Supporting Information

for

Nickel-Catalyzed Acetamidation and Lactamization of Arylboronic

Acids

Bo Huang, Linwei Zeng, Yangyong Shen, and Sunliang Cui* Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China E-mail: slcui@zju.edu.cn

Contents

1.	General Information	S2-S3
2.	Typical Procedure for the synthesis of 4a and 5a	S3-S4
3.	Synthetic Application	S4-S5
4.	Characterization of 4	S5-S13
5.	Characterization of 5	S13-S23
6.	Characterization of 6 and 7	S23-S25
7.	References	S25
8.	Copies of NMR Spectra	S26-S97

1. General Information:

Infrared spectra were obtained on a FTIR spectrometer. ¹H NMR and ¹³C NMR spectra were recorded on BRUKER AVANCE III 400 spectrometer. CDCl₃ was used as solvent. Chemical shifts were referenced relative to residual solvent. The following abbreviations are used to describe peak patterns where appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Coupling constants (*J*) are reported in Hertz (Hz). HRMS were performed on Agilent Technologies 6224 TOF LC/MS (ESI). Melting points were measured with micro melting point apparatus.

Ethyl acetate (EA), Acetonitrile, Petroleum ether (PE), *N*-hydroxyphthalimide (NHPI), Triethylamine, 4,4'-di-*tert*-butyl-2,2'-bipyridine (di-*t*Bubipy), NiCl₂-6H₂O, DMF and Dioxane were commercial available. Boronic acids (**1a-1o, 1r**) were commercial available and (**1p, 1q, 1s**) were prepared according the literature.^{1, 2, 3} The Ynamides (**2a-2g**) were prepared according the literature.⁴

2. Typical Procedure for the synthesis of 4a and 5a.

a) Preparation of NiCl₂•6H₂O/di-*t*Bubipy Stock Solution (0.05 M in DMF)

A 25 mL two-neck flask was charged with NiCl₂•6H₂O (118.5 mg, 0.5 mmol) and di-*t*Bubipy (134.2 mg, 0.5 mmol). The flask was then evacuated and purged with Argon three times. DMF (10.0 mL) was added and the resulting mixture was stirred at room temperature for several hours to give a homogeneous green solution, which could be used for several days without appreciable deterioration

b) Nickel-Catalyzed Acetamidation reaction.

A schlenk tube was added *N*-ethynyl-*N*, 4-dimethylbenzenesulfonamide **2a** (20.9 mg, 0.1 mmol) and NHPI **3** (17.1 mg, 0.105 mmol), then evacuated and purged with Argon three times. Afterwards, CH_2Cl_2 (2 mL) were added as solvent. The solution was stirred under reflux for 6 hours, then concentrated and dissolved in dioxane (4 mL). Phenylboronic acid **1a** (36.3 mg, 0.3 mmol) was added quickly. Et₃N (139 µL, 1 mmol) and a solution of NiCl₂•6H₂O/di-*t*Bubipy (0.05M in DMF, 0.4 mL) was added successively and the schlenk was immediately placed in a preheated 85 °C oil bath under stirring. After the reaction was fully consumed about 3 hours, the reaction mixture was allowed to cool to room temperature, diluted with CH₂Cl₂, washed with water and brine, dried over Na₂SO₄ and concentrated under vacuum. The purification was performed by flash column chromatography on silica gel using ethyl

acetate/petroleum ether (v/v, 1:15) as eluent to give 4a (28.9 mg, 95% yield).

c) Nickel-Catalyzed Lactamization reaction.

A schlenk tube was added *N*-ethynyl-*N*, 4-dimethylbenzenesulfonamide **2d** (23.5 mg, 0.1 mmol) and NHPI **3** (17.1 mg, 0.105 mmol), then evacuated and purged with Argon three times. Afterwards, CH₂Cl₂ (2 mL) were added as solvent. The solution was stirred under reflux for 6 hours, then concentrated and dissolved in dioxane (4 mL). Phenylboronic acid **1a** (36.3 mg, 0.3 mmol) was added quickly. Et₃N (139 μ L, 1 mmol) and a solution of NiCl₂•6H₂O/di-*t*Bubipy (0.05M in DMF, 0.4 mL) was added successively and the schlenk was immediately placed in a preheated 85 °C oil bath under stirring. After the reaction was fully consumed about 3 hours, the reaction mixture was allowed to cool to room temperature, diluted with CH₂Cl₂, washed with water and brine, dried over Na₂SO₄ and concentrated under vacuum. The purification was performed by flash column chromatography on silica gel using ethyl acetate/petroleum ether (v/v, 1:10) as eluent to give **5a** (22.0 mg, 67% yield).

3. Synthetic Application

A two-neck flask was added *N*-ethynyl-*N*, 4-dimethylbenzenesulfonamide **2d** (117.5 mg, 0.5 mmol) and NHPI **3** (85.6 mg, 0.525 mmol), then evacuated and purged with Argon three times. Afterwards, CH_2Cl_2 (10 mL) were added as solvent. The solution was stirred under reflux for 6 hours, then concentrated and dissolved in dioxane (20 mL). **1s** (571.5 mg, 1.5 mmol) was added quickly. Et₃N (0.69 mL, 5

mmol) and a solution of NiCl₂•6H₂O/di-*t*Bubipy (0.05M in DMF, 2 mL) was added successively and the flask was immediately placed in a preheated 85 °C oil bath under stirring. After the reaction was fully consumed about 3 hours, the reaction mixture was allowed to cool to room temperature, diluted with CH₂Cl₂, washed with water and brine, dried over Na₂SO₄ and concentrated under vacuum. The purification was performed by flash column chromatography on silica gel using ethyl acetate/petroleum ether (v/v, 1:5) as eluent to give **6** (132.1 mg, 45% yield).

A mixture of **6** (117.6 mg, 0.2 mmol) and PDMBI (53.7 mg, 0.24 mmol) in 2.1 mL of acetonitrile containing 30 μ L of water was irradiated with a Pyrex filtered (>300 nm) high-pressure mercury lamp under argon atmosphere at ambient temperature. After completion of the reaction as monitored by TLC, the solvent was removed under reduced pressure and **7** (59.6 mg, 69 % yield) was isolated from the residual by flash column chromatography using CH₂Cl₂/methanol (v/v, 50:1) as eluent.

4. Characterization of 4.

N-methyl-2-phenyl-N-tosylacetamide

Oil (28.9 mg, 95% yield), $R_f = 0.7$ (EtOAc/Petroleum ether 1:5).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.62 (d, *J* = 8.3 Hz, 2H), 7.27 – 7.17 (m, 5H), 7.06 (d, *J* = 7.9 Hz, 2H), 3.97 (s, 2H), 3.20 (s, 3H), 2.37 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 171.40, 145.09, 136.10, 133.54, 129.99, 129.49, 128.70, 127.64, 127.28, 43.19, 33.41, 21.76.

