Supporting Information

Fluorescence Resonance Energy Transfer (FRET) for the verification of Dual Gold Catalysis

Oliver Halter and Herbert Plenio

1.	General experimental, materials and instrumentations	S1
2.	Experimental procedures and compounds characterization	S2
3.	NMR spectra	S15
4.	Fluorescence measurements of BODIPY tagged metal complexes	S34
5.	Mass spectrometry	S46

1. General experimental, materials and instrumentations

General experimental. All reactions involving transition metal complexes were conducted in oven-dried glassware. Reactions were performed in Schlenk flasks under a positive pressure of argon or nitrogen. The flasks were fitted with rubber septa and gas-tight syringes with stainless steel needles or double-cannula were used to transfer air- and moisture-sensitive liquids.

Materials. All chemicals were purchased as reagent grade from commercial suppliers and used without further purification, unless otherwise noted. CH_2Cl_2 (99.5%) and pentane (99%) were obtained from Grüssing GmbH, toluene from Sigma-Aldrich (Lab. Reagent grade, 99.3%). These solvents were dried and degassed by using a column purification system from Innovative Technology Inc. Tetrahydrofuran was dried under sodium and distilled under argon atmosphere. All solvents were stored over molecular sieves (4 Å). Preparative chromatography was performed using Merck silica 60 (0.063 – 0.2 mm).

Instrumentations. ¹H, ¹⁹F and ¹³C-NMR spectra were recorded on a Bruker DRX 500 or Bruker ARX 300 spectrometer. The chemical shifts are given in parts per million (ppm) on the delta scale (δ) and are referenced to tetramethylsilane (¹H, ¹³C-NMR = 0.0 ppm) or the residual peaks of CDCl₃ (¹H-NMR = 7.26 ppm, ¹³C-NMR = 77.23 ppm), DMSO (¹H-NMR = 2.50 ppm, ¹³C-NMR = 39.51 ppm), CD₂Cl₂ (¹H-NMR = 5.32 ppm) or hexafluorobenzene (¹⁹F-NMR = -164.90 ppm). Abbreviations for NMR data: s = singlet; d = doublet; t = triplet; q = quartet; sep = septet; m = multiplet; bs = broad signal. Mass spectra were recorded on the Impact II, Quadrupol-Time-of-Flight Massenspektrometer (ESI, APCI, APPI). UV-Vis spectra were recorded on Analytik Jena Specord 600 UV-Vis spectrometer, fluorescence spectra were recorded on J&M TIDAS S700/CCD UV/NIR 2098 spectrometer combined with J&M TIDAS LSM monochromator with 75 W Xenon light source and thermo-controlled cuvette holder. Samples for emission and absorption measurements were contained in 1.00 cm quartz cuvette (Hellma Analytics).

2. Experimental procedures and compounds characterization

Synthesis of 3d·HCl

In a 5 mL round-bottom flask equipped with a stirring bar, bdp(CH₂)₅Br (bodipy **d**) ^[1,2,3] (135 mg, 0.298 mmol, 1.2eq) 1,3-bis(2,6-diisopropylphenyl)-5hydroxy-1*H*-imidazol-3-ium chloride (110 mg, 0.249 mmol, 1eq), K₂CO₃ (34.4 mg, 0.249 mmol, 1eq) and KI (124 mg, 0.747 mmol, 3eq) were suspended in acetone (3 mL). The reaction mixture was heated under

reflux for 24 h. The product was extracted with CH_2Cl_2 . The organic phase were combined, washed with brine, and dried over magenesium sulfate. The solvent was removed in vacuo. The residue was dissolved in a small amount of CH_2Cl_2 . Diethyl ether was added, and the resulting precipitate was filtered off and washed with diethyl ether. Product **3d**·HCl is an orange solid (141 mg, 0.173 mmol, yield 69.5%).

¹H NMR (500 MHz, CDCl₃) δ 8.44 (d, J = 1.9 Hz, 1H, NCHN), 8.23 (d, J = 1.9 Hz, 1H, NC(OR)CHN), 7.55 (t, J = 7.8 Hz, 1H, p-H Ar), 7.49 (t, J = 7.8 Hz, 1H, p-H Ar), 7.31 (dd, J = 12.3, 7.8 Hz, 4H, m - H Ar), 4.66–4.63 (t, J = 6.4 Hz, 2H,alkyl chain CH₂O-), 2.92–2.85 (m, 2H, alkyl chain CH₂ BODIPY), 2.58–2.50 (sept, J = 7.5 Hz, *i*Pr-group CH), 2.46 (s, 6H, CH₃ BODIPY), 2.44–2.40 (m, 2H, *i*Pr-group), 2.38 (q, J = 7.6, 6.4 Hz, 4H, CH₂ BODIPY), 2.23 (s, 6H, CH₃ BODIPY), 1.83–1.78 (m, 2H, alkyl chain CH₂), 1.59–1.54 (m, 2H, alkyl chain CH₂), 1.52–1.47 (m, 2H, alkyl chain CH₂), 1.38–1.37 (d, J = 6.8 Hz, 6H, *i*Pr-group CH₃), 1.22–1.18 (m, 18H, *i*Pr-group CH₃), 1.05–1.02 (t, J = 7.5 Hz, 6H, CH₃ BODIPY). ¹³C NMR (126 MHz, CDCl₃) δ 152.19, 148.55, 145.69, 145.19, 144.34, 135.74, 132.69, 132.46, 132.35, 130.98, 130.24, 129.93, 126.09, 124.93, 124.81, 105.29, 76.18, 31.59, 29.47, 29.26, 28.94, 28.39, 26.44, 25.08, 24.41, 24.27, 23.57, 17.28, 14.96, 13.59, 12.48. ¹⁹F NMR (282 MHz, CDCl₃) δ -148.82- -149.24 (m, 2F)

HRMS (APCI): m/z calcd. for C₄₉H₆₈BF₂N₄O [M-Cl]⁺777.54488, found 777.54469.

¹ Carrascoso, L.; Sastre, R.; Amat-guerri, F.; Liras, M. Photochem. Photobiol. 2003, 77, 577–584.

² Heisig, F.; Gollos, S.; Freudenthal, S. J.; El-Tayeb, A.; Iqbal, J.; Müller, C. E. J. Fluoresc. 2014, 213–230.

³ Kajiwara, Y.; Chujo, Y. J. Mater. Chem. 2009, 2985–2992.

Synthesis of [AuCl(3d)]

In a 5 mL round-bottom flask equipped with a stirring bar, 3d·HCl (50 mg, 0.061 mmol, 1 eq), [AuCl(Me₂S)] (18.1 mg, 0.061 mmol, 1 eq) and K₂CO₃ (8.43 mg, 0.061 mmol, 1 eq) were suspended in acetone (1 mL). The flask was heated under reflux for 12 h. The reaction mixture was filtered, evaporated and purified by column chromatography (Cy:EA= 2:1). The volatiles were

evaporated in vacuo to provide complex [AuCl(**3d**)] as an orange solid (46.5 mg, 0.046 mmol, yield 75%).

¹H NMR (500 MHz, CDCl₃) δ 7.48–7.44 (td, J = 7.8, 2.7 Hz, 2H, p-H Ar), 7.27 (d, J = 2.2 Hz, 2H, m - H Ar), 7.25 (d, J = 2.1 Hz, 2H, m - H Ar), 6.40 (s, 1H, NC(OR)*CH*N), 4.02–3.99 (t, J = 6.3 Hz, 2H, alkyl chain CH₂ O-), 2.94–2.86 (m, 2H, alkyl chain CH₂ BODIPY), 2.68–2.63 (m, 2H, *i*Pr-group CH), 2.62–2.57 (m, 2H, *i*Pr-group CH), 2.49 (s, 6H, CH₃ BODIPY), 2.39 (q, J = 7.6 Hz, 4H, CH₂ BODIPY), 2.22 (s, 6H, CH₃ BODIPY), 1.76–1.73 (m, 2H, alkyl chain CH₂), 1.58–1.52 (m, 2H, alkyl chain CH₂), 1.51–1.46 (m, 2H, alkyl chain CH₂), 1.36–1.33 (m, 12H, *i*Pr-group CH₃), 1.24 (d, J = 6.9 Hz, 6H, *i*Pr-group CH₃), 1.19 (d, J = 6.8 Hz, 6H, *i*Pr-group CH₃), 1.04 (t, J = 7.5 Hz, 6H, CH₃ BODIPY). ¹³C NMR (126 MHz, CDCl₃) δ 180.25, 152.46, 148.40, 146.22, 145.85, 143.99, 135.42, 134.67, 132.81, 130.97, 130.77, 130.68, 130.30, 124.27, 124.07, 99.23, 77.41, 77.36, 76.91, 72.38, 31.47, 29.16, 28.93, 28.88, 28.28, 26.40, 24.81, 24.29, 24.26, 23.80, 17.30, 14.95, 13.46, 12.53. ¹⁹F NMR (282 MHz, CDCl₃) δ -148.96- -149.41(m, 2F).

