Electronic Supplementary Information for

A Magnetic Nanoparticle-Supported N-heterocyclic Carbene-Palladacycle: An Efficient and Recyclable Solid Molecular Catalyst for Suzuki-Miyaura Cross-Coupling of 9-Chloroacridine

Qinyue Deng,^a Yajing Shen,^a Haibo Zhu^a and Tao Tu*^{a,b}

- a. Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai,200433 China
- b. State key laboratory of Organometallics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032 China

*Email: <u>taotu@fudan.edu.cn</u>

Table of contents:

1	General	S 2
2	Experimental sections	S 3
	2.1 Synthesis of SiO ₂ @Fe ₃ O ₄ -supported Pd complexes	S 3
	2.2 General Procedure for the Suzuki coupling reaction	S 7
3	Data for the Pd complexes	S 9
4	Data for the products of Suzuki coupling reaction	S13
5	¹ H, ¹³ C NMR, IR and MS spectra for important compounds	S23
6	References	S 71

1. General.

All commercial reagents were used directly without further purification, unless othervise stated. 1, 4-dioxane, methanol (MeOH) and tert-butanol (t-BuOH) were distilled from anhydrous calcium chloride prior to use. Xylene,toluene and benzene were distilled from sodium/benzophenone prior to use. t-BuOK was purchased from Acros. All reaction vials (50 mL) were purchased from Beijing Synthware Glass. CDCl₃ was purchased from Cambridge Isotope Laboratories. ¹H, ¹³C NMR were recorded on Jeol ECA-400 and Bruker 400 DRX spectrometers. The chemical shifts (δ) for ¹H are given in parts per million (ppm) referenced to the residual proton signal of the deuterated solvent (CHCl₃ at δ 7.26 ppm); coupling constants are expressed in hertz (Hz). ¹³C NMR spectra were referenced to the carbon signal of CDCl₃ (77.0 ppm). The following abbreviations are used to describe NMR signals: s = singlet, d =doublet, t = triplet, m = mulitplet, dd = doublet of doublets, q = quartet, quint =quintet. ESI-MS spectra were recorded on a Bruker micrOTOF II instrument. IR spectra were recorded on AVATAR FT-IR 360 instrument. Powder XRD studies were performed on a Bruker AXS D8. SEM experiments were carried out on a Philips XL30 microscope operatwd at 20kV. TEM experiments were carried out on a JEOL JEM-2010 transmission electron microscope. Analysis of Pd content was measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) using OPTIMA 4300 DV (Perkin-Elmer).

2. Experimental sections

2.1 Synthesis of SiO₂@Fe₃O₄-support Pd complexes.

Scheme S1. Synthesis of linker compound 2.

11-bromoundec-1-ene a:^{S1} To a mixture of undec-10-en-1-ol (5.1 g, 30 mmol) and carbon tetrabromide (13.3 g, 40 mmol) in dichloromethane (100 mL) was added portionwise triphenylphosphine (10.5 g, 40 mmol), and the solution was stirred for 3 h at room temperature. Filtration followed by concentration in vacuo left an oil, which was then chromatographed on SiO₂ (eluent, hexane) to afford **a** as clear colorless oil (6.6 g, 95 %): ¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 5.86-5.76 (m, 1H), 5.02-4.91 (m, 2H), 3.40 (t, *J* = 6.8 Hz, 2H), 2.04 (q, *J* = 7.1 Hz, 2H), 1.85 (quint, *J* = 7.2 Hz, 2H), 1.44-1.34 (m, 12H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ = 138.9, 114.0, 33.7, 33.6, 32.8, 29.3, 29.0, 28.8, 28.7, 28.1.

4-(undec-10-en-1-yloxy)benzaldehyde b:^{S2} A stirred suspension of p-hydroxybenzaldehyde (16.6 g, 136 mmol), 11-bromoundec-1-ene **a** (15.0 g, 65 mmol), and K₂CO₃ (18.0 g, 130 mmol) in dry acetone 75mL was refluxed for 24 h. The reaction was monitored by TLC. The hot reaction mixture was filtered and evaporated to dryness. The mixture was ready for purification by flash chromatography to afford **b** as light yellow solid (14.2 g, 80 %): ¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 9.88$ (s, 1H), 7.83 (dt, J = 8.8 Hz , J = 2.2 Hz, 2H), 6.99 (dt, J = 8.8 Hz , J = 2.4 Hz, 2H), 5.86-5.76 (m, 1H), 5.02-4.91 (m, 2H), 4.04 (t, J = 6.6 Hz,

2H), 2.04 (q, J = 7.1 Hz, 2H), 1.81 (quint, J = 7.0 Hz, 2H), 1.50-1.30 (m, 12H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 189.7$, 163.7, 138.4, 131.3, 129.4, 114.2, 113.7, 67.8, 33.3, 29.1, 29.0, 28.9, 28.7, 28.6, 28.5, 25.5.