IR (KBr) *v* 3067, 3037, 3009, 2961, 2920, 1699, 1595, 1514, 1458, 1413, 1341, 1245, 1162, 1073, 859, 807, 718, 669, 562 cm⁻¹.

HRMS (ESI) calcd for $C_{16}H_{18}NO_3S(M+H^+)$: 304.1007; Found: 304.1009.

N-methyl-2-(p-tolyl)-N-tosylacetamide

White solid, m. p. 96.0-96.7 °C (27.6 mg, 87% yield), $R_{\rm f}$ = 0.7 (EtOAc/Petroleum ether 1:5).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.72 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 7.8 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 4.00 (s, 2H), 3.29 (s, 3H), 2.46 (s, 3H), 2.33 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 171.62, 145.03, 136.93, 136.18, 130.40, 129.95,

129.40, 129.33, 127.67, 42.81, 33.41, 21.76, 21.19.

IR (KBr) *v* 3054, 3017, 2981, 2967, 1698, 1595, 1518, 1458, 1411, 1341, 1160, 1069, 857, 812, 724, 671 cm⁻¹.

HRMS (ESI) calcd for $C_{17}H_{20}NO_3S$ (M+H⁺): 318.1164; Found: 318.1160.

2-([1,1'-biphenyl]-4-yl)-N-methyl-N-tosylacetamide

White solid, m. p. 88.7-89.4 $^{\rm o}C$ (34.2 mg, 90% yield), $R_{\rm f}$ = 0.7 (EtOAc/Petroleum ether 1:5).

¹**H** NMR (CDCl₃, 400 MHz) δ 7.64 (d, J = 8.4 Hz, 2H), 7.50 – 7.40 (m, 3H),

7.39 – 7.31 (m, 3H), 7.28 – 7.19 (m, 3H), 7.12 (d, *J* = 8.2 Hz, 2H), 4.01 (s, 2H), 3.23 (s, 3H), 2.35 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 171.53, 145.16, 140.26, 136.08, 134.45, 132.54,

130.03, 129.94, 128.89, 127.64, 127.43, 127.16, 115.78, 42.84, 33.49, 21.76.

IR (KBr) *v* 3053, 2960, 2923, 1698, 1600, 1486, 1411, 1343, 1253, 1162, 1073, 860, 814, 764, 713, 692, 539 cm⁻¹.

HRMS (ESI) calcd for C₂₂H₂₂NO₃S (M+H⁺): 380.1320; Found: 380.1321.

2-(4-methoxyphenyl)-N-methyl-N-tosylacetamide

White solid, m. p. 108.8-109.5 °C (22.3 mg, 67% yield), $R_f = 0.5$ (EtOAc/Petroleum ether 1:5).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.7 Hz, 2H), 3.98 (s, 2H), 3.79 (s, 3H), 3.29 (s, 3H), 2.45 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 171.78, 158.82, 145.03, 136.16, 134.39, 130.53,

129.96, 127.63, 114.11, 55.35, 42.29, 33.39, 21.73.

IR (KBr) *v* 3049. 2958, 2928, 1701, 1610, 1511, 1459, 1342, 1243, 1162, 1073, 1034, 861, 813, 718, 670, 566 cm⁻¹.

HRMS (ESI) calcd for C₁₇H₂₀NO₄S (M+H⁺): 334.1113; Found: 334.1109.

2-(4-chlorophenyl)-N-methyl-N-tosylacetamide

White solid, m. p. 112.2-113.0 °C (24.6 mg, 73% yield), $R_f = 0.7$ (EtOAc/Petroleum ether 1:5).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.67 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H),

7.23 (d, *J* = 8.4 Hz, 2H), 7.04 (d, *J* = 8.4 Hz, 2H), 4.00 (s, 2H), 3.25 (s, 3H), 2.42 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 171.08, 145.29, 136.06, 133.30, 132.10, 130.97,

130.12, 128.81, 127.54, 42.47, 33.45, 21.79.

IR (KBr) *v* 3068, 2961, 2920. 1697, 1595, 1491, 1413, 1340, 1162, 1073, 855, 807, 704, 677, 548 cm⁻¹.

HRMS (ESI) calcd for C₁₆H₁₇ClNO₃S (M+H⁺): 338.0618; Found: 338.0615.

2-(4-bromophenyl)-N-methyl-N-tosylacetamide

White solid, m. p. 127.1-128.2 °C (23.4 mg, 61% yield), $R_{\rm f}$ = 0.5 (EtOAc/Petroleum ether 1:10).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.70 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.02 (d, *J* = 8.4 Hz, 2H), 4.03 (s, 2H), 3.28 (s, 3H), 2.46 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 170.98, 145.30, 136.01, 132.60, 131.76, 131.33,

130.12, 127.53, 121.39, 42.53, 33.45, 21.80.

IR (KBr) *v* 3065, 2960, 2923, 1697, 1592, 1486, 1410, 1340, 1244, 1161, 1071, 854, 805, 702, 672, 629, 540 cm⁻¹.

HRMS (ESI) calcd for C₁₆H₁₇BrNO₃S (M+H⁺): 382.0113; Found: 382.0111.

Ethyl 4-(2-((N,4-dimethylphenyl)sulfonamido)-2-oxoethyl)benzoate White solid, 113.1-113.9 °C (25 mg, 66% yield), $R_f = 0.4$ (EtOAc/Petroleum ether 1:5).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.97 (d, J = 8.3 Hz, 2H), 7.72 (d, J = 8.3 Hz, 2H),

7.33 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 4.37 (d, J = 7.2 Hz, 2H), 4.13 (s, 2H), 3.29 (s, 3H), 2.46 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 170.78, 166.47, 145.33, 138.70, 135.98, 130.13,

 $129.90,\,129.60,\,129.54,\,127.55,\,61.11,\,43.13,\,33.46,\,21.80,\,14.47.$

IR (KBr) *v* 3056, 2982, 2923, 1707, 1610, 1473, 1420, 1348, 1281, 1161, 1075, 1022, 850, 805, 767, 700, 673, 544 cm⁻¹.

HRMS (ESI) calcd for C₁₉H₂₂NO₅S (M+H⁺): 376.1219; Found: 376.1217.

2-(2-fluorophenyl)-N-methyl-N-tosylacetamide

White solid, m. p. 88.9-89.7 °C (14.3 mg, 44% yield), $R_f = 0.6$ (EtOAc/Petroleum ether 1:5).

