Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Synthesis and reactivity of iron-dinitrogen complexes bearing anionic methyl- and phenyl-substituted pyrrole-based PNP-type pincer ligands toward catalytic nitrogen fixation

Yoshiya Sekiguchi, Shogo Kuriyama, Aya Eizawa, Kazuya Arashiba, Kazunari Nakajima, and Yoshiaki Nishibayashi*

Department of Systems Innovation, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

General Methods.

¹H NMR (400 MHz), ³¹P{¹H} NMR (162 MHz), and ¹³C NMR (101 MHz) spectra were recorded on a JEOL ECS-400 spectrometer in suitable solvent, and spectra were referenced to residual solvent (¹H and ¹³C{¹H}) or external standard (³¹P{¹H}: H₃PO₄). IR spectra were recorded on a JASCO FT/IR 4100 Fourier transform infrared spectrometer. Magnetic susceptibility was measured in solution by using Evans' method.¹⁻³ Absorption spectra were recorded on a Shimadzu MultiSpec-1500. Evolved dihydrogen was quantified by gas chromatography using a Shimadzu GC-8A with a TCD detector and a SHINCARBON ST (6 m 3 mm). Elemental analyses were performed at Microanalytical Center of The University of Tokyo.

All manipulations were carried out under an atmosphere of nitrogen by using standard Schlenk techniques or glovebox techniques unless otherwise stated. Solvents were dried by general methods, and degassed before use. 3,4-dimethylpyrrole,⁴ 2,5-bis(dimethylaminomethyl)-3,4-diphenylpyrrole,⁵ [FeCl₂(thf)_{1.5}] (thf = tetrahydrofuran),⁶ KC₈,⁷ and [H(OEt₂)₂][BAr^F₄] (Ar^F = 3,5-(CF₃)₂C₆H₃)⁸ were prepared according to the literature method. **3a** was prepared according to the previous paper,⁹ and the crystals suitable for X-ray crystallography was obtained by recrystallization from Et₂O/hexane. All the other reagents were commercially available.

Preparation of 2,5-bis(dimethylaminomethyl)-3,4-dimethylpyrrole.

3,4-Dimethylpyrrole (0.419 g, 4.40 mmol), dimethylamine hydrochloride (0.790 mg, 9.69 mmol) and formaldehyde solution (37% in H₂O, 1 mL) were dissolved in MeOH (5 mL), and then the solution was stirred at 0 °C for 12 h. To the resultant black solution was slowly added a solution of NaOH (1.75 M in H₂O, 10 mL) at 0 °C. After the solution was extracted with Et₂O, the organic layer was dried over anhydrous sodium sulfate, filtered and evaporated to afford black oil. The crude compound was purified by sublimation to give the title compound as a yellow solid (435 mg, 2.08 mmol, 47%).

¹H NMR (CDCl₃): 8.15 (s, N*H*, 1H), 3.32 (s, C*H*₂NMe₂, 4H), 2.19 (s, CH₂N*Me*₂, 12H), 1.94 (s, *Me*, 6H). ¹³C {¹H} NMR (CDCl₃): 123.7, 115.4, 54.5, 45.1, 9.0. Anal. Calcd. for C₁₂H₂₃N₃: C, 68.85; H, 11.07; N, 20.07. Found: C, 68.90; H, 10.98; N, 19.68. M.p. = 49.2-51.0 °C.

Preparation of 2,5-bis(di-tert-butylphosphinomethyl)-3,4-dimethylpyrrole.

A mixture of 2,5-bis(dimethylaminomethyl)-3,4-dimethylpyrrole (587 mg, 2.80 mmol) and di-*tert*butylphosphine (870 mg, 5.95 mmol) was stirred at 150 °C for 20 h. All volatiles were removed *in vacuo* to afford dark brown oil (826 mg, 2.01 mmol, 72 %), which was used in the next reaction without further purification. ¹H NMR (C₆D₆): 8.55 (s, N*H*, 1H), 2.74 (s, $CH_2P^tBu_2$, 4H), 2.13 (s, *Me*, 6H), 1.05 (d, $J_{P-H} = 10.5$ Hz, $CH_2P^tBu_2$, 36H). ³¹P{¹H} NMR (C₆D₆): 21.3 (s).

Preparation of 2,5-bis(di-tert-butylphosphinomethyl)-3,4-diphenylpyrrole.

2,5-Bis(dimethylaminomethyl)-3,4-diphenylpyrrole (621 mg, 1.86 mmol) and di-*tert*-butylphosphine (567 mg, 3.88 mmol) was mixed and stirred at 150 °C for 20 h. All volatiles were removed *in vacuo* to afford dark brown oil (927 mg, 1.73 mmol, 93%), which was used in the next reaction without further purification. ¹H NMR (C₆D₆): 9.40 (s, N*H*, 1H), 7.45-7.42 (m, *Ph*, 4H), 7.20-7.16 (m, *Ph*, 4H), 7.04-7.00 (m, *Ph*, 2H), 3.01 (s, $CH_2P^tBu_2$, 4H), 0.99 (d, $J_{P-H} = 10.5$ Hz, $CH_2P^tBu_2$, 36H). ³¹P{¹H} NMR (C₆D₆): 23.2 (s).