N-ethyl-N-(4-(undec-10-en-1-yloxy)benzyl)ethanamine c:^{S3} To a solution of **b** (1 g, 8.2 mmol) in 90 mL of dry CH₂Cl₂ were added diethylamine (2.54 mL, 24.6 mmol), after 2h, NaHB(OAc)₃ (5.22 g, 32.8 mmol). After stirring the mixture at room temperature for 18 h, 10 mL of a solution of NaHCO₃ 1 M was added. The solvent was then evaporated and the residue was taken up in AcOEt. The reactive medium was then filtrated, the filtrate was concentrated and the residue purified by column chromatography to yield compound **c** (2.58 g, 95% yield); ¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.21 (d, *J* = 8.4 Hz, 2H), 6.83 (d, *J* = 8.8 Hz, 2H), 5.86-5.76 (m, 1H), 5.02-4.91 (m, 2H), 3.94 (t, *J* = 6.4 Hz, 2H), 3.50 (s, 2H), 2.50 (q, *J* = 7.1 Hz, 4H), 2.04 (q, *J* = 7.1 Hz, 4H), 1.77 (quint, *J* = 7.0 Hz, 2H), 1.46-1.24 (m, 12H), 1.03 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ = 158.0, 139.0, 131.2, 130.0, 114.04, 113.98, 67.8, 56.7, 46.3, 33.7, 29.4, 29.34, 29.31, 29.2, 29.0, 28.8, 26.0, 11.5. HR-MS (ESI): *m/z* 331.2875 (calcd, [M]⁺); 332.2964 (found, [M+H]⁺).

N-ethyl-N-(4-((11-(triethoxysilyl)undecyl)oxy)benzyl)ethanamine 2:^{S4} c (0.07 g, 0.21 mmol) and triethoxysilane (1.8 g, 10.8 mmol) were placed into a previously HMDS-passivated dry, round-bottomed flask and heated under an argon atmosphere to about 80 °C. After the addition of EtOH H₂PtCl₆ solution (50 µL, 0.027 mg/µL), the mixture was allowed to react for 4 h at 80 °C and then to cool. Excess triethoxysilane was removed in vacuum, the residue purified by column chromatography to yield compound **2** (0.10g, 96% yield); ¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.21 (d, *J* = 8.8 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 3.94 (t, *J* = 6.6 Hz, 2H), 3.81 (q, *J* = 7.1 Hz, 6H), 3.5 (s, 2H), 2.50 (q, *J* = 7.2 Hz, 4H), 1.76 (quint, *J* = 7.0 Hz, 2H), 1.56-1.37 (m, 4H), 1.36-1.33 (m, 12H), 1.23 (t, *J* = 7.0 Hz, 9H), 1.04 (t, *J* = 7.2 Hz, 6H), 0.72-0.54 (m, 2H).

Scheme S2. Synthesis of Pd complexes 4.

Acenaphthoimidazolium chloride 3 was prepared according to literature procedure.^{S5} Yield: 1.28 g, 78%. ¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 11.82$ (s, 1H), 8.00 (d, J = 8.0 Hz, 2H), 7.67 (t, J = 8.0 Hz, 2H), 7.57 (t, J = 7.6 Hz, 2H), 7.46 (d, J = 7.6 Hz, 4H), 7.23 (d, J = 6.8 Hz 2H), 2.77-2.66 (m, 4H), 1.39 (d, J = 6.8 Hz, 12H), 1.16 (d, J = 6.8 Hz, 12H); HR-MS (ESI): m/z 513.3264 (calcd, [M-Cl]⁺).

Pd complexes 4a was prepared according to literature procedure.^{S6} A Schlenk tube (50 mL) was charged with PdCl₂ (177 mg, 1.0 mmol), CH₃CN (20 mL, HPLC grade) and N, N-diethylbenzylamine (209 mg, 1.05 mmol). The stirred mixture was heated until a clear, dark orange solution was formed and PdCl₂ had dissolved completely. Then powdered K₂CO₃ (345 mg, 2.5 mmol) was added and stirred until the solution changed to canary yellow. Afterward, **3** (445 mg, 1.05 mmol) was added in one portion and refluxed for another 30 min. After cooling down, the mixture was diluted with CH₂Cl₂, filtered, and dried under vacuum. Yield: 0.48 g, 41%. ¹H NMR (CDCl₃, 400 MHz, 298 K): *δ* = 7.71 (d, *J* = 8.4 Hz, 2H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.42-7.30 (m, 6H), 6.90 (d, *J* = 6.8 Hz, 2H), 6.67 (d, *J* = 8.4 Hz, 1H), 6.35 (dd, *J* = 2.2 Hz, *J* = 8.0 Hz, 1H), 6.29 (d, *J* = 2.0 Hz, 1H), 3.81 (q, *J* = 6.9 Hz, 6H), 3.71 (t, *J* = 6.6 Hz, 2H), 3.61 (s, 2H), 3.58 (q, *J* = 6.4 Hz, 2H), 3.30-3.00 (m, 4H), 2.30 (m, 2H), 1.59 (m, 2H), 1.47 (d, *J* = 6.4 Hz, 6H), 1.34-1.24 (m, 8H), 1.23 (t, *J* = 7.0 Hz, 9H), 1.15 (d, *J* = 6.8 Hz, 6H), 1.11 (m, 6H), 1.00 (t, *J* = 7.0 Hz, 6H), 0.63 (d, *J* = 6.8 Hz, 6H), 0.60 (m, 2H), 0.57 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): *δ* = 186.3, 154.9, 149.6,

148.1, 146.0, 143.2, 140.8, 135.0, 130.0, 129.5, 127.7, 127.3, 126.5, 125.4, 124.5, 124.3, 121.8, 119.9, 107.4, 67.2, 64.2, 58.2, 54.8, 33.1, 29.43, 29.39, 29.36, 29.17, 29.13, 29.0, 28.8, 26.0, 25.7, 25.6, 23.9, 23.1, 22.7, 18.3, 12.3, 10.3. HR-MS (ESI): *m/z* 1161.5737 (calcd, [M-Cl]⁺); 942.4230 (found, [M-3EtO,-2Et,-Cl,+Na]⁺)

Scheme S3. Synthesis of SiO₂@Fe₃O₄-supported Pd complexes 5

Silica-coated Fe_3O_4 SMNP: Iron (II, III) oxide nanopowder Fe_3O_4 /MNP was used as a Fe_3O_4 source for silica-coated Fe_3O_4 /SMNP. The MNP and SMNP were prepared according to a literature procedure.^{S7}

SiO₂@Fe₃O₄-supported Pd complexes 5 (SMNP@NHC-Pd) was prepared according to literature procedure.^{S8} The silica-coated Fe₃O₄ (1.0 g) was added to a solution of complex 2 (0.15 g, 0.23 mmol) in toluene (10 mL) and the mixture was refluxed for 12 h. After cooling, the silica-coated Fe₃O₄ was magnetically separated from reaction mixture. Modified Fe₃O₄ was washed with methylene chloride several times and dried at 60 °C under vacuum. The Pd content of 0.01 mmol/g Pd as show in Table S1.

