Supporting Information

FeCl₃-Catalyzed Synthesis of Pyrrolo[1,2-*a*]quinoxaline Derivatives from 1-(2-Aminophenyl)pyrroles through Annulation and Cleavage of Cyclic Ethers

Zhenyu An,[†] Lianbiao Zhao,[‡] Mingzhong Wu,[†] Jixiang Ni,[†] Zhenjie Qi,[†] Guiqin Yu,[†] Rulong Yan*[†]

[†] State Key Laboratory of Applied Organic Chemistry, Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, China

[‡]College of Chemical Engineering, Northwest University for Nationalities, Lanzhou, Gansu, China

General remark	S 2
Experimental Section	S2-S6
The data of products	S6-S22
Reference	S 22
NMR spectra	S23-S88

General remark

¹H NMR, and ¹³C NMR spectra were recorded on Bruker 400M and Mercury 300M in CDCl₃ or DMSO. All ¹H NMR and ¹³C NMR chemical shifts were given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. All compounds were further characterized by HRMS; copies of their ¹H NMR and ¹³C NMR spectra were provided. Products were purified by flash chromatography on 200–300 mesh silica gels. All melting points were determined without correction. All reactions were carried out under argon atmosphere in oven-dried glassware, unless otherwise noted. Tetrahydrofuran (THF) was distilled prior to use and stored over activated molecular sieves. All reagents were purchased commercially and used as received, unless otherwise noted.

	N.	+	catalyst oxidant additive solvent		_ОН	
	1a	2a		3aa		
ent ry	catalyst (mol %)	oxidant (equiv)	additive (mol %)	solvent	T/ °C	yield $(\%)^{b}$
1	FeCl ₃ (10)	TBHP (2) ^{<i>c</i>}	-	THF	60	46
2	$Cu(OAc)_2(10)$	TBHP (2) ^{<i>c</i>}	-	THF	60	0
3	$Pd(OAc)_2(10)$	TBHP (2) ^{<i>c</i>}	-	THF	60	0
4	FeCl ₂ (10)	TBHP $(2)^{c}$	-	THF	60	38
5	FeBr ₃ (10)	TBHP $(2)^{c}$	-	THF	60	34
6	Fe(OTf) ₃ (10)	TBHP $(2)^{c}$	-	THF	60	30
7	FeCl ₃ (20)	TBHP $(2)^{c}$	-	THF	60	50
8	FeCl ₃ (20)	TBHP $(2)^{c}$	-	THF	100	32
9	FeCl ₃ (20)	TBHP $(2)^{c}$	-	THF	25	58
10	FeCl ₃ (20)	DTBP (2) d	-	THF	25	38
11	FeCl ₃ (20)	$K_{2}S_{2}O_{8}(2)$	-	THF	25	trace
12	FeCl ₃ (20)	DDQ (2) ^{<i>d</i>}	-	THF	25	0
13	FeCl ₃ (20)	TBHP $(2)^{e}$	-	THF	25	72
14	FeCl ₃ (20)	TBHP $(3)^{e}$	-	THF	25	80

Table S1. Optimization of Reaction Conditions^a

15	FeCl ₃ (20)	TBHP $(3)^{e}$	-	MeCN/THF (1:1)	25	35
16	FeCl ₃ (20)	TBHP (3) ^{<i>e</i>}	-	CH ₃ NO ₂ /THF(1:1)	25	50
17	FeCl ₃ (20)	TBHP (3) ^{<i>e</i>}	-	tBuOH/THF (1:1)	25	84
18	FeCl ₃ (20)	TBHP $(3)^{e}$	-	<i>i</i> PrOH/THF (1:1)	25	70
19	FeCl ₃ (20)	TBHP $(3)^{e}$	-	<i>t</i> BuOH ^{<i>f</i>}	25	31
20	FeCl ₃ (20)	TBHP $(3)^{e}$	-	tBuOH/THF (2:1)	25	89
21	FeCl ₃ (20)	TBHP $(3)^{e}$	CF ₃ COOH (10)	tBuOH/THF (2:1)	25	84
22	FeCl ₃ (20)	$\mathbf{TBHP}(3)^{e}$	CF ₃ SO ₃ H (10)	<i>t</i> BuOH/THF (2:1)	25	94
	FeCl ₃ (20)	TBHP $(3)^{e}$	CF ₃ SO ₃ H (10)	tBuOH/THF (2:1)	25	78 ^g
23	FeCl ₃ (20)	TBHP $(3)^{e}$	CF ₃ SO ₃ H (20)	tBuOH/THF (2:1)	25	80
24	-	TBHP $(3)^{e}$	CF ₃ SO ₃ H (10)	tBuOH/THF (2:1)	25	0
25	FeCl ₃ (20)	-	CF ₃ SO ₃ H (10)	tBuOH/THF (2:1)	25	0

^{*a*} Reaction conditions: **1a** (0.3 mmol), catalyst (20 mol %), oxidant (3 equiv), additive (10 mol %), solvent (1.5 mL), rt, 10 h, Ar. ^{*b*}Yields of isolated products. ^{*c*} 5.5 M TBHP in decane. ^{*d*} DTBP = di-*tert*-butyl peroxide, DDQ = dichloro-5,6-dicyano-1,4-benzoquinone. ^{*e*} 70% TBHP in water. ^{*f*} THF (5 equiv). ^{*g*} Under O₂. Entry in bold highlights optimized reaction conditions, and the reaction time was monitored by TLC.

General procedure radical trapping experiment.

А mixture 1-(2-aminophenyl)pyrrole **1a** (1 equiv, 0.3 mmol), of 2,2,6,6-tetramethyl-1-piperidinyloxy TEMPO (1.0 equiv, 0.3 mmol), FeCl₃ (20 mol %, 0.06 mmol), TBHP (3.0 equiv, 0.9 mmol, 70% in water), CF₃SO₃H (10 mol %, 0.03mmol), tetrahydrofuran 2a (0.5 mL), tert-butyl alcohol (1 mL) were stirred at ambient temperature under argon atmosphere for 10 h (TLC monitored). Upon completion of the reaction, the reaction mixture was extracted with ethyl acetate and saturated brine. All organic phase obtained were dried over anhydrous Na₂SO₄ and filtered. The resulting was analyzed by GC-MS. Then the intermediate S was isolated in 48% (based on TEMPO) by column chromatography on silica gel using petroleum ether/EtOAc as eluent (100:1), which was identified by ¹H NMR, ¹³C NMR.

