Supplementary Information

Light-driven nanofiber and nanoring morphological transformations in organogels based on an azobenzene-bridged biscalix[4]arene

Pei-Mei Su,^a Kai-Chi Chang,^{a,*} Cheng-Jhang Yang,^a Yi-Chieh Liu^a and Wen-Sheng Chung^{a,*}

Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050, Republic of China wschung@nctu.edu.tw

Page No. Contents

- S3 Materials and methods for the synthesis of compounds 1–4.
- S4-S7 Synthesis of azobenzene derivatives 9 and 11 and corresponding spectral identification data for compounds 1–4 and 9–11.
- S8 **Table S1.** Gelation properties of azobenzene derivatives 1-4 in various organic solvents.
- S9 **Figs. S1** and **S2**. DLS diagram of a solution of *E*-1 in acetonitrile at 25 °C and TEM images of *E*-1 in various different solvents.
- S10 Fig. S3. The ¹H NMR spectra of E-1 (a) before and after irradiation of the solution (a) by 365 nm light for (b) 10 min, (c) 20 min, (d) 30 min, and (e) irradiating the sample (d) with a visible light (>450 nm) for 1 h.
- S11 **Fig. S4**. X-ray single crystal structures of *E*-1 with packing models.
- Fig. S5. Variable Temperature UV-Vis spectra of *E*-1 in (a) acetonitrile and (b) *para*-xylene. Fig. S6. X-ray powder diffraction (XRD) of *E*-1 in (a) acetonitrile and (b) *para*-xylene.
- S13 Fig. S7. Variable Temperature ¹H NMR spectra of *E*-1 (1 mM in CD₃CN) that was irradiated with UV for 20 min and its respective *E*-1/Z-1 ratios at different temperatures.
- S14 Fig. S8. (a) IR spectrum of compound 1 (1 mM in CH_3CN) and (b) its respective IR spectrum after UV irradiation for 1 h.
- S15 Fig. S9. (a) IR spectrum of compound 2 (1 mM in $CH_2Cl_2/MeOH = 1/5$) and (b) its respective IR spectrum after UV irradiation for 1 h.
- S16 Fig. S10. The UV/Vis spectra of compound 1 (10 μ M, CH₃CN) (a) irradiated by UV for different duration, (b) after further irradiation of sample (a) for different duration, and (c) the changes in absorbance of 1 with ten different UV/Vis irradiation cycles.

- S17 Fig. S11 SEM images of samples of molecule 1 (10^{-3} M, CH₃CN) after UV light (365 nm) irradiation for 30 min. Fig. S12 SEM images of samples of molecule 1 (10^{-4} M, CH₃CN) after UV light (365 nm) irradiation for 30 min.
- S18 Fig. S13 SEM images of molecule 2 (10^{-3} M, CH₂Cl₂/MeOH (v/v = 1/5)), after UV light (365 nm) irradiation for 30 min. Fig. S14 SEM images of molecule 2 (10^{-4} M, CH₂Cl₂/MeOH (v/v = 1/5)), after UV light (365 nm) irradiation for 30 min.
- S19 Fig. S15. SEM images of molecule 1 (10^{-3} M, CH₃CN). Fig. S16 SEM images of molecule 1 (10^{-4} M, CH₃CN). The white bars on the lower right of Figs. (a) and (c) were 10 µm, Fig. (b) was 1 µm, and Fig. (d) was 100 nm.
- S20 Fig. S17 SEM images of molecule 2 (10^{-3} M in CH₂Cl₂/MeOH (v/v = 1/5)). Fig. S18 SEM images of molecule 2 (10^{-4} M in CH₂Cl₂/MeOH (v/v = 1/5)).
- S21 Fig. S19 and S20. ¹H and ¹³C NMR and DEPT spectra of compound E-1.
- S22 **Fig. S21** and **S22.** ¹H and ¹³C NMR and DEPT spectra of compound **2**.
- S23 **Fig. S23** and **S24.** ¹H and ¹³C NMR and DEPT spectra of control compound **3**.
- S24 **Fig. S25** and **S26.** ¹H and ¹³C NMR and DEPT spectra of control compound 4.
- S25 Fig. S27 and S28. ¹H and ¹³C NMR and DEPT spectra of compound 9.
- S26 Fig. S29 and S30. 1 H and 13 C NMR and DEPT spectra of compound 10.
- S27 **Fig. S31** and **S32.** ¹H and ¹³C NMR and DEPT spectra of compound **11**.
- S28-32 Checkcif of IC16786 (Compound 1)
- S33-36 Checkcif of IC16676 (Compound **2**)