SMNP@NHC-Pd	Pd (mg/kg)	Loading (mmol/g):
А	1210	0.01137
В	1140	0.01071
С	1178	0.01107

Table S1: inductively coupled plasma of different batches of SMNP@NHC-Pd.

2.2. General Procedure for the Suzuki coupling reaction

D

To a 50 mL schlenk tube containing base (0.45 mmol) 9-chloroacridine (0.15 mmol), arylboronic acid (0.3 mmol) and catalyst **5** (70 mg, 0.11 mmol/g, 0.5 mol%) were mixed in toluene (4 mL). The mixture was stirred at 100 $^{\circ}$ C in an nitrogen atmosphere for 36 h, Then cooling to the room temperature. After magnetic separation of the catalyst, The solvent was evaporated under reduced pressure. The mixture was ready for purification by flash chromatography to yield the products. The separated catalyst was successively reused for the next reaction without any pre-treatment.

1259

Table S2. Optimization of reaction conditions of Pd-catalyzed Suzuki-MiyauraCoupling of 9-Chloroacridine with phenylboronic $acid^a$

		CI N	B(OH) ₂ Ba	se, 5		
	Solvent	Volume	5 / (mol%)	Base/equiv.	Temp.	Yield(%) ^[b]
		(mL)			(°C)	
1.	Xylene	2	0.5	K_3PO_4	90	75
2.	Xylene	2	0.5	K_3PO_4	100	80
3.	Xylene	2	0.5	K_3PO_4	110	74
4.	Xylene	2	0.5	K ₃ PO ₄	120	76
5.	DMF	2	0.5	K_3PO_4	100	42
6.	DMSO	2	0.5	K ₃ PO ₄	100	Complex
7.	Dioxane	2	0.5	K ₃ PO ₄	100	64
8.	Toluene	2	0.5	K ₃ PO ₄	100	89
9.	ACN	2	0.5	K ₃ PO ₄	100	NR
10.	DCE	2	0.5	K ₃ PO ₄	100	Trace
11.	t-BuOH	2	0.5	K ₃ PO ₄	100	67
12.	Toluene	2	0.5	KH ₂ PO ₄	100	NR

13.	Toluene	2	0.5	K_2HPO_4	100	NR
14.	Toluene	2	0.5	КОН	100	72
15.	Toluene	2	0.5	K ₂ CO ₃	100	Trace
16.	Toluene	2	0.5	t-BuOK	100	79
17.	Toluene	2	0.5	KOAc	100	Trace
18.	Toluene	2	0.5	KF	100	NR
19.	Toluene	1	0.5	K ₃ PO ₄	100	66
20.	Toluene	3	0.5	K ₃ PO ₄	100	94
21.	Toluene	4	0.5	K ₃ PO ₄	100	>99
22.	Toluene	6	0.5	K ₃ PO ₄	100	91
23.	Toluene	4	1.0	K ₃ PO ₄	80	89
24.	Toluene	4	1.0	K ₃ PO ₄	90	98
25.	Toluene	4	1.0	K ₃ PO ₄	100	>99
26.	Toluene	4	0.75	K ₃ PO ₄	100	>99
27.	Toluene	4	0.5	K ₃ PO ₄	100	>99
28.	Toluene	4	0.5	K ₃ PO ₄	100	95 ^{<i>f</i>}
29.	Toluene	4	0.5	K ₃ PO ₄	100	90 ^e
30.	Toluene	4	0.5	K ₃ PO ₄	100	72 ^d
31.	Toluene	4	0.4	K ₃ PO ₄	100	94
32.	Toluene	4	0.2	K ₃ PO ₄	100	87
33.	Toluene	4	0.5(4b)	K ₃ PO ₄	100	95
34.	Toluene	4	0.5(4c)	K ₃ PO ₄	100	99
35.	Toluene	4	0.5(4d)	K ₃ PO ₄	100	99
36.	Toluene	4	$PdCl_2(0.5)/Dppf$	K ₃ PO ₄	100	Trace ^c
			(0.75)			
37.	Toluene	4	Pd(OAc) ₂ (0.5)/ Binap	K ₃ PO ₄	100	NR ^c
			(0.75)			
38.	Toluene	4	Pd(OAc) ₂ (0.5)/PPh ₃	K ₃ PO ₄	100	23 ^c
			(1.0)			

39. Toluene 4 $Pd_2(dba)_3 (0.5)/PPh_3$ K_3PO_4 100 17^c (1.0)

^{*a*} Reaction was carried out with 0.15 mmol 9-chloroacridine under N_2 for 24 h; ^{*b*}Isolated yield;

^c Reaction was carried out with 1.5 mmol scale;

 d Reaction was carried out with 0.15 mmol 9-chloroacridine under N₂ for 12 h;

 e Reaction was carried out with 0.15 mmol 9-chloroacridine under N₂ for 18 h;

 f Reaction was carried out with 0.15 mmol 9-chloroacridine under N₂ for 21 h.