HRMS (APCI): m/z calcd. for C₄₉H₆₇BF₂AuN₄O [M-Cl]⁺ 973.5036, found 973.5056.

An ovendried Schlenk flask was loaded with a stirring bar, [AuCl(3d)] (25 mg, 0.0248 mmol, 1eq) dissolved in CH₂Cl₂ (1 ml) and Et₃N (1 ml), followed by the addition of phenylacetylene (93 mg, 0.911 mmol, 37 eq). The flask was sealed and stirred at 40°C for 24 h. The reaction mixture was cooled to room temperature and diethyl ether added. The organic phase was washed with water, brine and dried over MgSO₄. After filtration and removal of the volatiles, the residue was dissolved in a small amount

of CH₂Cl₂. Pentane was added, and the resulting precipitate was filtered off and washed with pentane. The product is an orange solid (24 mg, 0.0223 mmol, yield 90%).

¹H NMR (500 MHz, CDCl₃) δ 7.49 – 7.42 (m, 2H, *p*-H Ar), 7.31 – 7.23 (m, 6H, *m*-H Ar, *o*-CH H C₈H₅), 7.08 (t, J = 7.4 Hz, 2H, *m*-H C₈H₅), 7.03 (t, J = 7.3 Hz, 1H, *p*-H C₈H₅), 6.36 (s, 1H, NC(OR)*CH*N)), 3.97 (t, J = 6.2 Hz, 2H, alkyl chain CH₂ O), 2.94 – 2.83 (m, 2H, alkyl chain CH₂ BODIPY), 2.75 – 2.67 (m, 2H, *i*Pr-group CH), 2.67 – 2.60 (m, 2H, *i*Pr-group CH), 2.49 (s, 6H, CH₃ BODIPY), 2.39 (q, J = 7.5 Hz, 4H, CH₂ BODIPY), 2.23 (s, 6H, CH₃ BODIPY), 1.77 – 1.69 (m, 2H, alkyl chain CH₂), 1.59 – 1.52 (m, 2H, alkyl chain CH₂), 1.49 – 1.43 (m, 2H, alkyl chain CH₂), 1.38 (dd, J = 11.5, 6.9 Hz, 12H, *i*Pr-group CH₃), 1.24 (d, J = 6.9 Hz, 6H, *i*Pr-group CH₃), 1.19 (d, J = 6.9 Hz, 6H, *i*Pr-group CH₃), 1.05 (t, J = 7.5 Hz, 6H, CH₃ BODIPY). ¹³C NMR (126 MHz, CDCl₃) δ 186.01, 152.34, 148.56, 146.12, 145.75, 143.86, 135.28, 135.02, 132.68, 132.25, 130.84, 130.55, 130.43, 130.33, 129.38, 127.46, 126.09, 125.63, 124.12, 123.89, 103.56, 99.45, 72.07, 31.33, 29.04, 28.80, 28.77, 28.17, 26.31, 24.86, 24.33, 24.15, 23.60, 17.17, 14.81, 13.32, 12.41. ¹⁹F NMR (471 MHz, CDCl₃) δ -148.97- -149.30(m, 2F).

HRMS (APCI): m/z calcd. for $C_{57}H_{73}BF_2AuN_4O[M+H]^+$ 1075.55204, found 1075.55057.

Synthesis of 3a·HCl

A 5 mL round-bottom flask was loaded with a stirring bar, $bdp(CH_2)_5Br$ (bodipy **a**) (155 mg, 0.271 mmol, 1.1eq), 1,3-bis(2,6-diisopropyl-phenyl)-5-hydroxy-1*H*-imidazol-3-ium chloride (109 mg, 0.247 mmol, 1eq), K₂CO₃ (34.05 mg, 0.247 mmol, 1eq) and KI (123 mg, 0.739 mmol, 3eq) and acetone (3 mL). The reaction mixture

was heated under reflux for 24 h. The product was extracted with CH_2Cl_2 . The organic phase were combined, washed with brine, and dried over magnesium sulfate. The solvent was removed in vacuo. The residue was dissolved in a small amount of CH_2Cl_2 . Diethyl ether was added, and the resulting precipitate filtered off and washed with diethyl ether. The crude product was purified by column chromatography (CHCl₃: MeOH= 10:1). The product **3a**·HCl (101 mg, 0.108 mmol, yield 44%) is a blue violet solid.

¹H NMR (500 MHz, CDCl₃) δ 8.67 (d, 2H, Ar BODIPY), 8.33 – 8.30 (m, 1H, NCH₂N), 8.13 – 8.10 (m, 1H, NC(OR)*CH*N), 7.44 (dt, J = 26.3, 7.8 Hz, 2H, p-H Ar), 7.30 (ddd, J = 8.3, 7.0, 1.9 Hz, 2H, Ar BODIPY), 7.23 (m, 4H, p-H Ar), 7.19 – 7.14 (m, 4H, Ar BODIPY), 4.56 (t, J = 6.3 Hz, 2H, alkyl chain CH₂O), 3.02 – 2.93 (m, 2H, alkyl chain CH₂ BODIPY), 2.82 (t, J = 7.0 Hz, 4H, CH₂ BODIPY), 2.64 – 2.50 (m, 4H, CH₂ BODIPY), 2.50 – 2.43 (m, 2H, *i*Pr-group CH), 2.40 – 2.30 (m, 2H, *i*Pr-group CH), 2.26 (s, 6H, CH₃ BODIPY), 1.81 – 1.71 (m, 2H, alkyl chain CH₂), 1.56 – 1.49 (m, 4H, alkyl chain CH₂), 1.30 (d, J = 6.8 Hz, 6H, *i*Pr-group), 1.17 – 1.07 (m, 18H, *i*Pr-group). ¹³C NMR (126 MHz, CDCl₃) δ 149.52, 148.58, 145.66, 145.18, 144.17, 140.51, 134.19, 133.58, 132.51, 132.35, 132.05, 130.24, 129.85, 129.21, 128.61, 128.56, 128.09, 127.31, 126.05, 124.92, 124.81, 105.17, 76.13, 32.04, 30.73, 29.46, 29.25, 28.98, 28.84, 26.35, 25.10, 24.40, 24.22, 23.58, 20.77, 14.19. ¹⁹F NMR (471 MHz, CDCl₃) δ -134.43 - -134.83 (m, 1F), -135.84 - -136.23 (m,1F).

HRMS (ESI): m/z calcd. for $C_{59}H_{67}AuBF_2N_4O^+$ [M-Cl]⁺ 897.5468, found 897.54488.

A 5 mL round-bottom flask was loaded with a stirring bar, $3\mathbf{a}$ ·HCl (42 mg, 0.045 mmol, 1 eq), [AuCl(Me₂S)] (13.3 mg, 0.045 mmol, 1 eq), K₂CO₃ (6.2 mg, 0.045 mmol, 1 eq) and acetone (1 mL). The reaction mixture was heated under reflux for 12 h. The solution was filtered, evaporated and the residue purified by column

chromatography (Cy: EA = 4:1). [AuCl(**3a**)] was obtained as a blue solid (31 mg, 0.0274 mmol, yield 61%).