¹H NMR (CDCl₃, 400 MHz) δ 7.72 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H),

7.19 (s, 1H), 7.07 – 6.90 (m, 3H), 4.02 (s, 2H), 3.24 (s, 3H), 2.39 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 170.46, 161.09 (d, J = 246.1 Hz), 145.23,

136.09, 131.64 (d, J = 3.8 Hz), 130.15, 129.33 (d, J = 8.2 Hz), 127.54, 124.27 (d, J = 3.6 Hz), 121.30 (d, J = 15.9 Hz), 115.41 (d, J = 21.5 Hz), 37.06 (d, J = 3.0 Hz), 33.40, 21.81.

IR (KBr) *v* 3048, 2962, 2926, 1706, 1590, 1493, 1455, 1411, 1351, 1233, 1172, 1076, 873, 812, 762, 738, 705, 666, 618, 543 cm⁻¹.

HRMS (ESI) calcd for C₁₆H₁₇FNO₃S (M+H⁺): 322.0913; Found: 322.0913.

2-(3-cyanophenyl)-N-methyl-N-tosylacetamide

White solid, m. p. 97.2-98.3 $^{\rm o}C$ (18 mg, 55% yield), $R_{\rm f}$ = 0.5 (EtOAc/Petroleum ether 1:4).

¹H NMR (CDCl₃, 400 MHz) δ 7.74 (d, *J* = 8.4 Hz, 2H), 7.55 (d, *J* = 2.8 Hz, 1H),

7.45 – 7.40 (m, 2H), 7.39 – 7.35 (m, 3H), 4.11 (s, 2H), 3.30 (s, 3H), 2.48 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 170.45, 145.62, 135.19, 134.41, 133.21, 131.05,

130.30, 129.85, 129.41, 127.42, 118.68, 112.67, 42.47, 33.47, 21.83.

IR (KBr) v 2920, 2223, 1714, 1595, 1356, 1162, 1073, 847, 811, 709, 672, 535 cm⁻¹.

HRMS (ESI) calcd for C₁₇H₁₇N₂O₃S (M+H⁺): 329.0960; Found: 329.0958.

2-(benzo[d][1,3]dioxol-5-yl)-N-methyl-N-tosylacetamide

White solid, m. p. 89.1-90.0 °C (17 mg, 49% yield), $R_f = 0.4$ (EtOAc/Petroleum ether 1:5).

¹H NMR (CDCl₃, 400 MHz) δ 7.74 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H),

6.72 (d, *J* = 7.9 Hz, 1H), 6.63 – 6.53 (m, 2H), 5.93 (s, 2H), 3.95 (s, 2H), 3.29 (s, 3H), 2.46 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 171.60, 147.87, 146.88, 136.17, 134.45, 130.03,

127.62, 127.04, 122.71, 110.02, 108.40, 101.17, 42.77, 33.45, 21.78.

IR (KBr) *v* 3065. 2998, 2976, 1723, 1642, 1428, 1342, 1208, 1073, 1032, 855, 843, 782, 671, 568 cm⁻¹.

HRMS (ESI) calcd for C₁₇H₁₈NO₅S (M+H⁺): 348.0906; Found: 348.0908.

2-(furan-3-yl)-N-methyl-N-tosylacetamide

White solid, m. p. 95.6-97.1 ^{o}C (13.4 mg, 46% yield), $R_{\rm f}$ = 0.5 (EtOAc/Petroleum ether 1:5).

¹**H** NMR (CDCl₃, 400 MHz) δ 7.70 (d, J = 8.2 Hz, 2H), 7.37 – 7.23 (m, 4H),

6.28 - 6.22 (m, 1H), 3.85 (s, 2H), 3.24 (s, 3H), 2.40 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 170.97, 143.10, 140.84, 136.10, 134.46, 130.11,

127.57, 123.74, 111.62, 33.40, 25.17, 21.79.

IR (KBr) *v* 3126, 2963, 2924, 1699, 1597, 1497, 1465, 1347, 1268, 1172, 1078, 1021, 908, 867, 814, 689, 543 cm⁻¹.

HRMS (ESI) calcd for C₁₄H₁₆NO₄S (M+H⁺): 294.0800; Found: 294.0799.

N-methyl-2-(thiophen-3-yl)-*N*-tosylacetamide

White solid, m. p. 114.5-115.7 °C (17.8 mg, 58% yield), $R_f = 0.5$ (EtOAc/Petroleum ether 1:5).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.64 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H),

7.24 – 7.20 (m, 1H), 7.02 – 6.97 (m, 1H), 6.92 – 6.86 (m, 1H), 4.05 (s, 2H), 3.23 (s, 3H), 2.40 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 170.97, 145.15, 136.05, 133.23, 130.05, 128.72,

127.59, 125.87, 123.35, 37.93, 33.38, 21.78.

IR (KBr) *v* 3094, 2960, 2920, 1698, 1595, 1468, 1405, 1347, 1255, 1235, 1172, 1073, 837, 802, 757, 685, 591, 536 cm⁻¹.

HRMS (ESI) calcd for C₁₄H₁₆NO₃S₂ (M+H⁺): 310.0572; Found: 310.0570.

2-(6-methoxypyridin-3-yl)-N-methyl-N-tosylacetamide

Solid (14.7 mg, 44% yield), $R_f = 0.4$ (EtOAc/Petroleum ether 1:5).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.90 (d, *J* = 2.5 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 2H), 7.40 (dd, *J*₁ = 8.5, *J*₂ = 2.5 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 2H), 6.70 (d, *J* = 8.5 Hz, 1H), 3.98 (s, 2H), 3.91 (s, 3H), 3.31 (s, 3H), 2.47 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 171.25, 163.54, 147.26, 145.35, 140.12, 136.07, 130.19, 127.51, 122.09, 110.87, 53.60, 39.51, 33.46, 21.82.

IR (KBr) *v* 3058, 3014, 2978, 2956, 1696, 1673, 1480, 1358, 1076, 867, 765, 673 556 cm⁻¹.

HRMS (ESI) calcd for C₁₆H₁₉N₂O₄S (M+H⁺): 335.1066; Found: 335.1066.

N-methyl-2-(naphthalen-2-yl)-N-tosylacetamide

White solid, m. p. 114.6-115.7 °C (34.2 mg, 92% yield), $R_f = 0.8$ (EtOAc/Petroleum ether 1:5).

