Electronic Supplementary Information

A meta-Selective-C-H Alkenylation of Phenol-derivatives Employing a Traceless Organosilicon Template

Rui-Jie Mi,^{a,d} Jing Sun,^{a,d} Fritz E. Kühn,^c Ming-Dong Zhou,^{a*}and Zhaoqing Xu^{b*}

^a School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, China.

^b Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China.

^c Molecular Catalysis, Department of Chemistry and Catalysis Research Center, Technische Universität München. Lichtenbergstr. 4, D-85747, Garching bei München (Germany).

^d These authors contribute equally to this work.

Table of Contents

1. General Information	S3
2. Experimental Section	S3
2.1 Typical procedure for the preparation of phenol substrates with organosilicon template	S3
2.2 Optimization of reaction conditions	S4
2.3 Characteristic data of phenol substrates with organosilicon template	S8
2.4 General procedure for Pd(II)-catalyzed <i>meta</i> -alkenylation of phenols	S15
2.5 Characteristic data of <i>meta</i> -alkenylated products	S16
2.6 General procedure for the removal and reinstallation of organosilicon group	S26
2.7 Synthetic application of the <i>meta</i> -alkenylation products	S28
3. References	S30
4. NMR spectra	S 31

1. General Information

All commercial reagents of analytical grade were used without further purification. Tetrahydrofuran (THF), dichloromethane (DCM), dichloroethane (DCE), and hexafluoroisopropanol (HFIP) were dried with standard procedures and stored over 4 Å molecular sieves. Unless otherwise mentioned, all reactions were carried out under inert atmosphere using standard Schlenk techniques. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Ascend 500 (500 MHz and 125 MHz respectively) instrument. High-resolution mass spectra (HRMS) were recorded on a Q-TOF micromass (YA-105) and Bruker Maxis Impact system (282001.00081) mass spectrometer in positive ESI mode.

2. Experimental Section

2.1 Typical procedure for the preparation of phenol substrates with organosilicon template.

Step 1:To a solution of 2-(3-bromophenyl)-acetonitrile (392.1 mg, 2.0 mmol) in THF (6.0 mL) was added potassium tert-butoxide (493.7 mg, 4.4 mmol) portionwise at -40 °C under stirring. After15 min, alkyl iodide (5.0 mmol) was added, and the mixture was warmed to room temperature and further stirred for 1h. The resulting mixture was then filtered off and the filtrate was concentrated in vacuo. A column chromatography on silica gel (petrolium ether/ethyl acetate = 30/1) afforded the α,α '-dialkyl substituted 2-(3-bromophenyl)-acetonitrile as colorless oil.

Step 2: To a solution of arylbromide (2.0 mmol) in tetrahydrofuran (6 mL) was added n-BuLi (0.8 mL, 2.5 M, 2.0 mmol) at -100 °C in a liquid nitrogen/ ethanol bath. After stirring for 30min at -100 °C, chlorodiisopropylsilane (341.0 μ L, 2.0 mmol)was added and the mixture was allowed to warm to room temperature and further stirred for 2h. The resulting mixture was added with silica gel to quench the reaction, and a column chromatography on silica gel (petrolium ether/ethyl acetate = 30/1) afforded the silane product as colorless oil.

Step 3: To a suspension of trichloroisocyanuric acid (153.4 mg, 0.66 mmol) in dichloromethane (0.3 M) was added previously synthesized silane (2.0 mmol) in dichloromethane (4.0 mL) at 0°C. After being stirred for 1h at room temperature, the mixture was filtered off and the filtrate was concentrated in vacuo to give the corresponding chlorosilane product.

Step 4: Phenol (2.4 mmol, 1.2 equiv) and imidazole (204.2 mg, 3.0 mmol) was dissolved in 3 mL dry DMF. After being stirred for 30min, a solution of chlorosilane (2.0 mmol) in 3 mL DMF was added, and the mixture was further stirred for 1 h. When the reaction was completed, the mixture was added with water and then extracted with diethyl ether for three times (10 mL×3). The combined organic layer was further washed with saturated aqueous NaCl, dried over anhydrous MgSO₄, filtered, and finally concentrated in vacuo. Finally, a column chromatography on silica gel (petrolium ether/ethyl acetate =15/1) afforded the desired phenol substrate as colorless oil.

2.2 Optimization of reaction conditions.

Table S1. Modification of the directing group ^a

	$R \rightarrow Si(i-Pr)_2$ $C \rightarrow V \rightarrow CC$ $N \rightarrow CC$ 1	Pd(OAc) ₂ Ac-Gly-OH AgOAc, DCE	°r)₂ ✓∕CO₂Et
entry	R	Yield (%) ^b	meta:others ^c
1	Me(1aa)	17	70:30 (2aa)
2	Et(1a)	31	88:12 (2a)
3	i-Pr(1ac)	22	65:35 (2ac)
4	Cy(1ad)	25	57:43 (2ad)

^a The reactions were carried out using **1** (0.1 mmol), ethyl acrylate (0.15 mmol), AgOAc (3equiv), Pd(OAc)₂ (20 mol%), Ac-Gly-OH (40 mol%) in DCE(1 mL) at 60 °C for 24 h. ^b Isolate yields. ^c Determined by ¹H NMR.

10

Entry	Ligand	Y leid (%)	meta:others
1	Ac-Gly-OH	31	88:12
2	Ac-Ala-OH	26	70:30
3	Ac-Val-OH	30	63:37
4	Ac-Phe-OH	28	75:25
5	Ac-Leu-OH	26	77:23
6	Ac-Ile-OH	27	69:31

^a The reactions were carried out using **1a** (0.1 mmol), ethyl acrylate (0.15 mmol), AgOAc (3 equiv), DCE (1 mL), Pd(OAc)₂ (20 mol%), Ligand (40 mol%) at 60 °C for 24 h. ^b Isolate yields. ^c Determined by ¹H NMR.

Table S3. Oxidant screening ^a

	$ \begin{array}{c} $	Pd(OAc) ₂ (20 mol%), Ac-Gly-OH (40 mol%) Oxidant (3 equiv), DCE, 60 °C, 24 h	$\mathbf{z}_{\mathbf{z}}$
Entry	Oxidant	Yield (%) ^b	meta:others ^c
1	AgOAc	31	88:12
2	CuOAc	20	83:17
3	Ag ₂ O	0	-
4	AgNO ₃	19	75:25
5	Ag ₂ CO ₃	24	77:23

^a The reactions were carried out using **1a** (0.1 mmol), ethyl acrylate (0.15 mmol), oxidant (3 equiv), DCE (1 mL), Pd(OAc)₂ (20 mol%), Ac-Gly-OH (40 mol%) at 60 °C for 24 h. ^b Isolate yields. ^c Determined by ¹H NMR.

Table S4. Solvent screening and further modifications ^a

$Si(i-Pr)_{2} + CO_{2}Et \xrightarrow{Pd(OAc)_{2} (20 \text{ mol}\%), \text{ Ac-Gly-OH (40 mol\%)}}{Solvent, \text{ AgOAc (3 equiv), 60 °C, 24 h}} \xrightarrow{Si(i-Pr)_{2}}{Si(i-Pr)_{2}}$				
Entry	Solvent (mL)	AgOAc (equiv)	Pd(OAc)2 (mol%)	Yield (%) ^b m:others ^c
1	DCE	3	20	31(88:12)
2	HFIP	3	20	25(90:10)
3	Toluene	3	20	0
4	TFA	3	20	16(86:14)
5	tert-Butylbenzene	3	20	22(84:16)
6	DCE/HFIP (0.9:0.1)	3	20	59(80:20)
7	DCE/HFIP (0.8:0.2)	3	20	64(82:18)
8	DCE/HFIP (0.7:0.3)	3	20	73(80:20)
9	DCE/HFIP (0.6:0.4)	3	20	66(85:15)
10	DCE/HFIP (0.5:0.5)	3	20	55(85:15)
11	DCE/HFIP (1:0.1)	3	20	75(86:14)
12	DCE/HFIP (1:0.3)	3	20	80(88:12)

13	DCE/HFIP (1:0.3) ^d	3	20	0
14	DCE/HFIP (1:0.3) ^e	3	20	79(81:19)
15	DCE/HFIP (1:0.3) ^f	3	20	77(80:20)
16	DCE/HFIP (1:0.3)	3	10	80(90:10)
17	DCE/HFIP (1:0.3)	3	5	65(85:15)
18	DCE/HFIP (1:0.3)	2	10	82(92:8)

^a The reactions were carried out using **1a** (0.1 mmol), ethyl acrylate (0.15 mmol), AgOAc, Pd(OAc)₂, Ac-Gly-OH, 24 h. ^b Isolate yields. ^c Determined by ¹H NMR. ^d rt. ^e 90 °C. ^f 120 °C.

Analysis of the Crude ¹H NMR for 2a under the optimal conditions:

2.3 Characteristic data of phenol substrates with organosilicon template

2-(3-(diisopropyl(phenoxy)silyl)phenyl)-2-methylpropanenitrile (1aa)

Colorless oil; yield: 0.60 g (85 %); ¹HNMR (CDCl₃, 500 MHz) δ 7.67 (s, 1H), 7.57 (d, *J*=7.0 Hz, 1H), 7.53 (d, *J*=8.0 Hz, 1H), 7.41 (t, *J*=7.5 Hz, 1H),7.20 (t, *J*=8.5 Hz, 2H), 6.94 (t, *J*=7.5 Hz, 1H), 6.90 (d, *J*=8.5 Hz, 2H), 1.69 (s, 6H), 1.48-1.40 (m, 2H), 1.09 (d, *J*=7.5 Hz, 6H), 1.05 (d, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.51, 140.49, 134.98, 133.90, 131.03, 129.38, 128.16, 126.25, 124.47, 121.34, 119.82, 37.10, 29.03, 17.30, 17.10, 12.56; HRMS (ESI): [M+Na]⁺calcd for C₂₂H₂₉NNaOSi: 374.1911, found: 374.1913.