General procedure for the synthesis of 1b-1r and 1t.^[1]

Compound **1a** was purchased from commercial sources and used as received. Substituted 2-(1*H*-pyrrol-1-yl)anilines **1b-1r** and **1t** were prepared in the following method. A mixture of substituted S_1 (5 mmol) and S_2 (5 mmol) in acetic acid (25 mL) was refluxed for 2 h with vigorous stirring. After cooling, the reaction mixture was poured into water (100 mL) and extracted with ethyl acetate three times (3×20 mL). The combined organic layers were dried with anhydrous Na₂SO₄ and the solvent was removed in vacuo to afford S_3 . Then, the residue S_3 was added to iron powder (20 mmol) and NH₄Cl (2 mmol) in water (20 mL) and refluxed for 4 h. After cooling, the reaction mixture was poured into water (100 mL) and extracted with ethyl acetate three times (3×20 mL). The combined organic layers were dried with anhydrous Na₂SO₄ and the solvent was removed in vacuo to afford a residue. The residue was purified by column chromatography on silica gel using petroleum ether/EtOAc as eluent to provide the desired product **1b-1r** and **1t**.

General procedure for the synthesis of 1s.^[2]

 S_4 was prepared from the method of synthesizing S_3 . Then, a mixture of S_4 (5 mmol), pyrrole (5 mmol) and NaOH (5 mmol) in DMSO (15 mL) was stirred vigorously for 2 h. Then, the reaction mixture was poured into water (60 mL) and extracted with ethyl acetate three times (3×30 mL). The combined organic layers were dried with Na₂SO₄ and the solvent was removed in vacuo to afford a residue S_5 .

The residue S_5 was added to iron powder (20 mmol) and NH₄Cl (2 mmol) in water (60 mL) and refluxed for 4 h. After cooling, the reaction mixture was poured into water (100 mL) and extracted with ethyl acetate three times (3×60 mL). The combined organic layers were dried with anhydrous Na₂SO₄ and the solvent was removed in vacuo to afford a residue. The residue was purified by column chromatography on silica gel to provide the desired product **1s**.

General procedure for the synthesis of 1u-1v.^[2]

To a well-stirred solution of *N*-heterocycle S_7 (5.0 mmol) in DMSO (5.0 mL), NaOH (5.0 mmol) and 1-fluoro-2-nitrobenzene S_6 (5.0 mmol) were added slowly. The reaction mixture was stirred vigorously for 2 h at room temperature until no more starting material was detected by TLC analysis. The reaction mixture was extracted with ethyl acetate and saturated brine. Then the organic phase was combined and dried with anhydrous Na₂SO₄. The solvent was evaporated to obtain desired products S_8 which were directly used for next step without further purification.

The residue S_8 was added to iron powder (20 mmol) and NH₄Cl (2 mmol) in water (60 mL) and refluxed for 4 h. After cooling, the reaction mixture was poured into water (100 mL) and extracted with ethyl acetate three times (3×60 mL). The combined organic layers were dried with anhydrous Na₂SO₄ and the solvent was removed in vacuo to afford the residue. The residue was purified by column chromatography on silica gel to provide the desired products **1u** and **1v**.

General procedure for the synthesis of Pyrrolo[1,2-*a*]quinoxaline Derivatives.

A mixture of 2-(1*H*-pyrrol-1-yl)aniline **1a** (1 equiv, 0.3 mmol), FeCl₃ (20 mol %, 0.06 mmol), 70% TBHP (3.0 equiv, 0.9 mmol), CF₃SO₃H (10 mol %, 0.03mmol), cyclic ethers **2a** (0.5 mL), *tert*-butyl alcohol (1 mL) were stirred at ambient temperature under argon atmosphere for 10 h (TLC monitored). Upon completion of the reaction, the reaction mixture was then extracted with ethyl acetate and saturated brine. The combined organic phase was dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and the crude product was purified by column chromatography, eluting with petroleum ether/ethyl acetate (1:1) to afford the desired **3aa**.

The data of products

4-methyl-2-(1*H*-pyrrol-1-yl)aniline (1b)

White solid (610.6 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 6.97-6.96$ (m, 2 H), 6.83-6.82 (m, 2 H), 6.71-6.69 (d, J = 6.5 Hz, 1 H), 6.33-6.32 (m, 2 H), 3.57 (br s, 2 H), 2.26 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 139.3$, 129.0, 127.9, 127.5, 127.4, 121.6, 116.2, 109.2, 20.2.

5-methyl-2-(1*H*-pyrrol-1-yl)aniline (1c)

White solid (627.8 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.03-7.01 (d, *J* = 8.0 Hz, 1 H), 6.80-6.79 (m, 2 H), 6.60-6.56 (m, 2 H), 6.32-6.31 (m, 2 H), 3.62 (br s, 2 H), 2.30 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 141.9, 138.6, 127.0, 125.2, 121.9, 119.2, 116.6, 109.2, 21.2.

5-(tert-butyl)-2-(1H-pyrrol-1-yl)aniline (1d)

White solid (727.6 mg, 68% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.07-7.04 (d, *J* = 8.8 Hz, 1 H), 6.82-6.78 (m, 4 H), 6.31-6.30 (m, 2 H), 3.62 (br s, 2 H), 1.31 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃, ppm): δ = 151.8, 141.4, 126.6, 125.1, 121.7, 115.6, 113.2, 109.1, 34.5, 31.2.

4-methoxy-2-(1*H*-pyrrol-1-yl)aniline (1e)

White solid (695.6 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 6.85-6.84$ (m, 2 H), 6.79-6.73 (m, 3 H), 6.34-6.33 (m, 2 H), 3.74 (s, 3 H), 3.44 (br s, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 152.5$, 135.5, 128.1, 121.7, 117.3, 114.8, 112.5, 109.5, 55.9.

3-methyl-2-(1*H*-pyrrol-1-yl)aniline (1f)

White solid (626.9 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.09-7.05 (m, 2 H), 6.65-6.64 (m, 4 H), 6.36-6.35 (m, 2 H), 3.43 (br s, 2 H), 2.00 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 143.8, 136.9, 128.7, 126.7, 121.4, 119.6, 113.1, 109.3, 17.1.

3-methoxy-2-(1*H*-pyrrol-1-yl)aniline (1g)

White solid (694.6 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.11-7.07 (m, 1 H), 6.68-6.67 (m, 2 H), 6.39-6.33 (m, 4 H), 3.69 (s, 3 H), 3.56 (br s, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 156.2, 144.7, 129.0, 122.0, 116.1, 108.9, 108.2, 100.9, 55.7.

4-fluoro-2-(1*H*-pyrrol-1-yl)aniline (1h)

White solid (589.6 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 6.91-6.87$ (m, 2 H), 6.83-6.82 (d, J = 2.0 Hz, 2 H), 6.74-6.70 (m, 1 H), 6.35-6.34 (m, 2 H), 3.59 (br s, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 156.7-154.3$ (d, J = 236.3 Hz, 1 C), 138.1-138.1(d, J = 2.4 Hz, 1 C), 127.7-127.6 (d, J = 9.5 Hz, 1 C), 121.5, 116.7-116.7 (d, J = 8.2 Hz, 1 C), 115.3-115.0 (d, J = 21.9 Hz, 1 C), 114.1-113.8 (d, J = 23.6 Hz, 1 C), 109.8.