Preparation of lithium 2,5-bis(di-tert-butylphosphinomethyl)-3,4-diphenylpyrrolide (Ph-PNP-Li).

To a solution of 2,5-bis(di-*tert*-butylphosphinomethyl)-3,4-diphenylpyrrole (4.06 g, 7.58 mmol) in toluene (15 mL) was added dropwise *n*BuLi (1.60 M in hexane, 5.20 mL, 8.32 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 30 min, and the solvent was removed *in vacuo*. The obtained solid was washed with pentane and dried *in vacuo* to afford Ph-PNP-Li as a white solid (3.03 g, 5.59 mmol, 74%).

¹H NMR (THF-*d*₈): 7.00-6.99 (m, C₅*H*₆, 8H), 6.82-6.76 (m, C₅*H*₆, 2H), 3.05 (s, C*H*₂P'Bu₂, 4H), 0.97 (d, *J*_{P-H} = 10.1 Hz, CH₂ P'Bu₂, 36H). ³¹P{¹H} NMR (THF-*d*₈): 22.1 (s). Anal. Calcd. for C₃₄H₅₀LiNP₂: C, 75.39; H, 9.30; N, 2.59. Found: C,75.69; H, 9.49; N, 2.85.

Preparation of [FeCl(Me-PNP)] (2b).

To a solution of 2,5-bis(di-*tert*-butylphosphinomethyl)-3,4-dimethylpyrrole (826 mg, 2.01 mmol) in THF (8 mL) was added 1.3 M lithium bis(trimethylsilyl)amide THF solution (1.6 mL), and then the resulting black mixture was stirred at room temperature for 1 h. After the solvent was removed *in vacuo*, toluene (8 mL) was added. To the resultant black solution was added a suspension of $[FeCl_2(thf)_{1.5}]$ (472 mg, 2.01 mmol) in toluene (8 mL). After stirring at room temperature for 13 h, the mixture was filtered through Celite and concentrated *in vacuo*. The residue was dissolved in benzene and to the solution was added pentane (2 mL) to give orange precipitate. The precipitate was collected by filtration, washed with pentane and dried *in vacuo* to give **2b** (416 mg, 0.830 mmol, 41%). Orange crystals of **2b** suitable for X-ray crystallography were obtained by recrystallization from Et₂O at -30 °C. ¹H NMR (C₆D₆): -9.56, -24.3. Magnetic susceptibility (Evans' method): $\mu_{eff} = 3.9\pm0.1 \ \mu_{B}$ in C₆D₆ at 298 K. Anal. Calcd. for C₂₄H₄₆ClFeNP₂: C, 57.44; H, 9.24; N, 2.79. Found: C, 57.40; H, 9.07; N, 2.96.

Preparation of [FeCl(Ph-PNP)] (2c).

To a suspension of $[FeCl_2(thf)_{1.5}]$ (137 mg, 0.581 mmol) in toluene (3 mL) was added a suspension of lithium 2,5-bis(di-*tert*-butylphosphinomethyl)-3,4-diphenylpyrrolide (358 mg, 0.661 mmol) in toluene (6 mL), and then the resultant orange mixture was stirred at room temperature for 13 h. Hexane (3mL) was added to the orange mixture and stirred at room temperature for a few minutes. The mixture was filtered through Celite, and concentrated to *ca*. 1 mL. Then, addition of hexane (3 mL) afforded the orange solid **2c**, which was collected by decantation, washed with hexane and dried *in vacuo* (286 mg. 0.456 mmol, 78%). Orange crystals of **2c** suitable for X-ray crystallography were obtained by recrystallization from Et₂O at -30 °C.

¹H NMR (C₆D₆): 24.9, 18.1, -7.2, -24.9. Magnetic susceptibility (Evans' method): $\mu_{eff} = 3.7 \pm 0.1 \ \mu_{B}$ in C₆D₆ at 298 K. Anal. Calcd. for C₃₄H₅₀ClFeNP₂: C, 65.23; H, 8.05; N, 2.24. Found: C, 65.41; H, 7.97; N, 2.47.

Preparation of [FeN₂(Me-PNP)] (1b).

To a suspension of **2b** (42.7 mg, 0.0851 mmol) and KC₈ (22.2 mg, 0.164 mmol) in THF (4 mL) was stirred at room temperature for 13 h under N₂ (1 atm). The resultant black suspension was concentrated *in vacuo*. After the addition of toluene (3 mL) to the dark red residue, the solution was filtered through Celite. The filtrate was concentrated to *ca*. 0.5 mL and pentane (2 mL) was added to give **1b** as a dark purple solid, which were collected by filtration and dried *in vacuo* (14.6mg, 0.0295 mmol, 35%). Purple crystals of **1b** suitable for X-ray crystallography were obtained by recrystallization from Et₂O at -30 °C.