2-(3-(diisopropyl(phenoxy)silyl)phenyl)-2-ethylbutanenitrile (1a)

Colorless oil; yield: 0.68 g (89 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.59-7.54 (m, 2H), 7.48-7.44 (m, 1H), 7.43-7.35 (m, 1H), 7.19 (t, *J*=8.5 Hz, 2H), 6.95-6.86 (m, 3H), 2.07-1.95 (m,2H), 1.88-1.79 (m, 2H), 1.50-1.40 (m, 2H), 1.09 (d, *J*=7.0 Hz, 6H), 1.05 (d, *J*=7.0 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.46, 136.98, 134.52, 133.62, 131.91, 129.28, 128.06, 127.52, 125.98, 121.24, 119.72, 49.66, 33.64, 17.25, 17.05, 12.48, 9.53; HRMS (ESI):[M+Na]⁺calcd for C₂₄H₃₃NNaOSi: 402.2224, found: 402.2240.

2-(3-(diisopropyl(phenoxy)silyl)phenyl)-2-isopropyl-3-methylbutanenitrile (1ac)

Colorless oil; yield: 0.66 g (81 %); ¹H NMR (CDCl₃, 500 MHz) δ7.60-7.53 (m, 2H), 7.49-7.43 (m, 1H), 7.39 (t, *J*=7.5 Hz, 1H), 7.21-7.17 (m, 2H), 6.93 (t, *J*=7.5 Hz, 1H), 6.88 (d, *J*=8.5 Hz, 2H), 2.48-2.38 (m, 2H), 1.50-1.40 (m, 2H), 1.09 (d, *J*=7.5 Hz, 6H), 1.05 (d, *J*=7.5 Hz, 6H), 1.01 (d, *J*=7.5 Hz, 6H), 0.83 (d, *J*=6.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.59, 133.86, 133.81, 133.77, 131.03, 130.49, 129.39,

127.51, 121.82, 121.29, 119.80, 57.90, 32.46, 18.79, 17.54, 17.37, 17.20, 12.71; HRMS (ESI): [M+Na]⁺calcd for C₂₆H₃₇NNaOSi: 430.2537, found: 430.2543.

2,2-dicyclohexyl-2-(3-(diisopropyl(phenoxy)silyl)phenyl)acetonitrile (1ad)

Colorless oil; yield: 0.74 g (75 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.58-7.46 (m, 2H), 7.40-7.28 (m, 3H), 7.24-7.14 (m, 2H), 6.95-6.85 (m, 2H), 1.97-1.87 (m, 3H), 1.76-1.74 (m, 3H), 1.70-1.58 (m, 6H), 1.52-1.42 (m, 3H), 1.32-1.22 (m, 7H), 1.09 (d, *J*=7.0 Hz, 6H), 1.04 (d, *J*=7.0 Hz, 6H), 0.83 (t, *J*=7.0 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.58, 140.80, 134.54, 133.55, 130.63, 130.13, 129.35, 127.54, 122.31, 121.27, 119.75, 47.09, 41.64, 36.86, 28.95, 28.67, 27.61, 27.45, 26.43, 26.37, 26.24, 26.14, 26.08, 25.83, 25.59, 17.37, 17.18, 13.71, 12.86; HRMS (ESI):[M+Na]⁺ calcd for C₃₂H₄₅NNaOSi: 510.3163, found: 510.3185.

2-(3-(diisopropyl(o-tolyloxy)silyl)phenyl)-2-ethylbutanenitrile (1b)

Colorless oil; yield: 0.62 g (79 %); ¹H NMR (CDCl₃, 500 MHz)δ7.59-7.54 (m, 2H), 7.50-7.45 (m, 1H), 7.40 (t, *J*=8.0 Hz, 1H), 7.14 (d, *J*=6.5 Hz, 1H), 6.95 (t, *J*=7.5 Hz, 1H), 6.83 (t, *J*=7.0 Hz, 1H), 6.69 (d, *J*=8.0 Hz, 1H), 2.29 (s, 3H), 2.06-1.94 (m, 2H), 1.89-1.79 (m, 2H), 1.53-1.42 (m, 2H), 1.11 (d, *J*=7.5 Hz, 6H), 1.05 (d, *J*=7.5 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ153.83, 137.09, 135.00, 133.58, 131.86, 130.93, 128.44, 128.09, 127.68, 126.44, 122.18, 121.02, 118.18, 49.73, 33.71, 17.47, 17.26, 16.92, 12.97, 9.57; HRMS (EI): calcd for C₂₅H₃₅NOSi: 393.2488, found:393.2484.

2-(3-(diisopropyl(m-tolyloxy)silyl)phenyl)-2-ethylbutanenitrile (1c)

Colorless oil; yield: 0.67 g (85 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.58-7.52 (m, 2H), 7.48-7.44 (m, 1H), 7.43-7.38 (m, 1H), 7.06 (t, *J*=7.5 Hz, 1H), 6.77-6.71 (m, 2H), 6.67 (d, *J*=8.0 Hz, 1H), 2.26 (s, 3H), 2.05-1.96 (m, 2H), 1.90-1.80 (m, 2H), 1.47-1.39 (m, 2H), 1.09 (d, *J*=7.5 Hz, 6H), 1.04 (d, *J*=7.5 Hz, 6H), 0.87

(t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 155.47, 139.35, 137.00, 134.77, 133.68, 131.93, 129.00, 128.07, 127.59, 122.19, 122.09, 120.55, 116.68, 49.74, 33.71, 21.29, 17.34, 17.15, 12.59, 9.59; HRMS(EI): calcd for C₂₅H₃₅NOSi: 393.2488, found: 393.2476.

2-(3-(diisopropyl(p-tolyloxy)silyl)phenyl)-2-ethylbutanenitrile (1d)

Colorless oil; yield: 0.65 g (82 %); ¹H NMR (CDCl₃, 500 MHz) δ7.59-7.52 (m, 2H), 7.48-7.43 (m, 1H), 7.42-7.35 (m, 1H), 6.98 (d, *J*=8.0 Hz, 2H), 6.78 (d, *J*=8.0 Hz, 2H), 2.24 (s, 3H), 2.05-1.95 (m, 2H),1.90-1.80 (m, 2H),1.48-1.39 (m, 2H), 1.09 (d, *J*=7.5 Hz, 6H), 1.05 (d, *J*=7.5 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 153.18, 136.94, 134.69, 133.62, 131.93, 130.34, 129.71, 128.01, 127.46, 122.05, 119.41, 49.66, 33.62, 20.38, 17.26, 17.06, 12.49, 9.49; HRMS(EI): calcd for C₂₅H₃₅NOSi: 393.2488, found: 393.2477.

2-(3-(diisopropyl(2-methoxyphenoxy)silyl)phenyl)-2-ethylbutanenitrile (1e)

Colorless oil; yield: 0.66 g (80 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.63-7.59 (m, 2H), 7.45-7.42 (m, 1H), 7.40-7.35 (m, 1H), 6.90-6.86 (m, 2H), 6.85-6.82 (m, 1H), 6.79-6.75 (m, 1H), 3.72 (s, 3H), 2.03-1.94 (m, 2H), 1.89-1.80 (m, 2H), 1.49-1.41 (m, 2H), 1.10-1.04 (m, 12H), 0.86 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 150.50, 144.75, 136.68, 135.16, 133.39, 131.69, 127.72, 127.23, 122.05, 121.63, 120.59, 120.23, 111.98, 55.09, 49.58, 33.57, 17.24, 17.06, 12.75, 9.46; HRMS (ESI): [M+Na]⁺calcd for C₂₅H₃₅NNaO₂Si: 432.2329, found: 432.2333.

2-(3-(diisopropyl(3-methoxyphenoxy)silyl)phenyl)-2-ethylbutanenitrile (1f)

Colorless oil; yield: 0.72 g (88 %); ¹H NMR (CDCl₃, 500 MHz) δ7.59-7.55 (m, 2H), 7.48-7.44 (m, 1H), 7.43-7.38 (m, 1H), 7.11-7.05 (m, 1H), 6.53-6.45 (m, 3H), 3.71 (s, 3H), 2.06-1.96 (m, 2H), 1.89-1.80 (m, 2H), 1.49-1.41 (m, 2H), 1.10 (d, *J*=7.5 Hz, 6H), 1.05 (d, *J*=7.5 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C

NMR (CDCl₃, 125 MHz)δ 160.59, 156.61, 137.01, 134.47, 133.61, 131.94, 129.58, 128.07, 127.50, 122.08, 112.17, 106.81, 105.96, 54.99, 49.67, 33.64, 17.26, 17.06, 12.49, 9.51; HRMS(EI): calcd for C₂₅H₃₅NO₂Si: 409.2437, found: 409.2428.

2-(3-(diisopropyl(4-methoxyphenoxy)silyl)phenyl)-2-ethylbutanenitrile (1g)

Colorless oil; yield: 0.66 g (80 %); ¹H NMR (CDCl₃, 500 MHz) δ7.60-7.55 (m, 2H), 7.48-7.44 (m, 1H), 7.43-7.38 (m, 1H), 6.84-6.79 (m, 2H), 6.75-6.71 (m, 2H), 3.72 (s, 3H), 2.06-1.97 (m, 2H), 1.90-1.81 (m, 2H), 1.46-1.37 (m, 2H), 1.08 (d, *J*=7.0 Hz, 6H), 1.04 (d, *J*=8.0 Hz, 6H), 0.88 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 153.96, 149.22, 136.95, 134.67, 133.63, 131.96, 128.03, 127.43, 122.08, 120.20, 114.30, 55.41, 49.66, 33.63, 17.25, 17.05, 12.42, 9.51. HRMS (EI): calcd for C₂₅H₃₅NO₂Si:409.2437, found: 409.2438.

2-ethyl-2-(3-((3-fluorophenoxy)diisopropylsilyl)phenyl)butanenitrile (1h)

Colorless oil; yield: 0.57 g (72 %); ¹H NMR (CDCl₃, 500 MHz) δ7.57-7.53 (m, 2H), 7.48-7.45 (m, 1H), 7.44-7.37 (m, 1H), 7.16-7.09 (m, 1H), 6.69-6.62 (m, 2H), 6.61-6.56 (m, 1H), 2.06-1.97 (m, 2H),1.90-1.81 (m, 2H),1.50-1.40 (m, 2H), 1.10 (d, *J*=7.5 Hz, 6H), 1.05 (d, *J*=7.5 Hz, 6H), 0.88 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ164.27, 162.32, 156.84 (d, *J*=11.0 Hz), 137.19, 134.04, 133.61, 131.97, 129.94 (d, *J*=11.0 Hz), 128.24, 127.67, 122.05, 115.59 (d, *J*=3.8 Hz), 108.22 (d, *J*=23.0 Hz), 107.42 (d, *J*=22.6 Hz), 49.73, 33.69, 17.23, 17.04, 12.48, 9.53; HRMS (EI): calcd forC₂₄H₃₂NOFSi: 397.2237, found: 397.2230.

