Supporting Information

$\left[\left[\mathrm{Hyp}-\mathrm{Au}-\mathrm{Sn}_{9}(\mathrm{Hyp})_{3}-\mathrm{Au}-\mathrm{Sn}_{9}(\mathrm{Hyp})_{3}-\mathrm{Au}-\mathrm{Hyp}\right]^{-}:\right.$The longest intermetalloid chain compound of tin

Mareike Binder, ${ }^{\text {a }}$ Claudio Schrenk, ${ }^{\text {a }}$ Theresa Block, ${ }^{\text {b }}$ Rainer Pöttgen ${ }^{\text {b }}$ and Andreas Schnepf ${ }^{\text {a* }}$
a) Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
b) Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30,

D-48149 Münster, Germany

Experimental Section

All reactions were carried out under rigorous exclusion of air and moisture using Schlenk techniques under standard nitrogen atmosphere. All solvents were dried and purified by standard procedures. At $-78^{\circ} \mathrm{C} \mathrm{Ph}_{3} \mathrm{PAuS}(\mathrm{Hyp})(54 \mathrm{mg}, 0.076 \mathrm{mmol}$) was dissolved in THF (ca. 20 mL) and transferred to precooled $\left[\mathrm{Li}(\mathrm{tmeda})_{2}\right]_{2} \mathrm{Sn}_{10}(\mathrm{Hyp})_{4}(200 \mathrm{mg}, 0.076 \mathrm{mmol})$. The dark green reaction mixture was slowly warmed up to RT while stirring, leading to a dark red solution. The solvent was removed in vacuum to give a black residue which was washed with pentane and extracted in toluene. The black toluene extract was stored at $-30^{\circ} \mathrm{C}$ for 7 d leading to the formation of dark red crystals of $\left[\mathrm{Li}(\mathrm{TMEDA})_{2}\right]\left[\mathrm{Au}_{3} \mathrm{Sn}_{18}(\mathrm{Hyp})_{8}\right]$. (yield: $32 \mathrm{mg}, 0.007$ mmol, 11 \%). 1H-NMR (250 MHz, THF-d8): $\delta=0.13\left(\mathrm{~s}, 54 \mathrm{H}, \mathrm{AuSi}\left(\mathrm{SiMe}_{3}\right)_{3}\right), 0.25\left(\mathrm{~s}, \mathrm{Si}\left(\mathrm{SiMe}_{3}\right)_{4}\right)$, 0.41 (s, $\left.162 \mathrm{H}, \mathrm{SnSi}\left(\mathrm{SiMe}_{3}\right)_{3}\right), 2.15$ (s , TMEDA), 2.31 (s, TMEDA) ppm; 7Li-NMR (97.2 MHz, THF$\mathrm{d} 8): 0.41$ (s, Li(tmeda) ${ }_{2}{ }^{+}$) ppm.

The obtained single crystals (dark red blocks) are very sensitive and rapidly loose solvent molecules and disintegrate into thin plates or rods. Hence, the single crystal quality decreases rapidly when taken out of the mother liquor into mineral oil for selection and preparation of the single crystals for x-ray measurements. Also NMR measurements to get an idea of the amount of embedded solvent molecules failed as the single crystals were washed and evaporated before dissolving in THF-d d_{8} for NMR measurement. During this procedure the loosely bound solvent molecules within the crystal are completely removed so that no additional signals for the solvent molecules could be obtained within the proton NMR spectrum.

${ }^{119}$ Sn Mössbauer spectroscopy

A Ca ${ }^{119 \mathrm{~m}} \mathrm{SnO}_{3}$ source was used for the ${ }^{119} \mathrm{Sn}$ Mössbauer spectroscopic investigation. The sample was placed within a thin-walled glass container at a thickness of about $10 \mathrm{mg} \mathrm{Sn} / \mathrm{cm}^{2}$. A palladium foil of 0.05 mm thickness was used to reduce the tin $\mathrm{K} X$-rays concurrently emitted by this source. The measurement (11 d total counting time) was conducted in the usual transmission geometry at 78 K. Fitting of the spectrum was done with the Normos-90 software package.[1]

Mass spectrometry

The anionic cluster compound 2 was brought into the gas phase by electrospraying a thf solution of 2. Mass spectrometer: Thermo Fischer Q Exactive Hybrid Quadrupol Orbitrap mass spectrometer.