¹H NMR (C₆D₆): -1.89, -14.8. Magnetic susceptibility (Evans' method): $\mu_{eff} = 2.5 \pm 0.1 \mu_B$ in C₆D₆ at 298 K. IR (KBr, cm⁻¹) 1959 (v_{NN}). Anal. Calcd. for C₂₄H₄₆FeN₃P₂: C, 58.30; H, 9.38; N, 8.50. Found: C, 58.14; H, 9.18; N, 7.97.

Preparation of [FeN₂(Ph-PNP)] (1c).

A suspension of 2c (206 mg, 0.328 mmol) and KC₈ (82.2 mg, 0.608 mmol) in THF (6 mL) was stirred at room temperature for 13 h under N₂ (1 atm). The resultant black suspension was concentrated *in vacuo*. After the addition of Et₂O (5 mL) to the dark red residue, the solution was filtered through Celite. The filtrate was concentrated to *ca*. 1 mL and pentane (3 mL) was added to give 1c as a dark purple solid, which were collected by decantation and dried *in vacuo* (72.0 mg, 0.116 mmol, 35%). Purple crystals of 1c suitable for X-ray crystallography were obtained by recrystallization from Et₂O at -30 °C.

¹H NMR (C₆D₆): 10.9, 8.5, 8.2, -1.7. Magnetic susceptibility (Evans' method): $\mu_{eff} = 2.2 \pm 0.1 \ \mu_B$ in C₆D₆ at 298 K. IR (KBr, cm⁻¹) 1969 (v_{NN}). Anal. Calcd. for C₃₄H₅₀FeN₃P₂: C, 66.02; H, 8.15; N, 6.79. Found: C, 66.09; H, 8.07; N, 6.22.

Catalytic Reduction of Molecular Dinitrogen into Ammonia and Hydrazine under N2 (1 atm).

Catalytic reduction of molecular dinitrogen into ammonia was carried out in a modified experimental procedure of our previous work.⁹ A typical experimental procedure using **1b** is described below. In a 50 mL Schlenk flask were

placed **1b** (4.9 mg, 0.010 mmol), KC₈ (54.1 mg, 0.400 mmol), and $[H(OEt_2)_2]BAr^{F_4}$ (385 mg, 0.380 mmol) and then cooled to -78 °C. Cooled Et₂O (5 mL, -78 °C) was added to the mixture. After stirring at -78 °C for 1 h, the mixture was warmed to room temperature and further stirred at room temperature for 20 min. The amount of dihydrogen of the catalytic reaction was determined by GC analysis. The reaction mixture was evaporated under reduced pressure, and the distillate was trapped in dilute H₂SO₄ solution (0.5 M, 10 mL). Aqueous solution of potassium hydroxide (30 wt%, 5 mL) was added to the residue, and the mixture was distilled into another dilute H₂SO₄ solution (0.5 M, 10 mL). The amount of NH₃ present in each of the H₂SO₄ solutions was determined by the indophenol method.¹⁰ The amount of N₂H₄ present in each of the H₂SO₄ solutions was determined by the *p*-(dimethylamino)benzaldehyde method.¹¹

Supplemental v Table 1. non-Catalyzeu Reduction of Molecular Dinitioge
--

N_2	+	KC ₈	+	[H(Et ₂ O) ₂][E	BAr ^F ₄] solve	cat. nt, -78°C, 1	→ NH ₃ h	+	N ₂ H ₄
(1 atm)									
				KC I	$\mathbf{U}(\mathbf{OE}_{f})$ $\mathbf{I}[\mathbf{D} \mathbf{A}_{r}^{\mathbf{F}}]$	NU	NU	T	J.

run	cat.	solvent	KC_8 (equiv) ^b	$[H(OEt_2)_2][BAr^{F_4}] (equiv)^{b}$	NH_3 (equiv) ^b	N_2H_4 (equiv) ^b	${ m H}_2 \ { m (equiv)}^b$
1	1a	Et ₂ O	40	38	4.7 ± 0.9^{c}	$0.2{\pm}0.2^{c}$	2.6 ± 1.0^{c}
2	1b	Et ₂ O	40	38	5.0±0.8 ^c	0.2 ± 0.2^{c}	3.0 ± 0.2^{c}
3	1c	Et ₂ O	40	38	3.7 ± 0.6^{c}	0.1 ± 0.1^{c}	3.8±1.4 ^c
4	3b	Et ₂ O	40	38	5.3 ± 0.2^{c}	0.3 ± 0.2^{c}	3.6 ± 0.4^{c}
5	1a	Et ₂ O	200	184	11.6 ± 0.5^{c}	2.8 ± 0.5^{c}	23 ± 1.0^{c}
6	1b	Et ₂ O	200	184	22.7±1.7 ^c	1.7 ± 0.3^{c}	21.0 ± 2.4^{c}
7	1c	Et ₂ O	200	184	4.7	1.2	29
8	3b	Et ₂ O	200	184	20.5 ± 1.5^{c}	1.7±1.7 ^c	26.5 ± 3.5^{c}
9	4b	Et ₂ O	200	184	18	2.0	34
10	1b	Et ₂ O	400	368	17	1.9	67
11	1a	THF	80	76	2.0	0.9	9.1
12	1b	THF	80	76	1.7	0.2	11
13	1c	THF	80	76	1.3	0.4	11

^{*a*}To a mixture of the catalysts, KC₈, and $[H(OEt_2)_2]BAr^F_4$ was added -78 °C Et₂O, and then the resultant mixture was stirred at -78 °C for 1 h. ^{*b*}Equiv based on the catalyst. ^{*c*}Average of multiple runs (>2 times) are shown.