Materials and Methods

All other chemical reagents were commercially available and were used without further purification unless otherwise noted. Compounds 5^{S1} , 6^{S2} , 7^{S3} and 8^{S4} were synthesized according to literature methods.

- S1. C.-C. Tsai, K.-C. Chang, I.-T. Ho, J.-H. Chu, Y.-T. Cheng, L.-C. Shen, W.-S. Chung, *Chem. Commun.*, 2013, 49, 3037–3039.
- S2. Y. Wang, K. Ji, S. Lan, L. Zhang, Angew. Chem., Int. Ed., 2012, 51, 1915–1918.
- S3. L. Hamryszak, H. Janeczek, E. Schab-Balcerzak, J. Mol. Liq., 2012, 165, 12-20.
- S4. L. Masciello, P. G. Potvin, Can. J. Chem., 2003, 8, 209-218.

Scheme S1. Syntheses of biscalix[4]arenes 1 and 2.

Scheme S2. Syntheses of control compounds 3 and 4.

Scheme S3. Syntheses of the azobenzene derivatives 9 and 11.

Biscalix[4]arene 1: A solution of 5^{S1} (0.37 g, 0.53 mmol) in THF (27 mL) and water (1 mL) was treated with CuI (0.005 g, 0.026 mmol) and 4,4'-diazidoazobenzene 9 (0.07 g, 0.27 mmol), and the resulting mixture was stirred and heated at reflux for 5 d. After reaction, the volatile solvent was removed under reduced pressure. Subsequently, water (100 mL) was added and the suspension was extracted with CH_2Cl_2 (100 mL \times 3). The organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure to afford the crude reaction mixture, which was purified by silica-gel column chromatography (ethyl acetate/n-hexane = 1/4) to afford 287 mg (65% yield) of product 1 as an orange solid. $R_f = 0.30$ (ethyl acetate/*n*-hexane = 1/4); mp 205-206 °C; ¹H NMR (400 MHz, CDCl₃) δ = 10.11 (s, 2H), 9.41 (s, 4H), 8.93 (s, 2H), 8.21 (d, J = 8.8 Hz, 4H), 8.11 (d, J = 8.8 Hz, 4H), 5.44 (s, 4H), 4.46 (d, J = 13.1 Hz, 4H), 4.24 (d, J = 13.7 Hz, 4H), 3.51 (d, J = 13.1 Hz, 4H), 3.44 (d, J = 13.7 Hz, 4H), 1.22-1.20 ppm (m, 72H); ¹³C NMR (100 MHz, CDCl₃) δ = 152.1 (Cq), 148.9 (Cq), 148.8 (Cq), 148.2 (Cq), 147.5 (Cq), 144.5 (Cq), 143.8 (Cq), 143.4 (Cq), 138.8 (Cq), 133.5 (Cq), 128.2 (Cq), 127.9 (Cq), 127.5 (Cq), 126.7 (CH), 125.8 (CH), 125.8(CH), 125.7 (CH), 124.7 (CH), 122.1 (CH), 121.1 (CH), 69.9 (CH₂), 34.3 (Cq), 34.0 (Cq), 33.9 (Cq), 33.0 (CH₂), 32.3 (CH₂), 31.5 (CH₃), 31.4 (CH₃), 31.2 (CH₃) ppm; HRMS m/z calcd for C₁₀₆H₁₂₄N₈NaO₈ [M + Na⁺] 1659.9434; found 1659.9404.