2. Data for the Pd complexes

Fig. S1: a) TEM of Fe₃O₄/MNP, b) TEM of Fe₃O₄@SiO₂/SMNP, c) TEM of

SMNP@NHC-Pd, d) TEM of recycled SMNP@NHC-Pd.

Fig. S2: SEM and EDX of SMNP@NHC-Pd.

Fig. S3: The differential scanning calorimetry-thermogravimetric analysis (DSC-TGA)

of SMNP@NHC-Pd.

Fig. S4: Recovery effect contrast of reaction post-processing.

Runs	Analyte Name	Elem	Reported Conc (Samp)	Samp Units
1	Pd 363.470	Pd	ND	mg/L
2	Pd 324.270	Pd	ND	mg/L
3	Pd 324.270	Pd	ND	mg/L
4	Pd 324.270	Pd	ND	mg/L
5	Pd 363.470	Pd	ND	mg/L

Table S3: ICP of every run of the recovered reaction systems.

Table S4: ICP of every run of the Pd residue in the isolated products.

Runs	Analyte Name	Elem	Reported Conc (Samp)	Samp Units
1	Pd 363.470	Pd	ND	mg/L
2	Pd 324.270	Pd	ND	mg/L
3	Pd 324.270	Pd	ND	mg/L
4	Pd 324.270	Pd	ND	mg/L
5	Pd 363.470	Pd	ND	mg/L

Table S5: mercury tests.

Entry	[Cat.] (mol%)	Additive or Note	Time (h)	Yield (%)
1	1	Hg (1 drop after 0 h)	24	81
2	1	Hg (1 drop after 2 h)	24	88
3	1	Hg (1 drop after 4 h)	24	97

Table S6: Substrate scope

^{*a*} Reaction was carried out with 0.5 mmol aryl chloride, 0.5 mol% **5** (SMNP@NHC-Pd), 3.0 equiv. K_3PO_4 in 4 mL toluene under N_2 at 100 °C for 24 h; ^{*b*} Isolated yield. ^{*c*} for 30 h.