Stoichiometric Reaction of 1b with $[H(OEt_2)_2][BAr^F_4]$ under N_2 .

To a reddish purple solution of **1b** (20.1 mg, 0.041 mmol) in Et₂O (2 mL) at -78 °C was added a solution of $[H(OEt_2)_2][BAr^F_4]$ (41.3 mg, 0.041 mmol) in Et₂O (5 mL) at -78 °C and the resultant blue mixture was stirred at room temperature for 10 min under N₂ (1 atm). No formation of dihydrogen was confirmed by a GC. Addition of pentane (10 mL, -78 °C) to the reaction mixture afforded **3b** as a brown solid, which was collected by decantation and dried *in vacuo* (43.8 mg, 0.0163 mmol, 79%). Black crystals of **3b** suitable for X-ray crystallography were obtained by recrystallization from Et₂O/hexane. Magnetic susceptibility (Evans' method): $\mu_{eff} = 4.2\pm0.1 \ \mu_B$ in THF-*d8* at 298 K. IR (Et₂O, cm⁻¹) 2021 (v_{NN}). Anal. Calcd. for C₁₁₂H₁₁₈B₂F₄₈Fe₂N₄P₄: C, 50.02; H, 4.42; N, 2.08. Found: C, 50.32; H, 4.41; N, 2.08.

Preparation of [FeH(Me-PNP)] (4b).

To a solution of **2b** (147 mg, 0.293 mmol) in THF (8 mL) was added KHBEt₃ (1.0 M in THF, 290 μ L, 0.29 mmol) at room temperature. The resultant brown mixture was stirred at room temperature for 1 h, and the solvent was removed *in vacuo*. After the addition of Et₂O (7 mL) to the brown residue, the solution was filtered through Celite. The filtrate was concentrated to *ca*. 2 mL and the solution was kept at -30 °C to give **4b** as brown crystals, which were collected by decantation and dried *in vacuo* (22.4 mg, 0.0479 mmol, 16%). Brown crystals of **4b** suitable for X-ray crystallography were obtained by recrystallization from Et₂O at -30 °C. ¹H NMR (C₆D₆): 59.9, -14.8, -16.0. Magnetic susceptibility (Evans' method): $\mu_{eff} = 3.2\pm0.1 \ \mu_{B}$ in C₆D₆ at 298K. IR (KBr, cm⁻¹) 1671 (v_{FeH}). Anal. Calcd. for C₂₄H₄₇FeNP₂: C, 61.67; H, 10.14; N, 3.00. Found: C, 60.86; H, 10.45; N, 2.51.

Reaction of 3b with KC₈.

To a mixture of **3b** (20.0 mg, 0.0074 mmol) and KC₈ (2.3 mg, 0.017 mmol) was added Et₂O (1 mL) under N₂ (1 atm) and the resultant red mixture was stirred at room temperature for 10 min. After benzene (3 mL) was added to

the mixture, the solution was filtered through Celite. The filtrate was evaporated and dried *in vacuo* to afford a purple solid. The solid was dissolved in C_6D_6 containing naphthalene as an internal standard and the integration of ¹H NMR resonances revealed the formation of **1b** in 20% yield and **4b** in 52% yield.

¹H, ¹³C{¹H} and ³¹P{¹H} NMR spectra.

2,5-bis(dimethylaminomethyl)-3,4-dimethylpyrrole

2,5-bis(di-tert-butylphosphinomethyl)-3,4-dimethylpyrrole

2,5-bis(di-tert-butylphosphinomethyl)-3,4-diphenylpyrrole

X-ray crystallography.