X-ray structural characterization

Crystals were mounted on the diffractometer at 180 K . The data were collected on a Bruker APEX II diffractometer employing monochromated MoK $\alpha(\lambda=0.71073 \AA$) radiation from a sealed tube and equipped with an Oxford Cryosystems cryostat. A semi-empirical absorption correction was applied using the program SADABS. The structure was solved by Direct Methods and refined against F^{2} for all observed reflections. Programs used: SHELXS and SHELXL[2] within the Olex2 program package.[3] CCDC-1551134 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.as.uk/data request/cif.

$$
\begin{aligned}
& {\left[\mathrm{Li}(\mathrm{TMEDA})_{2}\right]\left[\mathrm{Au}_{3} \mathrm{Sn}_{18}(\mathrm{Hyp})_{8}\right]: \mathrm{C}_{84} \mathrm{H}_{248} \mathrm{Au}_{3} \mathrm{Si}_{32} \mathrm{Sn}_{18} \mathrm{Li}_{2} \mathrm{~N}_{4} ; \mathrm{Mr}=4948.32 \mathrm{~g} \mathrm{~mol}-1, \text { crystal }} \\
& \text { dimensions } 0.279 \times 0.079 \times 0.067 \mathrm{~mm} 3 \text {, space group P-1, } a=14.9081(6) \AA, b=16.3138(7) \AA \text {, } \\
& c=24.6890(10) \AA, \alpha=81.862(2)^{\circ}, B=87.078(2)^{\circ}, \gamma=63.232(2)^{\circ}, V=5306.6(4) \AA^{3}, Z=1, \rho_{\text {calc. }} . \\
& =1.47 \mathrm{~g} \mathrm{~cm}-3, \mu_{\mathrm{Mo}}=4.3 \mathrm{~mm}-1,2 \theta_{\max }=52.97^{\circ}, 109833 \text { reflections measured, } 21803 \\
& \text { independent reflections (} \mathrm{R}_{\text {int }}=0.0986 \text {), absorptions correction: semi-empirical (min./max. } \\
& \text { transmission 0.556/0.746), } \mathrm{R}_{1}(\mathrm{I}>2 \sigma)=0.0707 \text {, wR2 }(\mathrm{all})=0.2171 \text {, Bruker APEXII } \\
& \text { diffractometer (} \left.\mathrm{Mo}^{\mathrm{K} \alpha} \text { radiation }(\lambda=0.71073 \AA 8), 180 \mathrm{~K}\right) \text {. }
\end{aligned}
$$

Details on the refinement:

During the structure solution large voids are present where the counter cation $\left[\mathrm{Li}(\mathrm{TMEDA})_{2}\right]^{+}$ and solvent molecules are located. However, during structure solution we were not able to refine the cation or solvent molecules due to disorder. Although, some residual electron density (Q-peaks) show the form of a six membered ring, refinement as toluene molecules failed. Nevertheless, treatment of the residual electron density using SQUEEZE ${ }^{[4]}$ leads to voids of $1412 \AA^{3}$ with 609 electrons which fits to [Li(TMEDA) $]^{+}$together with 8 solvent (toluene) molecules.

The void has thereby the form of a peanut and one part of the peanut is centered at -0.121 0.50 .5 and is thus not positioned at a special position (Figure S1 shows the void from different directions). As Z is equal 1 only one [Li(TMEDA) $)^{+}$is localized within this void and might reside in one side of the peanut while the other side is occupied by solvent molecules (toluene). As the space group is $\mathrm{P}-1$, for the refinement we must solve the overlay of $\left[\mathrm{Li}(\mathrm{TMEDA})_{2}\right]^{+}$and
many toluene molecules, where all atoms should have an occupancy of 50\% (50\% of a lithium cation is nearly a hydrogen atom). Additionally, as the inversion center is in the middle of the peanut, which might not fit with a tetrahedral $\left[\mathrm{Li}_{(\text {TMEDA }}^{2}\right]^{+}$a further disorder is expected for the cation. All these aspects together lead to a smearing of the electron density so that a refinement is not possible.

Figure S1: Picture of the void (green), localized at $-0.121,0.5,0.5$ within the solid state of $\left[\mathrm{Li}(\mathrm{TMEDA})_{2}\right]\left[\mathrm{Au}_{3} \mathrm{Sn}_{18}(\mathrm{Hyp})_{8}\right] \mathbf{1}$; view from different directions.