¹H NMR (500 MHz, CDCl₃) δ 8.72 (d, J = 8.1 Hz, 2H, Ar BODIPY), 7.53 – 7.43 (m, 2H, Ar BODIPY), 7.37 (t, J = 8.2 Hz, 2H, p-H Ar), 7.28 – 7.22 (m, 8H, o-H Ar, Ar BODIPY), 6.40 (s, 1H, NC(OR)*CH*N), 4.00 (t, J = 6.2 Hz, 2H, alkyl chain CH₂ O-), 3.09 – 2.99 (m, 2H, alkyl chain CH₂ BODIPY), 2.88 (t, J = 7.0 Hz, 4H, CH₂ BODIPY), 2.71 – 2.55 (m, 8H, CH₂ BODIPY, *i*Pr-group CH), 2.31 (s, 6H, CH₃ BODIPY), 1.81 – 1.70 (m, 2H, alkyl chain CH₂), 1.70 – 1.60 (m, 2H, alkyl chain CH₂), 1.55 – 1.48 (m, 2H, alkyl chain CH₂), 1.34 (m, 12H, *i*Pr-group CH₃), 1.21 (m, 12H, *i*Pr-group CH₃). ¹³C NMR (126 MHz, CDCl₃) δ 180.33, 149.76, 148.43, 146.26, 145.87, 143.73, 140.49, 134.69, 134.17, 133.18, 132.16, 130.82, 130.72, 130.33, 129.36, 128.68, 128.48, 128.11, 127.39, 124.30, 124.11, 99.26, 72.35, 31.94, 30.71, 29.84, 29.20, 29.01, 28.91, 28.71, 27.07, 26.30, 24.83, 24.32, 24.28, 23.85, 20.81, 14.06, 1.16. ¹⁹F NMR (471 MHz, CDCl₃) δ -137.21--137.62 (m, 1F), -139.81- -140.14 (m, 2F).

HRMS (APCI): m/z calcd. for C₅₉H₆₇AuBF₂N₄O⁺ [M-Cl]⁺ 1093.50362, found 1093.50429.

An ovendried Schlenk flask was loaded with a stirring bar, [AuCl(3a)] (25 mg, 0.0221 mmol, 1eq) dissolved in CH₂Cl₂ (1 mL) and Et₃N (1 mL). Phenylacetylene (84 mg, 0.818 mmol, 37 eq) was added. The flask was sealed and stirred at 40°C for 24 h. The solution was cooled to room temperature and diethyl ether added. The organic solution was washed with water, brine and dried over MgSO₄. After filtration and removal of solvent, the residue was dissolved in

a small amount of CH_2Cl_2 . Pentane was added, the resulting precipitate was filtered off and the solid washed with pentane. The product [Au(CCPh)(3a)] is a blue solid (22 mg, 0.0184 mmol, yield 83%).

¹H NMR (500 MHz, CDCl₃) δ 8.74 (d, J = 8.0 Hz, 2H, Ar BODIPY), 7.50 – 7.43 (m, 2H, Ar BODIPY), 7.39 (t, J = 7.6 Hz, 2H, 2H, p-H Ar), 7.31 – 7.23 (m, 10H, 2H, m-H Ar, Ar BODIPY, o-CH C₈H₅), 7.08 (t, J = 7.4 Hz, 2H, m-CH C₈H₅), 7.03 (t, J = 7.3 Hz, 1H, p-CH C₈H₅), 6.37 (s, 1H, NC(OR)*CH*N), 3.98 (t, J = 6.2 Hz, 2H, alkyl chain CH₂ O-), 3.09 – 3.00 (m, 2H, alkyl chain CH₂ BODIPY), 2.89 (t, J = 7.1 Hz, 4H, CH₂ BODIPY), 2.76 – 2.56 (m, 8H, CH₂ BODIPY, iPr-group CH), 2.32 (s, 6H, CH₃ BODIPY), 1.78 – 1.70 (m, 2H, alkyl chain CH₂), 1.69 – 1.60 (m, 2H, alkyl chain CH₂), 1.54 – 1.46 (m, 2H, alkyl chain CH₂), 1.39 (dd, J = 11.0, 6.9 Hz, 12H, iPr-group CH₃), 1.25 – 1.19 (m, 12H, iPr-group CH₃). ¹³C NMR (126 MHz, CDCl₃) δ 186.16, 149.75, 148.71, 146.29, 145.89, 143.76, 140.50, 135.17, 134.18, 133.19, 132.40, 132.16, 130.71, 130.59, 130.48, 129.35, 128.78, 128.69, 128.49, 128.11, 127.61, 127.39, 126.23, 125.78, 124.27, 124.05, 103.71, 99.62, 72.20, 31.94, 30.72, 29.20, 29.01, 28.92, 28.74, 26.35, 25.02, 24.49, 24.31, 23.78, 20.81, 14.06. ¹⁹F NMR (282 MHz, CDCl₃) δ -137.33 - 137.78 (m, 1F), -139.51 - -139.86 (m, 1F).

HRMS (APCI): m/z calcd. for C₆₇H₇₃AuBF₂N₄O [M-H]⁺ 1195.55158, found 1195.55057.

Synthesis of [(Au(3d))(Au(CCPh)(3d))]NTf₂

A solution of [Au(CCPh)(3d)] (0.01 M, 1000 µl, 0.0100 mmol, 1eq) in CH₂Cl₂ was added to a stirred solution of $[(Au(NTf_2)(3d)]$ (1000 µl, 0.01 M, 0.0100 mmol, 1eq) in a Schlenk flask in CH₂Cl₂. The solution was stirred at -10°C for 20 min. The volatiles were evaporated under reduced pressure. The remaining orange solid $[(Au(3d))(Au(CCPh)(3d))]NTf_2$ (21.4 mg, 0.0092 mmol, 92 %) was used without additional purification.

¹H NMR (500 MHz, CDCl₃) δ 7.46 (t, J = 7.8 Hz, 2H, p-H Ar), 7.41 (t, J = 7.8 Hz, 2H, p-H Ar), 7.28 – 7.24 (m, 1H, p-H C₈H₅), 7.24 – 7.16 (m, 4H, m-H Ar), 7.04 (t, J = 7.8 Hz, 2H, m-H C₈H₅), 6.67 – 6.62 (m, 2H, o-H C₈H₅), 6.52 (s, 2H, NC(OR)*CH*N), 4.04 (t, J = 6.2 Hz, 4H, alkyl chain CH₂ O-), 2.93 – 2.84 (m, 4H, alkyl chain CH₂ BODIPY), 2.57 – 2.43 (m, 20H, iPr-group CH, CH₃ BODIPY), 2.39 (q, J = 7.6 Hz, 8H, CH₂ BODIPY), 2.22 (s, 6H, CH₃ BODIPY), 1.72 (p, J = 6.3 Hz, 4H, alkyl chain CH₂), 1.53 – 1.41 (m, 8H, alkyl chain CH₂), 1.20 (d, J = 6.9 Hz, 12H, iPr-group CH₃), 1.13 (d, J = 6.9 Hz, 12H, iPr-group CH₃), 1.09 – 1.02 (m, 36H, iPr-group CH₃, CH₃ BODIPY). ¹³C NMR (126 MHz, CDCl₃) δ 177.33, 152.33, 148.83, 146.18, 145.74, 144.29, 135.65, 134.52, 132.77, 131.82, 131.05, 130.85, 130.80, 130.17, 129.31, 128.35, 125.00, 124.33, 124.10, 121.17, 118.88, 112.15, 100.52, 72.99, 31.50, 29.07, 28.96, 28.82, 28.37, 26.47, 24.87, 24.23, 24.14, 23.65, 17.32, 14.97, 13.45, 12.55.

HRMS (ESI): m/z calcd. for C₁₀₆H₁₃₉Au₂B₂F₄N₈O₂ [M] 2048.05118, found 2048.05339.

