{3}-52$	Z	23.87	1.86	14, 15, 16	$\mathrm{CH}_{3}-52$	Z	23.85	1.86	14, 15, 16
$\mathrm{CH}_{3}-53$	Z	23.98	1.98	10, 11, 12	$\mathrm{CH}_{3}-53$	Z	23.92	1.95	10, 11, 12
CH_{3}-54	Z	24.19	2.19	6, 7, 8	$\mathrm{CH}_{3}-54$	Z	24.12	2.11	6, 7, 8
$\mathrm{CH}_{3}-55$	Z	25.73	3.11	2, 3, 4	$\mathrm{CH}_{3}-55$	Z	25.35	2.82	2, 3, 4

${ }^{a} \mathrm{C}, \mathrm{CH}-, \mathrm{CH}_{2}-$, and $\mathrm{CH}_{3}-$ are colored in white, blue, pink, and gray. ${ }^{b}$ The numbers for $\mathbf{2}$ that are significantly different from those for $\mathbf{1}$ are in bold. ${ }^{\circ}$ The proton and carbon chemical shift values for carbons with directly attached protons represent positions of the corresponding crosspeaks in the HSQC spectra. ${ }^{d}$ The chemical shift values of quaternary carbons represent positions of the corresponding crosspeaks in the HMBC spectra. ${ }^{e}$ The connectivities could not be unambiguously established due to strong signal overlaps.

TOCSY spectra of compound $1+\mathrm{Eu}(\mathrm{hfc})_{3}$

HSQC-TOCSY spectra of compound $1+\mathrm{Eu}(\mathrm{hfc})_{3}$

TOCSY spectra of compound $2+\mathrm{Eu}(\mathrm{hfc})_{3}$

HMBC

HSQC

UPH-13
Pulse Sequence: dept

UPH-13

Pulse Sequence: hetcor
Solvent: CDC13
Ambi ent temperature

Relax. delay 1.500 sec
Acq. itime 0.111 sec

20 Width 3940.3
32
repetitions

Off during de lay
WALT -16 modulated
WALTZ-16 modulated
LATA PROCESSING broadening 1.0 Hz
F1 DATA PROCESSING
F1 DATA PROCESSING
Line broadening 0.3 H
FT size $4096 \times \times 2$.
FT size $4096 \times 1024 \mathrm{mi}, 50 \mathrm{sec}$
Total time $3 \mathrm{hr}, 47 \mathrm{~min}, 50$

UPH-14
Pulse Sequence: hetcor
Solvent: CDC13
Ambient temperature
User
1-14-87
User: ${ }^{1-14-87}$
INOVA-500
"nm 2a.chem.nd.edu"