¹H NMR (CDCl₃, 400 MHz) δ 7.74 – 7.66 (m, 2H), 7.64 – 7.59 (m, 3H), 7.43 (d,

J = 1.7 Hz, 1H), 7.39 – 7.32 (m, 2H), 7.22 – 7.13 (m, 3H), 4.12 (s, 2H), 3.23 (s, 3H), 2.32 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 171.40, 145.08, 136.08, 133.44, 132.55, 130.98, 129.95, 128.34, 128.09, 127.74, 127.72, 127.60, 127.49, 126.24, 126.00, 43.31, 33.49, 21.72.

IR (KBr) *v* 3054, 2960, 2920, 1747, 1695, 1596, 1458, 1343, 1161, 1072, 847, 810, 712, 673, 574, 555 cm⁻¹.

HRMS (ESI) calcd for C₂₀H₂₀NO₃S (M+H⁺): 354.1164; Found: 354.1161.

N-isobutyl-2-(naphthalen-2-yl)-N-tosylacetamide

White solid, m. p. 70.9-72.1 °C (32 mg, 81% yield), $R_f = 0.7$ (EtOAc/Petroleum ether 1:5).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.74 – 7.68 (m, 1H), 7.67 – 7.62 (m, 3H), 7.61 – 7.56 (m, 1H), 7.40 – 7.31 (m, 3H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.11 – 7.05 (m, 1H), 4.04 (s, 2H), 3.62 (d, *J* = 7.5 Hz, 2H), 2.33 (s, 3H), 2.16 – 1.96 (m, 1H), 0.88 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (CDCl₃, 100 MHz) δ 171.60, 144.90, 137.06, 133.42, 132.53, 131.08,

129.95, 129.92, 128.27, 128.03, 127.72, 127.63, 127.44, 126.21, 125.96, 54.11, 43.29, 28.80, 21.72, 20.12.

IR (KBr) *v* 3056, 2961, 2873, 1693, 1595, 1465, 1435, 1347, 1312, 1162, 1086, 1017, 848, 815, 727, 672, 578, 541 cm⁻¹.

HRMS (ESI) calcd for C₂₃H₂₆NO₃S (M+H⁺): 396.1633; Found: 396.1632.

N-(2-((tert-butyldimethylsilyl)oxy)ethyl)-2-(naphthalen-2-yl)-N-tosyla

cetamide

White solid, m. p. 106.8-108.1 °C (38 mg, 76% yield), $R_{\rm f}$ = 0.6 (EtOAc/Petroleum ether 1:5).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.82 – 7.72 (m, 3H), 7.69 (d, J = 8.4 Hz, 1H),

7.64 – 7.58 (m, 1H), 7.45 – 7.34 (m, 3H), 7.22 (d, *J* = 8.1 Hz, 2H), 7.11 (d, *J* = 1.6 Hz, 1H), 4.09 (s, 2H), 3.94 (t, *J* = 5.5 Hz, 2H), 3.85 (t, *J* = 5.6 Hz, 2H), 2.37 (s, 3H), 0.86 (s, 9H), 0.05 (s, 6H).

¹³C NMR (CDCl₃, 100 MHz) δ 171.51, 144.82, 136.82, 133.47, 132.56, 130.90, 129.70, 128.41, 128.17, 127.85, 127.74, 127.71, 127.31, 126.26, 126.01, 62.19, 48.67, 43.16, 26.02, 21.75, 18.41, -5.31.

IR (KBr) *v* 3050, 2950, 2928, 1884, 1693, 1596, 1464, 1411, 1351, 1294, 1255, 1165, 1118, 1067, 938, 838, 779, 667, 572 cm⁻¹.

HRMS (ESI) calcd for C₂₇H₃₆NO₄SSi (M+H⁺): 498.2134; Found: 498.2135.

5. Characterization of 5.

4-benzyl-1-tosylpyrrolidin-2-one

Oil (22 mg, 67% yield), $R_f = 0.5$ (EtOAc/Petroleum ether 1:4).

¹**H** NMR (CDCl₃, 400 MHz) δ 7.84 (d, J = 8.3 Hz, 2H), 7.31 – 7.20 (m, 4H), 7.19 – 7.13 (m, 1H), 7.06 – 7.00 (m, 2H), 3.85 (dd, $J_1 = 10.0$, $J_2 = 6.6$ Hz, 1H), 3.49 (dd, $J_1 = 10.0$, $J_2 = 5.8$ Hz, 1H), 2.77 – 2.54 (m, 3H), 2.46 (dd, $J_1 = 17.3$, $J_2 = 7.4$ Hz, 1H), 2.37 (s, 3H), 2.15 (dd, $J_1 = 17.3$, $J_2 = 6.8$ Hz, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 172.63, 145.34, 138.18, 135.29, 129.83, 128.94, 128.80, 128.20, 126.99, 52.04, 39.66, 38.64, 33.63, 21.83.

IR (KBr) *v* 3067, 2961, 2924, 1740, 1361, 1261, 1167, 1088, 1020, 876, 803, 703, 669 cm⁻¹.

HRMS (ESI) calcd for C₁₈H₂₀NO₃S (M+H⁺): 330.1164; Found: 330.1163.

4-([1,1'-biphenyl]-4-ylmethyl)-1-tosylpyrrolidin-2-one

Solid (23 mg, 57% yield), $R_f = 0.5$ (EtOAc/Petroleum ether 1:4).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.94 (d, *J* = 8.3 Hz, 2H), 7.59 (d, *J* = 8.5 Hz, 2H), 7.54 (d, *J* = 8.1 Hz, 2H), 7.49 – 7.42 (m, 2H), 7.39 – 7.33 (m, 3H), 7.19 (d, *J* = 8.1 Hz, 2H), 3.97 (dd, *J*₁ = 10.0, *J*₂ = 6.5 Hz, 1H), 3.61 (dd, *J*₁ = 10.0, *J*₂ = 5.7 Hz, 1H), 2.84 – 2.66 (m, 3H), 2.58 (dd, *J*₁ = 17.3, *J*₂ = 7.4 Hz, 1H), 2.45 (s, 3H), 2.27 (dd, *J*₁ = 17.3, *J*₂ = 6.7 Hz, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 172.61, 145.35, 140.74, 139.97, 137.19, 135.28, 129.84, 129.24, 128.94, 128.20, 127.63, 127.46, 127.13, 52.04, 39.28, 38.65, 33.58, 21.82.

IR (KBr) *v* 3025, 2960, 1739, 1595, 1483, 1350, 1201, 1164, 1119, 1080, 952, 811, 761, 656, 592, 556 cm⁻¹.

HRMS (ESI) calcd for C₂₄H₂₄NO₃S (M+H⁺): 406.1477; Found: 406.1476.