Crystallographic data of **2b**, **2c**, **1b**, **1c**, **3a**, **3b** Et₂O and **4b** are summarized in Tables S1–S3. The ORTEP drawings of 2b, 2c, 1b, 1c, 3a, 3b Et₂O and 4b are shown in Figures S1–S7, and selected bond lengths and angles of 2b, 2c, 1b, 1c, 3a, 3b Et₂O and 4b are summarized in Tables S4–S10. Diffraction data for 2b, 2c, 1b, 1c, 3a, 3b Et₂O and **4b** were collected for the 2θ range of 4° to 55° at -100 °C on a Rigaku RAXIS RAPID imaging plate area detector with graphite-monochromated Mo K α radiation ($\lambda = 0.71075$ Å) with VariMax optics. Intensity data were corrected for Lorenz-polarization effects and for empirical absorption (ABSCOR). The structure solution and refinements were carried out by using the *CrystalStructure* crystallographic software package.¹² The positions of the non-hydrogen atoms were determined by direct methods (SIR 97¹³ for 2b, 2c, 1b, 1c, 3b Et₂O and 4b; SHELXS Version 2013/1¹⁴ for **3a**) and subsequent Fourier syntheses (SHELXL Version 2016/6¹⁴), and were refined on F_0^2 using all unique reflections by full-matrix least-squares with anisotropic thermal parameters except for some carbon, oxygen, and fluorine atoms in **3a** and **3b** \cdot Et₂O. Two fluorine atoms in the BAr^F₄ anion of **3a** are disordered among two positions (F(8) and F(25), F(9) and F(26), each solved with atom occupancies of 0.6 and 0.4, respectively), thus were solved with isotropic thermal parameters. The ethereal atoms of $3b \cdot Et_2O(O(1), C(113), C(114), C(115))$ and C(116) are slightly disordered thus were solved with isotropic thermal parameters. Crystals of **3a** also contain several solvent molecules which are too highly disordered to solve, thus PLATON/SQUEEZE methodology¹⁵ has been applied to crystal data of **3a** (void size ~ 296 Å³). All the hydrogen atoms were placed at the calculated positions with fixed isotropic parameters, except for the H(2) atom in 4b. The position of the H(2) atom in 4b was determined on an appropriate peak in the difference Fourier maps and further refined isotropically.

	2b	2c
chemical formula	C24H46ClFeNP2	C ₃₄ H ₅₀ ClFeNP ₂
CCDC number	1552141	1552142
formula weight	501.88	626.02
dimensions of crystals, mm ³	$0.55 \times 0.07 \times 0.02$	$0.15\times0.15\times0.10$
crystal color, habit	orange, platelet	orange, block
crystal system	monoclinic	orthorhombic
space group	$P2_{1}/c$	$P2_{1}2_{1}2_{1}$
a, Å	7.9348(3)	12.1149(4)
b, Å	30.5114(10)	14.9649(5)
<i>c</i> , Å	11.7516(5)	18.4913(6)
α , deg	90	90
β , deg	106.870(8)	90
γ, deg	90	90
<i>V</i> , Å ³	2722.6(2)	3352.4(2)
Ζ	4	4
$ ho_{ m calcd}, { m g~cm}^{-3}$	1.224	1.240
<i>F</i> (000)	1080.00	1336.00
μ , cm ⁻¹	7.797	6.473
trans. factors range	0.724 - 0.985	0.631 - 0.937
no. reflections measured	26155	33304
no. unique reflections	6237 ($R_{\rm int} = 0.0637$)	7660 ($R_{\rm int} = 0.1060$)
no. parameters refined	262	352
$R1 (I > 2 \sigma(I))^a$	0.0431	0.0538
wR2 (all data) ^b	0.1008	0.1366
GOF (all data) ^{c}	1.027	1.031
max diff peak / hole, e Å $^{-3}$	+0.46 / -0.42	+0.52 / -0.55
Flack parameter		0.016(15)

Table S1 | X-ray crystallographic data for 2b and 2c

^{*a*} $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^{*b*} $wR2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$, $w = 1 / [\sigma^2 (F_o^2) + (qP)^2 + rP]$, $P = (Max(F_o^2, 0) + 2F_c^2) / 3$ [q = 0.0483 (**2b**), 0.0613 (**2c**); r = 0.7507 (**2b**), 0 (**2c**)]. ^{*c*} GOF = $[\Sigma w (F_o^2 - F_c^2)^2 / (N_o - N_{\text{params}})]^{1/2}$.

	1b	1c	3 a
chemical formula	$C_{24}H_{46}FeN_3P_2$	$C_{34}H_{50}FeN_3P_2$	$C_{54}H_{55}BF_{24}FeN_3P_2$
CCDC number	1552143	1552144	1565341
formula weight	494.44	618.58	1330.61
dimensions of crystals, mm ³	$0.18\times0.08\times0.06$	$0.15\times0.05\times0.01$	$0.25\times0.10\times0.05$
crystal color, habit	purple, needle	purple, platelet	green, platelet
crystal system	monoclinic	orthorhombic	triclinic
space group	$P2_{1}/c$	$P2_{1}2_{1}2_{1}$	PĪ
<i>a</i> , Å	7.9977(9)	11.3469(15)	12.2583(15)
<i>b</i> , Å	30.408(4)	12.4305(17)	12.4893(14)
<i>c</i> , Å	11.7607(14)	23.789(3)	21.819(3)
α , deg	90	90	87.436(6)
β , deg	106.780(8)	90	73.611(5)
γ, deg	90	90	88.777(6)
$V, Å^3$	2738.4(6)	3355.4(8)	3201.3(7)
Ζ	4	4	2
$ ho_{ m calcd}, { m g cm}^{-3}$	1.199	1.224	1.380
<i>F</i> (000)	1068.00	1324.00	1354.00
μ , cm ⁻¹	6.821	5.707	3.911
trans. factors range	0.324 - 0.960	0.500 - 0.994	0.089 - 0.981
no. reflections measured	24101	32962	28949
no. unique reflections	$6281 (R_{\text{int}} = 0.1219)$	7653 ($R_{\rm int} = 0.1032$)	14219 ($R_{\rm int} = 0.1686$)
no. parameters refined	285	361	776
$R1 (I > 2 \sigma(I))^a$	0.1180	0.0539	0.1199
wR2 (all data) ^b	0.2874	0.1271	0.2333
GOF (all data) ^{c}	0.999	1.059	1.001
max diff peak / hole, e $Å^{-3}$	+1.57 / -1.12	+0.37 / -0.48	+0.69 / -0.36
Flack parameter		0.000(15)	