NMR spectroscopy:

Figure S2: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\left[\mathrm{Li}(\mathrm{TMEDA})_{2}\right]\left[\mathrm{Au}_{3} \mathrm{Sn}_{18}(\mathrm{Hyp})_{8}\right] \mathbf{1}$ dissolved in THF- d_{8}. The signal at $\delta=0.13$ ppm shows the Hyp ligand bound to the gold atoms, whereas the signal at $\delta=0.41 \mathrm{ppm}$ could be assigned to the Hyp ligand bound to the tin atoms. The integrals shows a ratio of cluster to TMEDA of 1:1.5. (•TMEDA, \star SnHyp, $\boldsymbol{\Delta}$ AuHyp).

Figure S3: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\left[\mathrm{Li}(\mathrm{TMEDA})_{2}\right]\left[\mathrm{Au}_{3} \mathrm{Sn}_{18}(\mathrm{Hyp})_{8}\right] \mathbf{1}$ dissolved in THF- d_{8} shows a fast degradation of $\mathbf{1}$ within 7 days. The TMEDA signals at $\delta=2.15 \mathrm{ppm}$ and $\delta=2.13 \mathrm{ppm}$ doesn't change during that period, whereas the two Hyp signals at $\delta=0.13 \mathrm{ppm}$ and $\delta=0.41 \mathrm{ppm}$ nearly disappeares at day 7 .

 (

Figure S4: Enlargment of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\left[\mathrm{Li}(\mathrm{TMEDA})_{2}\right]\left[\mathrm{Au}_{3} \mathrm{Sn}_{18}(\mathrm{Hyp})_{8}\right]$ 1. The Hyp ligand signals at $\delta=0.13 \mathrm{ppm}$ and $\delta=0.41 \mathrm{ppm}$ show a fast degradation of $\mathbf{1}$ within the first two days. After 7 days the signals are nearly vanished and the spectrum gets more and more complex.

Figure S5: ${ }^{7} \mathrm{Li}-\mathrm{NMR}$ of $\left[\mathrm{Li}(\mathrm{TMEDA})_{2}\right]\left[\mathrm{Au}_{3} \mathrm{Sn}_{18}(\mathrm{Hyp})_{8}\right] \mathbf{1}$ dissolved in THF- d_{8} shows a singlet at δ $=0.41 \mathrm{ppm}$, which can be seen as prove for the presence of $\left[\mathrm{Li}(\mathrm{TMEDA})_{2}\right]^{+}$in the crystals.

Mass spectrometry:

Figure S6: Mass spectrum of a solution of $\left[\mathrm{Au}_{3} \mathrm{Sn}_{18}(\mathrm{Hyp})_{8}\right]^{-} \mathbf{1}$ in THF after electronspray ionization (ESI). Inset measured and calculated isotopic pattern for a) $\left[\mathrm{Au}_{3} \mathrm{Sn}_{18}(\mathrm{Hyp})_{8}\right]^{\mathbf{- 1}} \mathbf{1}$ and b) $\left[\mathrm{Au}_{2} \mathrm{Sn}_{9}(\mathrm{Hyp})_{5}\right]$

The sensitivity of $\mathbf{1}$ in solution is also obvious from mass spectrometric investigations on dissolved crystals of 1. Hence, electrospraying a thf solution of dissolved crystals gives a complicated mass spectrum (figure S 6) where the signal of $\mathbf{1}$ is barely observable (figure S 6 inset). While transferring the dissolved crystals to the mass spectrometer you can see a color change from dark purple to a brownish color, which indicates the fast decomposition of $\left[\mathrm{Au}_{3} \mathrm{Sn}_{18}(\mathrm{Hyp})_{8}\right]^{-}$in thf and also explains the barely visible molecular peak. However, besides the signal of 1 the decomposition product with the highest intensity (signal at $\mathrm{m} / \mathrm{z}=2699$) could be identified as $\left[\mathrm{Au}_{2} \mathrm{Sn}_{9}(\mathrm{Hyp})_{5}\right]^{-}$by its mass and isotopic pattern (figure S 6 inset) and which might form from $\mathbf{1}$ by the elimination of the neutral group AuSng ${ }_{9} \mathrm{Hpp}_{3}$. The NMR and mass spectrometric investigations thus show that 1 is quite unstable in solution and decomposes into smaller fragments.