4. Data for the products of carbonylative aminations.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.38 (d, *J* = 8.4 Hz, 2H), 7.78-7.73 (m, 4H), 7.44-7.40 (m, 2H), 7.20 (s, 1H), 7.05 (s, 2H), 2.44 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ = 148.9, 147.2, 136.0, 130.5, 130.0, 129.7, 128.5, 128.4, 126.9, 125.7, 125.2.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.29$ (d, J = 8.8 Hz, 2H), 7.80-7.76 (m, 2H), 7.55-7.39 (m, 7H), 7.24 (d, J = 7.6 Hz, 1H), 1.88 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 149.0$, 147.1, 137.0, 135.6, 130.3, 130.2, 129.8, 128.9, 128.7, 126.7, 126.0, 125.8, 125.2, 19.8.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.27$ (d, J = 8.8 Hz, 2H), 7.79-7.71 (m, 4H), 7.49 (t, J = 7.4 Hz, 2H), 7.44-7.38 (m, 3H), 7.25 (s, 1H), 2.48 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 149.0$, 147.3, 138.3, 136.1, 131.2, 130.1, 129.8, 129.2, 128.5, 127.7, 127.1, 125.6, 125.3, 21.7.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.28 (d, *J* = 9.2 Hz, 2H), 7.75 (t, *J* = 7.6 Hz, 4H), 7.42-7.39 (m, 4H), 7.05 (t, *J* = 7.4 Hz, 1H), 2.52 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ = 148.9, 147.5, 138.3, 133.0, 130.5, 130.0, 129.7, 129.2, 127.1, 125.6, 125.4, 21.5.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.27$ (d, J = 8.8 Hz, 2H), 7.81-7.68 (m, 2H), 7.63 (d, J = 8.6 Hz, 2H), 7.59-7.51 (m, 1H), 7.45-7.34 (m, 2H), 7.24 (dd, J = 7.3, 1.7 Hz, 1H), 7.16 (dd, J = 15.5, 7.9 Hz, 2H), 3.60 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 157.35$, 148.80, 144.61, 131.87, 130.12, 129.79, 129.59, 126.83, 125.49, 125.34, 124.59, 120.62, 111.23, 55.54.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.27$ (d, J = 8.8 Hz, 2H), 7.77-7.73 (m, 4H), 7.43-7.34 (m, 4H), 7.12 (d, J = 8.0 Hz, 2H), 3.93 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 159.6$, 148.8, 147.1, 131.7, 129.9, 129.5, 127.8, 126.9, 125.4, 113.9, 55.3.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.29$ (d, J = 8.7 Hz, 2H), 7.77 (t, J = 7.5 Hz, 2H), 7.56 (t, J = 8.7 Hz, 3H), 7.49-7.31 (m, 4H), 7.24 (t, J = 6.5 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 148.86$, 145.20, 138.82, 134.32, 130.65, 130.02, 129.73, 129.23, 126.42, 125.79, 125.17, 125.09, 124.75, 15.56. HR-MS (ESI): m/z 301.0925 (calcd, [M]⁺); 302.1008 (found, [M+H]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.27$ (d, J = 8.7 Hz, 2H), 7.76 (dd, J = 15.3, 7.8 Hz, 4H), 7.53-7.39 (m, 4H), 7.37 (d, J = 8.1 Hz, 2H), 2.61 (s, 4H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 148.78$, 146.63, 139.18, 132.32, 130.89, 129.95, 129.61, 126.73, 126.06, 125.62, 125.16, 15.51.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.27 (d, *J* = 9.2 Hz, 2H), 7.78-7.75 (m, 4H), 7.61 (d, *J* = 8.4 Hz, 2H), 7.44-7.37 (m, 4H), 1.47 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ = 151.3, 148.8, 148.5, 132.8, 130.2, 129.9, 127.1, 125.4, 125.3, 34.8, 31.4.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.28 (d, *J* = 8.8 Hz, 2H), 7.80-7.76 (m, 2H), 7.77 (d, *J* = 8.8 Hz, 2H), 7.61-7.59 (m, 2H), 7.47-7.38 (m, 4H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ = 148.9, 145.7, 134.7, 134.5, 131.9, 130.1, 129.8, 128.9, 126.5, 126.0, 125.1.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.28$ (d, J = 8.8 Hz, 2H), 7.77-7.74 (m, 2H), 7.66 (d, J = 8.8 Hz, 2H), 7.44-7.38 (m, 4H), 7.32-7.28 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 164.0$, 161.6, 148.7, 145.9, 132.2, 132.1, 130.0, 129.7, 126.5, 125.8, 115.6 (d, J = 8.0 Hz, 1C). ¹⁹F NMR (CDCl₃, 376 MHz, 298 K): $\delta = -113.15$, -113.19, -113.20. HR-MS (ESI): m/z 273.0954 (calcd, [M]⁺); 274.1046 (found, [M+H]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.30 (d, *J* = 8.8 Hz, 2H), 7.87-7.72 (m, 2H), 7.63 (d, *J* = 8.7 Hz, 2H), 7.52-7.44 (m, 2H), 7.43-7.32 (m, 1H), 7.21-7.05 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ = 164.69 (d, *J* = 4.0 Hz, 1C), 162.20 (d, *J* = 4.0 Hz, 1C), 161.53 (d, *J* = 4.8 Hz, 1C), 159.09, 148.74, 139.71, 133.25 (q, *J* = 2.0 Hz, 1C), 129.98 (d, *J* = 7.2 Hz, 1C) 126.08 (d, *J* = 12 Hz, 1C), 125.36, 119.43 (t, *J* = 5.6 Hz, 1C), 111.81 (q, *J* = 2.5 Hz, 1C). 104.60 (t, *J* = 10.2 Hz, 1C). ¹⁹F NMR (CDCl₃, 376 MHz, 298 K): δ = -108.18, -108.20, -108.22, -108.24, -108.48, -108.51, -108.53, -108.55, -108.57.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.30$ (d, J = 8.8 Hz, 2H), 7.89 (d, J = 8.0 Hz, 2H), 7.81-7.77 (m, 2H), 7.60 (t, J = 7.4 Hz, 4H), 7.45 (t, J = 7.8 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 147.9$, 144.3, 139.1, 130.0, 129.2, 129.0, 125.3, 124.7, 124.7(q, J = 14.7 Hz, 1C), 123.9. ¹⁹F NMR (CDCl₃, 376 MHz, 298 K): $\delta = -62.51$. HR-MS (ESI): m/z 323.0922 (calcd, [M]⁺); 324.0989 (found, [M+H]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.38 (d, *J* = 8.4 Hz, 2H), 7.78-7.73 (m, 4H), 7.44-7.40 (m, 2H), 7.20 (s, 1H), 7.05 (s, 2H), 2.44 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ = 148.9, 147.9, 138.1, 135.9, 130.0, 129.6, 128.3, 127.2, 125.5, 125.3, 21.5.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.34$ (d, J = 8.8 Hz, 2H), 8.08 (d, J = 8.4 Hz, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.79-7.75 (m, 2H), 7.69 (t, J = 7.6 Hz, 1H), 7.51-7.43 (m, 4H), 7.34-7.30 (m, 2H), 7.25-7.21 (m, 1H), 7.03 (d, J = 8.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 149.0$, 145.9, 133.8, 133.6, 132.7, 130.2, 129.8, 129.0, 128.6, 128.5, 128.4, 127.1, 126.8, 126.4, 126.2, 126.1, 125.9, 125.4.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.31$ (d, J = 8.8 Hz, 2H), 8.08 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.8 Hz, 1H), 7.95-7.92 (m, 2H), 7.81-7.73 (m, 4H), 7.66-7.55 (m, 3H), 7.45-7.40 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 148.0$, 146.3, 132.6, 132.2, 129.1, 128.9, 128.8, 127.4, 127.32, 127.27, 127.1, 126.1, 126.0, 125.9, 124.8, 124.5.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.27$ (d, J = 8.8 Hz, 2H), 8.09 (d, J = 8.8 Hz, 2H), 7.82-7.77 (m, 3H), 7.52 (t, J = 7.2 Hz, 2H), 6.85 (d, J = 2.0 Hz, 1H), 6.76 (d, J = 0.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 148.9$, 148.2, 144.0, 130.0, 129.8, 126.4, 126.3, 125.2, 114.1, 111.4. HR-MS (ESI): m/z 245.0841 (calcd, [M]⁺); 246.0906 (found, [M+H]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.67$ (d, J = 8.8 Hz, 2H), 8.21 (d, J = 8.8 Hz, 2H), 7.73 (t, J = 7.6 Hz, 2H), 7.52 (t, J = 7.6 Hz, 2H), 2.49-2.45 (m, 1H), 1.48-1.45 (m, 2H), 0.86-0.85 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 148.5$, 146.0, 129.9, 129.6, 126.7, 125.7, 125.0, 10.0, 8.4. HR-MS (ESI): m/z 219.1048 (calcd, [M]⁺); 220.1105 (found, [M+H]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.25$ (d, J = 9.2 Hz, 4H), 7.80-7.76 (m, 2H), 7.58-7.54 (m, 2H), 7.36-7.30 (m, 4H), 7.28-7.24 (m, 1H), 3.95-3.91 (m, 2H), 3.14-3.09 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 148.7$, 145.5, 141.1, 130.4, 129.8, 128.7, 128.3, 126.5, 125.7, 124.8, 124.1, 37.1, 29.7.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.34$ (d, J = 8.8 Hz, 2H), 8.25 (d, J = 8.8 Hz, 2H), 7.91 (d, J = 16.8 Hz, 1H), 7.81-7.77 (m, 2H), 7.70 (d, J = 7.2 Hz, 2H), 7.56-7.47 (m, 4H), 7.43-7.39 (m, 1H), 7.06 (d, J = 16.4 Hz, 4H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 148.9$, 143.1, 139.6, 136.6, 130.1, 130.0, 129.1, 128.9, 127.0, 126.0, 125.7, 124.6, 122.2.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.47$ (s, 1H), 8.17 (d, J = 9.4 Hz, 1H), 7.79 (d, J = 7.3 Hz, 2H), 7.69 (s, 2H), 7.65-7.54 (m, 3H), 7.53-7.42 (m, 5H), 7.39 (t, J = 7.2 Hz, 1H), 6.83 (s, 1H), 3.72 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 156.91$, 147.42, 146.40, 144.43, 141.11, 140.16, 136.26, 131.10, 130.28, 128.96,