2-(3-((3-chlorophenoxy)diisopropylsilyl)phenyl)-2-ethylbutanenitrile (1i)

Colorless oil; yield: 0.69 g (83 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.57-7.53 (m, 2H), 7.48-7.45 (m, 1H), 7.44-7.39 (m, 1H), 7.12-7.07 (m, 1H), 6.92-6.87 (m, 2H), 6.79-6.75 (m, 1H), 2.06-1.97 (m, 2H), 1.90-

1.81 (m, 2H),1.50-1.41 (m, 2H), 1.10 (d, J=7.5 Hz, 6H), 1.06 (d, J=7.5 Hz, 6H), 0.88 (t, J=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.27, 137.19, 134.43, 133.94, 133.53, 131.91, 129.98, 128.22, 127.63, 121.95, 121.48, 120.19, 118.02, 49.67, 33.64, 17.20, 17.01, 12.45, 9.50; HRMS(EI): calcd forC₂₄H₃₂NOClSi: 413.1942, found: 413.1935.

2-(3-((2-bromophenoxy)diisopropylsilyl)phenyl)-2-ethylbutanenitrile (1j)

Colorless oil; yield: 0.73 g (80 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.63-7.59 (m, 2H), 7.54-7.48 (m, 2H), 7.44-7.36 (m, 1H), 7.08-7.03 (m, 1H), 6.80-6.76 (m, 2H), 2.07-1.97 (m, 2H), 1.94-1.83 (m, 2H), 1.56-1.47 (m, 2H), 1.14 (d, *J*=7.5 Hz, 6H), 1.09 (d, *J*=7.5 Hz, 6H), 0.86 (t, *J*=8.0 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 152.37, 137.13, 134.06, 133.58, 131.83, 128.66, 128.08, 127.46, 125.98, 122.27, 122.09, 119.69, 114.82, 49.68, 33.65, 17.35, 17.20, 12.88, 9.53; HRMS(ESI): [M+Na]⁺ calcd forC₂₄H₃₂BrNNaOSi: 480.1329, found: 480.1330.

2-(3-((3-bromophenoxy)diisopropylsilyl)phenyl)-2-ethylbutanenitrile (1k)

Colorless oil; yield: 0.75 g (82 %); ¹H NMR (CDCl₃, 500 MHz) δ7.56-7.51 (m, 2H), 7.49-7.45 (m, 1H), 7.44-7.37 (m, 1H), 7.09-7.02 (m, 3H), 6.81-6.77 (m, 1H), 2.07-1.97 (m, 2H), 1.90-1.81 (m, 2H),1.48-1.39 (m, 2H), 1.09 (d, *J*=7.5 Hz, 6H), 1.05 (d, *J*=7.5 Hz, 6H), 0.88 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 156.40, 137.26, 134.03, 133.63, 131.92, 130.38, 128.29, 127.79, 124.48, 123.20, 122.44, 122.11, 118.53, 49.76, 33.73, 17.30, 17.11, 12.54, 9.62; HRMS (EI): calcd forC₂₄H₃₂NOSiBr: 457.1437, found: 457.1433.

2-(3-((4-bromophenoxy)diisopropylsilyl)phenyl)-2-ethylbutanenitrile (11)

Colorless oil; yield: 0.78 g (85 %); ¹H NMR (CDCl₃, 500 MHz) 87.56-7.50 (m, 2H), 7.47-7.44 (m, 1H), 7.44-7.39 (m, 1H), 7.30-7.25 (m, 2H), 6.77-6.73 (m, 2H), 2.06-1.97 (m, 2H), 1.89-1.80 (m, 2H), 1.48-

1.39 (m, 2H), 1.09 (d, *J*=7.5 Hz, 6H), 1.04 (d, *J*=7.5 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 154.73, 137.18, 134.04, 133.62, 132.20, 132.01, 128.24, 127.61, 122.05, 121.56, 113.54, 49.71, 33.68, 17.26, 17.08, 12.47, 9.56; HRMS (EI): calcd forC₂₄H₃₂NOSiBr:457.1437, found: 457.1444.

Methyl 3-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)benzoate (1m)

Colorless oil; yield: 0.59 g (68 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.65-7.61 (m, 1H), 7.58-7.53 (m, 3H), 7.48-7.45 (m, 1H), 7.44-7.40 (m, 1H), 6.28-6.24 (m, 1H), 6.08-6.05 (m, 1H), 3.87 (s, 3H), 2.04-1.97 (m, 2H), 1.89-1.80 (m, 2H), 1.50-1.43 (m, 2H), 1.10 (d, *J*=7.5 Hz, 6H), 1.05 (d, *J*=8.0 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.74, 155.60, 137.20, 134.18, 133.67, 131.92, 131.47, 129.34, 128.26, 127.72, 124.41, 122.57, 122.12, 120.73, 52.06, 49.75, 33.71, 17.31, 17.13, 12.56, 9.56; HRMS(ESI): [M+H]⁺calcd forC₂₆H₃₆NO₃Si: 438.2459, found: 438.2464.

 $\label{eq:constraint} 2-(3-(diisopropyl(3-(trifluoromethyl)phenoxy)silyl)phenyl)-2-ethyl butanenitrile~(1n)$

Colorless oil; yield: 0.67 g (75 %); ¹H NMR (CDCl₃, 500 MHz) δ7.58-7.54 (m, 2H), 7.50-7.46 (m, 1H), 7.46-7.40 (m, 1H), 7.32-7.26 (m, 1H), 7.21-7.17 (m, 1H), 7.13-7.10 (m, 1H), 7.06-7.02 (m, 1H), 2.06-1.97 (m, 2H), 1.90-1.80 (m, 2H), 1.51-1.43 (m, 2H), 1.11 (d, *J*=7.5 Hz, 6H), 1.07 (d, *J*=7.5 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 155.83, 137.33, 133.86, 133.62, 131.77 (q, *J*=32.5 Hz), 131.97, 129.90, 128.34, 127.74, 123.76 (q, *J*=270.0 Hz), 123.09, 122.04, 117.95 (q, *J*=3.8 Hz), 116.63 (q, *J*=3.8 Hz), 49.76, 33.69, 17.23, 17.03, 12.50, 9.48; HRMS(ESI): [M+Na]⁺calcd forC₂₅H₃₂F₃NNaOSi: 470.2097, found: 470.2104.

2-(3-((2,5-dimethylphenoxy)diisopropylsilyl)phenyl)-2-ethylbutanenitrile (10)

White solid; yield: 0.69 g (85 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.59-7.55 (m, 2H), 7.50-7.45 (m, 1H), 7.43-7.36 (m, 1H), 7.03-6.90 (m, 1H), 6.68-6.63 (m, 1H), 6.54-6.50 (m, 1H), 2.24 (s, 3H), 2.15 (s, 3H),

2.05-1.95 (m, 2H), 1.91-1.80 (m, 2H),1.52-1.41 (m, 2H), 1.11 (d, *J*=7.5 Hz, 6H), 1.05 (d, *J*=7.0 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 153.61, 136.98, 136.10, 135.10, 133.49, 131.80, 130.56, 128.02, 127.64, 125.11, 122.13, 121.66, 118.96, 49.70, 33.69, 20.91, 17.44, 17.24, 16.48, 12.95, 9.55; HRMS(ESI): [M+Na]⁺calcd forC₂₆H₃₇NNaOSi: 430.2537, found: 430.2542.

2-(3-((2,3-dimethylphenoxy)diisopropylsilyl)phenyl)-2-ethylbutanenitrile (1p)

White solid; yield: 0.67 g (82 %); ¹H NMR (CDCl₃, 500 MHz)δ7.58-7.53 (m, 2H), 7.48-7.44 (m, 1H), 7.42-7.37 (m, 1H), 6.86-6.80 (m, 1H), 6.75-6.72 (m, 1H), 6.59-6.54 (m, 1H), 2.26 (s, 3H), 2.21 (s, 3H), 2.04-1.94 (m, 2H), 1.90-1.80 (m, 2H), 1.53-1.42 (m, 2H), 1.10 (d, *J*=7.5 Hz, 6H), 1.05 (d, *J*=7.5 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 153.60, 138.20, 137.09, 135.11, 133.63, 131.90, 128.06, 127.66, 116.94, 125.39, 122.68, 122.20, 115.90, 49.74, 33.71, 20.25, 17.49, 17.29, 12.96, 12.46, 9.58; HRMS(ESI): [M+Na]⁺calcd forC₂₆H₃₇NNaOSi: 430.2537, found: 430.2544.

2-(3-((2,6-dimethylphenoxy)diisopropylsilyl)phenyl)-2-ethylbutanenitrile (1q)

White solid; yield: 0.67 mg (82 %); ¹H NMR (CDCl₃, 500 MHz)δ7.55-7.52 (m, 1H), 7.48-7.46 (m, 1H), 7.41-7.38 (m, 1H), 7.34-7.30 (m, 1H), 6.86-6.83 (m, 2H), 6.72-6.68 (m, 1H), 2.06 (s, 6H), 1.98-1.90 (m, 2H), 1.84-1.77 (m, 2H), 1.46-1.39 (m, 2H), 0.98 (d, *J*=6.0 Hz, 6H), 0.89 (d, *J*=6.5 Hz, 6H), 0.80 (t, *J*=6.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 152.95, 136.86, 134.86, 133.46, 131.85, 128.66, 128.20, 127.84, 127.62, 122.20, 121.43, 49.83, 33.80, 18.12, 17.08, 16.92, 12.96, 9.60; HRMS(ESI): [M+Na]⁺calcd forC₂₆H₃₇NNaOSi: 430.2537, found: 430.2546.

2-(3-((2,5-dichlorophenoxy)diisopropylsilyl)phenyl)-2-ethylbutanenitrile (1r)

White solid; yield: 0.59g (66 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.62-7.59 (m, 1H), 7.59-1.56 (m, 1H), 7.52-7.48 (m, 1H), 7.46-7.41 (m, 1H), 7.29-7.25 (m, 1H), 6.88-6.84 (m, 1H), 6.78-6.76 (m, 1H), 2.07-1.98 (m, 2H), 1.92-1.83 (m, 2H), 1.55-1.46 (m, 2H), 1.13 (d, *J*=7.5 Hz, 6H), 1.09 (d, J=7.5 Hz

6H), 0.88 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 152.04, 137.44, 133.68, 133.56, 132.43, 131.90, 130.76, 128.34, 128.14, 123.82, 122.13, 122.10, 120.37, 49.81, 33.79, 17.32, 17.17, 12.86, 9.61; HRMS(ESI):[M+Na]⁺ calcd for C₂₄H₃₁Cl₂NNaOSi: 470.1444, found: 470.1451.