Quantum chemical calculations: ${ }^{5}$

The model compound $\left[\mathrm{Au}_{3} \mathrm{Sn}_{18}\left(\mathrm{SiH}_{3}\right)_{8}\right]^{-}$1a was calculated with additional C_{3} symmetry to get a good and comparable structural arrangement.

Figure S7: Optimized structure of $1 \mathbf{a}$ with constrained C_{3} symmetry.

Total energy:
HOMO-LUMO-gap:
0.962 eV

Coordinates of 1a:

Au1-0.000000 0.000000-0.033634 Sn2 1.836398-0.853312-2.164582 Sn3-1.657189-1.163712-2.164582 Sn4-0.179210 2.017023-2.164582 Sn5 0.211863-2.389683-4.164329 Sn6-2.175457 1.011363-4.164329 Sn7 1.963594 1.378320-4.164329 Sn8 1.774836-0.824811-6.233140 Sn9 -1.601725-1.124648-6.233140 Sn10-0.173111 $1.949458-6.233140$ Au11 0.000000-0.000000-8.468265 Sn12-1.644320 1.177787 2.099489 Sn13 1.8421530 .8351292 .099489 Sn14-0.197834-2.012916 2.099489

Si15 0.459488-5.000398-4.097402
Si16-4.560215 2.102271-4.097402
Si17 4.100728 2.898127-4.097402
Sn18 0.2353852 .3890264 .104019
Sn19-2.186650-0.990664 4.104019
Sn20-1.592144 1.1404656 .166454
Sn21 1.783744 0.8086046 .166454
Si22 0.5182954 .9975614 .146674
Sn23-0.191600-1.949070 6.166454
Si24-4.587162-2.049924 4.146674
Sn25 1.951265-1.398362 4.104019
Au26 0.0000000 .0000008 .401301
Si27 4.068867-2.9476374.146674
Si28-0.000000 0.000000 10.814252

H29 0.3718521 .34037411 .425311
H30-1.346724-0.348154 11.425311
H31 0.974872-0.992221 11.425311
Si32 0.000000-0.000000-10.881816
H33-0.470007-1.309166-11.492930
H34 1.368774 0.247545-11.492930
H35-0.898767 1.061621-11.492930
H36 1.9312275 .4253463 .822096
H37-0.394680 5.6795163 .153183
H38 0.1859555 .5473855 .514965
H39 5.306380 2.216217-4.703238
H40 3.897186 4.193652-4.849110
H41 4.453464 3.254145-2.671405

H42 -5.664101-1.040181 3.822096
H43 3.732874-4.385165 3.822096
H44-4.721265-3.181561 3.153183
H45 5.115946-2.497955 3.153183
H46-4.897153-2.612651 5.514965
H47 4.711199-2.934734 5.514965
H48-4.572490 3.487352-4.703238
H49-0.733890-5.703568-4.703238
H50 -5.580402 1.278236-4.849110
H51 1.683216-5.471888-4.849110
H52 -5.044904 2.229740-2.671405
H53 0.591441-5.483885-2.671405