Table S2 | X-ray crystallographic data for 1b, 1c and 3a

^{*a*} $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^{*b*} $wR2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$, $w = 1 / [\sigma^2 (F_o^2) + (qP)^2 + rP]$, $P = (Max (F_o^2, 0) + 2F_c^2) / 3 [q = 0$ (1b), 0.0505 (1c), 0 (3a); r = 43 (1b), 0 (1c), 9.7 (3a). ^{*c*} GOF = $[\Sigma w (F_o^2 - F_c^2)^2 / (N_o - N_{\text{params}})]^{1/2}$.

	$3b \cdot Et_2O$	4b
chemical formula	$C_{116}H_{128}B_2F_{48}Fe_2N_4OP_4$	C ₂₄ H ₄₇ FeNP ₂
CCDC number	1565342	1565343
formula weight	2763.45	467.44
dimensions of crystals, mm ³	$0.35 \times 0.25 \times 0.20$	$0.30 \times 0.20 \times 0.12$
crystal color, habit	black, block	brown, block
crystal system	triclinic	monoclinic
space group	PĪ	C2/c
<i>a</i> , Å	13.6593(3)	13.1139(15)
b, Å	19.7786(6)	19.901(2)
<i>c</i> , Å	25.3257(7)	11.5419(14)
α , deg	71.984(5)	90
β , deg	88.405(6)	115.595(8)
γ, deg	81.675(6)	90
V, Å ³	6437.0(4)	2716.6(6)
Ζ	2	4
$ ho_{ m calcd}$, g cm ⁻³	1.426	1.143
<i>F</i> (000)	2828.00	1016.00
μ , cm ⁻¹	3.920	6.819
trans. factors range	0.750 - 0.925	0.183 - 0.921
no. reflections measured	62882	12228
no. unique reflections	29200 ($R_{\rm int} = 0.0469$)	3111 ($R_{\rm int} = 0.0966$)
no. parameters refined	1599	137
$R1 (I > 2 \sigma(I))^a$	0.0857	0.0832
wR2 (all data) ^b	0.1828	0.1466
GOF (all data) ^c	1.011	1.000
max diff peak / hole, e Å $^{-3}$	+1.09 / -0.79	+0.72 / -0.66

Table S3 | X-ray crystallographic data for 3b $\cdot Et_2O$ and 4b

^{*a*} $R1 = \overline{\Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|}$. ^{*b*} $wR2 = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$, $w = 1/[\sigma^{2}(F_{o}^{2}) + (qP)^{2} + rP]$, $P = (Max(F_{o}^{2}, 0) + 2F_{c}^{2}) / 3[q = 0$ (**3b**·Et₂O), 0 (**4b**),; r = 24 (**3b**·Et₂O), 19.5 (**4b**)]. ^{*c*} GOF = $[\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / (N_{o} - N_{params})]^{1/2}$.

Figure S1. ORTEP drawing of **2b**. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

Table S4. Selected Bond Lengths (Å) and Angles (deg) for 2b.

Fe(1)—N(1)	1.8848(17)
Fe(1)—P(1)	2.2954(6)
Fe(1)—P(2)	2.2952(6)
Fe(1)—Cl(1)	2.2464(6)
P(1)— $Fe(1)$ — $P(2)$	165.29(3)
N(1) - Fe(1) - P(1)	82.88(6)
N(1)—Fe(1)—P(2)	83.44(6)
N(1)—Fe(1)—Cl(1)	177.89(6)
P(1)—Fe(1)—Cl(1)	96.97(2)
P(2)—Fe(1)—Cl(1)	96.89(2)

Figure S2. ORTEP drawing of **2c**. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

Table S5. Selected Bond Lengths (Å)	and Angles ((deg) for 2c.
-------------------------------------	--------------	---------------

_

Fe(1)—N(1)	1.905(4)
Fe(1)—P(1)	2.2884(13)
Fe(1)—P(2)	2.2942(13)
Fe(1)—Cl(1)	2.2361(14)
P(1)— $Fe(1)$ — $P(2)$	166.86(5)
N(1) - Fe(1) - P(1)	83.14(11)
N(1)—Fe(1)—P(2)	83.73(11)
N(1) - Fe(1) - Cl(1)	178.53(13)
P(1)— $Fe(1)$ — $Cl(1)$	96.54(5)
P(2)— $Fe(1)$ — $Cl(1)$	96.60(5)

Figure S3. ORTEP drawing of **1b**. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

Table S6. Selected Bond Lengths (Å) and Angles (deg) for 1b.