5-fluoro-2-(1H-pyrrol-1-yl)aniline (1i)

White solid (589.4 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.09-7.05 (m, 1 H), 6.77-6.76 (m, 2 H), 6.48-6.42 (m, 2 H), 6.33-6.32 (d, *J* = 2.4 Hz, 2 H), 3.77 (br s, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 164.0-161.5 (d, *J* = 243.1 Hz, 1 C), 144.0-143.9 (d, *J* = 11.7 Hz, 1 C), 128.6-128.5 (d, *J* = 10.7 Hz, 1 C), 123.6, 121.9, 109.6, 104.9-104.7 (d, *J* = 22.9 Hz, 1 C), 102.5-102.3 (d, *J* = 25.9 Hz, 1 C).

4,5-difluoro-2-(1*H*-pyrrol-1-yl)aniline (1j)

White solid (611.1 mg, 63% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.03-6.99 (m, 1 H), 6.77 (s, 2 H), 6.61-6.55 (m, 1 H), 6.34 (s, 2 H), 3.64 (br s, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): δ = 151.9-148.7 (d, *J* = 170.1 Hz, 1 C), 144.3-141.1 (d, *J* = 238.1 Hz, 1 C), 139.2-139.0 (d, *J* = 9.0 Hz, 1 C), 122.4-122.3 (d, *J* = 4.0 Hz, 1 C), 121.6, 116.0-115.8 (d, *J* = 18.9 Hz, 1 C), 109.8, 104.1-103.8 (d, *J* = 21.1 Hz, 1 C).

2-chloro-6-(1*H*-pyrrol-1-yl)aniline (1k)

White solid (723.6 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.29-7.25

(m, 1 H), 7.08-7.06 (m, 1 H), 6.83-6.82 (m, 2 H), 6.73-6.69 (m, 1 H), 6.36-6.35 (m, 2 H), 4.12 (br s, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 139.4, 128.5, 127.9, 125.5, 121.5, 119.6, 117.5, 109.7,.

4-chloro-2-(1H-pyrrol-1-yl)aniline (11)

White solid (729.6 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.14-7.09 (m, 2 H), 6.81-6.80 (m, 2 H), 6.71-6.69 (d, *J* = 8.4 Hz, 1 H), 6.34-6.33 (m, 2 H), 3.72 (br s, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 140.7, 128.4, 128.0, 127.0, 122.6, 121.5, 116.9, 109.9.

5-chloro-2-(1*H*-pyrrol-1-yl)aniline (1m)

White solid (720.0 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.06-7.04 (d, *J* = 8.4 Hz, 1 H), 6.79-7.77 (m, 3 H), 6.75-6.72 (m, 1 H), 6.34-6.33 (m, 2 H), 3.77 (br s, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 143.2, 134.0, 128.2, 125.9, 121.6, 118.2, 115.6, 109.8.

4,5-dichloro-2-(1*H*-pyrrol-1-yl)aniline (1n)

White solid (757.1 mg, 67% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.22 (s, 1 H), 6.88 (s, 1 H), 6.79-6.77 (m, 2 H), 6.35-6.33 (m, 2 H), 3.79 (br s, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): δ = 141.8, 132.2, 128.6, 126.9, 121.7, 120.8, 117.1, 110.4.

4-chloro-2-fluoro-6-(1*H*-pyrrol-1-yl)aniline (10)

White solid (630.0 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.05-7.02 (m, 1 H), 6.99-6.98 (m, 1 H), 6.83-6.82 (m, 2 H), 6.36-6.35 (m, 2 H), 3.80 (br s, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 152.5-150.1 (d, J = 241.2 Hz, 1 C), 130.0-129.8 (d, J = 13.9 Hz, 1 C), 129.0-128.9 (d, J = 6.2 Hz, 1 C), 124.5, 122.4-122.4 (d, J = 3.3 Hz, 1 C), 121.3, 115.0-114.8 (d, J = 22.2 Hz, 1 C), 110.2.

5-bromo-2-(1*H*-pyrrol-1-yl)aniline (1p)

White solid (810.8 mg, 69% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.00-6.97 (m, 1 H), 6.94-6.93 (m, 1 H), 6.90-6.86 (m, 1 H), 6.80-6.78 (m, 2 H), 6.34-6.33 (m, 2 H), 3.77 (br s, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): δ = 143.6, 128.6, 126.6, 122.1, 121.8, 121.4, 118.7, 110.0.

2-(1*H*-pyrrol-1-yl)-5-(trifluoromethyl)aniline (1q)

White solid (723.2 mg, 64% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.25-7.21 (d, *J* = 10.2 Hz, 1 H), 7.03-7.01 (m, 2 H), 6.85-6.83 (m, 2 H), 6.38-6.36 (m, 2 H), 3.93 (br s, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): δ = 142.4, 131.4-130.1 (q, *J* = 32.2 Hz, 1 C), 130.0, 127.6, 126.0-122.3 (d, *J* = 270.6 Hz, 1 C), 121.6, 115.2-115.1 (q, *J* = 3.7 Hz, 1 C), 113.0-112.9 (q, *J* = 3.7 Hz, 1 C), 110.3.

4-amino-3-(1H-pyrrol-1-yl)benzonitrile (1r)

White solid (539.8 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.43-7.41 (m, 2 H), 6.81-6.78 (m, 3 H), 6.38-6.36 (m, 2 H), 4.31 (br s, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 146.5, 132.7, 131.2, 126.8, 121.4, 119.2, 115.7, 110.4, 100.2.

2,4-di(1*H*-pyrrol-1-yl)aniline (1s)

White solid (691.3 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.22-7.19 (m, 2 H), 6.98-6.97 (m, 2 H), 6.87-6.86 (m, 2 H), 6.85-6.82 (d, *J* = 9.2 Hz, 1 H), 6.37-6.36 (m, 2 H), 6.31-6.30 (m, 2 H), 3.74 (br s, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 140.0, 132.7, 127.7, 121.6, 121.2, 120.0, 119.6, 116.7, 109.9, 109.8.

2-(1*H*-pyrrol-1-yl)pyridin-3-amine (1t)

White solid (667.8 mg, 81% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.92-7.90 (m, 1H), 7.15-7.14 (m, 2 H), 7.10-7.06 (m, 2 H), 6.36-6.35 (m, 2 H), 3.87 (br s, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): δ = 139.8, 138.6, 136.1, 124.4, 123.1, 120.4, 110.2.

2-(2,4-dimethyl-1*H*-pyrrol-1-yl)aniline (1u)

White solid (734.7 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.19-7.13 (m, 1H), 7.08-7.05 (m, 1 H), 6.77-6.72 (m, 2 H), 6.37 (s, 1 H), 5.88 (s, 1 H), 3.53 (br s, 2 H), 2.10 (d, *J* = 0.4 Hz, 3 H), 1.99 (d, *J* = 0.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 143.8, 129.8, 129.0, 128.7, 126.3, 119.0, 118.6, 118.1, 115.7, 108.9, 12.0, 11.9.