4-(4-methoxybenzyl)-1-tosylpyrrolidin-2-one

White solid m. p. 108.6-109.9 °C (19.4 mg, 54% yield), $R_f = 0.3$ (EtOAc/Petroleum ether 1:4).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.92 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 3.91 (dd, *J*₁ = 10.0, *J*₂ = 6.5 Hz, 1H), 3.80 (s, 3H), 3.55 (dd, *J*₁ = 10.0, *J*₂ = 5.5 Hz, 1H), 2.71 – 2.47 (m, 4H), 2.45 (s, 3H), 2.21 (dd, *J*₁ = 17.0, *J*₂ = 6.4 Hz, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 172.72, 158.59, 145.32, 135.30, 130.18, 129.82, 129.78, 128.19, 114.30, 55.42, 52.00, 38.78, 38.59, 33.77, 21.83.

IR (KBr) *v* 3067, 2998, 2923, 1735, 1596, 1513, 1353, 1248, 1166, 1123, 1033, 956, 811, 741, 663, 566, 547 cm⁻¹.

HRMS (ESI) calcd for C₁₉H₂₂NO₄S (M+H⁺): 360.1270; Found: 360.1268.

4-(4-chlorobenzyl)-1-tosylpyrrolidin-2-one

oil (18 mg, 50% yield), $R_f = 0.5$ (EtOAc/Petroleum ether 1:4).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.92 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.05 (d, *J* = 8.4 Hz, 2H), 3.92 (dd, *J*₁ = 10.1, *J*₂ = 6.6 Hz, 1H), 3.55 (dd, *J*₁ = 10.1, *J*₂ = 5.7 Hz, 1H), 2.78 – 2.58 (m, 3H), 2.53 (dd, *J*₁ = 17.1, *J*₂ = 7.5 Hz, 1H), 2.46 (s, 3H), 2.21 (dd, *J*₁ = 17.1, *J*₂ = 6.6 Hz, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 172.38, 145.43, 136.60, 135.16, 132.86, 130.12, 129.86, 129.08, 128.18, 51.85, 38.95, 38.50, 33.46, 21.84.

IR (**KBr**) v 3056, 2952, 2921, 2858, 1738, 1596, 1490, 1359, 1168, 1090, 957, 808,

744, 664, 600, 555 cm⁻¹.

HRMS (ESI) calcd for C₁₈H₁₉ClNO₃S (M+H⁺): 364.0774; Found: 364.0773.

Ethyl 4-((5-oxo-1-tosylpyrrolidin-3-yl)methyl)benzoate

Oil (21 mg, 52% yield), $R_f = 0.2$ (EtOAc/Petroleum ether 1:5).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.99 (d, J = 8.2 Hz, 2H), 7.91 (d, J = 8.3 Hz, 2H),

7.35 (d, J = 8.1 Hz, 2H), 7.18 (d, J = 8.2 Hz, 2H), 4.38 (q, J = 7.1 Hz, 2H), 3.92 (dd, $J_1 = 10.1, J_2 = 7.0$ Hz, 1H), 3.55 (dd, $J_1 = 10.1, J_2 = 6.1$ Hz, 1H), 2.86 – 2.63 (m, 3H), 2.54 (dd, $J_1 = 17.3, J_2 = 7.7$ Hz, 1H), 2.45 (s, 3H), 2.22 (dd, $J_1 = 17.3, J_2 = 7.2$ Hz, 1H), 1.40 (t, J = 7.1 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 172.31, 166.43, 145.44, 143.35, 135.18, 130.22, 129.86, 129.40, 128.79, 128.20, 61.15, 51.90, 39.58, 38.54, 33.35, 21.83, 14.46.

IR (KBr) *v* 3052, 2980, 2927, 1736, 1710, 1493, 1348, 1281, 1160, 1072, 805, 767, 700, 660, 556 cm⁻¹.

HRMS (ESI) calcd for C₂₁H₂₄NO₅S (M+H⁺): 402.1375; Found: 402.1377.

4-(3-methoxybenzyl)-1-tosylpyrrolidin-2-one

Oil (21 mg, 58% yield), $R_f = 0.4$ (EtOAc/Petroleum ether 1:5).

¹**H NMR** (**CDCl₃, 400 MHz**) δ 7.92 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.25 - 7.20 (m, 1H), 6.83 - 6.75 (m, 1H), 6.72 - 6.63 (m, 2H), 3.92 (dd, *J*₁ = 9.9, *J*₂ = 6.6 Hz, 1H), 3.80 (s, 3H), 3.56 (dd, *J*₁ = 9.9, *J*₂ = 5.7 Hz, 1H), 2.76 - 2.60 (m, 3H), 2.54 (dd, *J*₁ = 17.2, *J*₂ = 7.6 Hz, 1H), 2.45 (s, 3H), 2.23 (dd, *J*₁ = 17.2, *J*₂ = 6.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 172.65, 159.97, 145.35, 139.74, 135.22, 129.94, 129.83, 128.17, 121.09, 114.78, 111.94, 55.32, 52.02, 39.64, 38.64, 33.52, 21.83.

IR (KBr) *v* 3068, 2958, 2921, 1738, 1599, 1489, 1457, 1359, 1262, 1168, 1035, 957, 875, 812, 740, 700, 664, 599, 557 cm⁻¹.

HRMS (ESI) calcd for C₁₉H₂₂NO₄S (M+H⁺): 360.1270; Found: 360.1269.

Methyl 3-((5-oxo-1-tosylpyrrolidin-3-yl)methyl)benzoate Oil (15 mg, 39% yield), $R_f = 0.3$ (EtOAc/Petroleum ether 1:5). ¹H NMR (CDCl₃, 400 MHz) δ 7.96 – 7.86 (m, 3H), 7.80 (d, J = 1.7 Hz, 1H), 7.46 – 7.23 (m, 4H), 4.04 – 3.80 (m, 4H), 3.55 (dd, $J_1 = 10.1$, $J_2 = 5.9$ Hz, 1H), 2.82 – 2.60 (m, 3H), 2.54 (dd, $J_1 = 17.9$, $J_2 = 7.0$ Hz, 1H), 2.45 (s, 3H), 2.22 (dd, $J_1 = 17.9$, $J_2 = 6.1$ Hz, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 172.36, 166.93, 145.40, 138.54, 135.14, 133.33, 130.78, 129.85, 129.76, 129.03, 128.25, 128.15, 52.35, 51.90, 39.33, 38.50, 33.45, 21.82.

IR (KBr) *v* 3067, 2958, 2919, 2880, 1734, 1594, 1438, 1362, 1294, 1275, 1161, 1124, 1040, 963, 808, 756, 702, 662, 602, 557 cm⁻¹.