2-(3-((2,6-dichlorophenoxy)diisopropylsilyl)phenyl)-2-ethylbutanenitrile (1s)

White solid; yield: 0.63 g (70 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.64 (s, 1H), 7.58-7.54 (m, 1H), 7.48-7.44 (m, 1H), 7.39-7.34 (m, 1H), 7.19 (d, *J*=8.0 Hz, 2H), 6.82-6.77 (m, 1H), 2.06-1.98 (m, 2H), 1.93-1.84 (m, 2H), 1.73-1.64 (m, 2H), 1.13-1.05 (m, 12H), 0.85 (t, *J*=7.0 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 148.86, 136.75, 133.75, 133.46, 131.91, 128.55, 128.23, 127.80, 127.71, 126.79, 122.19, 49.83, 33.78, 17.17, 17.11, 13.25, 9.60; HRMS(ESI):[M+Na]⁺ calcd for C₂₄H₃₁Cl₂NNaOSi: 470.1444, found: 470.1455.

2-(3-(diisopropyl(naphthalen-1-yloxy)silyl)phenyl)-2-ethylbutanenitrile (1t)

Colorless oil; yield: 0.69 g (80 %); ¹H NMR (CDCl₃, 500 MHz)δ8.35-8.30 (m, 1H), 7.82-7.70 (m, 1H), 7.64-7.59 (m, 2H), 7.51-7.45 (m, 3H), 7.45-7.38 (m, 2H), 7.23-7.16 (m, 1H), 6.79-6.75 (m, 1H), 1.98-1.87 (m, 2H), 1.80-1.71(m, 2H), 1.62-1.54 (m, 2H), 1.16 (d, *J*=7.5 Hz, 6H), 1.09 (d, *J*=7.5 Hz, 6H), 0.85 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 151.52, 137.21, 134.93, 134.55, 133.65, 131.78, 128.19, 127.93, 127.59, 127.43, 126.18, 125.64, 125.21, 122.47, 122.16, 120.94, 112.36, 49.67, 33.59, 17.52, 17.35, 12.93, 9.54; HRMS(EI): calcd forC₂₈H₃₅NOSi: 429.2488, found: 429.2482.

2.4 General procedure for Pd(II)-catalyzed meta-alkenylation of phenols

In a typical procedure, phenol substrate (0.5mmol), Pd(OAc)₂ (11 mg, 10 mol%), *N*-acetyl glycine (Ac-Gly-OH, 11mg, 20 mol%), AgOAc (167 mg, 2 equiv) were mixed in DCE (5.0 mL). The alkenylation reagent (0.75mmol, 1.5 equiv) dissolved in HFIP (1.5 mL) were added sequentially by syringes. The reaction was then allowed to performed at 60 °C with vigorous stirring for 24 h. After the reaction, the mixture was cooled to room temperature and filtered through celite with aid of ethyl acetate (10 mL). The filtrate was then concentrated under the reduced pressure and purified by column chromatography through silica gel using petrolium ether/ethyl acetate as eluent (15/1).

2.5 Characteristic data of meta-alkenylated products

(E)-ethyl3-(3-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)phenyl)acrylate (2a)

Colorless oil; yield: 196.5 mg (82 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.62-7.54 (m, 3H), 7.49-7.45 (m, 1H), 7.45-7.40 (m, 1H), 7.23-7.18 (m, 1H), 7.14-7.10 (m, 1H), 7.05 (s, 1H), 6.94-6.90 (m, 1H), 6.33 (d, *J*=16.0 Hz, 1H), 4.28-4.22 (m, 2H), 2.06-1.97 (m, 2H), 1.90-1.81 (m, 2H), 1.51-1.42 (m, 2H), 1.32 (t, *J*=7.0 Hz, 3H), 1.11 (d, *J*=7.0 Hz, 6H), 1.06 (d, *J*=7.5 Hz, 6H), 0.86 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.84, 155.98, 144.28, 137.24, 135.84, 134.29, 133.67, 132.00, 129.80, 128.27, 127.67, 122.08, 121.76, 121.31, 119.01, 118.40, 60.42, 49.76, 33.71, 17.33, 17.14, 14.25, 12.60, 9.59; HRMS(EI): calcd for C₂₉H₄₀NO₃Si: 478.2772, found: 478.2774.

(E)-ethyl3-(3-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)-4-methylphenyl)acrylate (2b)

Colorless oil; yield: 182.6 mg (74 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.60-7.54 (m, 2H), 7.50-7.40 (m, 3H), 7.15 (d, *J*=7.5 Hz, 1H), 7.03 (d,*J*=7.5 Hz, 1H), 6.83 (s, 1H), 6.14 (d, *J*=15.5 Hz, 1H), 4.28-4.18 (m, 2H), 2.31 (s, 3H), 2.05-1.97 (m, 2H), 1.90-1.80 (m, 2H), 1.52-1.46 (m, 2H), 1.35-1.28 (m, 3H), 1.13 (d, *J*=7.5 Hz, 6H), 1.07 (d, *J*=7.5 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.92, 154.09, 144.41, 137.21, 134.47, 133.48, 132.98, 131.89, 131.26, 128.24, 127.62, 126.89, 121.98, 121.09, 118.40, 117.22, 116.93, 115.55, 60.35, 49.74, 33.69, 21.17, 17.32, 17.13, 14.22, 12.58, 9.58; HRMS(ESI):[M+Na]⁺ calcd for C₃₀H₄₁NNaO₃Si: 514.2748, found: 514.2766.

(E)-ethyl3-(3-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)-5-methylphenyl)acrylate (2c)

Colorless oil; yield: 187.6 mg (76 %); ¹H NMR (CDCl₃, 500 MHz)δ7.59-7.50 (m, 3H), 7.49-7.37 (m, 2H), 6.94 (s, 1H), 6.83 (s, 1H), 6.75 (s, 1H), 6.30 (d, *J*=16.0 Hz, 1H), 4.29-4.20 (m, 2H), 2.27 (s, 3H), 2.07-1.96 (m, 2H), 1.90-1.80 (m, 2H), 1.51-1.40 (m, 2H), 1.32 (t, *J*=7.0 Hz, 3H), 1.10 (d, *J*=7.5 Hz, 6H), 1.06 (d, *J*=7.5 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 166.89, 155.84, 144.48,

139.85, 137.15, 135.45, 134.38, 133.63, 131.96, 128.22, 127.61, 122.59, 122.17, 122.07, 118.08, 116.08, 60.35, 49.74, 33.69, 21.17, 17.32, 17.13, 14.22, 12.58, 9.58; HRMS(ESI): [M+H]⁺calcd forC₃₀H₄₂NO₃Si: 492.2928, found: 492.2932.

(E) - ethyl 3 - (5 - (((3 - (3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) - 2 - methyl phenyl) a crylate (2d) - (2

Colorless oil; yield: 170.3 mg (69 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.90-7.83 (m, 1H), 7.58-7.53 (m, 2H), 7.48-7.39 (m, 2H), 7.07-7.04 (m, 1H), 7.03-6.99 (m, 1H), 6.82-6.77 (m, 1H), 6.16 (d, *J*=15.5 Hz, 1H), 4.29-4.20 (m, 2H), 2.34 (s, 3H), 2.06-1.96 (m, 2H), 1.90-1.80 (m, 2H), 1.51-1.40 (m, 2H), 1.33 (t, *J*=7.0 Hz, 3H), 1.09 (d, *J*=7.5 Hz, 6H), 1.05 (d, *J*=7.5 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.96, 153.87, 142.14, 137.17, 134.48, 134.13, 133.73, 131.95, 131.62, 130.56, 128.23, 127.66, 122.15, 121.61, 119.16, 117.18, 60.46, 49.77, 33.74, 18.86, 17.36, 17.18, 14.29, 12.58, 9.61; HRMS(ESI): [M+H]⁺calcd forC₃₀H₄₂NO₃Si: 492.2928, found: 492.2934.

(E) - ethyl 3 - (3 - (((3 - (3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) - 4 - methoxyphenyl) a crylate (2e) - (2

Colorless oil; yield: 186.0 mg (73 %); ¹H NMR (CDCl₃, 500 MHz)δ7.60-7.56 (m, 2H), 7.56-7.53 (m, 1H), 7.53-7.50 (m, 1H),7.47-7.38 (m, 1H),7.12-7.07 (m, 1H), 7.07-7.03 (m, 1H), 6.85-6.78 (m, 1H), 6.17 (d, *J*=16.0 Hz, 1H), 4.29-4.20 (m, 2H), 3.78 (s, 3H), 2.06-1.96 (m, 2H), 1.90-1.80 (m, 2H), 1.51-1.40 (m, 2H), 1.32 (t, *J*=7.0 Hz, 3H), 1.08 (d, *J*=7.0 Hz, 6H), 1.06 (d, *J*=7.5 Hz, 6H), 0.86 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 167.26, 152.70, 145.22, 144.33, 136.96, 134.97, 133.55, 131.83, 128.02, 127.48, 127.36, 123.01, 122.05, 119.09, 115.75, 111.78, 60.30, 55.39, 49.76, 33.76, 17.39, 17.23, 14.32, 12.92, 9.64; HRMS(ESI): [M+H]⁺calcd forC₃₀H₄₂NO₄Si: 508.2878, found: 508.2884.

(E) - ethyl3 - (3 - (((3 - (3 - cyanopentan - 3 - yl)phenyl) diisopropylsilyl) oxy) - 5 - methoxyphenyl) a crylate (2f) - (2f)

Colorless oil; yield: 191.1 mg (75 %); ¹H NMR (CDCl₃, 500 MHz)δ7.50-7.42 (m, 3H), 7.40-7.31 (m, 2H), 6.60-6.54 (m, 2H), 6. 40 (s, 1H), 6.22 (d, *J*=13.5 Hz, 1H), 4.20-4.10 (m, 2H), 3.65 (s, 3H), 1.97-

1.89 (m, 2H), 1.81-1.73 (m, 2H), 1.41-1.34 (m, 2H), 1.24 (t, J=6.0 Hz, 3H), 1.02 (d, J=6.5 Hz, 6H), 0.97 (d, J=6.5 Hz, 6H), 0.79 (t, J=6.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.75, 160.77, 156.87, 144.33, 137.16, 136.10, 134.15, 133.61, 131.96, 128.23, 127.59, 122.05, 118.52, 112.03, 107.99, 106.42, 60.41, 55.21, 49.72, 33.68, 17.28, 17.10, 14.20, 12.51, 9.55; HRMS(ESI): [M+H]⁺calcd forC₃₀H₄₂NO₄Si: 508.2878, found: 508.2879.