2-(1*H*-indol-1-yl)aniline (1v)

White solid (884.0 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.70-7.68 (m, 1 H), 7.26-7.13 (m, 6 H), 6.87-6.82 (m, 2 H), 6.69-6.68 (d, *J* = 3.0 Hz, 1 H), 3.56 (br s, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 143.2, 136.4, 129.2, 128.7, 128.6, 128.6, 124.9, 122.2, 121.0, 120.2, 118.6, 116.3, 110.8, 103.2.

3-(pyrrolo[1,2-a]quinoxalin-4-yl)propan-1-ol (3aa).

Yellow oil (61.0 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.92-7.87 (m, 2 H), 7.83-7.81 (m, 1 H), 7.48-7.46 (m, 1 H), 7.43-7.41 (m, 1 H), 6.96-6.94 (m, 1 H), 6.86-6.85 (m, 1 H), 4.75 (br s, 1 H), 3.83-3.80 (m, 2 H), 3.26-3.23 (m, 2 H), 2.21-2.14 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 156.7, 135.1, 129.0, 127.2, 127.1,

125.8, 125.2, 114.7, 113.7, 113.6, 106.8, 62.7, 32.8, 29.6; HRMS calcd for $C_{14}H_{15}N_2O$ $[M+H]^+$ 227.1179; found: 227.1182.

3-(8-methylpyrrolo[1,2-*a*]quinoxalin-4-yl)propan-1-ol (3ba).

Yellow oil (51.1 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.89-7.88 (m, 1 H), 7.78-7.76 (d, *J* = 8.4 Hz, 1 H), 7.62 (s, 1 H), 7.26-7.22 (m, 1 H), 6.93-6.92 (m, 1 H), 6.85-6.84 (m, 1 H), 3.82-3.80 (m, 2 H), 3.25-3.22 (m, 2 H), 2.53 (s, 3 H), 2.20-2.14 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 155.6, 137.7, 133.0, 128.7, 126.9, 126.5, 125.9, 114.4, 113.7, 133.6, 106.5, 62.7, 32.8, 29.5, 21.8; HRMS calcd for C₁₅H₁₇N₂O [M+H]⁺ 241.1336; found: 241.1330.

3-(7-methylpyrrolo[1,2-a]quinoxalin-4-yl)propan-1-ol (3ca)

Light yellow solid (47.5 mg, 66% yield), melting point: 108-110 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.87-7.86 (m, 1 H), 7.70-7.68 (m, 2 H), 7.29-7.26 (m, 1 H), 6.93-6.92 (m, 1 H), 6.83-6.82 (m, 1 H), 3.83-3.80 (m, 2 H), 3.25-3.22 (m, 2 H), 2.46 (s, 3 H), 2.20-2.13 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 156.5, 135.1, 134.8, 128.7, 128.4, 125.7, 125.0, 114.6, 113.5, 113.4, 106.7, 62.7, 32.8, 29.6, 21.0; HRMS calcd for C₁₅H₁₇N₂O [M+H]⁺241.1336; found: 241.1141.

3-(7-(*tert*-butyl)pyrrolo[1,2-*a*]quinoxalin-4-yl)propan-1-ol (3da)

Yellow oil (46.5 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.91-7.89 (m, 2 H), 7.78-7.76 (d, *J* = 8.8 Hz, 1 H), 7.56-7.53 (m, 1 H), 6.94-6.93 (m, 1 H), 6.85-6.83 (m, 1 H), 4.59 (br s, 1 H), 3.84-3.81 (m, 2 H), 3.26-3.23 (m, 2 H), 2.21-2.15 (m, 2 H), 1.40 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 156.5, 148.6, 134.9, 125.8, 125.4, 124.9, 114.4, 113.5, 113.3, 106.5, 62.7, 34.7, 32.8, 31.4, 29.8; HRMS calcd for C₁₈H₂₃N₂O [M+H]⁺ 283.1805; found: 283.1811.

3-(8-methoxypyrrolo[1,2-a]quinoxalin-4-yl)propan-1-ol (3ea)

Light yellow solid (50.7 mg, 66% yield), melting point: 105-108 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.82-7.80 (m, 2 H), 7.26-7.23 (m, 1 H), 7.02-7.00 (m, 1 H), 6.92-6.90 (m, 1 H), 6.86-6.85 (m, 1 H), 3.94 (s, 3 H), 3.82-3.79 (m, 2 H), 3.24-3.20 (m, 2 H), 2.19-2.13 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 158.9, 153.9, 130.1, 129.4, 127.9, 125.8, 114.3, 113.8, 112.7, 106.4, 97.7, 62.7, 55.8, 32.7, 29.6; HRMS calcd for C₁₅H₁₇N₂O₂ [M+H]⁺ 257.1285; found: 257.1280.

3-(9-methylpyrrolo[1,2-*a*]quinoxalin-4-yl)propan-1-ol (3fa).

Yellow oil (36.2 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.30-8.29$ (d, J = 1.6 Hz, 1 H), 7.77-7.75 (m, 1 H), 7.31-7.26 (m, 2 H), 6.97-6.96 (m, 1 H), 6.84-6.82 (m, 1 H), 4.93 (br s, 1 H), 3.83-3.80 (m, 2 H), 3.24-3.21 (m, 2 H), 2.91 (s, 3 H), 2.20-2.14 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 155.8$, 136.3, 130.1, 126.9, 126.8, 126.5, 124.9, 124.1, 119.8, 112.6, 105.9, 61.8, 32.0, 29.9, 23.4; HRMS calcd for C₁₅H₁₇N₂O [M+H]⁺ 241.1336; found: 241.1330.

3-(9-methoxypyrrolo[1,2-*a*]quinoxalin-4-yl)propan-1-ol (3ga)

Light yellow solid (48.6 mg, 63% yield), melting point: 101-103 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 8.68-8.67 (d, *J* = 5.6 Hz, 1 H), 7.49-7.46 (m, 1 H), 7.30-7.24 (m, 1 H), 6.97-6.92 (m, 2 H), 6.76-6.75 (m, 1 H), 5.19 (br s, 1 H), 3.99 (s, 3 H), 3.82-3.79 (m, 2 H), 3.22-3.18 (m, 2 H), 2.18-2.12 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 156.7, 149.6, 137.1, 126.1, 124.2, 122.3, 120.8, 118.3, 112.5, 108.5, 106.0, 62.4, 56.0, 32.5, 29.7; HRMS calcd for C₁₅H₁₇N₂O₂ [M+H]⁺257.1285; found: 257.1279.