Synthesis of [(Au(3a))(Au(CCPh)(3d))]NTf₂

A solution of [Au(CCPh)(3a)] (0.01 M, 1000 µl, 0.01 mmol, 1eq) in CH₂Cl₂ was added to a solution of $[(Au(NTf_2)(3d)]$ (1000 µl, 0.01 M, 0.01 mmol, 1eq) in CH₂Cl₂ at -10 °C. Stirring was continued for 20 min, followed by evaporation of the volatiles under reduced pressure. The remaining dark violet amorphous solid $[(Au(3a))(Au(CCPh)(3d))]NTf_2$

(22.5mg, 0.0092 mmol, 92 %) was isolated as a mixture of three isomers.

¹H NMR (500 MHz, CDCl₃) δ 8.75 (d, J = 8.2 Hz, 8H, Ar BODIPY), 7.52 – 7.43 (m, 8H, p-H Ar), 7.41 – 7.36 (m, 14H, Ar BODIPY, p-H C₈H₅), 7.30 –7.14 (m, 48H, Ar BODIPY, m-H Ar), 7.08 - 7.00 (m, 8H, o-H C₈H₅), 6.67 - 6.60 (m, 8H, m-H C₈H₅), 6.54 - 6.49 (m, 8H, NC(OR)CHN), 4.08 – 4.00 (m, 16H, alkyl chain CH₂ O-), 3.09 – 3.01 (m, 8H, alkyl chain CH₂ BODIPY), 2.94 – 2.85 (m, 24H, chain CH₂ BODIPY), 2.68 – 2.58 (m, 16H, CH₂ BODIPY), 2.56 – 2.44 (m, 58H, *i*Pr-group CH, CH₃ BODIPY), 2.39 (q, J = 7.5 Hz, 16H, CH₂) BODIPY), 2.32 (s, 24H, CH₃ BODIPY), 2.22 (s, 24H, CH₃ BODIPY), 1.77 – 1.68 (m, 16H, alkyl chain CH₂), 1.61 – 1.44 (m, 32H, alkyl chain CH₂), 1.22 – 1.17 (m, 48H, *i*Pr-group CH₃), 1.15 – 1.10 (m, 48H, *i*Pr-group CH₃), 1.07 – 1.01 (m, 120H, *i*Pr-group CH₃, CH₃ BODIPY). ¹³C NMR (126 MHz, CDCl₃) δ 177.32, 152.34, 149.62, 148.83, 146.17, 145.75, 144.12, 140.54, 139.27, 135.64, 134.52, 134.24, 133.49, 132.78, 132.12, 131.81, 131.04, 130.87, 130.80, 130.16, 129.28, 128.59, 128.34, 128.12, 127.36, 125.01, 124.33, 124.10, 121.45, 121.16, 112.14, 100.51, 72.97, 31.94, 31.49, 30.75, 29.86, 29.06, 28.96, 28.82, 28.36, 26.45, 24.86, 24.23, 24.13, 23.65, 20.80, 17.32, 14.97, 14.04, 13.45, 12.55. ¹⁹F NMR (471 MHz, CDCl₃) δ -81.82 (s, 6F, NTf₂), -137.45- -137.80 (m, 1F, BODIPY 1b), -139.34 --139.71 (m, 1F, BODIPY 1b), -148.92- -149.20 (m, 2F, BODIPY 2a).

APCI HR-MS: m/z calcd for $C_{116}H_{139}Au_2B_2F_4N_8O_2$ $C_{116}H_{139}Au_2B_2F_4N_8O_2$ $[M+H]^+$ 2168.04691, found 2168.05008.

Synthesis of [(Au(NTf₂)(3d)]

To a solution of [AuCl(3d)] (26.8 mg, 0.0266mmol, 1eq) in CH₂Cl₂ (1 mL) was added $[Ag(NTf_2)]$ (10.33 mg, 0.0266 mmol, 1eq)). The resulting suspension was stirred at room temperature for 20 minutes and then filtered through celite. Evaporation of the CH₂Cl₂ under reduced pressure gave $[(Au(NTf_2)(3d)]$ (31 mg, 0.0247mmol, 93%).

¹H NMR (300 MHz, CDCl₃) δ ¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H, *p* - H Ar), 7.29 (d, *J* = 4.0 Hz, 2H, *m* - H Ar), 7.27 (d, *J* = 3.9 Hz, 2H, *m* - H Ar), 6.51 (s, 1H, NC(OR)*CH*N), 4.05 (t, *J* = 6.3 Hz, 2H, alkyl chain CH₂ O-), 2.96 – 2.84 (m, 2H, alkyl chain CH₂ BODIPY), 2.61 – 2.55 (m, 2H, , *i*Pr-group CH), 2.50 – 2.47 (m, 8H, *i*Pr-group CH, CH₃ BODIPY), 2.39 (q, *J* = 7.6 Hz, 4H, CH₂ BODIPY), 2.22 (s, 6H, CH₃ BODIPY), 1.83 – 1.71 (m, 2H, alkyl chain CH₂), 1.62 – 1.46 (m, 4H, alkyl chain CH₂), 1.30 (dd, *J* = 9.1, 6.8 Hz, 12H, *i*Pr-group CH₃), 1.24 (d, *J* = 6.9 Hz, 6H, *i*Pr-group CH₃), 1.19 (d, *J* = 6.9 Hz, 6H, *i*Prgroup CH₃), 1.04 (t, *J* = 7.6 Hz, 6H, CH₃ BODIPY). ¹³C NMR (126 MHz, CDCl₃) δ 163.11, 152.48, 148.88, 146.13, 145.81, 143.95, 135.43, 134.37, 132.83, 130.94, 130.88, 130.05, 124.30, 124.14, 122.85, 119.0 (q, J = 323.8 Hz, CF₃) 115.15, 99.88, 72.57, 31.47, 29.27, 28.97, 28.92, 28.27, 26.40, 24.53, 24.25, 24.00, 23.66, 17.31, 14.96, 13.44, 12.55. ¹⁹F NMR (282 MHz, CDCl₃) δ -79.11 (s, 6F, NTf₂), -149.00, -149.11 (m, 2F, BODIPY 2d).

APCI HR-MS: m/z calcd for C₅₁H₆₇AuBF₈N₅O₅S₂ [M+H]⁺ 1254.42840, found 1254.42874.

Synthesis of [Au(CCPh'')(3d)]

To an ovendried Schlenk flask equipped with a stirring bar a solution of [AuCl(**3d**)] (97.2 mg, 0.0963mmol, 1eq) CH₂Cl₂ (1ml) and triethylamine (1ml) as well as 1-ethynyl-2-(phenylethynyl)benzene (50.6 mg, 0.250 mmol, 2.6 eq) were added. The flask was sealed and stirred at 40°C for 24 h. The solution was cooled to room temperature and diethylether added. The organic phase was washed with water, brine and dried over MgSO₄. After filtration and removal of solvent, the residue was dissolved in small amount of CH₂Cl₂.

Pentane was added, and the resulting precipitate was filtered off and washed with pentane. The product $[Au(CCPh^{\prime})(3d)]$ is an orange solid (90.5 mg, 0.077 mmol, yield 80%).

¹H NMR (500 MHz, CDCl₃) δ 7.49 – 7.41 (m, 4H), 7.35 (d, J = 8.7 Hz, 2H), 7.32 – 7.23 (m, 8H), 7.08 – 6.99 (m, 2H), 6.38 (s, 1H, NC(OR)*CH*N), 3.99 (t, J = 6.2 Hz, 2H), 2.95 – 2.87 (m, 2H), 2.77 – 2.60 (m, 4H), 2.51 (s, 6H), 2.41 (q, J = 7.5 Hz, 4H), 2.24 (s, 6H), 1.80 – 1.69 (m, 4H), 1.64 – 1.52 (m, 4H), 1.52 – 1.44 (m, 4H), 1.44 – 1.32 (m, 12H), 1.28 – 1.16 (m, 12H), 1.06 (t, J = 7.5 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 186.25, 152.48, 148.71, 146.21, 145.85, 144.02, 135.54, 135.43, 135.13, 132.89, 132.00, 131.48, 130.98, 130.67, 130.52, 130.42, 128.92, 127.96, 127.57, 127.45, 125.59, 125.40, 124.23, 124.01, 101.72, 99.54, 92.19, 89.94, 72.23, 65.97, 31.47, 29.18, 28.90, 28.31, 26.45, 24.95, 24.29, 23.75, 17.32, 14.95, 13.46, 12.55.