(E)-ethyl3-(5-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)-2-methoxyphenyl)acrylate (2g)

Colorless oil; yield: 168.2 mg (66 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.93-7.85 (m, 1H), 7.58-7.53 (m, 2H), 7.48-7.39 (m, 2H), 7.04-7.00 (m, 1H), 6.90-6.84 (m, 1H), 6.77-6.72 (m, 1H), 6.36 (d, *J*=16.5 Hz, 1H), 4.29-4.20 (m, 2H), 3.82 (s, 3H), 2.06-1.96 (m, 2H), 1.91-1.82 (m, 2H), 1.47-1.39 (m, 2H), 1.33 (t, *J*=7.0 Hz, 3H), 1.09 (d, *J*=7.0 Hz, 6H), 1.06 (d, *J*=7.5 Hz, 6H), 0.88 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 167.39, 153.04, 149.12, 139.66, 137.13, 134.47, 133.68, 132.00, 128.22, 127.54, 123.83, 122.37, 122.10, 119.23, 118.73, 112.04, 60.32, 55.81, 49.74, 33.69, 17.31, 17.12, 14.25, 12.50, 9.56; HRMS(ESI): [M+H]⁺calcd forC₃₀H₄₂NO₄Si: 508.2878, found:508.2879.

(E)-ethyl3-(3-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)-5-fluorophenyl)acrylate (2h)

Colorless oil; yield: 159.2 mg (64 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.57-7.51 (m, 2H),7.50-7.40 (m, 3H), 6.85-6.78 (m, 2H), 6.62-6.56 (m, 1H), 6. 30 (d, *J*=16.0 Hz, 1H), 4.30-4.20 (m, 2H), 2.08-1.97 (m, 2H), 1.90-1.82 (m, 2H), 1.51-1.41 (m, 2H), 1.33 (t, *J*=7.0 Hz, 3H), 1.11 (d, *J*=7.5 Hz, 6H), 1,06 (d, *J*=7.5 Hz, 6H), 0.88 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.49, 157.18, 143.10 (d, *J*=2.8 Hz), 137.38, 136.78 (d, *J*=9.9 Hz), 133.68 (d, *J*=13.5 Hz), 132.01, 128.42, 127.78, 122.01, 119.68,115.49 (d, *J*=2.8 Hz), 109.16, 108.97, 107.61, 107.43, 60.61, 49.78, 33.74, 17.28, 17.10, 14.22, 12.53, 9.58; HRMS(ESI): [M+H]⁺calcd forC₂₉H₃₉FNO₃Si: 496.2678, found: 496.2687.

(E)-ethyl3-(3-chloro-5-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)phenyl)acrylate (2i)

Colorless oil; yield: 192.6 mg (75 %); ¹H NMR (CDCl₃, 500 MHz)δ7.57-7.51 (m, 2H), 7.50-7.40 (m, 3H), 7.11 (s, 1H), 6.90-6.85 (m, 2H), 6.30 (d, *J*=16.0 Hz, 1H), 4.30-4.20 (m, 2H), 2.07-1.97 (m, 2H), 1.92-1.80 (m, 2H), 1.51-1.41 (m, 2H), 1.32 (t, *J*=7.0 Hz, 3H), 1.11 (d, *J*=7.5 Hz, 6H), 1.06 (d, *J*=7.5 Hz, 6H), 0.88 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 166.43, 156.61, 142.80, 137.40, 136.80, 135.11, 133.71, 133.60, 131.97, 128.42, 127.81, 122.01, 121.70, 121.00, 119.77, 117.58, 60.61, 49.78, 33.74, 17.29, 17.11, 14.21, 12.54, 9.60; HRMS(ESI): [M+H]⁺calcd forC₂₉H₃₉ClNO₃Si: 512.2382, found: 512.2383.

(E)-ethyl3-(4-bromo-3-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)phenyl)acrylate (2j)

Colorless oil; yield: 215.0 mg (77 %); ¹H NMR (CDCl₃, 500 MHz)δ 8.12 (d, *J*=16.0 Hz, 1H), 7.63-7.54 (m, 2H), 7.53-7.47 (m, 1H), 7.47-7.38 (m, 1H), 7.21-7.15 (m, 1H), 7.07 (t, *J*=8.0 Hz, 1H), 6.82-6.75 (m, 1H), 6.37 (d, *J*=16.0 Hz, 1H), 4.33-4.25 (m, 2H), 2.07-1.95 (m, 2H), 1.92-1.80 (m, 2H), 1.57-1.48 (m, 2H), 1.35 (t, *J*=7.0 Hz, 3H), 1.14 (d, *J*=7.5 Hz, 6H), 1.09 (d, *J*=7.5 Hz, 6H), 0.86 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 166.39, 153.05, 143.53, 137.28, 136.40, 133.86, 133.60, 131.90, 128.22, 128.03, 127.61, 122.11, 121.14, 120.39, 120.21, 118.12, 60.60, 49.72, 33.68, 17.39, 17.26, 14.24, 12.92, 9.58; HRMS(ESI): [M+Na]⁺calcd forC₂₉H₃₈BrNNaO₃Si: 578.1697, found: 578.1702.

(E)-ethyl3-(3-bromo-5-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)phenyl)acrylate (2k)

Colorless oil; yield: 217.8 mg (78 %); ¹H NMR (CDCl₃, 500 MHz)δ7.57-7.50 (m, 2H),7.50-7.41 (m, 3H), 7.27-7.24 (m, 1H), 7.03 (s, 1H), 6.91 (s, 1H), 6. 29 (d, *J*=16.0 Hz, 1H), 4.29-4.20 (m, 2H), 2.07-1.97 (m, 2H), 1.92-1.80 (m, 2H), 1.51-1.41 (m, 2H), 1.32 (t, *J*=7.0 Hz, 3H), 1.11 (d, *J*=7.5 Hz, 6H), 1.06 (d, *J*=7.5 Hz, 6H), 0.88 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 166.46, 156.68, 142.72, 137.45, 137.14, 133.74, 133.65, 131.96, 128.46, 127.88, 124.64, 123.95, 122.95, 122.07, 119.82, 118.03, 60.66, 49.81, 33.77, 17.34, 17.15, 14.25, 12.58, 9.66; HRMS(ESI): [M+H]⁺calcd forC₂₉H₃₉BrNO₃Si: 556.1877, found: 556.1878.

(E)-ethyl3-(2-bromo-5-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)phenyl)acrylate (2l)

Colorless oil; yield: 206.6 mg (74 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.94 (d, *J*=15.5 Hz, 1H), 7.57-7.51 (m, 2H), 7.49-7.41 (m, 2H), 7.41-7.35 (m, 1H), 7.11-7.06 (m, 1H), 6.79-6.71 (m, 1H), 6. 17 (d, *J*=16.0Hz, 1H), 4.29-4.20 (m, 2H), 2.07-1.97 (m, 2H), 1.92-1.80 (m, 2H), 1.51-1.41 (m, 2H), 1.34 (t, *J*=7.0 Hz, 3H), 1.11 (d, *J*=7.5 Hz, 6H), 1.06 (d, *J*=7.5 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.24, 155.14, 142.75, 137.37, 135.16, 133.93, 133.83, 133.67, 132.06, 128.40, 127.70, 123.04, 122.02, 120.96, 118.70, 116.61, 60.64, 49.76, 33.72, 17.31, 17.13, 14.24, 12.53, 9.59; HRMS(ESI): [M+H]⁺calcd forC₂₉H₃₉BrNO₃Si: 556.1877, found: 556.1879.

(*E*)-methyl3-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)-5-(3-ethoxy-3-oxoprop-1-en-1-yl)benzoate (2m)

Colorless oil; yield: 174.5 mg (65 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.81 (s, 1H), 7.62-7.51 (m, 4H), 7.50-7.42 (m, 2H), 7.18 (s, 1H), 6.39 (d, *J*=16.0 Hz, 1H), 4.29-4.23 (m, 2H), 3.89 (s, 3H), 2.06-1.98 (m, 2H), 1.90-1.83 (m, 2H), 1.52 - 1.43 (m, 2H), 1.33 (t, *J*=7.0 Hz, 3H), 1.11 (d, *J*=7.5 Hz, 6H), 1.07 (d, *J*=7.5 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.52, 166.10, 156.03, 143.13, 137.30, 135.97, 133.78, 133.63, 132.01, 131.91, 128.39, 127.73, 123.23, 122.24, 122.13, 122.02, 119.58, 60.57, 52.26, 49.75, 33.71, 17.28, 17.11, 14.20, 12.51, 9.56; HRMS(ESI): [M+H]⁺calcd forC₃₁H₄₂NO₅Si: 536.2827, found: 536.2838.

(*E*)-ethyl3-(3-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)-5-(trifluoromethyl)phenyl)acrylate (2n)

Colorless oil; yield: 161.5 mg (59 %); ¹H NMR (CDCl₃, 500 MHz)δ7.58-7.53 (m, 3H), 7.49-7.43 (m, 2H), 7.35 (s, 1H), 7.15 (s, 1H), 7.09 (s, 1H), 6.36 (d, *J*=16.0 Hz, 1H), 4.29-4.23 (m, 2H), 2.07-1.98 (m, 2H), 1.09-1.81 (m, 2H), 1.52-1.45 (m, 2H), 1.33 (t, *J*=7.0 Hz, 3H), 1.12 (d, *J*=7.5 Hz, 6H), 1.07 (d, *J*=8.0 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 166.34, 156.35, 142.60, 137.48, 136.62, 133.63, 133.52, 132.42 (q, *J*=32.5 Hz), 131.99, 128.51, 127.83, 123.38 (q, *J*=271.3Hz), 122.04,

120.22, 118.09 (q, *J*=3.8 Hz), 117.50 (q, *J*=3.8 Hz), 60.71, 49.79, 33.74, 17.29, 17.10, 14.21, 12.52, 9.56; HRMS(ESI): [M+H]⁺calcd forC₃₀H₃₉F₃NO₃Si: 546.2646, found: 546.2653.