3-(8-fluoropyrrolo[1,2-*a*]quinoxalin-4-yl)propan-1-ol (3ha)

Light yellow solid (60.0 mg, 82% yield), melting point: 108-111 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.86-7.83 (m, 1 H), 7.79-7.78 (m, 1 H), 7.48-7.45 (m, 1 H), 7.14-7.09 (m, 1 H), 6.95-6.93 (m, 1 H), 6.88-6.86 (m, 1 H), 4.47 (br s, 1 H), 3.82-3.80 (m, 2 H), 3.23-3.19 (m, 2 H), 2.20-2.13 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 162.4-159.9 (d, *J* = 246 Hz, 1 C), 155.9-155.8 (d, *J* = 3 Hz, 1 C), 131.7-131.7 (d, *J* = 2 Hz, 1 C), 130.8-130.7 (d, *J* = 9 Hz, 1 C), 127.9-127.7 (d, *J* = 11 Hz, 1 C), 125.5, 114.8, 114.2, 113.2-112.9 (d, *J* = 23 Hz, 1 C), 107.0, 100.6-100.4 (d, *J* = 26 Hz, 1 C), 62.6, 32.6, 29.6; HRMS calcd for C₁₄H₁₄FN₂O [M+H]⁺ 245.1085; found: 245.1081.

3-(7-fluoropyrrolo[1,2-*a*]quinoxalin-4-yl)propan-1-ol (3ia)

Yellow oil (62.2 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.87-7.86$ (m, 1 H), 7.78-7.75 (m, 1 H), 7.57-7.54 (m, 1 H), 7.23-7.18 (m, 1 H), 6.97-6.95 (m, 1 H), 6.86-6.84 (m, 1 H), 4.25 (br s, 1 H), 3.82-3.79 (m, 2 H), 3.23-3.20 (m, 2 H), 2.20-2.13 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 161.0-158.6$ (d, J = 269 Hz, 1 C), 158.0, 136.5-136.4 (d, J = 12 Hz, 1 C), 125.6, 123.9, 115.0, 114.9, 114.7, 114.5-114.3 (d, J = 22 Hz, 1 C), 113.9, 107.2, 62.5, 32.6, 29.7; HRMS calcd for C₁₄H₁₄FN₂O [M+H]⁺ 245.1085; found: 245.1079.

3-(7,8-difluoropyrrolo[1,2-*a*]quinoxalin-4-yl)propan-1-ol (3ja)

Light yellow solid (70.7 mg, 90% yield), melting point: 134-136 °C. ¹H NMR (400 MHz, DMSO, ppm): $\delta = 8.46-8.41$ (m, 1 H), 8.36-8.35 (m, 1 H), 7.83-7.78 (m, 1 H), 7.05-7.04 (m, 1 H), 6.91-6.90 (m, 1 H), 4.57-4.54 (m, 1 H), 3.55-3.51 (m, 2 H), 3.01-2.97 (m, 2 H), 1.98-1.91 (m, 2 H); ¹³C NMR (100 MHz, DMSO, ppm): $\delta = 158.3$, 150.4-149.0 (dd, J = 127 Hz, J = 14 Hz, 1 C), 147.9-146.6 (dd, J = 124 Hz, J = 14 Hz, 1 C), 133.2-133.1 (d, J = 7 Hz, 1 C), 125.6, 124.5-124.4 (d, J = 10 Hz, 1 C), 117.6, 117.1-117.0 (d, J = 17 Hz, 1 C), 114.9, 107.9, 104.7-104.5 (d, J = 23 Hz, 1 C), 61.3, 32.1, 31.6; HRMS calcd for C₁₄H₁₃F₂N₂O [M+H]⁺ 263.0991; found: 263.0981.

3-(6-chloropyrrolo[1,2-*a*]quinoxalin-4-yl)propan-1-ol (3ka)

Yellow solid (46.8 mg, 60% yield), melting point: 94-96 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.81-7.80 (m, 1 H), 7.62-7.59 (m, 1 H), 7.41-7.38 (m, 1 H), 7.28-7.24 (m, 1 H), 6.91-6.90 (m, 1 H), 6.81-6.80 (m, 1 H), 5.03 (br s, 1 H), 3.84-3.81 (m, 2 H), 3.24-3.21 (m, 2 H), 2.20-2.14 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 157.3, 133.2, 132.0, 128.0, 126.6, 125.6, 125.5, 115.2, 114.2, 112.2, 107.3, 62.6, 32.6, 29.0; HRMS calcd for C₁₄H₁₄ClN₂O [M+H]⁺ 261.0789; found: 261.0794.

3-(8-chloropyrrolo[1,2-*a*]quinoxalin-4-yl)propan-1-ol (3la)

Light yellow solid (51.7 mg, 66% yield), melting point: 88-90 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.84-7.83 (m, 1 H), 7.79-7.77 (m, 2 H), 7.36-7.33 (m, 1 H), 6.96-6.95 (m, 1 H), 6.87-6.86 (m, 1 H), 4.37 (br s, 1 H), 3.82-3.79 (m, 2 H), 3.23-3.19 (m, 2 H), 2.19-2.13 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 156.9, 133.7, 132.6, 130.2, 127.7, 125.7, 125.6, 114.9, 114.3, 113.8, 107.3, 62.6, 32.6, 29.6; HRMS calcd for C₁₄H₁₄ClN₂O [M+H]⁺ 261.0789; found: 261.0781.

3-(7-chloropyrrolo[1,2-*a*]quinoxalin-4-yl)propan-1-ol (3ma)

Light yellow solid (71.0 mg, 91% yield), melting point: 115-118 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.87-7.86 (d, *J* = 2.0 Hz, 2 H), 7.75-7.72 (d, *J* = 8.8 Hz, 1 H), 7.43-7.40 (m, 1 H), 6.97-6.96 (m, 1 H), 6.88-6.86 (m, 1 H), 4.21 (br s, 1 H), 3.82-3.79 (m, 2 H), 3.24-3.20 (m, 2 H), 2.19-2.13 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 158.0, 136.1, 130.4, 128.5, 127.2, 125.8, 125.7, 115.0, 114.8, 114.1, 107.4, 62.6, 32.6, 29.6; HRMS calcd for C₁₄H₁₄ClN₂O [M+H]⁺ 261.0789; found: 261.0784.

3-(7,8-dichloropyrrolo[**1**,2-*a*]**quinoxalin-4-yl)propan-1-ol** (**3na**)

Light yellow solid (66.2 mg, 75% yield), melting point: 130-133 °C. ¹H NMR (300 MHz, DMSO- d_6 , ppm): δ = 8.58 (s, 1 H), 8.46-8.45 (d, J = 1.5 Hz, 1 H), 7.94 (s, 1 H), 7.08-7.06 (m, 1 H), 6.91-6.89 (m, 1 H), 4.57-4.54 (m, 1 H), 3.56-3.50 (m, 2 H), 3.01-2.96 (m, 2 H), 1.99-1.90 (m, 2 H); ¹³C NMR (75 MHz, DMSO, ppm): δ = 158.5, 135.1, 129.4, 128.9, 126.9, 126.4, 124.9, 117.1, 116.5, 114.3, 107.6, 60.4, 31.2, 30.6; HRMS calcd for C₁₄H₁₃Cl₂N₂O [M+H]⁺ 295.0400; found: 295.0392.