HRMS (ESI) calcd for C₂₀H₂₂NO₅S (M+H⁺): 388.1219; Found: 388.1221.

4-(thiophen-3-ylmethyl)-1-tosylpyrrolidin-2-one

Yellow solid (16 mg, 48% yield), $R_f = 0.4$ (EtOAc/Petroleum ether 1:5).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.92 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H),

7.32 - 7.28 (m, 1H), 6.98 - 6.92 (m, 1H), 6.91 - 6.84 (m, 1H), 3.96 (dd, $J_1 = 10.1$, J_2

= 6.9 Hz, 1H), 3.57 (dd, J_1 = 10.1, J_2 = 5.8 Hz, 1H), 2.83 – 2.61 (m, 3H), 2.56 (dd, J_1 = 17.2, J_2 = 7.8 Hz, 1H), 2.45 (s, 3H), 2.22 (dd, J_1 = 17.2, J_2 = 6.7 Hz, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 172.59, 145.37, 138.44, 135.21, 129.84, 128.17, 127.87, 126.55, 121.97, 52.08, 38.61, 34.13, 32.90, 21.83.

IR (KBr) *v* 3120, 2923, 2856, 1734, 1595, 1487, 1353, 1287, 1188, 1168, 1127, 1087, 958, 812, 776, 664, 599, 557 cm⁻¹.

HRMS (ESI) calcd for C₁₆H₁₈NO₃S₂ (M+H⁺): 336.0728; Found: 336.0729.

4-(naphthalen-2-ylmethyl)-1-tosylpyrrolidin-2-one

Oil (21 mg, 55% yield), $R_f = 0.5$ (EtOAc/Petroleum ether 1:5).

¹**H** NMR (CDCl₃, 400 MHz) δ 7.92 (d, J = 8.3 Hz, 2H), 7.85 – 7.74 (m, 3H), 7.58 – 7.44 (m, 3H), 7.35 (d, J = 8.0 Hz, 2H), 7.24 (dd, $J_1 = 8.4$, $J_2 = 1.6$ Hz, 1H), 3.94 (dd, $J_1 = 10.1$, $J_2 = 7.1$ Hz, 1H), 3.63 (dd, $J_1 = 10.1$, $J_2 = 6.2$ Hz, 1H), 2.94 – 2.70 (m, 3H), 2.56 (dd, $J_1 = 17.4$, $J_2 = 7.8$ Hz, 1H), 2.45 (s, 3H), 2.29 (dd, $J_1 = 17.4$, $J_2 = 7.3$ Hz, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 172.64, 145.35, 135.62, 135.22, 133.56, 132.41, 129.83, 128.69, 128.17, 127.79, 127.60, 127.37, 126.90, 126.49, 125.91, 52.05, 39.81, 38.63, 33.48, 21.83.

IR (KBr) *v* 3051, 2919, 2858, 1736, 1596, 1484, 1358, 1168, 1092, 956, 814, 749, 663, 600, 557 cm⁻¹.

HRMS (ESI) calcd for C₂₂H₂₂NO₃S (M+H⁺): 380.1320; Found: 380.1318.

4-((1-methyl-1H-indol-5-yl)methyl)-1-tosylpyrrolidin-2-one

Solid (25 mg, 65% yield), $R_f = 0.2$ (EtOAc/Petroleum ether 1:4).

¹**H** NMR (CDCl₃, 400 MHz) δ 7.92 (d, J = 8.3 Hz, 2H), 7.40 – 7.31 (m, 3H), 7.30 – 7.24 (m, 1H), 7.07 (d, J = 3.1 Hz, 1H), 6.96 (dd, $J_1 = 8.4$, $J_2 = 1.6$ Hz, 1H), 6.51 – 6.38 (m, 1H), 3.91 (dd, $J_1 = 10.0$, $J_2 = 7.0$ Hz, 1H), 3.80 (s, 3H), 3.61 (dd, $J_1 =$ 10.0, $J_2 = 6.1$ Hz, 1H), 2.87 – 2.63 (m, 3H), 2.53 (dd, $J_1 = 17.3$, $J_2 = 7.7$ Hz, 1H), 2.45 (s, 3H), 2.27 (dd, $J_1 = 17.3$, $J_2 = 7.3$ Hz, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 172.98, 145.23, 135.80, 135.34, 129.80, 129.52, 128.92, 128.82, 128.16, 122.47, 120.72, 109.60, 100.68, 52.15, 39.77, 38.69, 34.23, 33.03, 21.83.

IR (KBr) *v* 3109, 3078, 2997, 2928, 1739, 1594, 1496, 1362, 1173, 1062, 953, 807, 749, 659, 609, 554 cm⁻¹.

HRMS (ESI) calcd for C₂₁H₂₃N₂O₃S (M+H⁺): 383.1429; Found: 383.1426.

4-cinnamyl-1-tosylpyrrolidin-2-one

White solid, m. p. 90.1-90.6 °C (23 mg, 65% yield), $R_f = 0.4$ (EtOAc/Petroleum ether 1:4).

¹**H** NMR (CDCl₃, 400 MHz) δ 7.84 (d, J = 8.3 Hz, 2H), 7.29 – 7.18 (m, 6H), 7.19 – 7.13 (m, 1H), 6.32 (d, J = 15.8 Hz, 1H), 6.07 – 5.90 (m, 1H), 3.96 (dd, $J_1 = 10.0, J_2 = 7.4$ Hz, 1H), 3.51 (dd, $J_1 = 10.0, J_2 = 6.0$ Hz, 1H), 2.63 – 2.39 (m, 2H), 2.36 (s, 3H), 2.31 – 2.18 (m, 2H), 2.15 (dd, $J_1 = 16.8, J_2 = 6.7$ Hz, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 172.67, 145.30, 136.84, 135.27, 133.29, 129.81, 128.72, 128.17, 127.70, 126.25, 125.59, 52.05, 38.35, 37.17, 31.63, 21.82.

ID (\mathbf{VD}_{-1}) 2020 2022 2020 1722 1502 1405 1447 1252 1101 1155 1125

IR (KBr) *v* 3030, 2963, 2920, 1733, 1593, 1486, 1447, 1353, 1191, 1165, 1126, 958, 818, 740, 699, 660, 610, 561 cm⁻¹.

HRMS (ESI) calcd for C₂₀H₂₂NO₃S (M+H⁺): 356.1320; Found: 356.1318.