Fe(1)—N(1)	1.909(7)
Fe(1)—P(1)	2.257(2)
Fe(1)—P(2)	2.266(2)
Fe(1)—N(2)	1.758(7)
N(2)—N(3)	1.136(9)
P(1)— $Fe(1)$ — $P(2)$	164.69(9)
N(1) - Fe(1) - P(1)	83.0(2)
N(1)—Fe(1)—P(2)	82.4(2)
N(1)—Fe(1)— N(2)	177.6(3)
P(1)—Fe(1)— N(2)	96.6(2)
P(2)—Fe(1)— N(2)	98.1(2)
Fe(1)—N(2)— N(3)	179.0(8)

Figure S4. ORTEP drawing of **1c**. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

Table S7. Selected Bond Lengths (Å)) and Angles ((deg) for 1c.
-------------------------------------	----------------	---------------

Fe(1)—N(1)	1.924(4)
Fe(1) - P(1)	2.2534(15)
Fe(1)—P(2)	2.2483(15)
Fe(1)—N(2)	1.773(5)
N(2)—N(3)	1.124(6)
P(1)— $Fe(1)$ — $P(2)$	166.21(6)
N(1) - Fe(1) - P(1)	83.29(13)
N(1)—Fe(1)—P(2)	83.33(12)
N(1)—Fe(1)— $N(2)$	176.8(2)
P(1)— $Fe(1)$ — $N(2)$	97.33(16)
P(2)—Fe(1)— N(2)	96.21(16)
Fe(1) - N(2) - N(3)	178.0(6)

Figure S5. ORTEP drawing of **3a** and bond lengths (Å) of the protonated pyrrole ring. Thermal ellipsoids are shown at the 50% probability level. $[BAr_{4}^{F}]$ moiety and hydrogen atoms of *tert*-butyl groups are omitted for clarity.

(i	1) and 1 mgros (40g) 101 C u .	
Fe(1)—N(1)	1.935(6)	N(1)—Fe(1)—P(2)	83.04(18)
Fe(1)—P(1)	2.264(2)	N(1)—Fe(1)— N(2)	178.6(4)
Fe(1)—P(2)	2.260(2)	P(1)—Fe(1)— N(2)	96.1(2)
Fe(1)—N(2)	1.770(9)	P(2)—Fe(1)— N(2)	97.5(2)
N(2)—N(3)	1.146(9)	Fe(1) - N(2) - N(3)	177.0(10)
N(1)—C(2)	1.301(8)	C(1)—C(2)—C(3)	127.0(7)
C(1)—C(2)	1.507(10)	C(1)—C(2)—N(1)	121.2(8)
C(2)—C(3)	1.439(11)	N(1)—C(2)—C(3)	111.8(7)
C(3)—C(4)	1.449(10)	C(2)—C(3)—C(4)	101.5(6)
C(4)—C(5)	1.327(9)	C(3)—C(4)—C(5)	108.7(7)
C(5)—N(1)	1.382(9)	C(4)—C(5)—N(1)	110.2(6)
C(5)—C(6)	1.503(10)	C(5)—N(1)—C(2)	107.8(6)
		C(4)—C(5)—C(6)	132.6(7)
P(1)—Fe(1)—P(2)	166.43(9)	N(1)—C(5)—C(6)	117.0(6)
N(1)—Fe(1)—P(1)	83.43(19)		

Table S8. Selected Bond Lengths	(Å) and A	Angles (o	deg) for	· 3a
---------------------------------	-----------	-----------	----------	------

S21

Figure S6. ORTEP drawing of **3b**·Et₂O and bond lengths (Å) and angles (deg) of the protonated pyrrole rings. Thermal ellipsoids are shown at the 50% probability level. Et₂O, $[BAr_{4}^{F}]_{2}$ moiety and hydrogen atoms except for H(2) and H(26) are omitted for clarity.