(*E*)-ethyl3-(3-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)-2,5-dimethylphenyl)acrylate (20)

Colorless oil; yield: 172.6 mg (68 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.91 (d, *J*=13.0Hz, 1H),7.48-7.45 (m, 2H), 7.40-7.37 (m, 1H), 7.35-7.31 (m, 1H), 6.90 (s, 1H), 6.47 (s, 1H), 6.24 (d, *J*=13.0 Hz, 1H), 4.20-4.15 (m, 2H), 2.24 (s, 3H), 2.07 (s, 3H), 1.95-1.89 (m, 2H), 1.80-1.73 (m, 2H), 1.43-1.37 (m, 2H), 1.25 (t, *J*=6.0 Hz, 3H), 1.03 (d, *J*=6.0 Hz, 6H), 0.97 (d, *J*=6.0 Hz, 6H), 0.78 (t, *J*=6.0 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 167.01, 153.92, 142.82, 137.11, 135.65, 134.68, 134.65, 133.49, 131.87, 128.14, 127.65, 125.26, 122.05, 120.52, 120.00, 119.32, 60.31, 49.70, 33.68, 20.92, 17.40, 17.22, 14.23, 12.86, 12.05, 9.54; HRMS(ESI): [M+Na]⁺calcd forC₃₁H₄₃NNaO₃Si: 528.2904, found: 528.2912.

(*E*)-ethyl3-(3-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)-4,5-dimethylphenyl)acrylate (2p)

Colorless oil; yield: 180.2 mg (71 %); ¹H NMR (CDCl₃, 500 MHz)δ7.51-7.49 (m, 1H), 7.48-7.45 (m, 1H), 7.39-7.30 (m, 3H), 6.86 (s, 1H), 6.63 (s, 1H), 6.05 (d, *J*=13.0 Hz, 1H), 4.15-4.10 (m, 2H), 2.19 (s, 3H), 2.14 (s, 3H), 1.95-1.87 (m, 2H), 1.80-1.73 (m, 2H), 1.43-1.37 (m, 2H), 1.21 (t, *J*=6.0 Hz, 3H), 1.03 (d, *J*=6.0 Hz, 6H), 0.97 (d, *J*=6.5 Hz, 6H), 0.78 (t, *J*=6.0 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 167.00, 153.87, 144.63, 138.59, 137.16, 134.54, 133.50, 131.92, 131.74, 130.02, 128.20, 127.57, 122.71, 122.01, 116.70, 115.07, 60.21, 49.70, 33.69, 20.24, 17.40, 17.20, 14.19, 12.86, 12.70, 9.54; HRMS(ESI): [M+H]⁺calcd forC₃₁H₄₄NO₃Si: 506.3085, found: 506.3090.

(*E*)-ethyl3-(3-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)-2,4-dimethylphenyl)acrylate (2q)

Colorless oil; yield: 210.6 mg (83 %); ¹H NMR (CDCl₃, 500 MHz)δ7.94(d, *J*=15.5 Hz, 1H), 7.62 (s, 1H), 7.57-7.51 (m, 1H), 7.49-7.45 (m, 1H), 7.43-7.39 (m, 1H), 7.15 (d, *J*=8.0 Hz, 1H), 6.97 (d, *J*=8.0 Hz, 1H), 6.32 (d, *J*=16.0 Hz, 1H), 4.27-4.22 (m, 2H), 2.22 (s, 3H), 2.14 (s, 3H), 2.07-1.98 (m, 2H), 1.92-1.84 (m, 2H), 1.55-1.47 (m, 2H), 1.33 (t, *J*=7.0 Hz, 3H), 1.05 (d, *J*=7.5 Hz, 6H), 0.96 (d, *J*=7.5 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 167.20, 153.26, 142,84, 137.02, 134.46, 133.47, 132.70, 131.98, 130.50, 128.45, 128.20, 127.99, 127.64, 122.12, 119.90, 118.62, 60.35, 49.84, 33.80, 18.55, 17.02, 16.88, 14.29, 13.74, 12.87, 9.61; HRMS(ESI): [M+H]⁺calcd forC₃₁H₄₄NO₃Si: 506.3085, found: 506.3100.

(*E*)-ethyl3-(2,5-dichloro-3-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)phenyl)acrylate (2r)

Colorless oil; yield: 178.3 mg (65 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.97 (d, *J*=13.0 Hz, 1H), 7.54-7.51 (m, 1H), 7.50-7.47 (m, 1H), 7.43-7.40 (m, 1H), 7.38-7.34 (m, 1H), 7.14-7.10 (m, 1H), 6.71-6.68 (m, 1H), 6.32 (d, *J*=13.0 Hz, 1H), 4.23-4.15 (m, 2H), 2.00-1.90 (m, 2H), 1.84-1.76 (m, 2H), 1.47-1.40 (m, 2H), 1.26 (t, *J*=6.0 Hz, 3H), 1.05 (d, *J*=6.0 Hz, 6H), 1.01 (d, *J*=6.5 Hz, 6H), 0.80 (t, *J*=6.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.05, 152.61, 139.55, 137.46, 135.15, 133.49, 133.32, 132.31, 131.90, 128.39, 128.09, 124.77, 122.14, 122.00, 120.74, 119.87, 60.74, 49.76, 33.74, 17.27, 17.14, 14.18, 12.78, 9.58; HRMS(ESI): [M+H]⁺calcd forC₂₉H₃₈Cl₂NO₃Si: 546.1993, found: 546.1987.

(*E*)-ethyl3-(2,4-dichloro-3-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)phenyl)acrylate (2s)

Colorless oil; yield: 194.04 mg (71 %); ¹H NMR (CDCl₃, 500 MHz)δ7.98 (d, *J*=16.0 Hz, 1H),7.64-7.60 (m, 1H), 7.57-7.52 (m, 1H), 7.48-7.43 (m, 1H), 7.40-7.35 (m, 1H), 7.24-7.20 (m, 1H), 7.19-7.14 (m, 1H), 6. 37 (d, *J*=16.0 Hz, 1H), 4.30-4.20 (m, 2H), 2.07-1.97 (m, 2H), 1.92-1.83 (m, 2H), 1.75-1.65 (m, 2H), 1.33 (t, *J*=7.0 Hz, 3H), 1.11 (d, *J*=7.0 Hz, 6H), 1.08 (d, *J*=3 Hz, 6H), 0.84 (t, *J*=7.0 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ166.23, 149.41, 139.98, 136.79, 133.38, 133.42, 132.71, 131.90, 128.06, 127.88, 127.77, 127.64, 127.23, 122.08, 121.23, 120.18, 60.66, 49.79, 33.76, 17.13, 17.08, 14.19, 13.22, 9.58; HRMS(ESI): [M+H]⁺calcd forC₂₉H₃₈Cl₂NO₃Si: 546.1993, found: 546.1989.

(E)-ethyl3-(4-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)naphthalen-2-yl)acrylate (2t)

Colorless oil; yield: 219.0 mg (83 %); ¹H NMR (CDCl₃, 500 MHz)δ 8.37 (s,1H), 7.89-7.82 (m, 1H), 7.82-7.76 (m, 1H), 7.72-7.65 (m, 1H), 7.65-7.58 (m, 1H), 7.57 (s, 1H), 7.54-7.48 (m, 1H), 7.48-7.37 (m, 2H), 7.28-7.20 (m, 1H), 6.78 (d, *J*=7.5 Hz, 1H), 6.53 (d, *J*=16.0 Hz, 1H), 4.32-4.27 (m, 2H), 2.01-1.92 (m, 2H), 1.83-1.74 (m, 2H), 1.64-1.57 (m, 2H), 1.36 (t, *J*=7.0 Hz, 3H), 1.17 (d, *J*=7.5 Hz, 6H), 1.10 (d, *J*=7.5 Hz, 6H), 0.86 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 167.19, 152.22, 145.04, 137.37, 135.68, 134.25, 133.68, 131.75, 131.33, 128.50, 128.34, 128.07, 127.28, 125.01, 123.62, 122.17, 120.78, 117.95, 113.30, 60.48, 49.73, 33.67, 17.55, 17.37, 14.34, 12.92, 9.59; HRMS(ESI): [M+H]⁺calcd forC₃₃H₄₂NO₃Si: 528.2928, found: 528.2932.

(E) - trifluoromethyl 3 - (3 - (((3 - (3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - (((3 - (3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - (((3 - (3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - (((3 - (3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - ((3 - (3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - ((3 - (3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - ((3 - (3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - ((3 - (3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - ((3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - ((3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - ((3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - ((3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - ((3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - ((3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - ((3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - ((3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - ((3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - ((3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - ((3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl a crylate (3a) - ((3 - cyanopentan - 3 - yl)phenyl) diisopropyl silyl) oxy) phenyl) a crylate (3a) - ((3 - cyanopentan - 3 - yl)phenyl) diisopropyl a crylate (3a) - ((3 - cyanopentan - 3 - y - y - ((3 - cyanopentan - 3 - y

Colorless oil; yield: 148.8 mg (56 %); ¹H NMR (CDCl₃, 500 MHz)δ 9.67 (d, *J*=7.5 Hz, 1H), 7.63-7.50 (m, 2H), 7.50-7.33 (m, 3H), 7.32-7.21 (m, 1H), 7.19-7.12 (m, 1H), 7.10-7.05 (m, 1H), 7.02-6.91 (m, 1H), 6.64-6.54 (m, 1H), 2.07-1.95 (m, 2H), 1.93-1.79 (m, 2H),1.56-1.34 (m, 2H), 1.11 (d, *J*=7.5 Hz, 6H), 1.07 (d, *J*=7.5 Hz, 6H), 0.87 (t, *J*=7.0 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 165.06, 156.07, 146.89, 137.27, 135.19, 134.17, 133.67, 132.09, 129.94, 128.32, 127.62, 126.34, 124.13, 122.45, 122.08, 121.93, 121.64, 119.73, 119.24, 115.98, 60.30 (q, *J*=36.13 Hz), 49.76, 33.72, 17.31, 17.13, 17.09, 12.56, 9.58; HRMS(EI): calcd forC₂₉H₃₆F₃NO₃Si: 531.2417, found: 531.2425.