Ahlrichs-Heinzmann population analysis: ${ }^{6}$

Two-center-SEN: ${ }^{7}$

shared electron number for the pair	$1 \mathrm{au}-2 \mathrm{sn}=0.3278$
shared electron number for the pair	$1 \mathrm{au}-12 \mathrm{sn}=0.3242$
shared electron number for the pair	$2 \mathrm{sn}-3 \mathrm{sn}=0.5544$
shared electron number for the pair	$2 \mathrm{sn}-5 \mathrm{sn}=0.9445$
shared electron number for the pair	$2 \mathrm{sn}-7 \mathrm{sn}=0.9516$
shared electron number for the pair	$2 \mathrm{sn}-8 \mathrm{sn}=0.1377$
shared electron number for the pair	$2 \mathrm{sn}-9 \mathrm{sn}=-0.0141$
shared electron number for the pair	$2 \mathrm{sn}-10 \mathrm{sn}=-0.0151$
shared electron number for the pair	$2 \mathrm{sn}-13 \mathrm{sn}=0.0209$
shared electron number for the pair	$5 \mathrm{sn}-8 \mathrm{sn}=0.9057$
shared electron number for the pair	$5 \mathrm{sn}-9 \mathrm{sn}=0.9053$
shared electron number for the pair	$5 \mathrm{sn}-15 \mathrm{si}=1.2067$
shared electron number for the pair	$8 \mathrm{sn}-9 \mathrm{sn}=0.6830$
shared electron number for the pair	$8 \mathrm{sn}-11 \mathrm{au}=0.2236$
shared electron number for the pair	$11 \mathrm{au}-32 \mathrm{si}=0.7916$
shared electron number for the pair	$12 \mathrm{sn}-13 \mathrm{sn}=0.5587$
shared electron number for the pair	$12 \mathrm{sn}-18 \mathrm{sn}=0.9406$
shared electron number for the pair	$12 \mathrm{sn}-19 \mathrm{sn}=0.9371$
shared electron number for the pair	$12 \mathrm{sn}-20 \mathrm{sn}=0.1378$
shared electron number for the pair	$12 \mathrm{sn}-21 \mathrm{sn}=-0.0149$
shared electron number for the pair	$12 \mathrm{sn}-23 \mathrm{sn}=-0.0139$
shared electron number for the pair	$15 \mathrm{si}-49 \mathrm{~h}=1.3119$
shared electron number for the pair	$15 \mathrm{si}-51 \mathrm{~h}=1.3133$
shared electron number for the pair	$15 \mathrm{si}-53 \mathrm{~h}=1.3211$
shared electron number for the pair	$18 \mathrm{sn}-20 \mathrm{sn}=0.9138$
shared electron number for the pair	$18 \mathrm{sn}-21 \mathrm{sn}=0.9172$
shared electron number for the pair	$18 \mathrm{sn}-22 \mathrm{si}=1.2077$

shared electron number for the pair	$20 \mathrm{sn}-21 \mathrm{sn}=0.6790$
shared electron number for the pair	$20 \mathrm{sn}-26 \mathrm{au}=0.2228$
shared electron number for the pair	$22 \mathrm{si}-36 \mathrm{~h}=1.3119$
shared electron number for the pair	$22 \mathrm{si}-37 \mathrm{~h}=1.3152$
shared electron number for the pair	$22 \mathrm{si}-38 \mathrm{~h}=1.3199$
shared electron number for the pair	$26 \mathrm{au}-28 \mathrm{si}=0.7931$
shared electron number for the pair	$28 \mathrm{si}-29 \mathrm{~h}=1.3173$
shared electron number for the pair	$32 \mathrm{si}-33 \mathrm{~h}=1.3174$

Three- and Four-center-SEN:

$n(123)=0.1035$	$n(5911)=-0.0193$
$n\left(\begin{array}{llll}1 & 2 & 3\end{array}\right)=0.0567$	$n(51549)=-0.0192$
$n\left(\begin{array}{llll}1 & 2 & 3\end{array}\right)=-0.0166$	$n(51551)=-0.0189$
$n(122312)=-0.0247$	$n(51553)=-0.0168$
$n(122313)=-0.0222$	$n(8910)=0.2046$
$n\left(\begin{array}{lll}1 & 2\end{array}\right)=-0.0234$	$n(891011)=0.0335$
$n\left(\begin{array}{ll}1 & 2\end{array}\right)=-0.0236$	$n(8911)=0.0608$
$n\left(\begin{array}{lll}1 & 2 & 8\end{array}\right)=-0.0117$	$n(891132)=-0.0659$
$\mathrm{n}(12 \mathrm{l}$ 12) $=-0.1302$	$n(81132)=-0.1840$
$n(121213)=-0.0222$	$n(113233)=-0.0215$
$n(121214)=-0.0249$	$n(121314)=0.1543$
$n(1213)=-0.0210$	$n(121318)=0.1729$
$n(1214)=-0.0412$	$n(121319)=-0.0179$
$\mathrm{n}(11213)=0.1020$	$\mathrm{n}(121325)=-0.0183$
$n(1121314)=0.0561$	$n(121819$ 20) $=0.0332$
$n(1121318)=-0.0168$	$n(121820)=0.0757$
$n(11218)=-0.0234$	$n(121821)=-0.0346$
$\mathrm{n}(112$ 19) $=-0.0232$	$\mathrm{n}(121920)=0.0752$
$n(11220)=-0.0118$	$n(121923)=-0.0350$
$n(234)=0.1523$	$n(122026)=-0.0110$
$n(235)=0.1753$	$n(182021)=0.1954$
$n(236)=-0.0171$	$\mathrm{n}(182023)=-0.0218$
$n(237)=-0.0174$	$n(182026)=-0.0197$
$n(2578)=0.0327$	$\mathrm{n}(182123)=-0.0218$
$n(258)=0.0751$	$n(182126)=-0.0197$
$n(259)=-0.0343$	$n(1822$ 36) $=-0.0193$
$n(278)=0.0753$	$n(1822$ 37) $=-0.0179$
$n(2710)=-0.0343$	$n(1822$ 38) $=-0.0174$
$n(2811)=-0.0111$	$n(202123)=0.2035$
$\mathrm{n}(589)=0.1924$	$n(202123$ 26) $=0.0335$
$n(58910)=-0.0114$	$n(202126)=0.0606$
$n(5810)=-0.0230$	$n(20212628)=-0.0654$
$n(5811)=-0.0195$	$n(202628)=-0.1832$
$\mathrm{n}(5910)=-0.0229$	$n(262829)=-0.0215$