3-(8-chloro-6-fluoropyrrolo[1,2-*a*]quinoxalin-4-yl)propan-1-ol (3oa)

Yellow oil (61.7 mg, 74% yield). ¹H NMR (300 MHz, CDCl₃, ppm): $\delta = 7.77-7.75$ (m, 1 H), 7.52-7.51 (m, 1 H), 7.10-7.06 (m, 1 H), 6.98-6.97 (m, 1 H), 6.87-6.85 (m, 1 H), 4.57 (s, 1 H), 3.83-3.80 (m, 2 H), 3.23-3.18 (m, 2 H), 2.20-2.12 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): $\delta = 159.6-156.2$ (d, J = 256 Hz, 1 C), 157.1, 132.1-131.9 (d, J = 11.3 Hz, 1 C), 128.6-128.5 (d, J = 5.3 Hz, 1 C), 125.7, 123.9-123.7 (d, J = 13.5 Hz, 1 C), 115.2, 114.6, 112.3-112.0 (d, J = 22.5 Hz, 1 C), 109.6-109.5 (d, J = 4.5 Hz, 1 C), 108.1, 62.4, 32.7, 29.7; HRMS calcd for C₁₄H₁₃CIFN₂O [M+H]⁺ 279.0695; found: 279.0688.

3-(7-bromopyrrolo[1,2-*a*]quinoxalin-4-yl)propan-1-ol (3pa)

Light yellow solid (61.1 mg, 67% yield), melting point: 130-133 °C. ¹H NMR (300 MHz, CDCl₃, ppm): $\delta = 8.06-8.05$ (d, J = 1.8 Hz, 1 H), 7.90-7.89 (m, 1 H), 7.71-7.68 (d, J = 8.7 Hz, 1 H), 7.59-7.55 (m, 1 H), 6.99-6.97 (m, 1 H), 6.89-6.87 (m, 1 H), 4.08 (br s, 1 H), 3.83-3.79 (m, 2 H), 3.25-3.21 (m, 2 H), 2.21-2.13 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): $\delta = 158.2$, 134.6, 130.7, 130.0, 128.8, 126.3, 125.6, 115.3, 115.2, 114.5, 107.9, 62.5, 32.5, 29.5; HRMS calcd for C₁₄H₁₄BrN₂O [M+H]⁺ 305.0284; found: 305.0278.

3-(7-(trifluoromethyl)pyrrolo[1,2-*a*]quinoxalin-4-yl)propan-1-ol (3qa)

Light yellow solid (85.6 mg, 97% yield), melting point: 110-113 °C. ¹H NMR (300 MHz, CDCl₃, ppm): $\delta = 8.18$ (s, 1 H), 7.96-7.89 (m, 2 H), 7.72-7.69 (d, J = 8.7 Hz, 1 H), 7.02-7.01 (d, J = 3.9 Hz, 1 H), 6.93-6.91 (m, 1 H), 3.89 (br s, 1 H), 3.84-3.80 (m, 2 H), 3.26-3.22 (m, 2 H), 2.23-2.15 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): $\delta = 158.4$, 135.0, 129.3, 127.6-126.3 (q, J = 32.3 Hz, 1 C), 126.7-126.6 (d, J = 4.5 Hz, 1 C),126.0, 125.7-122.1 (d, J = 269.3 Hz, 1 C), 123.6-123.5 (d, J = 3.0 Hz, 1 C), 115.3, 114.7, 114.4, 107.9, 62.5, 32.5, 29.6; HRMS calcd for C₁₅H₁₄F₃N₂O [M+H]⁺ 295.1053; found: 295.1043.

4-(3-hydroxypropyl)pyrrolo[1,2-*a*]quinoxaline-8-carbonitrile (3ra)

Light yellow solid (62.7 mg, 83% yield), melting point: 147-149 °C. ¹H NMR (300 MHz, CDCl₃, ppm): δ = 8.13-8.12 (d, *J* = 1.8 Hz, 1 H), 7.96-7.93 (m, 2 H), 7.68-7.67 (m, 1 H), 7.07-7.06 (m, 1 H), 6.96-6.93 (m, 1 H), 3.84-3.80 (m, 2 H), 3.65 (br s, 1 H), 3.27-3.23 (m, 2 H), 2.23-2.14 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): δ = 160.0, 138.1, 129.9, 128.0, 127.3, 125.8, 118.4, 118.1, 115.7, 114.9, 109.7, 108.6, 62.3, 32.5, 29.6; HRMS calcd for C₁₅H₁₄N₃O [M+H]⁺ 252.1132; found: 252.1139.

3-(8-(1H-pyrrol-1-yl)pyrrolo[1,2-a]quinoxalin-4-yl)propan-1-ol (3sa)

Yellow oil (82.9 mg, 95% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.94-7.89 (m, 2 H), 7.77-7.76 (d, *J* = 2.4 Hz, 1 H), 7.47-7.44 (m, 1 H), 7.21-7.19 (m, 1 H), 6.97-6.96 (m, 1 H), 6.90-6.89 (m, 1 H), 6.43-6.41 (m, 1 H), 4.39 (br s, 1 H), 3.84-3.80 (m, 2 H), 3.27-3.22 (m, 2 H), 2.22-2.14 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): δ = 156.1, 139.2, 132.8, 130.1, 127.6, 125.7, 119.5, 117.5, 114.6, 114.1, 111.2, 107.1, 104.9, 62.5, 32.5, 29.7; HRMS calcd for C₁₈H₁₈N₃O [M+H]⁺ 292.1445; found: 292.1439.

3-(pyrido[3,2-e]pyrrolo[1,2-a]pyrazin-6-yl)propan-1-ol (3ta)

Yellow oil (35.4 mg, 52% yield). ¹H NMR (300 MHz, CDCl₃, ppm): $\delta = 8.50-8.48$ (m, 1 H), 8.38-8.37 (m, 1 H), 8.17-8.14 (m, 1 H), 7.42-7.38 (m, 1 H), 7.02-7.00 (m, 1 H), 6.89-6.87 (m, 1 H), 4.17 (br s, 1 H), 3.83-3.80 (m, 2 H), 3.25-3.21 (m, 2 H), 2.22-2.14 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): $\delta = 157.9$, 146.3, 139.3, 136.3, 130.1, 127.2, 121.5, 115.9, 114.2, 108.3, 62.4, 32.4, 29.8; HRMS calcd for C₁₃H₁₄N₃O [M+H]⁺ 228.1132; found: 228.1127.