X-ray single crystal data for compund 1: $C_{106}H_{124}N_8O_8$, M = 1638.12, monoclinic, a = 36.5263 (18) Å, b = 14.3181(3) Å, c = 26.3568(11) Å, $\alpha = 90^\circ$, $\beta = 110.445(5)^\circ$, $\gamma = 90^\circ$, V = 12916.0(10) Å³, space group *C2/c*; Z = 4, $\rho_{calcd} = 0.842$ Mg/m³, crystal dimensions (mm³): $0.25 \times 0.20 \times 0.15$, T = 200(2) K, λ (Cu_{K α}) = 1.54178 Å, 23477 reflections collected; 11734 independent reflections [*R*(int) = 0.0372]; $\mu = 0.416$ mm⁻¹, 641 parameter refined on F^2 , $R_1 = 0.0719$, $wR_2 = 0.2133$ (all data), goodness-of-fit (GOF) on $F^2 = 1.331$, $\Delta \rho_{max} = 0.297$ eÅ⁻³. CCDC 1573644 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_ -request/cif.

Biscalix[4]arene 2: A solution of 5^{S1} (0.09 g, 0.13 mmol) in THF (5 mL) was treated with hydroximoyl bromide 11 (0.03 g, 0.06 mmol) under nitrogen atmosphere, then the solution of triethylamine (0.04 mL, 0.25 mmol) in THF (1 mL) was added dropwise over a period of 5 min. The mixture was stirred at reflux for 24 hr. After cool to room temperature, the volatile solvent was removed under reduced pressure. Subsequently, water (100 mL) was added and the suspension was extracted with CH_2Cl_2 (100 mL \times 3). The organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure to afford the crude reaction mixture, which was purified by silica-gel column chromatography (ethyl acetate/*n*-hexane = 1/3) to afford 40 mg (37%) of product **2** as an orange solid. $R_{\rm f} = 0.28$ (ethyl acetate/n-hexane = 1/3); mp 198-200 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.01 (s, 2 H), 9.16 (s, 4 H), 8.11-8.08 (m, 8 H), 7.16 (s, 2 H), 7.13 (s, 4 H), 7.07 (d, J = 2.0 Hz, 4 H), 7.05 (s, 4 H), 7.00 (d, J = 2.0 Hz, 4 H), 5.41 (s, 4 H), 4.35 (d, J = 13.2 Hz, 4 H), 4.27 (d, J = 13.7 Hz, 4 H),3.48-3.44 (m, 8 H), 1.22-1.21 (m, 72 H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.7$ (Cq), 162.1 (Cq), 153.5 (Cq), 149.0 (Cq), 148.9 (Cq), 148.3 (Cq), 147.5 (Cq), 143.7 (Cq), 143.3 (Cq), 133.3 (Cq), 131.3 (Cq), 128.2 (Cq), 127.9 (CH), 127.7 (Cq), 127.5 (Cq), 126.8 (CH), 125.9 (CH), 125.7 (CH), 125.6 (CH), 123.7 (CH), 102.9 (CH), 68.2 (CH₂), 34.3 (Cq), 34.0 (Cq), 33.9 (Cq), 32.9 (CH₂), 32.2 (CH₂), 31.5 (CH₃), 31.4 (CH₃), 31.2 (CH₃) ppm; HRMS m/z calcd for $C_{108}H_{124}N_4NaO_{10}$ [M + Na⁺] 1659.9210; found, 1659.9169.

Fig. Sa X-ray single crystal structure of bis-isoxazolylazobenzene bridged biscalix[4]arene 2.

X-ray single crystal data for compund 2: $C_{112}H_{128}Cl_{12}N_4O_{10}$, M = 2115.58, triclinic, a = 36.231(3) Å, b = 14.2891(9) Å, c = 26.170(3) Å, $\alpha = 90^{\circ}$, $\beta = 109.636(11)^{\circ}$, $\gamma = 90^{\circ}$, V = 12761(2) Å³; space group C2/c, Z = 4, $\rho_{calcd} = 1.101$ Mg/m³, crystal dimensions (mm³): 0.25 × 0.15 × 0.10, T = 200(2) K, λ (Mo_{K α}) = 0.71073 Å, $\mu = 0.311$ mm⁻¹, 18821 reflections collected; 18821 independent reflections [R(int) = 0.0000], 785 parameter refined on F^2 , $R_1 = 0.1561$, wR_2 [F^2] = 0.3765 (all data), goodness-of-fit (GOF) on F^2 1.784; $\Delta \rho_{max} = 0.876$ eÅ⁻³. CCDC 1573141 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center vis www.ccdc.cam.ac.uk/data_-request/cif.