(E)-methyl3-(3-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)phenyl)acrylate (3b)

Colorless oil; yield: 169.1 mg (73 %); ¹H NMR (CDCl₃, 500 MHz)δ7.61-7.54 (m, 3H), 7.48-7.39 (m, 2H), 7.23-7.18 (m, 1H), 7.12-7.09(m, 1H), 7.04-7.00 (m, 1H), 6.92-6.88 (m, 1H), 6.32 (d, *J*=16.0 Hz, 1H), 3.79 (s, 3H), 2.05-1.95 (m, 2H),1.89-1.80 (m, 2H),1.49-1.40 (m, 2H), 1.10 (d, *J*=7.0 Hz, 6H), 1.06 (d, *J*=7.5 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 167.27, 155.99, 144.57, 137.24, 135.74, 134.26, 133.66, 132.03, 129.83, 128.27, 127.66, 122.08, 121.84, 121.33, 119.03, 117.92,

51.62, 49.76, 33.70, 17.33, 17.13, 12.59, 9.59; HRMS(ESI):[M+Na]⁺ calcd for C₂₈H₃₇NNaO₃Si: 486.2435, found: 486.2450.

(Z)-ethyl 3-(3-(((3-(3-cyanopentan-3-yl)phenyl)diisopropylsilyl)oxy)phenyl)but-2-enoate (3c)

Colorless oil; yield: 177.5 mg (72 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.58-7.51 (m, 2H), 7.48-7.39 (m, 2H), 7.18 (t, *J*=8.0 Hz, 1H), 7.08-7.03 (m, 1H), 6.99-6.95(m, 1H), 6.88-6.83(m, 1H), 6.05-6.02(m,1H), 2.50-2.45(m, 2H), 2.05-1.96 (m, 2H), 1.89-1.80 (m, 2H), 1.49-1.40 (m, 2H), 1.31 (t, *J*=7.5 Hz, 3H), 1.14-1.03(m, 12H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.77, 155.65, 155.01, 143.64, 137.21, 134.41, 133.72, 131.98, 129.36, 128.23, 127.66, 122.11, 120.26, 119.31, 117.81, 117.09, 59.78, 49.75, 33.71, 17.82, 17.35, 17.15, 14.29, 12.58, 9.58; HRMS(ESI):[M+Na]⁺ calcd for C₃₀H₄₁NNaO₃Si: 514.2748, found: 514.2766.

(E) - 2 - (3 - ((3 - (2 - cyanovinyl)phenoxy) diisopropylsilyl)phenyl) - 2 - ethyl butan enitrile (3d)

Colorless oil; yield: 152.8 mg (71 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.60-7.56 (m, 1H), 7.56-7.52 (m, 1H), 7.46-7.41 (m, 2H), 7.32-7.25 (m, 1H), 7.25-7.20 (m, 1H), 7.05-7.00 (m, 1H), 6.97-6.91 (m, 2H), 5.78 (d, *J*=17.0 Hz, 1H), 2.07-1.98 (m, 2H), 1.90-1.80 (m, 2H),1.49-1.41 (m, 2H), 1.10 (d, *J*=7.5 Hz, 6H), 1.05 (d, *J*=7.5 Hz, 6H), 0.87 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.14, 150.30, 137.29, 134.86, 134.03, 133.64, 132.31, 130.08, 128.37, 127.46, 122.65, 122.08, 120.66, 118.27, 118.05, 96.49, 49.79, 43.72, 17.31, 17.13, 12.52, 9.63; HRMS(ESI):[M+Na]⁺ calcd for C₂₇H₃₄N₂NaOSi: 453.2333, found: 453.2347.

(E) - diethyl3 - (((3-(3-cyanopentan-3-yl)phenyl) diisopropylsilyl) oxy) styrylphosphonate (3e)

Colorless oil; yield: 165.1 mg (61 %); ¹H NMR (CDCl₃, 500 MHz)δ7.49-7.45 (m, 2H), 7.39-7.34 (m, 2H), 7.33-7.30 (m, 1H), 7.16-7.10 (m, 1H), 7.04-6.99 (m, 1H), 6.94-6.91 (m, 1H), 6.84-6.80 (m, 1H),

6.16 (t, *J*=15.0 Hz, 1H), 4.08-3.99 (m, 4H), 1.97-1.89 (m, 2H),1.80-1.73 (m, 2H),1.41-1.33 (m, 2H), 1.27 (t, *J*=6.0 Hz, 6H), 1.02 (d, *J*=6.5 Hz, 6H), 0.97 (d, *J*=6.5 Hz, 6H), 0.79 (t, *J*=6.0 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.911, 148.40 (d, *J*=5.5 Hz), 137.14, 136.2 (d, *J*=19.3 Hz), 134.15, 133.59, 131.96, 129.73, 128.22, 127.55, 122.03, 121.66, 120.79, 118.74, 113.98 (d, *J*=158.5 Hz), 49.69, 33.65, 17.25, 17.07, 16.31, 16.26, 12.49, 9.55; HRMS(ESI):[M+Na]⁺ calcd for C₃₀H₄₄NNaO₄PSi: 564.2669, found: 564.2697.

(E) - 2 - (3 - (diisopropyl(3 - (2 - (phenylsulfonyl)vinyl)phenoxy) silyl)phenyl) - 2 - ethyl butan enitrile (3f) - (3f

Colorless oil; yield: 180.0 mg (66 %); ¹H NMR (CDCl₃, 500 MHz)δ7.87-7.83 (m, 2H), 7.55-7.49 (m, 2H), 7.48-7.43 (m, 4H), 7.35-7.31 (m, 2H), 7.14-7.10 (m, 1H), 7.00-6.97 (m, 1H), 6.91-6.89 (m, 1H), 6.85-6.81 (m, 1H), 6.69 (d, *J*=12.5 Hz, 1H), 1.96-1.86 (m, 2H),1.78-1.70 (m, 2H),1.39-1.34 (m, 2H), 1.00 (d, *J*=6.0 Hz, 6H), 0.96 (d, *J*=6.0 Hz, 6H), 0.75 (t, *J*=6.0 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ156.01, 142.09, 140.51, 137.19, 133.97, 133.60, 133.55, 133.31, 132.06, 129.98, 129.23, 128.27, 127.52, 127.47, 127.30, 122.59, 121.98, 121.68, 119.52, 49.67, 33.60, 17.24, 17.06, 12.43, 9.53; HRMS(ESI): [M+Na]⁺ calcd for C₃₂H₃₉NNaO₃SSi: 568.2312, found: 568.2334.

(E)-2-(3-(diisopropyl(3-(3-oxoprop-1-en-1-yl)phenoxy)silyl)phenyl)-2-ethylbutanenitrile (3g)

Colorless oil; yield: 162.5 mg (75 %); ¹H NMR (CDCl₃, 500 MHz) δ 9.67 (d, *J*=7.5 Hz, 1H), 7.63-7.50 (m, 2H), 7.50-7.33 (m, 3H), 7.32-7.21 (m, 1H), 7.19-7.12 (m, 1H), 7.10-7.05 (m, 1H), 7.02-6.91 (m, 1H), 6.64-6.54 (m, 1H), 2.07-1.95 (m, 2H), 1.93-1.79 (m, 2H),1.56-1.34 (m, 2H), 1.11 (d, *J*=7.5 Hz, 6H), 1.07 (d, *J*=7.5 Hz, 6H), 0.87 (t, *J*=7.0 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 193.51, 156.12, 152.43, 137.28, 135.36, 134.09, 133.62, 132.18, 130.04, 128.66, 128.32, 127.51, 122.78, 122.03, 121.82, 119.23, 49.74, 33.67, 17.30, 17.11, 12.55, 9.57; HRMS(ESI):[M+Na]⁺ calcd for C₂₇H₃₅NNaO₂Si: 456.2329, found: 456.2333.

2.6 General procedure for the removal and reinstallation of organosilicon group.

To a clean, oven-dried screw cap reaction tube with previously placed magnetic stir-bar, compound **2c** (98.4 mg, 0.2 mmol) and *p*-toluenesulfonic acid (2.3 mg, 0.02 mmol) were dissolved in 3 mL of EtOH and 1 mL H₂O (EtOH/H₂O : 3/1). The solution was stirred at 100 °C for 12 h. The reaction mixture was cooled and 10 mL of brine solution was added. Ethanol was removed under reduced pressure and aqueous part was extracted by EtOAc (10 mL × 3). Organic phase was concentrated and was purified by column chromatography (petroleum ether/ethyl acetate = 3/1) to afford pure product **4** and **5** as colorless oil.

Compound **2c** (491.8 mg, 1.0 mmol,) was dissolved in 15 mL THF in a clean and oven-dried screw cap reaction tube, then a solution of TBAF (1M inTHF, 3.0 mL) was added dropwisely at room temperature and the solution was kept stirring for 3 h at room temperature. After the reaction, the solvent was evaporated off and the residue was purified by column chromatography on silica gel with petroleum ether and ethyl acetate (3/1 v/v) to afford pure **5** as colorless oil.

To a 25 mL vial equipped with a magnetic stir bar was charged **2a** (95.6 mg, 0.2 mmol) and LiOH monohydrate (28.8 mg, 1.2 mmol). To this mixture was then added MeOH (2.4 mL), THF (1.2 mL), and H₂O (0.6 mL). The reaction was then stirred for 18 h when TLC indicated the completion of hydrolysis. The MeOH and THF was then removed in vacuo, and the resulting residue was diluted with H₂O (20 mL) and EtOAc (30 mL). After acidification with 2 M HCl (3 mL), the solution was extracted with EtOAc for three times. The combined organic extract was washed with brine, dried over Mg₂SO₄. The organic layer was further concentrated and purified by column chromatography on a silica gel column (petroleum ether/ethyl acetate = 3/1 to 1/1) to give the product **6** as white solid.

2-ethyl-2-(3-(hydroxydiisopropylsilyl)phenyl)butanenitrile (4)

Colorless oil; yield: 55.2 mg (91 %); ¹H NMR (CDCl₃, 500 MHz)δ 7.55-7.53 (m, 1H), 7.52-7.48 (m, 1H), 7.43-7.36 (m, 2H), 2.09-2.00 (m, 2H), 1.97-1.89 (m, 2H), 1.27-1.20 (m, 2H), 1.05 (d, *J*=7.0 Hz, 6H), 0.97 (d, *J*=7.5 Hz, 6H), 0.90 (t, *J*=7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz)δ 136.98, 136.30, 133.27, 131.42, 128.01, 127.13, 122.32, 49.79, 33.72, 17.08, 16.82, 12.34, 9.60; HRMS (ESI):[M+Na]⁺ calcd for C₁₈H₂₉NNaOSi: 326.1911, found: 326.1913.