4-(4-methoxybenzyl)-4-methyl-1-tosylpyrrolidin-2-one

Oil (17 mg, 46% yield), $R_f = 0.4$ (EtOAc/Petroleum ether 1:5).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.91 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 6.98 (d, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 3.92 – 3.70 (m, 4H), 3.49 (d, *J* = 10.0 Hz, 1H), 2.69 – 2.53 (m, 2H), 2.51 – 2.36 (m, 4H), 2.13 (d, *J* = 16.9 Hz, 1H), 1.03 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 172.56, 158.72, 145.28, 135.34, 131.19, 129.81, 128.57, 128.12, 114.00, 57.55, 55.39, 45.43, 44.31, 37.50, 24.56, 21.83.

IR (KBr) *v* 3058, 2983, 2920, 1738, 1495, 1435, 1372, 1263, 1167, 1092, 1017, 877, 812, 740, 687, 561 cm⁻¹.

HRMS (ESI) calcd for C₂₀H₂₄NO₄S (M+H⁺): 374.1426; Found: 374.1424.

Ethyl 4-((2-oxo-1-tosylpiperidin-4-yl)methyl)benzoate

Oil (17 mg, 41% yield), $R_f = 0.3$ (EtOAc/Petroleum ether 1:5).

¹**H NMR** (**CDCl₃, 400 MHz**) δ 7.97 (d, *J* = 7.9 Hz, 2H), 7.90 (d, *J* = 8.1 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 4.37 (q, *J* = 7.1 Hz, 2H), 4.21 (td, *J*₁ = 12.2, *J*₂ = 4.5 Hz, 1H), 3.57 (td, *J*₁ = 11.8, *J*₂ = 4.2 Hz, 1H), 2.63 (t, *J* = 6.4 Hz, 2H), 2.53 - 2.37 (m, 4H), 2.24 - 1.90 (m, 3H), 1.58 - 1.50 (m, 1H), 1.39 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 169.54, 166.51, 145.03, 143.77, 135.94, 130.00, 129.46, 129.11, 129.07, 128.86, 61.10, 46.01, 41.72, 40.27, 34.30, 28.91, 21.81, 14.47.

IR (KBr) *v* 3068, 2915, 2856, 1717, 1608, 1479, 1388, 1357, 1279, 1163, 1114, 1023, 912, 867, 816, 764, 712, 692, 650, 553 cm⁻¹.

HRMS (ESI) calcd for C₂₂H₂₆NO₅S (M+H⁺): 416.1532; Found: 416.1530.

4-(thiophen-3-ylmethyl)-1-tosylpiperidin-2-one

Oil (16 mg, 48% yield), $R_f = 0.4$ (EtOAc/Petroleum ether 1:4).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.23 (d, *J* = 8.1 Hz, 2H), 7.21 – 7.16 (m, 1H), 6.87 – 6.82 (m, 1H), 6.81 – 6.76 (m, 1H), 4.13 (td, *J*₁ = 12.3, *J*₂ = 5.2 Hz, 1H), 3.52 (td, *J*₁ = 11.7, *J*₂ = 4.1 Hz, 1H), 2.54 (d, *J* = 6.1 Hz, 2H), 2.42 (dd, *J*₁ = 12.4, *J*₂ = 2.2 Hz, 1H), 2.35 (s, 3H), 2.09 – 1.91 (m, 3H), 1.50 – 1.41 (m, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 169.88, 144.96, 138.72, 136.01, 129.44, 128.85, 128.25, 126.13, 121.90, 46.10, 40.28, 35.96, 33.87, 29.00, 21.80.

IR (KBr) v 2922, 2864, 1692, 1389, 1353, 1273, 1167, 1107, 814, 687, 548 cm⁻¹.

HRMS (ESI) calcd for C₁₇H₂₀NO₃S₂ (M+H⁺): 350.0885; Found: 350.0882.

4-cinnamyl-1-tosylpiperidin-2-one

Solid (19 mg, 51% yield), $R_f = 0.3$ (EtOAc/Petroleum ether 1:5).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.91 (d, *J* = 8.3 Hz, 2H), 7.36 – 7.29 (m, 6H), 7.25 – 7.19 (m, 1H), 6.47 – 6.32 (m, 1H), 6.17 – 6.01 (m, 1H), 4.25 – 4.16 (m, 1H), 3.71 – 3.60 (m, 1H), 2.61 – 2.51 (m, 1H), 2.43 (s, 3H), 2.26 – 2.07 (m, 4H), 2.02 – 1.93 (m, 1H), 1.60 – 1.49 (m, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 169.96, 144.94, 137.06, 136.06, 132.98, 129.45,

128.83, 128.71, 127.54, 126.22, 126.17, 46.08, 40.25, 38.74, 32.74, 28.97, 21.80.

IR (KBr) *v* 2958, 2926, 1692, 1642, 1400, 1353, 1269, 1168, 1124, 1092, 968, 806, 689, 545 cm⁻¹.

HRMS (ESI) calcd for C₂₁H₂₃NNaO₃S (M+Na⁺): 392.1296; Found: 392.1295.

4-(4-methoxybenzyl)-1-tosylazepan-2-one

Oil (14 mg, 36% yield), $R_f = 0.5$ (EtOAc/Petroleum ether 1:4).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 6.98 (d, *J* = 8.6 Hz, 2H), 6.81 (d, *J* = 8.7 Hz, 2H), 4.31 – 4.03 (m, 2H), 3.78 (s, 3H), 2.74 – 2.41 (m, 6H), 2.21 – 2.07 (m, 1H), 2.06 – 1.91 (m, 2H), 1.91 – 1.77 (m, 2H), 1.74 – 1.62 (m, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 174.58, 157.96, 144.83, 141.01, 136.35, 129.30, 129.18, 127.37, 114.05, 55.38, 46.32, 43.87, 37.28, 36.01, 32.56, 30.64, 21.82.

IR (KBr) *v* 3056, 2960, 2922, 1692, 1610, 1512, 1352, 1248, 1168, 1089, 1031, 807, 688, 550 cm⁻¹.

HRMS (ESI) calcd for C₂₁H₂₅NNaO₄S (M+Na⁺): 410.1402; Found: 410.1402.

4-(naphthalen-1-ylmethyl)-1-tosylazepan-2-one

White solid, m. p. 50.1-50.9 °C (16 mg, 40% yield), $R_f = 0.5$ (EtOAc/Petroleum ether 1:5).

¹**H** NMR (CDCl₃, 400 MHz) δ 7.99 (d, J = 8.3 Hz, 2H), 7.83 – 7.70 (m, 3H),

7.53 – 7.40 (m, 3H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.25 – 7.19 (m, 1H), 4.37 – 4.08 (m, 2H), 2.84 – 2.58 (m, 3H), 2.48 (s, 3H), 2.27 – 2.04 (m, 3H), 2.03 – 1.85 (m, 2H), 1.84

- 1.73 (m, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 174.55, 145.95, 144.88, 136.38, 133.58, 132.19, 129.36, 129.24, 128.60, 127.71, 127.65, 126.29, 125.57, 125.32, 124.51, 46.41, 44.77, 36.91, 35.98, 32.40, 30.75, 21.86.