128.62, 128.29, 127.86, 127.34, 126.81, 126.70, 125.92, 125.67, 125.00, 124.52, 102.09, 55.25. HR-MS (ESI): *m*/*z* 361.1467 (calcd, [M]⁺); 362.1542 (found, [M+H]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.66-7.59 (m, 2H), 7.55 (d, *J* = 7.2 Hz, 3H), 7.51-7.43 (m, 4H), 2.51 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ = 141.92, 141.89, 135.22, 130.25, 129.74, 129.13, 128.01, 127.20, 126.69, 125.72, 20.40.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.55 (d, *J* = 7.5 Hz, 2H), 7.37 (dd, *J* = 12.4, 5.0 Hz, 4H), 7.28 (t, *J* = 7.5 Hz, 2H), 7.12 (d, *J* = 7.3 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ = 141.48, 141.36, 138.41,128.81, 128.12, 128.09, 127.29, 124.40, 21.65.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.56 (d, *J* = 7.3 Hz, 2H), 7.47 (d, *J* = 8.1 Hz, 2H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.29 (t, *J* = 7.3 Hz, 1H), 7.22 (d, *J* = 7.9 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ = 141.23, 138.42,137.06, 129.55, 128.78, 127.04, 21.16.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.36 (t, *J* = 7.4 Hz, 2H), 7.27 (t, *J* = 7.4 Hz, 1H), 7.19-7.02 (m, 5H), 2.01 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ = 141.80, 141.06, 135.92, 128.94, 128.36, 127.24, 126.99, 126.54, 20.79.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.58 (d, *J* = 7.4 Hz, 2H), 7.53 (d, *J* = 8.3 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.3 Hz, 1H), 1.35 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ = 150.21, 141.04, 138.30, 128.67, 127.00, 126.96, 126.77, 125.69, 34.50, 31.36.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 7.64 - 7.55$ (m, 4H), 7.49 (t, J = 7.6 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H), 7.18 (t, J = 8.7 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 163.67$, 161.22, 140.21, 137.31, 137.29, 128.69 (t, J = 3.6 Hz, 1C). 127.10 (d, J =9.8 Hz, 1C)., 115.57 (d, J = 8.5 Hz, 1C). ¹⁹F NMR (CDCl₃, 376 MHz, 298 K): $\delta =$ -115.67, -115.68, -115.69, -115.72.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.59 (d, *J* = 7.7 Hz, 2H), 7.44 (d, *J* = 1.7 Hz, 1H), 7.42 – 7.35 (m, 4H), 7.28 (t, *J* = 7.3 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ = 142.36, 135.85, 128.78, 127.11, 126.44, 126.33,126.17,120.25. (t, *J* = 3.6 Hz, 1C). 127.10 (d, *J* = 9.8 Hz, 1C)., 115.57 (d, *J* = 8.5 Hz, 1C).

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.16$ (s, 1H), 7.80 (d, J = 8.3 Hz, 1H), 7.63 (d, J = 7.5 Hz, 2H), 7.55 (dd, J = 8.3, 1.4 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 2.80 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 167.49$, 153.96, 140.62, 139.36, 134.48, 128.77, 127.28, 127.20, 124.02, 121.38, 120.56, 20.04. (t, J = 3.6 Hz, 1C). 127.10 (d, J = 9.8 Hz, 1C)., 115.57 (d, J = 8.5 Hz, 1C).

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.85$ (s, 1H), 8.57 (d, J = 4.2 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.54 (d, J = 7.3 Hz, 2H), 7.44 (t, J = 7.4 Hz, 2H), 7.38 – 7.26 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 147.82$, 147.68, 137.37, 136.59, 134.48, 133.04, 128.92, 128.02, 127.30, 126.94, 123.48. ¹⁹F NMR (CDCl₃, 376 MHz, 298 K): $\delta = -115.67$, -115.68, -115.69,115.72. HR-MS (ESI): m/z 273.0954 (calcd, [M]⁺); 274.1046 (found, [M+H]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.89 (d, *J* = 4.4 Hz, 1H), 8.15 (d, *J* = 1.9 Hz, 1H), 7.82 (d, *J* = 9.0 Hz, 1H), 7.49 (t, *J* = 6.2 Hz, 3H), 7.46-7.34 (m, 3H), 7.28 (d, *J* = 4.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ = 150.79, 148.90, 148.36, 137.25, 135.06, 134.66, 130.31, 129.27, 128.54, 127.40, 127.15, 124.99, 121.29.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.93$ (d, J = 4.4 Hz, 1H), 8.40 (d, J = 1.5 Hz, 1H), 7.98 (d, J = 8.7 Hz, 1H), 7.82-7.68 (m, 3H), 7.62-7.44 (m, 7H), 7.41 (dd, J = 7.4, 3.2 Hz, 1H), 7.31 (d, J = 4.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 150.33$, 148.89, 148.33, 141.94, 140.02, 137.85, 130.62, 129.46, 128.95, 128.57, 128.45, 127.89, 127.41, 127.27, 126.32, 126.18, 121.15.