APCI HR-MS: m/z calcd for C₆₅H₇₇AuBF₂N₄O [M+H]⁺ 1175.581468, found 1175.581870.

To an ovendried Schlenk flask equipped with a stirring bar a solution of [AuCl(3a)] (25.5 mg, 0.0226mmol, 1eq) in CH₂Cl₂ (1 mL) and Et₃N (1 mL) and 1-ethynyl-2-(phenyl-ethynyl)benzene (11.9 mg, 0.0588 mmol, 2.6 eq) were added. The flask was sealed and stirred at 40°C for 60 h. The solution was cooled down to room temperature, diethyl ether was added. The organic phase was washed with water, brine and dried over MgSO₄. After filtration and removal of solvent, the

residue was dissolved in a small amount of CH_2Cl_2 . Pentane was added, and the resulting precipitate was filtered off and washed with pentane. The product $[Au(CCPh^{\prime})(\mathbf{3a})]$ is a blue solid (24.4 mg, 0.0188 mmol, yield 83%).

¹H NMR (500 MHz, CDCl₃) δ 8.83 – 8.65 (m, 2H), 7.44 – 7.31 (m, 8H), 7.31 – 7.12 (m, 11H), 7.04 – 7.00 (m, 2H), 6.40 – 6.37 (m, 1H), 4.00 – 3.98 (m, 2H), 3.06 – 3.03(m, 2H), 2.90 – 2.88 (m, 4H), 2.70 – 2.62 (m, 8H), 2.32 (s, 6H), 1.76 – 1.73 (m, 2H), 1.66 – 1.63 (m, 2H), 1.53 – 1.48 (m, 2H), 1.36 – 1.34 (m, 12H), 1.23 – 1.20 (m, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 186.23, 149.73, 148.71, 146.24, 145.86, 143.78, 140.49, 135.56, 135.13, 134.17, 133.20, 132.89, 132.16, 132.00, 131.48, 130.70, 130.53, 130.43, 129.35, 128.92, 128.76, 128.67, 128.58, 128.49, 128.11, 127.97, 127.59, 127.46, 127.38, 125.59, 125.41, 124.41, 124.29, 124.23, 124.10, 124.02, 101.73, 99.57, 92.20, 89.95, 72.34, 31.93, 30.71, 29.19, 29.00, 28.91, 28.73, 26.34, 26.29, 24.96, 24.84, 24.42, 24.30, 23.84, 23.78, 20.80, 14.05, 10.88, 1.16.

APCI HR-MS: m/z calcd for C₇₅H₇₆AuBF₂N₄O [M+H]⁺ 1295.581979, found 1295.581870.

Synthesis of Dibenzopentalene

In a round bottom flask 1-ethynyl-2-(phenylethynyl)benzene (1eq), $[(Au(NTf_2)(\mathbf{3d})]$ (5 mol%) and $[Au(CCPh'')(\mathbf{3d})]$ (5 mol%) were dissolved in 1,2-dichloroethane and heated to 80°C for 24 h. The solvent

was removed under reduced pressure. Without further purification the orange-brownish crude product was dissolved in CDCl₃, insoluble impurities were filtered off. NMR measurements show the desired product signals. The spectroscopic data are in accord with the literature.⁴ ¹H NMR (500 MHz, CDCl₃) δ 7.07 – 7.00 (m, 2H), 6.90 – 6.82 (m, 6H), 6.40 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 150.33, 149.15, 134.96, 128.46, 127.99, 127.35, 126.38, 123.30, 122.24.

Synthesis of [(Au(3d))(Au(CCPh'')(3d))]NTf₂

A solution of [Au(CCPh'')(3a)] (0.01 M, 1276 µl, 0.01276 mmol, 1eq) in C₂H₄Cl₂ was added to a solution of $[(Au(NTf_2)(3d)]$ (1276 µl, 0.01 M, 0.01276 mmol, 1eq) in C₂H₄Cl₂ at -10 °C. Stirring was continued for 20 min, followed by evaporation of the volatiles under reduced pressure. A dark orange amorphous solid $[(Au(3d))(Au(CCPh'')(3d))]NTf_2$ (21.7mg, 0.0101 mmol, 79 %) was

¹² (21.7mg, 0.0101 mmol, 79 %) was isolated.

¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.28 (m, 4H, 2x *p* - H Ar), 7.09 – 7.01 (m, 8H, 2x *m* - H Ar), 6.76 – 6.68 (m, 3H), 6.56 (d, *J* = 7.2 Hz, 1H), 6.44 (s, 2H, , NC(OR)*CH*N), 6.38 (t, *J* = 7.8 Hz, 1H), 6.26 (t, *J* = 7.6 Hz, 1H), 5.93 (s, 1H), 5.49 (d, *J* = 7.0 Hz, 1H), 5.25 (d, *J* = 7.2 Hz, 1H), 3.98 (t, *J* = 6.2 Hz, 4H, alkyl chain CH₂ O-), 2.90 – 2.82 (m, 4H, 2x alkyl chain CH₂ BODIPY), 2.48 (s, 12H, 2x CH₂ BODIPY), 2.40 – 2.34 (m, 16H, 2x (*i*Pr-group CH, CH₂ BODIPY)), 2.18 (s, 12H, 2x CH₂ BODIPY), 1.72 – 1.64 (m, 4H, 2x alkyl chain CH₂), 1.53 –

⁴ B. Eliasson and U. Edlund, Org. Magn. Res., 1983, 21, 322-327.

1.39 (m, 8H, 2x alkyl chain 2xCH₂), 1.10 (d, J = 6.8 Hz, 12H, 2x *i*Pr-group CH₃), 1.05 – 1.00 (m, 24H, 2x *i*Pr-group CH₃), 0.92 – 0.85 (m, 24H, 2x (*i*Pr-group CH₃, CH₃ BODIPY). ¹³C NMR (126 MHz, CDCl₃) δ 178.17, 152.32, 148.76, 145.98, 145.75, 145.60, 145.33, 144.23, 135.60, 134.53, 132.75, 131.00, 130.56, 130.24, 128.48, 124.23, 124.15, 124.07, 123.98, 123.12, 121.65, 121.15, 100.48, 77.16, 72.79, 31.48, 29.05, 29.03, 28.87, 28.79, 28.27, 26.34, 24.41, 24.36, 24.21, 23.75, 23.66, 17.30, 14.94, 13.46, 13.42, 12.53. ¹⁹F NMR (471 MHz, CDCl₃) δ -81.83, -148.95- -149.28 (m, 4F, 2x BODIPY d).

APPI HR-MS: m/z calcd for $C_{114}H_{144}Au_2B_2F_4N_8O_2$ $[M+H]^+$ 2148.078213, found 2148.081300.

Figure S1 ¹H NMR of 3d·HCl in CDCl₃.

Figure S2 ¹³C NMR of **3d**·HCl in CDCl₃.

Figure S3 ¹⁹F-NMR spectrum of **3d**·HCl in CDCl₃.

Figure S 4 ¹H NMR of [AuCl(**3d**)] in CDCl₃.

Figure S5 ¹³C NMR of [AuCl(**3d**)] in CDCl₃.

Figure S6¹⁹F-NMR spectrum of [AuCl(**3d**)] in CDCl₃.

Figure S 7 ¹H NMR of [Au(CCPh)(**3d**)] in CDCl₃.

Figure S 8 ¹³C NMR of [Au(CCPh)(**3d**)] in CDCl₃.

Figure S 9¹⁹F NMR of [Au(CCPh)(**3d**)] in CDCl₃.

Figure S10¹H NMR of **3a**·HCl in CDCl_{3.}

Figure S11¹³C NMR of **3a**·HCl in CDCl₃.

Figure S12 ¹⁹F NMR of **3a**·HCl in CDCl₃.

Figure S 13 ¹H NMR of [AuCl(**3a**)] in CDCl₃.

Figure S 14 ¹H NMR of [AuCl(**3a**)] in CDCl₃.

Figure S 15¹³C NMR of [AuCl(**3a**)] in CDCl₃.