IR (KBr) *v* 3067, 2987, 2922, 2853, 1690, 1603, 1443, 1349, 1164, 1115, 1078, 814, 750, 678, 628, 541 cm⁻¹.

HRMS (ESI) calcd for C₂₄H₂₆NO₃S (M+H⁺): 408.1633; Found: 408.1634.

4-((1-methyl-1H-indol-5-yl)methyl)-1-tosylazepan-2-one

Oil (23 mg, 56% yield), $R_f = 0.4$ (EtOAc/Petroleum ether 1:4).

¹**H NMR** (**CDCl₃, 400 MHz**) δ 7.99 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 7.31 – 7.29 (m, 1H), 7.24 (d, *J* = 8.5 Hz, 1H), 7.04 (d, *J* = 3.1 Hz, 1H), 6.94 (dd, *J*₁ = 8.4, *J*₂ = 1.5 Hz, 1H), 6.42 – 6.37 (m, 1H), 4.35 – 4.09 (m, 2H), 3.77 (s, 3H), 2.74 – 2.55 (m, 3H), 2.47 (s, 3H), 2.21 – 2.01 (m, 3H), 1.99 – 1.83 (m, 2H), 1.79 – 1.69 (m, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 174.78, 144.77, 139.98, 136.41, 135.43, 129.36, 129.32, 129.23, 128.59, 120.51, 118.03, 109.49, 100.69, 46.37, 44.83, 37.72, 32.99, 31.56, 30.66, 29.83, 21.84.

IR (KBr) *v* 3067, 2992, 2934, 1694, 1465, 1423, 1337, 1245, 1134, 1078, 1017, 865, 809, 679, 556 cm⁻¹.

HRMS (ESI) calcd for C₂₃H₂₇N₂O₃S (M+H⁺): 411.1742; Found: 411.1739.

6. Characterization of 6 and 7

Methyl 2-(5-methoxy-2-methyl-1-(4-((5-oxo-1-tosylpyrrolidin-3-yl)

methyl)benzoyl)-1H-indol-3-yl)acetate

Yellow solid, m. p. 64.7-65.6 °C (132.1 mg, 45% yield), $R_{\rm f}$ = 0.2 (EtOAc/Petroleum ether 1:3).

¹**H NMR** (**CDCl**₃, **400 MHz**) δ 7.92 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.1 Hz, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 7.23 (d, *J* = 8.1 Hz, 2H), 6.96 (d, *J* = 2.4 Hz, 1H), 6.85 (d, *J* = 9.0 Hz, 1H), 6.66 (dd, *J*₁ = 9.0, *J*₂ = 2.5 Hz, 1H), 3.95 (dd, *J*₁ = 10.0, *J*₂ = 7.1 Hz, 1H), 3.84 (s, 3H), 3.71 (s, 3H), 3.68 (s, 2H), 3.58 (dd, *J*₁ = 10.0, *J*₂ = 6.3 Hz, 1H), 2.86 - 2.67 (m, 3H), 2.56 (dd, *J*₁ = 17.3, *J*₂ = 7.8 Hz, 1H), 2.44 (s, 3H), 2.38 (s, 3H), 2.24 (dd, *J*₁ = 17.3, *J*₂ = 7.4 Hz, 1H).

¹³C NMR (CDCl₃, 100MHz) δ 172.22, 171.54, 169.09, 156.02, 145.47, 143.52, 136.10, 135.05, 134.31, 130.96, 130.66, 130.43, 129.86, 129.13, 128.14, 115.03, 112.35, 111.56, 101.30, 55.81, 52.28, 51.87, 39.54, 38.48, 33.26, 30.24, 21.81, 13.44.

IR (KBr) *v* 3434, 2958, 2926, 1738, 1679, 1603, 1477, 1358, 1321, 1217, 1168, 1072, 1030, 962, 812, 743, 663, 599, 556 cm⁻¹.

HRMS (ESI) calcd for C₃₂H₃₃N₂O₇S (M+H⁺): 589.2008; Found: 589.2008.

Methyl 2-(5-methoxy-2-methyl-1-(4-((5-oxopyrrolidin-3-yl)methyl)

benzoyl)-1H-indol-3-yl)acetate

Yellow oil (59.6 mg, 69% yield), $R_f = 0.2$ (CH_2Cl_2 /methanol 40:1).

¹**H NMR (CDCl₃, 400 MHz)** δ 7.66 (d, *J* = 7.6 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 2H), 6.96 (d, *J* = 2.4 Hz, 1H), 6.88 (d, *J* = 9.0 Hz, 1H), 6.80 (br, 1H), 6.65 (dd, *J*₁ = 9.0, *J*₂ = 2.5 Hz, 1H), 3.83 (s, 3H), 3.70 (s, 3H), 3.67 (s, 2H), 3.55 – 3.39 (m, 1H), 3.19 – 3.07 (m, 1H), 2.91 – 2.75 (m, 3H), 2.53 – 2.40 (m, 1H), 2.36 (s, 3H), 2.20 – 2.06 (m, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 171.47, 169.21, 156.01, 144.73, 136.06, 134.00, 131.04, 130.62, 130.24, 129.13, 114.99, 112.25, 111.56, 101.32, 55.79, 52.18, 47.61, 40.42, 36.56, 36.03, 30.21, 13.33.

IR (KBr) *v* 3097, 2965, 2919, 1737, 1656, 1495, 1301, 1168, 1070, 812, 743, 660, 594, 556 cm⁻¹.

HRMS (ESI) calcd for C₂₅H₂₇N₂O₅ (M+H⁺): 435.1920; Found: 435.1919.

7. References

1. Xie, F.; Zhao, H.; Li, D.; Chen, H.; Quan, H.; Shi, X.; Lou, L.; Hu, Y. J. Med. Chem. 2011, 54, 3200.

3. Molander, G. A.; Trice, S. L. J.; Dreher. S. D. J. Am. Chem. Soc. 2010, 132, 17701.

4. Steven, J.; Mansfield, C. D.; Campbell, M. W.; Edward, A. A. *Chem. Commun.* **2015**, *51*, 3316.

^{2.} Dalal, A.; Loannis, S.et.al. J. Am. Chem. Soc. 2016, 138, 12767.

8. Copies of NMR Spectra

-2.366

-3.204

-3.967