Fe(1)—N(1)	2.038(3)	Fe(2)—N(4)	1.803(4)	C(1)—C(2)— N(1)	111.6(4)
Fe(1)—P(1)	2.4080(13)	C(25)—C(26)	1.525(7)	C(1)—C(2)— C(3)	115.7(4)
Fe(1)—P(2)	2.4072(13)	C(26)—C(27)	1.503(6)	N(1)—C(2)— C(3)	105.9(4)
Fe(1)—N(3)	1.797(4)	C(27)—C(28)	1.335(6)	Fe(1)—N(3)— N(4)	175.7(3)
N(3)—N(4)	1.170(5)	C(28)—C(29)	1.464(6)	Fe(2)—N(4)— N(3)	173.8(4)
C(1)—C(2)	1.489(7)	C(29)—C(30)	1.472(6)	P(3)—Fe(2)—P(4)	147.57(5)
C(2)—C(3)	1.490(6)	C(29)—N(2)	1.313(6)	N(2)—Fe(2)—P(3)	82.29(11)
C(3)—C(4)	1.334(6)	N(2)—C(26)	1.450(6)	N(2)—Fe(2)—P(4)	80.54(11)
C(4)—C(5)	1.463(6)			N(2)—Fe(2)— N(4)	131.42(16)
C(5)—C(6)	1.483(6)	P(1)— $Fe(1)$ — $P(2)$	144.11(5)	P(3)— $Fe(2)$ — $N(4)$	105.94(12)
C(5)—N(1)	1.310(5)	N(1)—Fe(1)—P(1)	80.83(11)	P(4) - Fe(2) - N(4)	106.07(12)
N(1)—C(2)	1.440(6)	N(1)—Fe(1)—P(2)	80.77(10)	C(25)—C(26)— N(2)	110.6(4)
Fe(2)—N(2)	2.032(4)	N(1)—Fe(1)— $N(3)$	126.45(15)	C(25)—C(26)— C(27)	116.7(4)
Fe(2)—P(3)	2.4053(12)	P(1) - Fe(1) - N(3)	106.91(12)	N(2)—C(26)— C(27)	105.4(4)
Fe(2)—P(4)	2.4100(13)	P(2)— $Fe(1)$ — $N(3)$	108.83(12)		

Table S9. Selected Bond Lengths (Å) and Angles (deg) for $3b \cdot \text{Et}_2\text{O}$.

Figure S7. ORTEP drawing of **4b**. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms except for H(2) are omitted for clarity.

Table S10.	Selected Bond	Lengths (\mathbf{A}) and \mathbf{A}	Angles (deg) for	4b .

-)	
Fe(1)—N(1)	1.906(5)
Fe(1)—P(1)	2.2356(11)
Fe(1)—H(2)	1.74(5)
P(1)—Fe(1)—P(1)	167.34(7)
N(1)— $Fe(1)$ — $P(1)$	83.67(4)
N(1)—Fe(1)—H(2)	180.0
P(1)—Fe(1)—H(2)	96.33(4)

Electrochemical Study.

Cyclic voltammograms (CVs) were recorded on an ALS/Chi model 610C electrochemical analyzer with platinum working electrode in THF containing 1 mM of sample and 0.1 M of $[N^nBu_4]PF_6$ as a supporting electrolyte at a scan rate of 0.1 V/s at room temperature. All potentials were measured against an Ag^{0/+} electrode and converted to the values vs ferrocene^{0/+}. The all cyclic voltammetric data of **1a**, **1b** and **1c** revealed irreversible reduction and irreversible oxidation.

compound	$E_{\rm pa}\left({ m V} ight)$	$E_{\rm pc}$ (V)	$v_{\rm NN}~({\rm cm}^{-1})$
1 a	-0.72	-2.88	1964
1b	-0.76	-2.92	1959
1c	-0.63	-2.82	1969

Table S11. Cyclic voltammetric data and IR spectra for iron dinitrogen complexes 1a-1c.

References

- 1. Evans, D. F. J. Chem. Soc. 1959, 2003.
- 2. Live, D. H.; Chan, S. I. Anal. Chem. 1970, 42, 791.
- 3. Bain, G. A.; Berry, J. F. J. Chem. Educ. 2008, 85, 532.
- 4. Kancharla, P.; Reynolds, K. A. Tetrahedron 2013, 69, 8375.
- 5. Nguyen, L. T.; Senge, M. O.; Smith, K. M. J. Org. Chem. 1996, 61, 998.
- 6. Kern, R. J. J. Inorg. Nucl. Chem. 1962, 24, 1105.
- 7. Weitz, I. S.; Rabinovitz, M. J. Chem. Soc., Perkin Trans. 1993, 1, 117.
- 8. Brookhart, M.; Grant, B.; Volpe, A. F. Organometallics 1992, 11, 3920.
- 9. Kuriyama, S.; Arashiba, K.; Nakajima, K.; Matsuo, Y.; Tanaka, H.; Ishii, K.; Yoshizawa, K.; Nishibayashi, Y. *Nat. Commun.* **2016**, *7*, 12181.
- 10. Weatherburn, M. W. Anal. Chem. 1967, 39, 971.
- 11. Watt, G. W.; Chrisp, J. D. Anal. Chem. 1952, 24, 2006.

12. *CrystalStructure 4.22*: *Single Crystal Structure Analysis Software*; Rigaku Corp: Tokyo, Japan, and MSC: The Woodlands, TX, 2016.

13. Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidorib, G.; Spagnac, R. *J. Appl. Crystallogr.* **1999**, *32*, 115–119.

- 14. Sheldrick, G. M. Acta crystallogr. 2008, A64, 112-122.
- 15. Spek, A. L. PLATON: A Multipurpose Crystallographic Tool. Utrecht University: Utrecht, The Netherlands, 1998.