Figure S 16¹⁹F NMR of [AuCl(**3a**)] in CDCl₃.

Figure S 17 ¹H NMR of [Au(CCPh)(**3a**)] in CDCl₃.

Figure S 18 ¹³C NMR of [Au(CCPh)(**3a**)] in CDCl₃.

Figure S 20 ¹H NMR of $[(Au(3d))(Au(CCPh)(3d))]NTf_2$ in CDCl₃.

Figure S 21 ¹³C NMR of [(Au(**3d**))(Au(CCPh)(**3d**))]NTf₂ in CDCl₃.

Figure S 22 ¹H NMR of [(Au(**3a**))(Au(CCPh)(**3d**))]NTf₂ in CDCl₃.

Figure S 23 ¹³C NMR of [(Au(**3a**))(Au(CCPh)(**3d**))]NTf₂ in CDCl₃.

Figure S 24 ¹⁹F NMR of $[(Au(3a))(Au(CCPh)(3d))]NTf_2$ in CDCl₃.

Figure S 25 ¹H NMR of [Au(NTf₂)(**3d**)] in CDCl₃.

Figure S 26¹³C NMR of [Au(NTf₂)(**3d**)] in CDCl₃.

Figure S 27 ¹⁹F NMR of [Au(NTf₂)(**3d**)] in CDCl₃.

Figure S 28 ¹H NMR of [Au(CCPh´)(**3d**)] in CDCl₃.

Figure S 29 ¹³C NMR of [Au(CCPh[~])(**3d**)] in CDCl₃.

Figure S 30 ¹⁹F NMR of [Au(CCPh´)(**3d**)] in CDCl₃.

Figure S 31 ¹H NMR of [Au(CCPh´)(**3a**)] in CDCl₃.

Figure S 32 ¹³C NMR of [Au(CCPh[~])(**3a**)] in CDCl₃.

Figure S 33 ¹H NMR of Dibenzopentalene (crude material).

Figure S 34 ¹³C NMR of Dibenzopentalene (crude material).

Figure S 35 ¹H NMR of [(Au(**3d**))(Au(Au(CCPh[~])(**3d**))]NTf₂.

Figure S 36 ¹³C NMR of [(Au(**3d**))(Au(Au(CCPh[~])(**3d**))]NTf₂.

Figure S 37 ¹⁹F NMR of [(Au(**3d**))(Au(Au(CCPh[~])(**3d**))]NTf₂.

4. Fluorescence measurements of BODIPY tagged metal complexes

Fluorescence quantum yield

Quantum yields were determined according to the literature procedure⁵ using rhodamine 6G (from Sigma-Aldrich, BioReagent, suitable for fluorescence) as the standard. Absorption and emission spectra for all compounds and standard were obtained over a range of concentrations (250 nM to 1.0 μ M, in 1,2-dichloroethane) where a linear correlation between concentration and absorption was observed. The absorbance was within the range from 0.01 to 0.1. The quantum yield was calculated according to the equation $\Phi_x = \Phi_{st} \left(\frac{Grad_x}{Grad_{st}}\right) \left(\frac{\eta_x}{\eta_{st}}\right)^2$ where the subscripts *st* and *x* denote standard and test respectively, Φ is the fluorescence quantum yield, *Grad* the gradient from the plot of integrated fluorescence intensity *vs* absorbance, and η the refractive index of the solvent. $\Phi_{st} = 0.95$ in EtOH.

Figure S 38Left: absorbance (black) and emission (blue, $\lambda_{exc} = 523$ nm) spectra of 1 μ M solution of Rhodamine 6G in ethanol. Right: integrated fluorescence intensity vs absorbance plot for Rhodamine 6G.

⁵ U. Resch-Genger, K. Rurack, Pure Appl. Chem., **2013**, 85, 2005–2026.

Figure S 39 Left: absorbance (black) and emission (blue, $\lambda_{exc} = 523$ nm) spectra of 1 μ M solution of [AuCl(**3d**)] in 1,2-dichloroethane. Right: integrated fluorescence intensity vs absorbance plot for [AuCl(**3d**)] complex.

Figure S 40 Left: absorbance (black) and emission (blue, $\lambda_{exc} = 523$ nm) spectra of 1 μ M solution of [Au(NTf₂)(**3d**)] in 1,2-dichloroethane. Right: integrated fluorescence intensity vs absorbance plot for [Au(NTf₂)(**3d**)] complex.

Figure S 41 Left: absorbance (black) and emission (blue, $\lambda_{exc} = 523$ nm) spectra of 1 μ M solution of [Au(CCPh)(**3d**)] in 1,2-dichloroethane. Right: integrated fluorescence intensity vs absorbance plot for [Au(CCPh)(**3d**)] complex.

Figure S 42 Left: absorbance (black) and emission (blue, $\lambda_{exc} = 523$ nm) spectra of 1 μ M solution of [Au(CCPh['])(**3d**)] in 1,2-dichloroethane. Right: integrated fluorescence intensity vs absorbance plot for [Au(CCPh^{''})(**3d**)] complex.

Compound	<u>Fluorescence</u>	Absorbance	Emission
	<u>quantum yield</u>	λ_{max} ., nm	λ_{max} ., nm
[AuCl(3d)]	0.86	523	534
	0.00	502	524
$[\operatorname{Au}(\operatorname{N1t}_2)(\mathbf{3d})]$	0.80	523	534
[Au(CCPh)(3d)]	0.84	523	534
[Au(CCPh´´)(3d)]	0.83	523	534

Table S 1 Fluorescence quantum yields and spectroscopic data of synthesized compounds

UV/Vis [[AuCl(3a)]

Figure S 43 Absorbance (black, $\lambda_{abs} = 610 \text{ nm}$) and emission (blue, $\lambda_{ems} = 626 \text{ nm}$, $\lambda_{exc} = 523 \text{ nm}$) spectra of $5 \cdot 10^{-5} \text{ M}$ solution of [[AuCl(**3a**)].

Figure S 44 Emission (blue, $\lambda_{abs} = 610 \text{ nm}$; $\lambda_{ems} = 626 \text{ nm}$, $\lambda_{exc} = 523 \text{ nm}$) spectra of $5.0 \cdot 10^{-6} \text{ M}$ solution of [AuCl(**3a**)].

Fluorescence measurements of BODIPY tagged NHC gold complexes

For all FRET reaction monitoring experiments on gold complexes, (λ_{exc} = 500 nm) was chosen. At this excitation wavelength the best relative FRET intensity relative to the emission from the unwanted direct excitation of the acceptor fluorophore by green light was observed. This approach was reported in detail in: O. Halter, I. Fernández, H. Plenio, *Chem. Eur. J.* **2017**, *23*, 711-719.

Figure S 45 Fluorescence intensity vs emission wavelength plot of $[(Au(3a))(Au(CCPh)(3d))]NTf_2$, it was excited at 500 nm. The measurement was carried out in 1,2-dichloroethane (c= $1.0 \cdot 10^{-6}$ M) at rt.

Figure S 46 Variation of concentration for compound $[(Au(3a))(Au(CCPh)(3d))]NTf_2$. The concentration was within the range from 0.5 to $2.0 \cdot 10^{-5}$ M.

Figure S 47 Left: emission ($\lambda_{exc} = 500 \text{ nm}$) spectra of $5.0 \cdot 10^{-6} \text{ M}$ solution of BODIPY_{donor} **2d** in 1,2-dichloroethane at rt. Right: emission ($\lambda_{exc} = 500 \text{ nm}$) spectra of $5.0 \cdot 10^{-6} \text{ M}$ solution of BODIPY_{acceptor} **2a** in 1,2-dichloroethane at r.t.

Figure S 48 Black: emission spectra of the sum of the fluorescence intensities of BODIPY_{donor} 2d and BODIPY_{acceptor} 2a. Blue: emission ($\lambda_{exc} = 500 \text{ nm}$) spectra of $5.0 \cdot 10^{-6}$ M solution of 1:1 Mixture of BODIPY_{donor} 2d and BODIPY_{acceptor} 2a in 1,2-dichloroethane at r.t.