(E)-ethyl 3-(3-hydroxy-5-methylphenyl)acrylate (5)

Colorless oil; yield: 195.9 mg (95 %); ¹H NMR (CDCl₃, 500 MHz)δ 7.61 (d, *J*=16.0 Hz, 1H), 6.91 (s, 1H), 6.86 (s, 1H), 6.73 (s, 1H), 6.39 (d, *J*=15.5 Hz, 1H), 4.33-4.23 (m, 2H), 2.31 (s, 3H), 1.34 (t, *J*=7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz)δ 167.67, 156.13, 145.05, 140.23, 135.46, 121.50, 118.38, 117.94, 111.77, 60.82, 21.25, 14.22; HRMS(ESI):[M+Na]⁺ calcd for C₁₂H₁₄NaO₃: 229.0835, found: 229.0839. (*E*)-**3-(3-hydroxyphenyl)acrylic acid (6**)

White solid; yield: 26.3 mg (70 %); ¹H NMR (DMSO-*d*₆, 500 MHz)δ 12.39 (s, 1H), 9.62 (s, 1H), 7.54 (d, *J*=16.0 Hz, 1H), 7.26-7.20 (m, 1H), 7.15-7.09 (m, 1H), 7.07-7.02 (m, 1H), 6.88-6.83 (m, 1H), 6.44 (d, *J*=16.0 Hz, 1H); ¹³C NMR (DMSO-*d*₆, 125 MHz)δ 172.16, 162.30, 148.76, 140.08, 134.50, 123.73, 123.54, 122.02, 119.10.

To a stirred solution of the silanol (60.7 mg, 0.2 mmol) and DMAP (36.8 mg, 0.3 mmol) in dry DCM (3 mL), oxalyl chloride (71 μ L, 0.8 mmol) was added dropwise under inert atmosphere at 0 °C slowly to maintain a gentle exotherm. After addition, the reaction mixture was stirred overnight at room temperature. DCM was removed by evaporation; diethyl ether (5 mL) was added and filtered through celite. Then diethyl ether was removed to get crude chlorosilane. DCM solution of this crude chlorosilane was added dropwise to a stirred solution of 3-methylphenol (21.6 mg, 0.2 mmol) and

trimethylamine in dry DCM at 0 °C under inert atmosphere. After stirring for 5 h at room temperature, DCM was removed and hexane (10 mL x 3) was added and filtered through celite. Concentration under reduced pressure followed by purification by column chromatography (petrolium ether/ ethyl acetate = 15:1) afforded **2c** as colorless oil.

2.7 Synthetic applications of the meta-alkenylation products

 $Cu(OAc)_2$ (99.8 mg, 0.5 mmol), triethylamine(2.5 mmol), compound 7 (110.0 mg, 0.5 mmol), PhB(OH)_2 (121.9 mg, 1.0 mmol), 4Å molecular sieve (5.0 g) were added to a screw cap reaction tube containing a stirring bar. Dichloromethane (20 mL) was then injected via syringe and the reaction mixture was kept stirring at 0°C. After 8 hours, 4Å molecular sieves was filtered off, and the filtrate was concentrated under the reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether and ethyl acetate (2:1 to 1:1) to afford the desired product **8** as colorless oil.

(E)-ethyl 3-(3-hydroxy-4,5-dimethylphenyl)acrylate (7)

Colorless oil; yield: 404.8 mg (92 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.59 (d, *J*=15.5 Hz , 1H), 6.92 (s, 1H), 6.87 (s, 1H), 6.35 (d, *J*=16.0 Hz , 1H), 4.26 (q, *J*=7.0 Hz, 2H), 2.72 (s, 3H), 2.18 (s, 3H), 1.33 (t, *J*=7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 167.66, 154.21, 145.07, 138.70, 132.17, 125.96, 122.24, 116.96, 111.91, 60.62, 20.08, 14.25, 11.80; HRMS(ESI):[M+Na]⁺ calcd for C₁₃H₁₆NaO₃: 243.0992, found: 243.0997.

(E)-ethyl 3-(5,6-dimethyl-[1,1'-biphenyl]-3-yl)acrylate (8)

Colorless oil; yield: 111.1 mg (75 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.55 (d, *J*=16 Hz, 1H), 7.35-7.28 (m, 2H), 7.14 (s, 1H), 7.09-7.04 (m, 1H), 6.94 (s, 1H), 6.92-6.89 (m, 2H), 6.30 (d, *J*=16 Hz, 1H), 4.26-4.20 (m, 2H), 2.34 (s, 3H), 2.18 (s, 3H), 1.31 (t, *J*=7 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 167.01, 157.71, 154.74, 144.11, 139.32, 132.75, 131.33, 129.75, 125.31, 122.63, 117.69, 117.41, 116.44, 60.41, 20.16, 14.28, 12.43; HRMS(ESI):[M+Na]⁺ calcd for C₁₉H₂₀NaO₃: 319.1305, found: 319.1313.

Step 1: Compound **7** (440.2 mg, 2 mmol) was added to a cooled biphasic solution (0 °C) containing 4 mL toluene and 4 mL K₃PO₄ aqueous solution (30% w/v), thenTf₂O (2.4 mmol) was added dropwisely at a rate to maintain the reaction temperature lower than 10 °C.The reaction was then allowed to warm to room temperature and stirred for 30 min. After the reaction, the two layers were separated, and the toluene layer was washed with water (10 mL) and concentrated under the reduced pressure. The product **8** was directly used for next step without further purifications.

(E)-ethyl 3-(3,4-dimethyl-5-(((trifluoromethyl)sulfonyl)oxy)phenyl)acrylate (9)

Colorless oil; yield: 675.8 mg (96 %); ¹H NMR (CDCl₃, 500 MHz)δ7.58 (d, *J*=16.0 Hz , 1H), 733 (s, 1H), 7.24 (s, 1H), 6.41 (d, *J*=16.0 Hz , 1H), 4.27 (q, *J*=7.0 Hz, 2H), 2.35 (s, 3H), 2.29 (s, 3H), 1.34 (t, *J*=7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ166.55, 148.66, 142.47, 140.43, 133.45, 131.71, 128.94, 119.51, 118.00, 60.71, 20.27, 14.27, 13.15.

Step 2: Pd(PPh₃)₄ (11.6mg, 0.01mmol), compound **9** (70.4 mg, 0.2 mmol), PhB(OH)₂ (36.6 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.3 mmol) were added to a Schlenk tube, DME/H₂O (2 mL, 1:1 v/v) was then injected via syringe and the reaction mixture was heated with vigorous stirring at 95 °C for 20 h. After the reaction was completed, the mixture was cooled to room temperature, followed by the addition of 10 mL brine solution. The mixture was then extracted with ethyl acetate (10 mL \times 3), and the combined organic layer was dried over anhydrous MgSO₄. The organic layer was further concentrated and purified by column chromatography on a silica gel column(petroleum ether/ethyl acetate = 3/1) to give the product **9** as colorless oil.

(*E*)-ethyl 3-(5,6-dimethyl-[1,1'-biphenyl]-3-yl)acrylate (10)

Yield: 49.3 mg (88 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.66 (d, *J*=16.0 Hz, 1H), 7.43-7.38 (m, 2H), 7.36-7.31 (m, 2H), 7.30-7.26 (m, 3H), 6.41 (d, *J*=16.0 Hz, 1H), 4.25 (q, *J*=7.5 Hz, 2H), 2.36 (s, 3H), 2.16 (s, 3H), 1.32 (t, *J*=7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 167.19, 144.46, 142.86, 141.79, 137.85, 136.89, 131.49, 129.24, 128.33, 128.14, 127.40, 126.97, 117.41, 60.35, 20.70, 17.15, 14.30.HRMS(ESI):[M+Na]⁺ calcd for C₁₉H₂₀NaO₂: 303.1356, found: 303.1367.

Pd(OAc)₂ (2.3 mg, 0.01mmol), PPh₃ (10.5 mg, 0.04mmol), compound **9** (70.4 mg, 0.2 mmol), phenylacetylene (40.9 mg, 0.4 mmol) and K₃PO₄ (63.7 mg, 0.3 mmol) were added to a screw cap reaction tube which was sealed with a screw cap fitted with a septum. Then DMSO (2 mL) was added via syringe and the reaction mixture was heated with vigorous stirring at 85 °C for 24 h. The obtained reaction mixture was cooled to room temperature and concentrated in vacuo, followed by addition of 10 mL brine solution. The resulting mixture was further extracted with ethyl acetate for three times (10 mL×3) and the combined organic layer was dried over anhydrous MgSO₄. The organic layer was concentrated in vacuo and purified by column chromatography (petrolium ether/ethyl acetate = 15/1).

(E)-ethyl 3-(3,4-dimethyl-5-(phenylethynyl)phenyl)acrylate (11)

Colorless oil; yield: 47.5 mg (78 %); ¹H NMR (CDCl₃, 500 MHz) δ 7.61 (d, *J*=16 Hz, 1H), 7.58-7.51 (m, 3H), 7.40-7.34 (m, 3H), 7.28 (s, 1H), 6.43 (d, *J*=16 Hz, 1H), 4.26 (q, *J*=14.5 Hz, 2H), 2.48 (s, 3H), 2.32 (s, 3H), 1.34 (t, *J*=7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 167.04, 143.88, 140.98, 137.44, 131.71, 131.51, 129.36, 129.26, 128.37, 128.32, 123.87, 123.25, 117.82, 93.24, 88.18, 60.43, 20.42, 17.65, 14.29; HRMS(ESI):[M+Na]⁺ calcd for C₂₁H₂₀NaO₂: 327.1356, found: 327.1350.

3. References

(1) S. Lee, H. Lee and K. L. Tan, J. Am. Chem. Soc. 2013, 135, 18778-18781.

(2) T. Patra, S. Bag, R. Kancherla, A. Mondal, A. Dey, S. Pimparkar, S. Agasti, A. Modak and D. Maiti, *Angew .Chem. Int. Ed.* **2016**, *55*,7751-7755; *Angew .Chem.* 2016, **128**, 7882-7886.

4. NMR spectra