3-(1,3-dimethylpyrrolo[1,2-*a*]quinoxalin-4-yl)propan-1-ol (3ua)

Light yellow solid (34.3 mg, 45% yield), melting point: 109-113 °C. ¹H NMR (300 MHz, CDCl₃, ppm): $\delta = 8.19-8.15$ (m, 1 H), 7.82-7.79 (m, 1 H), 7.37-7.34 (m, 2 H), 6.40 (s, 1 H), 3.81-3.77 (m, 2 H), 3.35-3.31 (m, 2 H), 2.89 (s, 3 H), 2.59 (s, 3 H), 2.19-2.13 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): $\delta = 157.0$, 135.9, 129.7, 128.3, 127.9, 125.9, 124.4, 123.5, 118.7, 117.5, 115.0, 62.5, 33.9, 29.6, 17.7, 14.9; HRMS calcd for C₁₆H₁₉N₂O [M+H]⁺ 255.1492; found: 255.1486.

3-(indolo[1,2-a]quinoxalin-6-yl)propan-1-ol (3va)

Light yellow solid (39.7 mg, 48% yield), melting point: 84-86 °C. ¹H NMR (300 MHz, CDCl₃, ppm): δ = 8.41-8.36 (m, 2 H), 7.92-7.90 (d, *J* = 7.8 Hz, 2 H), 7.56-7.49 (m, 2 H), 7.44-7.35 (m, 2 H), 7.17 (s, 1 H), 3.86-3.82 (m, 2 H), 3.30-3.25 (m, 2 H), 2.26-2.18 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): δ = 158.2, 134.9, 132.9, 130.1, 129.3, 129.2, 128.9, 128.0, 124.4, 124.0, 122.7, 122.6, 114.6, 114.5, 100.2, 62.5, 32.7, 29.5; HRMS calcd for C₁₈H₁₇N₂O [M+H]⁺277.1336; found: 277.1330.

4-(pyrrolo[1,2-*a*]quinoxalin-4-yl)butan-2-ol (3ab)

Yellow oil (56.2 mg, 78% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.91-7.87 (m, 2 H), 7.82-7.79 (m, 1 H), 7.43-7.39 (m, 2 H), 6.95-6.93 (m, 1 H), 6.86-6.83 (m, 1 H), 4.92 (br s, 1 H), 4.00-3.94 (m, 1 H), 3.28-3.17 (m, 2 H), 2.08-2.02 (m, 2 H), 1.29-1.26 (d, *J* = 6.3 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃, ppm): δ = 156.9, 135.0, 128.9, 127.1, 125.7, 125.1, 114.6, 113.6, 113.5, 106.7, 67.5, 35.9, 31.8, 23.6; HRMS calcd for C₁₅H₁₇N₂O [M+H]⁺ 241.1336; found: 241.1329.

4-(7-chloropyrrolo[1,2-*a*]quinoxalin-4-yl)butan-2-ol (3jb)

Yellow oil (60.0 mg, 73% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.89-7.88 (d, J = 1.5 Hz, 2 H), 7.76-7.73 (d, J = 8.7 Hz, 1 H), 7.44-7.41 (m, 1 H), 7.00-6.97 (d, J = 3.9 Hz, 1 H), 6.88-6.86 (m, 1 H), 4.37 (br s, 1 H), 3.95 (m, 1 H), 3.32-3.13 (m, 2 H), 2.09-1.99 (m, 2 H), 1.28-1.27 (d, J = 6.0 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃, ppm): δ = 158.1, 136.0, 130.2, 128.4, 127.1, 125.7, 125.6, 114.9, 114.7, 114.0, 107.3, 67.4, 35.9, 31.7, 23.6; HRMS calcd for C₁₅H₁₆ClN₂O [M+H]⁺ 275.0946; found: 275.0938.

2-(pyrrolo[1,2-*a*]quinoxalin-4-yl)ethanol (3ac)

Light yellow solid (54.1 mg, 85% yield), melting point: 121-123 °C. ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.93-7.83 (m, 3 H), 7.50-7.43 (m, 2 H), 6.91-6.85 (m, 2 H), 4.67 (br s, 1 H), 4.21 (m, 2 H), 3.26-3.22 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): δ = 156.1, 135.0, 129.3, 129.1, 127.2, 125.7, 125.1, 114.6, 113.7, 113.6, 106.4, 60.3, 35.3; HRMS calcd for C₁₃H₁₃N₂O [M+H]⁺213.1023; found: 213.1016.

4-(pyrrolo[1,2-*a*]quinoxalin-4-yl)butan-1-ol (3ad)

Yellow oil (51.8 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.91-7.89 (m, 2 H), 7.83-7.81 (m, 1 H), 7.49-7.39 (m, 2 H), 6.93-6.91 (m, 1 H), 6.86-6.84 (m, 1 H), 3.72-3.69 (m, 2 H), 3.11-3.07 (m, 2 H), 2.09-2.01 (m, 2 H), 1.79-1.72 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 157.0, 135.6, 129.2, 127.3, 127.1, 125.9, 125.2, 114.3, 113.7, 113.6, 106.4, 62.0, 34.5, 32.4, 23.4; HRMS calcd for C₁₅H₁₇N₂O [M+H]⁺241.1336; found: 241.1329.

4-(7-(trifluoromethyl)pyrrolo[1,2-a]quinoxalin-4-yl)butan-1-ol (3nd)

Light yellow solid (61.0 mg, 66% yield), melting point: 114-116 °C. ¹H NMR (300 MHz, CDCl₃, ppm): $\delta = 8.17$ (s, 1 H), 7.92-7.86 (m, 2 H), 7.69-7.65 (m, 1 H), 6.98-6.96 (m, 1 H), 6.90-6.88 (m, 1 H), 3.74-3.70 (m, 2 H), 3.10-3.05 (m, 2 H), 2.78 (br s, 1 H), 2.08-1.98 (m, 2 H), 1.80-1.71 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): $\delta = 158.6$, 135.3, 129.3, 127.0-126.7 (q, J = 33.0 Hz, 1 C), 126.7-126.6 (d, J = 3.8 Hz, 1 C), 125.9, 125.7-122.1 (d, J = 270.8 Hz, 1 C), 123.4-123.3 (d, J = 3.8 Hz, 1 C), 115.0, 114.5, 114.2, 107.5, 62.0, 34.5, 32.3, 23.6; HRMS calcd for C₁₆H₁₆F₃N₂O [M+H]⁺ 309.1209; found: 309.1199.

2-(pyrrolo[1,2-*a*]quinoxalin-4-yloxy)ethanol (3ae)

Colorless oil (30.9 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.04-8.02$ (m, 1 H), 7.97-7.96 (m, 1 H), 7.87-7.85 (m, 1 H), 7.56-7.52 (m, 1 H), 7.46-7.26 (m, 1 H), 7.12-7.11 (m, 1 H), 6.91-6.89 (m, 1 H), 6.11 (s, 1 H), 4.35-4.27 (m, 2H), 4.22-4.14 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 151.5$, 135.2, 130.6, 128.2, 127.8, 125.2, 123.7, 114.4, 114.0, 113.6, 107.4, 103.4, 65.6; HRMS calcd for C₁₆H₁₄BN₂ [M+H]⁺ 229.0972; found: 229.0980.