Fluorescence time measurements on "Widenhoefer" and "Hashmi" dimers

General conditions: All experiments were carried out in quartz cuvettes with path length of 10.00 mm equipped with a stirring bar. The temperature (-5°C and 20 °C) was adjusted using a thermostat and controlled with a thermometer. The cuvette was filled with 2 mL of 2.5 and 5 μ M solution of the [Au(NTf₂)(**3d**)] in 1,2-dichloroethane. Next the measurement was started and the fluorescence intensity at emission maximum was observed. After approximately 2-3 min 20 and 40 μ l of 2.53 · 10⁻⁴ M solution of gold phenylacetylide derivative respectively gold Hashmi acetylide derivative (1eq) in 1,2-dichloroethane was added. The time of addition is indicated with arrows.

Fluorescence time measurements Wiedenhoefer substrates

Figure S 49 Left: Plot of the time-dependent fluorescence intensities at 534 nm and 626 nm $(\lambda_{exc}=500 \text{ nm})$. Right: Fluorescence intensity vs. time plot for the reactions of $[Au(NTf_2)(3d)]$ $(c = 5.0 \times 10^{-6} \text{ mol} \cdot \text{L}^{-1})$ in 1,2-dichloroethane with [Au(CCPh)(3a)] (1eq) at -5°C.

Figure S 50 Left: Plot of the time-dependent fluorescence intensities at 534 nm and 626 nm $(\lambda_{exc}=500 \text{ nm})$. Right: Fluorescence intensity vs. time plot for the reactions of $[Au(NTf_2)(3d)]$ $(c = 5.0 \times 10^{-6} \text{ mol} \cdot \text{L}^{-1})$ in 1,2-dichloroethane with [Au(CCPh)(3a)] (1eq) at 20°C.

Figure S 51 Left: Plot of the time-dependent absorbance intensities at 526 nm and 610 nm. Right: Absorbance intensity vs. time plot for the reactions of $[Au(NTf_2)(3d)]$ (c = 5.0×10^{-6} mol·L⁻¹) in 1,2-dichloroethane with [Au(CCPh)(3a)] (1eq) at 20°C.

Fluorescence time measurements Hashmi substrates

Figure S 52 Left: Plot of the time-dependent fluorescence intensities at 534 nm and 626 nm $(\lambda_{exc}=500 \text{ nm})$. Right: Fluorescence intensity vs. time plot for the reactions of $[Au(NTf_2)(3d)]$ $(c = 2.5 \times 10^{-6} \text{ mol} \cdot \text{L}^{-1})$ in 1,2-dichloroethane with $[Au(CCPh^{\prime\prime})(3a)]$ (1eq) at 20°C.

Figure S 53 Left: Plot of the time-dependent fluorescence intensities at 534 nm and 626 nm $(\lambda_{exc}=500 \text{ nm})$. Right: Fluorescence intensity vs. time plot for the reactions of $[Au(NTf_2)(3d)]$ $(c = 5.0 \times 10^{-6} \text{ mol} \cdot \text{L}^{-1})$ in 1,2-dichloroethane with $[Au(CCPh^{\prime\prime})(3a)]$ (1eq) at -5°C.

Figure S 54 Left: Plot of the time-dependent fluorescence intensities at 534 nm and 626 nm (λ_{exc} = 500 nm). Right: Fluorescence intensity vs. time plot for the catalytic reactions of [Au(NTf₂)(**3d**)] (1eq) (c = 5.0 × 10⁻⁶ mol·L⁻¹) and 1-Ethynyl-2-(phenylethynyl)benzene (c = 5.0 × 10⁻⁵ mol·L⁻¹ in 1,2-dichloroethane) with [Au(CCPh[~])(**3a**)] (1eq) at 0°C.

5. Mass spectrometry

Figure S 55 mass spectrum of **3d**·HCl.

	IVIAS	s spectrum on	anron		
Analysis Info	D			Acquisition Date 7/12/20)16 5:16:47 PM
Analysis Nam	ne D:\Data\Plenio\76	410HR_pos.d			
Method	DirectInfusion - N	IS - positive.m		Operator Rudolph	
Sample Name	e OH-01-99			Instrument impact II	1825265.10135
Comment	Halter				
Acquisition I	Parameter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus Scan Begin	Not active 50 m/z	Set Capillary Set End Plate Offset	4500 V -500 V	Set Dry Heater Set Dry Gas	180 °C 4.0 I/min
Scan End	1300 m/z	Set Charging Voltage	2000 V	Set Divert Valve	Source
		Set Corona	0 nA	Set APCI Heater	0 °C
				+	MS, 0.3-0.9min #15-50
			1	+	-
			777.5	4469	
		1+			
	3	381.29707			
	226.95123		· · · · ·		
		0	(
Meas.	M/Z # ION FORMULA	Score M/Z err	[mDaj err [opmj misigma rdb e Coi 130 - 385 175 ovon	NT N-HULE Adduct
111.5	1400 I 040100DF2N	100.00 ///.04400	1.01	1.00 00.0 IT.0 EVEN	

Mass Spectrum SmartFormula Report

HR-Messung

Figure S 56 mass spectrum of **3d**·HCl.

MSMS-APCI-Messung

Generic Display Report

Figure S 57 mass spectrum [AuCl(3d)].

Figure S 58 mass spectrum [AuCl(3d)].

Figure S 59 mass spectrum [Au(CCPh)(3d)].

Meas. m/z # Ion Formula	Sum Formula	m/z	err [mDa] e	err [ppm]	mSigma rdb e	Conf N-Rule Adduct
1075.55204 1 C57H73AuBF2N4O	C57H73AuBF2N4O	1075.55057	-0.52	-0.48	11.1 22.5 ev	en ok M
2 C59H75AuBF2NO2	C59H75AuBF2NO2	1075.55191	0.85	0.79	15.8 22.0 od	d ok M
3 C62H74AuBFNO	C62H74AuBFNO	1075.55077	-0.25	-0.23	28.8 26.0 od	d ok M
1 C57H73AuBF2N4O	C57H72AuBF2N4O	1075.55057	-0.52	-0.48	11.1 22.5 ev	en ok M+H
2 C59H75AuBF2NO2	C59H74AuBF2NO2	1075.55191	0.85	0.79	15.8 22.0 od	d ok M+H
3 C62H74AuBFNO	C62H73AuBFNO	1075.55077	-0.25	-0.23	28.8 26.0 od	d ok M+H

Figure S 60 mass spectrum [Au(CCPh)(3d)].

Mass Spectrometry Facility, Department of Chemistry, Technische Universität Darmstadt Instrument: Bruker Impact II

Figure S 61 mass spectrum **3a**·HCl.

Meas. m/z	#	Ion Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	N-Rule	Adduct
897.54568	1	C59H68BF2N4O	100.00	897.54488	0.17	0.19	1.6	27.5	even	ok	M
	2	C63H69N4O	25.16	897.54659	0.91	1.01	46.5	31.5	even	ok	M

Figure S 62 mass spectrum **3a**·HCl.

Mass Spectrometry Facility Department of Chemistry Technische Universität Darmstadt Instrument Bruker Impact II

Figure S63 mass spectrum [AuCl(3a].

Meas. m/z	#	Ion Formula	Sum Formula	m/z	err [mDa]	err [ppm]	e ⁻ Conf	N-Rule	Adduct
1093.50429	1	C59H67AuBF2N4O	C59H67AuBF2N4O	1093.50362	0.30	0.27	even	ok	M
	2	C76H62BF2N5	C76H62BF2N5	1093.50609	2.99	2.73	odd	ok	M
	3	C65H191BF2N4O	C65H191BF2N4O	1093.50736	4.14	3.79	odd	ok	M
	4	C78H64BF2N2O	C78H64BF2N2O	1093.50743	4.36	3.98	even	ok	M
	5	C71H191BF2	C71H191BF2	1093.50014	-2.99	-2.74	odd	ok	M
	6	C53H196AuBF2N	C53H196AuBF2N	1093.50891	5.53	5.06	even	ok	M

Figure S64 mass spectrum [AuCl(3a].

Figure S 65 mass spectrum [Au(CCPh)(3a)].