Atomic charges:

Figure S8: Atomic charges of the Sn and Au atoms in 1a

	27 si	0.0185
atom \| charge	28 si	-0.0981
----	29 h	-0.0564
$1 \mathrm{au} \mid 0.4182$	30 h	-0.0564
2 sn \| -0.1018	31 h	-0.0564
$3 \mathrm{sn} \mid-0.1018$	32 si	-0.0979
$4 \mathrm{sn} \mid-0.1018$	33 h	-0.0561
$5 \mathrm{sn} \mid 0.0551$	34 h	-0.0561
6 sn \| 0.0551	35 h	-0.0561
7 sn \| 0.0551	36 h	-0.0313
$8 \mathrm{sn} \mid-0.1012$	37 h	-0.0279
9 sn \| -0.1012	38 h	-0.0269
10 sn \| -0.1012	39 h	-0.0309
11 au \| 0.2060	40 h	-0.0307
12 sn \| -0.1003	41 h	-0.0250
$13 \mathrm{sn} \mathrm{\mid} \mathrm{-0.1003}$	42 h	-0.0313
14 sn \| -0.1003	43 h	-0.0313
15 si \| 0.0183	44 h	-0.0279
16 si \| 0.0183	45 h	-0.0279
17 si \| 0.0183	46 h	-0.0269
$18 \mathrm{sn} \mathrm{\mid} 0.0509$	47 h	-0.0269
19 sn \| 0.0509	48 h	-0.0309
20 sn \| -0.0994	49 h	-0.0309
21 sn \| -0.0994	50 h	-0.0307
22 si \| 0.0185	51 h	-0.0307
$23 \mathrm{sn} \mathrm{\mid} \mathrm{-0.0994}$	52 h	-0.0250
24 si \| 0.0185	53 h	-0.0250
25 sn \| 0.0509		
26 au \| 0.2066		

References:

[^0]
[^0]: ${ }^{[1]}$ R. A. Brand, Normos Mössbauer Fitting Program, University of Duisburg, Duisburg (Germany) 2002.
 ${ }^{[2]}$ a) G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112 - 122; b) G. M. Sheldrick, Acta Crystallogr. 2015, C71, $3-8$.
 ${ }^{[3]}$ O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339 - 341.
 ${ }^{[4]}$ A. L. Spek, J. Appl. Crystallogr. 2003, 36, $7-13$.
 ${ }^{[5]}$ Turbomole: O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346 - 354; BP86 functional: J. P. Perdew, Phys. Rev. B 1986, 33, 8822 - 88824; A. D. Becke, Phys. Rev. A 1988, 38, 3098 - 3100; RI-DFT: K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 240, 283 - 290; SVP: A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2751 - 2577; TmoleX client: C. Steffen, K. Thomas, U. Huniar, A. Hellweg, O.Rubner, A. Schroer, J. Comput. Chem. 2010, 31, 2967 - 2970.
 ${ }^{[6]}$ E. R. Davidson, J. Chem. Phys., 1967, 46, 3320-3324; K. R. Roby, Mol. Phys., 1974, 27, 81-104; R. Heinzmann, R. Ahlrichs, Theor. Chim. Acta, 1976, 42, 33-45; C. Erhardt, R. Ahlrichs, Theor. Chim. Acta, 1985, 68, 231-245.
 ${ }^{[7]}$ Shared electron numbers (SENs) for bonds are a reliable measure of the strength of covalent bonding. For example, the SEN for the $\mathrm{Sn}-\mathrm{Sn}$ single bond in the model compound $\mathrm{Me}_{3} \mathrm{SnSnMe}_{3}$ is 1.07.