5. ¹H, ¹³C NMR and MS spectra for important compounds.

Figure S1. ¹H NMR spectrum of compound **a**.

Figure S2. ¹³C NMR spectrum of compound **a**.

Figure S3. ¹H NMR spectrum of compound **b**.

Figure S4. ¹³C NMR spectrum of compound **b**

Figure S5. ¹H NMR spectrum of compound **c**.

Figure S6. ¹³C NMR spectrum of compound **c**.

Analysis Info Analysis Name Method

me D:\Data\2016MS\TT\0419\DQ-1604191_RC5_01_8809.d tune_200-800_hcoona-pos-10min.m ne DQ-1604191 Acquisition Date 4/20/2016 4:16:26 AM

Operator gftang Instrument / Ser# micrOTOF II 10257

Sample Name Comment

Figure S7. ESI-MS spectrum of compound c.

Figure S8. ¹H NMR spectrum of compound **2**.

ppm (t1)

Figure S9. ¹H NMR spectrum of compound 2.

Figure S10. ¹H NMR spectrum of compound **4a**.

Figure S11. ¹³C NMR spectrum of compound **4a**.

Analysis Info

Analysis Name D:\D Method tune Sample Name DQ-Comment

b:\Data\2016MS\TT\0419\DQ-1604192_RC6_01_8810.d tune_200-800_hcoona-pos-10min.m e DQ-1604192

Acquisition Date 4/20/2016 4:37:18 AM

Operator gftang Instrument / Ser# micrOTOF II 10257

Figure S12. ESI-MS spectrum of compound 4a.

Figure S13. ¹H NMR spectrum of compound **6**.

Figure S14. ¹³C NMR spectrum of compound **6**.

Figure S15. ¹H NMR spectrum of compound 7a.

Figure S16. ¹³C NMR spectrum of compound **7a**.

Figure S17. ¹H NMR spectrum of compound 7b.

Figure S18. ¹³C NMR spectrum of compound **7b**.

Figure S19. ¹H NMR spectrum of compound 7c.

Figure S20. ¹³C NMR spectrum of compound **7c**.

Figure S21. ¹H NMR spectrum of compound 8a.

Figure S22. ¹³C NMR spectrum of compound **8a**.

Figure S23. ¹H NMR spectrum of compound 8b.

Figure S24. ¹³C NMR spectrum of compound **8b**.

Figure S25. ¹H NMR spectrum of compound 9a.

Figure S26. ¹³C NMR spectrum of compound **9a**.

Figure S27. ESI-MS spectrum of compound 9a

Figure S28. ¹H NMR spectrum of compound 9b.

Figure S29. ¹³C NMR spectrum of compound **9b**.

Figure S30. ¹H NMR spectrum of compound 10.

Figure S31. ¹³C NMR spectrum of compound **10**.

Figure S32. ¹H NMR spectrum of compound 11.

Figure S33. ¹³C NMR spectrum of compound **11**.

Figure S34. ¹H NMR spectrum of compound 12a.

Figure S35. ¹³C NMR spectrum of compound **12a**.

Figure S36. ¹⁹F NMR spectrum of compound **12a**.

Analysis Info

Method

Analysis Name D:\Data\2016MS\TT\0419\DQ-1604193_RD7_01_8844.d tune_200-800_hcoona-pos-10min.m DQ-1604193 Sample Name

Acquisition Date 4/21/2016 4:26:30 PM

Operator gftang micrOTOF II Instrument / Ser# 10257

Comment								
Acquisition Parameter								
Source Type Focus	ESI Not active	Ion Polarity	Positive	Set Nebulizer Set Dry Heater	1.0 Bar 200 ℃			
Scan Begin Scan End	100 m/z 1500 m/z	Set Capillary Set End Plate Offset	4000 ∨ -500 ∨	Set Dry Gas Set Divert Valve	6.0 l/min Waste			

Figure S37. ESI-MS spectrum of compound 12a

Figure S38. ¹H NMR spectrum of compound 12b

Figure S39. ¹³C NMR spectrum of compound **12b**.

Figure S40. ¹⁹F NMR spectrum of compound **12b**.

Figure S41. ¹H NMR spectrum of compound **13**.

Figure S42. ¹³C NMR spectrum of compound **13**.

Figure S43. ¹⁹F NMR spectrum of compound **13**.

Analysis Info

Method

Analysis Name D:\Data\2016MS\TT\0419\DQ-1604194_RC7_01_8811.d tune_200-800_hcoona-pos-10min.m DQ-1604194 Sample Name Comment

Acquisition Date 4/20/2016 4:58:10 AM

Operator gftang micrOTOF II Instrument / Ser#

10257

Acquisition Parameter								
Source Type Focus	ESI Not active	Ion Polarity	Positive	Set Nebulizer Set Dry Heater	1.0 Bar 200 ℃			
Scan Begin Scan End	100 m/z 1500 m/z	Set Capillary Set End Plate Offset	4000 ∨ -500 ∨	Set Dry Gas Set Divert Valve	6.0 l/min Waste			

Figure S44. ESI-MS spectrum of compound 13.