Meas. m/z # Ion Formula	Sum Formula	m/z	err [mDa]	err [ppm]	mSigma	rdb e ⁻ C	Conf N-Rule Adduct
1195.55158 1 C67H73AuBF2N4O	C67H73AuBF2N4O	1195.55057	0.07	0.06	53.8	32.5 even	n ok M
2 C69H75AuBF2NO2	C69H75AuBF2NO2	1195.55191	1.44	1.21	55.7	32.0 odd	ok M
3 C72H74AuBFNO	C72H74AuBFNO	1195.55077	0.34	0.28	62.3	36.0 odd	ok M
1 C67H73AuBF2N4O	C67H72AuBF2N4O	1195.55057	0.07	0.06	53.8	32.5 even	ok M+H
2 C69H75AuBF2NO2	C69H74AuBF2NO2	1195.55191	1.44	1.21	55.7	32.0 odd	ok M+H
3 C72H74AuBFNO	C72H73AuBFNO	1195.55077	0.34	0.28	62.3	36.0 odd	ok M+H

Figure S 66 mass spectrum [Au(CCPh)(**3a**)].

Meas. m/z	#	Ion Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	N-Rule	Adduct
2048.05339	1	C113H142Au2B2F7	100.00	2048.05118	0.78	0.38	17.5	39.5	even	ok	M+H
	2	C110H146Au2B2F7S	4.15	2048.05455	4.10	2.00	32.1	34.5	even	ok	M+H

Figure S 68 mass spectrum [(Au(**3d**))(Au(CCPh)(**3d**))]NTf₂.

Gesamtspektrum

Figure S69 mass spectrum [(Au(3a))(Au(CCPh)(3d))]NTf₂.

Figure S70 mass spectrum [(Au(**3a**))(Au(CCPh)(**3d**))]NTf₂.

Figure S71 mass spectrum [(Au(**3a**))(Au(CCPh)(**3d**))]NTf₂.

Meas. m/z	#	Ion Formula	Sum Formula	m/z	err [mDa]	err [ppm]	rdb	e ⁻ Conf	Adduct
2048.05011	1	C106H139Au2B2F4N8O2	C106H139Au2B2F4N8O2	2048.04691	-0.34	-0.17	39.5	even	М
	2	C108H141Au2B2F4N5O3	C108H141Au2B2F4N5O3	2048.04826	1.04	0.51	39.0	odd	M
	3	C114H139Au2B2F2N5O	C114H139Au2B2F2N5O	2048.04597	-1.13	-0.55	47.0	odd	M
2168.05008	1	C116H139Au2B2F4N8O2	C116H139Au2B2F4N8O2	2168.04691	-0.13	-0.06	49.5	even	M
	2	C118H141Au2B2F4N5O3	C118H141Au2B2F4N5O3	2168.04826	1.26	0.58	49.0	odd	M
	3	C120H143Au2B2F4N2O4	C120H143Au2B2F4N2O4	2168.04960	2.64	1.22	48.5	even	M
2288.05032	1	C126H139Au2B2F4N8O2	C126H139Au2B2F4N8O2	2288.04691	-0.19	-0.08	59.5	even	M
	2	C128H141Au2B2F4N5O3	C128H141Au2B2F4N5O3	2288.04826	1.19	0.52	59.0	odd	М
	3	C130H143Au2B2F4N2O4	C130H143Au2B2F4N2O4	2288.04960	2.57	1.13	58.5	even	M

Figure S72 mass spectrum [(Au(**3a**))(Au(CCPh)(**3d**))]NTf₂.

APPI-HR-Messung

Mass spectrum							
Analysis	D:\Data\Plenio\76806APPl000002.d	Acquisition Date	11/4/2016 2:18:40 PM				
Sample Name	<u>OH-01-110</u>	Ionisation	APPI Positive				
Method	APPI_Hartmann.m	Mass Range	50 m/z - 3000 m/z				
Client	Halter	Operator	Rudolph				

Figure S 73 mass spectrum [(Au(**3a**))(Au(Au(CCPh)(**3d**))]NTf₂.

Accurate Mass Measurement

Figure S 74 mass spectrum of [(Au(NTf₂)(3d)].

Meas. m/z # Ion Formula	Sum Formula	m/z	err [mDa]	err [ppm]	rdb e ⁻ Con	f N-Rule Adduct
1234.42484 1 C51H67AuBF7N5O5S2	C51H67AuBF7N5O5S2	1234.42251	-1.46	-1.18	17.5 even	ok M
2 C54H65AuBF7N6O2S2	C54H65AuBF7N6O2S2	1234.42519	1.26	1.02	22.0 odd	ok M
3 C52H69AuF6N5O6S2	C52H69AuF6N5O6S2	1234.42537	0.53	0.43	17.5 even	ok M
4 C55H64AuF7N6O4S	C55H64AuF7N6O4S	1234.42582	0.98	0.79	23.0 odd	ok M
5 C55H68AuF5N5O5S2	C55H68AuF5N5O5S2	1234.42422	-0.61	-0.50	21.5 even	ok M
6 C53H64AuBF6N6O6S	C53H64AuBF6N6O6S	1234.42655	2.60	2.11	22.0 odd	ok M
1254.42840 1 C55H69AuF6N5O5S2	C55H68AuF6N5O5S2	1254.43045	2.05	1.64	20.5 even	ok M+H
2 C51H68AuBF8N5O5S2	C51H67AuBF8N5O5S2	1254.42874	1.21	0.96	16.5 even	ok M+H
3 C54H67AuBF7N5O4S2	C54H66AuBF7N5O4S2	1254.42760	0.11	0.09	20.5 even	ok M+H

Figure S 75 mass spectrum of $[(Au(NTf_2)(3d)]]$.

Mass Spectrometry Facility, Department of Chemistry, Technische Universität Darmstadt Instrument: Bruker Impact II

Figure S 76 Mass spectrum of [Au(CCPh´)(3d)].

Meas. m/z # Ion Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	N-Rule	Adduct
1175.581468 1 C68H76AuBFN4	100.00	1175.580727	0.4	0.3	16.5	32.5	even	ok	M+H
2 C73H202F2N3O	9.20	1175.581051	-0.4	-0.4	86.3	-26.5	even	ok	M+H
3 C65H77AuBF2N4O	0.00	1175.581870	1.5	1.2	659.5	28.5	even	ok	M+H

Figure S 77 mass spectrum of [Au(CCPh[~])(3d)].

Accurate Mass Measurement

Figure S 78 mass spectrum of [Au(CCPh´)(3a)].

Meas. m/z	#	Ion Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	N-Rule	Adduct
1295.581979	1	C70H204AuBN3	100.00	1295.580854	0.0	0.0	9.5	-29.5	even	ok	M+H
	2	C75H77AuBF2N4O	53.39	1295.581870	1.1	0.8	15.2	38.5	even	ok	M+H

Figure S 79 mass spectrum of [Au(CCPh^{''})(3**a**)].

Figure S 80 mass spectrum of [(Au(**3d**))(Au(Au(CCPh´)(**3d**))]NTf₂.

Meas. m/z	#	Ion Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	N-Rule	Adduct
2148.081300	1	C114H143Au2B2F4N8O2	100.00	2148.078213	-0.1	-0.0	2.9	45.5	even	ok	M+H
	2	C103H143Au2B2F4N14O5	8.45	2148.081401	2.9	1.3	31.6	37.5	even	ok	M+H
	3	C98H143Au2B2F4N16O7	15.87	2148.077378	-1.2	-0.6	50.8	33.5	even	ok	M+H
	4	C108H143Au2B2F4N12O3	0.00	2148.085424	1.\$	1.\$	621.4	41.5	even	ok	M+H
2149.083404	1	C114H144Au2B2F4N8O2	-1.#J	2149.086038	-992.8	-462.0	614.7	45.0	odd	ok	M+H
	1	C98H144Au2B2F4N16O7	100.00	2149.085204	4.5	2.1	311.7	33.0	odd	ok	M+H

Figure S 81 mass spectrum of $[(Au(3d))(Au(Au(CCPh^{\prime\prime})(3d))]NTf_2$.