3-(pyrrolo[1,2-a]quinoxalin-4-yl)propane-1-thiol (3ag)

Colorless oil (32.1 mg, 44% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.88 (s, 2 H), 7.82-7.79 (d, *J* = 7.5 Hz, 1 H), 7.46-7.40 (m, 2 H), 6.92-6.82 (m, 2 H), 3.14-3.10 (m, 2H), 2.89-2.84 (m, 2 H), 2.37-2.30 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): δ = 156.1, 135.8, 129.4, 127.2, 126.9, 125.9, 125.0, 114.2, 113.6, 113.5, 106.2, 38.5, 33.9, 27.4; HRMS calcd for C₁₆H₁₄BN₂ [M+H]⁺ 243.0951; found: 243.0945.

4-methylpyrrolo[1,2-*a*]quinoxaline (4)

Light yellow solid (36.0 mg, 66% yield), melting point: 132-133 °C. ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.91-7.88 (m, 2 H), 7.82-7.78 (m, 1 H), 7.46-7.41 (m, 2 H), 6.88-6.82 (m, 2 H), 2.72 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃, ppm): δ = 153.6, 135.9, 129.2, 127.3, 126.8, 126.2, 125.1, 114.2, 113.6, 113.4, 106.4, 22.0; HRMS calcd for C₁₂H₁₁N₂ [M+H]⁺ 183.0917; found: 183.0910.

4-phenylpyrrolo[1,2-*a*]quinoxaline (5)

Light yellow solid (42.4 mg, 58% yield), melting point: 99-100 °C. ¹H NMR (300 MHz, CDCl₃, ppm): $\delta = 8.05$ -7.97 (m, 4 H), 7.96-7.84 (m, 1 H), 7.55-7.42 (m, 5 H), 6.99-6.97 (m, 1 H), 6.89-6.86 (m, 1 H); ¹³C NMR (75 MHz, CDCl₃, ppm): $\delta = 154.4$, 138.5, 136.2, 130.2, 129.7, 128.6, 127.4, 127.1, 125.4, 125.2, 114.5, 113.9, 113.6, 108.6; HRMS calcd for C₁₇H₁₃N₂ [M+H]⁺ 245.1073; found: 245.1080.

2-(2-(tetrahydrofuran-2-yl)-1*H*-pyrrol-1-yl)aniline (6)

White solid (20.5 mg, 30% yield), melting point: 88-90 °C. ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.28-7.25 (m, 1 H), 7.14-7.13 (m, 1 H), 6.96-6.91 (m, 1 H), 6.82-6.76 (m, 1 H), 6.73-6.70 (m, 1 H), 6.30-6.29 (m, 1 H), 5.98-5.97(m, 1 H), 4.51-4.47 (m, 1 H), 3.68-3.64 (m, 2 H), 1.95-1.84 (m, 2 H), 1.82-1.69 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃, ppm): δ = 135.7, 129.3, 125.4, 124.6, 119.0, 115.4, 114.6,

114.1, 109.9, 104.0, 62.7, 50.8, 31.9, 28.5; HRMS calcd for $C_{14}H_{17}N_2O$ [M+H]⁺ 229.1336; found: 229.1333.

2,2,6,6-tetramethyl-1-((tetrahydrofuran-2-yl)oxy)piperidine (S) 3

Colorless oil (32.7 mg, 48% yield). ¹H NMR (300 MHz, CDCl₃, ppm): $\delta = 5.37-5.34$ (m, 1 H), 3.91-3.78 (m, 2 H), 2.04-1.88 (m, 3 H), 1.83-1.74 (m, 1 H), 1.60-1.42 (m, 5 H), 1.33-1.31 (m, 1 H), 1.22 (s, 3 H), 1.11 (s, 3 H), 1.07 (s, 3 H), 1.04 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃, ppm): $\delta = 109.5$, 66.6, 60.1, 58.5, 40.0, 39.6, 33.8, 33.3, 31.2, 23.9, 20.4, 20.0, 17.2.

^[1] C.-X. Xie, L. Feng, W.-L. Li, X.-J. Ma, X.-K. Ma, Y.-H. Liu, and C. Ma. Org. Biomol. Chem., 2016, 14, 8529.

^[2] Z.-Y. Zhang, C.-X. Xie, X.-C. Tan, G.-L. Song, L.-L. Wen, H. G, and C. Ma, *Org. Chem. Front.*, 2015, **2**, 942.

^{[3] (}a) D. Liu, C. Liu, H. Li, and A. Lei, *Chem. Commun.*, 2014, **50**, 3623; (b) S. Pan, J. Liu, H. Li, Z. Wang, X. Guo and Z. Li_x *Org. Lett.*, 2010, **12**, 1932.

-0.001

S28

S33

S39

S50

-----0. 000

—32.67 —29.67

-4.081-3.8253.8063.787 $\begin{array}{c} 2.207\\ 2.188\\ 2.168\\ 2.1147\\ 2.126\end{array}$ $\bigwedge_{6, 881}^{6, 985} 6, 985 \\ 6, 972 \\ 6, 881 \\ 6, 881 \\ 6, 868 \\$ $\frac{23.251}{23.230}$

-0.000

3pa

$$-62.46$$

-158.17

-----0. 000

S57

$$-138.11$$

$$-138.11$$

$$-138.11$$

$$-138.02$$

$$-125.76$$

$$-125.76$$

$$-118.39$$

$$-118.39$$

$$-118.39$$

$$-113.39$$

$$-113.42$$

$$-108.55$$

$$-108.55$$

$$-23.33$$

$$-23.51$$

$$-23.51$$

-160,00

3sa

-4.170 $\overbrace{3.814}{3.795}$ $\begin{array}{c} 2.218\\ \hline 2.198\\ \hline 2.177\\ \hline 2.156\\ \hline 2.135 \end{array}$ $\begin{pmatrix} 3.251 \\ 3.229 \\ 3.206 \end{pmatrix}$ 880 000

-0.000

Ν

OH

-0,000

$$-135.94$$

$$-135.94$$

$$-135.94$$

$$-135.94$$

$$-122.06$$

$$-122.46$$

$$-115.04$$

$$-115.04$$

$$-117.75$$

$$-29.61$$

$$-17.75$$

3va

-156.86

77.4277.0076.58-67.45 ---35.92 ---31.81

-23.56

OH

CI

Ν

3jb

_OH

С

N

3jb

-----0, 000

$$-135.01$$

$$-135.01$$

$$-135.01$$

$$-127.21$$

$$-127.21$$

$$-125.13$$

$$-106.43$$

$$-106.43$$

$$-60.33$$

-35, 25

-156, 06

-0.000

-0.000

881 817 792	457 425 395 910 831 831 831 831
512	111111000000

 $\begin{array}{c} 3.144 \\ \overbrace{3.05}{3.095} \\ \overbrace{2.863}{2.886} \\ \overbrace{2.839}{2.337} \\ \overbrace{2.299}{2.299} \\ \overbrace{2.299}{2.299} \end{array}$

S84