Figure S45. ¹H NMR spectrum of compound 9.

Figure S46. ¹³C NMR spectrum of compound **9**.

Figure S47. ¹H NMR spectrum of compound **15**.

Figure S48. ¹³C NMR spectrum of compound **15**.

Figure S49. ¹H NMR spectrum of compound 16.

Figure S50. ¹³C NMR spectrum of compound **16**.

Figure S51. ¹H NMR spectrum of compound 17.

Figure S52. ¹³C NMR spectrum of compound **17**.

Analysis Info

Analysis Name D:\Data\2016MS\TT\0419\DQ-1604195_RC8_01_8812.d tune_200-800_hcoona-pos-10min.m DQ-1604195

Acquisition Date 4/20/2016 5:19:00 AM

Operator gftang Instrument / Ser# micrOTOF II 10257

Method Sample Name Comment

Acquisition Parameter								
Source Type Focus	ESI Not active	Ion Polarity	Positive	Set Nebulizer Set Dry Heater	1.0 Bar 200 ℃			
Scan Begin Scan End	100 m/z 1500 m/z	Set Capillary Set End Plate Offset	4000 ∨ -500 ∨	Set Dry Gas Set Divert Valve	6.0 l/min Waste			

Figure S53. ESI-MS spectrum of compound 17

Figure S54. ¹H NMR spectrum of compound 18.

Figure S55. ¹³C NMR spectrum of compound 18.

Analysis Info

Method

Analysis Name D:\Data\2016MS\TT\0419\DQ-1604197_RD2_01_8814.d tune_200-800_hcoona-pos-10min.m DQ-1604197 Sample Name Comment

Acquisition Date 4/20/2016 6:00:46 AM

Operator gftang micrOTOF II Instrument / Ser# 10257

Acquisition Parameter							
Source Type Focus	ESI Not active	Ion Polarity	Positive	Set Nebulizer Set Dry Heater	1.0 Bar 200 ℃		
Scan Begin Scan End	100 m/z 1500 m/z	Set Capillary Set End Plate Offset	4000 ∨ -500 ∨	Set Dry Gas Set Divert Valve	6.0 l/min Waste		

Figure S56. ESI-MS spectrum of compound 18

Figure S57. ¹H NMR spectrum of compound 19.

Figure S58. ¹³C NMR spectrum of compound **19**.

Figure S59. ¹H NMR spectrum of compound 20.

Figure S60. ¹³C NMR spectrum of compound **20**.

Figure S61. ¹H NMR spectrum of compound 21.

Figure S62. ¹³C NMR spectrum of compound **S21**.

Figure S63. ESI-MS spectrum of compound 21

Figure S64. ¹H NMR spectrum of compound S1a.

Figure S65. ¹³C NMR spectrum of compound **S1a**.

Figure S66. ¹H NMR spectrum of compound S1b.

Figure S67. ¹³C NMR spectrum of compound **S1b**.

Figure S68. ¹H NMR spectrum of compound S1c.

Figure S69. ¹³C NMR spectrum of compound **S1c**.

Figure S70. ¹H NMR spectrum of compound **S2.**

Figure S71. ¹³C NMR spectrum of compound **S2**.

Figure S72. ¹H NMR spectrum of compound **S3.**

Figure S73. ¹³C NMR spectrum of compound **S3**.

Figure S74. ¹H NMR spectrum of compound S4.

Figure S75. ¹³C NMR spectrum of compound **S4**.

Figure S76. ¹⁹F NMR spectrum of compound **S4**.

Figure S77. ¹H NMR spectrum of compound **S5.**

Figure S78. ¹³C NMR spectrum of compound **S5**.

Figure S79. ¹H NMR spectrum of compound **S6.**

Figure S80. ¹³C NMR spectrum of compound **S6**.

Figure S81. ¹H NMR spectrum of compound **S7.**

Figure S82. ¹³C NMR spectrum of compound **S7**.

Figure S83. ¹H NMR spectrum of compound **S8.**

Figure S84. ¹³C NMR spectrum of compound **S8**.

Figure S85. ¹H NMR spectrum of compound **S9.**

Figure S86. ¹³C NMR spectrum of compound **S9**.

6. References.

- S1. S. Kato, F.-Q. Chen and C. Pac, J. Phys. Chem. B, 2004, 108, 320.
- S2. L. Yu, R. Cao, W. Yi, Q. Yan, Z. Chen, L. Ma, W. Peng and H. Song, *Bioorg. Med. Chem. Lett.*, 2010, **20**, 3254.
- S3. S. Delarue-Cochin, E. Paunescu, L. Maes, E. Mouray, C. Sergheraert, P. Grellier and P. Melnyk, *Eur. J. Med. Chem.*, 2008, 43, 252.
- S4. P. Stegmaier, J. M. Alonso and A. Campo, Langmuir, 2008, 24, 11872.
- S5. T. Tu, W. Fang and J. Jiang, Chem. Commun., 2011, 47, 12358.
- Y. Wang, X. Yang, C. Zhang, J. Yu, J. Liu and C. Xia, *Adv. Synth. Catal.*, 2014, 356, 2539.
- S7. Q. Yue, Y. Zhang, C. Wang, X. Wang, Z. Sun, X.-F. Hou, D. Zhao and Y. Deng, J. Mater. Chem. A, 2015, 3, 4586.
- S8. M.-J. Jin and D.-H. Lee, Angew. Chem. Int. Ed., 2010, 49, 1119.