Compound 3. A solution of 6^{82} (0.42 g, 2.38 mmol) in THF (31 mL) and water (1 mL) was treated with CuI (0.03 g, 0.16 mmol) and 4,4'-diazidoazobenzene **9** (0.3 g, 1.14 mmol), and the resulting mixture was stirred and heated at reflux for 3 days. After reaction, the volatile solvent was removed under reduced pressure. Subsequently, water (100 mL) was added and the suspension was extracted with CH₂Cl₂ (100 mL × 3). The organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure to afford the crude reaction mixture, which was washed with MeOH and collected by filtration to give 700 mg (97% yield) of product **3** as an orange solid. Mp 291-293 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.15 (s, 2 H), 8.13 (d, *J* = 8.8 Hz, 4 H), 7.96 (d, *J* = 8.8 Hz, 4 H), 7.34 (d, *J* = 8.8 Hz, 4 H), 6.98 (d, *J* = 8.8 Hz, 4 H), 5.32 (s, 4 H), 1.32 (s, 18 H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 155.9 (Cq), 152.0 (Cq), 145.8 (Cq), 144.2 (Cq), 138.7 (Cq), 126.4 (CH), 124.6 (CH), 121.0 (CH), 120.6 (CH), 62.1 (CH₂), 34.1 (Cq), 31.5 (CH₃) ppm; HRMS *m*/*z* calcd for C₃₈H₄₁N₈O₂ [M + H⁺] 641.3347; found 641.3368.

Compound 4. A solution of 6^{S2} (0.097 g, 0.56 mmol) in THF (27 mL) was treated with hydroximoyl bromide **11** (0.113 g, 0.26 mmol) under nitrogen atmosphere, then the solution of triethylamine (0.18 mL, 1.30 mmol) in THF (1 mL) was added dropwise over a period of 5 min. The mixture was stirred at reflux for 3 days. After reaction, the volatile solvent was removed under reduced pressure. Subsequently, water (100 mL) was added and the suspension was extracted with CH₂Cl₂ (100 mL × 3). The organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure to afford the crude reaction mixture, which was washed with MeOH and collected by filtration to give 85 mg (51% yield) of product **4** as an orange solid. Mp 221-223 °C; ¹H NMR (600 MHz, CDCl₃): δ = 8.03 (d, *J* = 8.5 Hz, 4 H), 7.99 (d, *J* = 8.5 Hz, 4 H), 7.35 (d, *J* = 8.8 Hz, 4 H), 6.94 (d, *J* = 8.8 Hz, 4 H), 6.73 (s, 2 H), 5.22 (s, 4 H), 1.31 (s, 18 H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ = 169.3 (Cq), 161.8 (Cq), 155.5 (Cq), 153.3 (Cq), 144.7 (Cq), 131.4 (Cq), 127.7 (CH), 126.5 (CH), 123.6 (CH), 114.2 (CH), 101.4 (CH), 61.6 (CH₂), 34.2 (Cq), 31.5 (CH₃) ppm; HRMS *m*/*z* calcd for C₄₀H₄₁N₄O₄ [M + H⁺] 641.3122; found 641.3121.

4,4'-Diazidoazobenzene 9. 4,4'-Diaminoazobenzene 7^{S3} (1.89 g, 8.90 mmol) was dissolved in water (39 mL) first and then HCl_(aq) (100 mL) and NaNO₂ (3.07 g, 44.52 mmol) was added slowly at 0 °C with stir for 2 hr. After that, NaNO₂ (3.07 g, 44.52 mmol) solubilized in water (39 ml) was added dropwise, and then stirred for 1.5 hr. The product was precipitated with some ice, collected by filtration and washed three times with 100 mL cold water and dried under room temperature to give an orange powder **9** (2.11 g, 90 %). $R_f = 0.90$ (ethyl acetate/*n*-hexane = 2/1); mp 136-138 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.93$ (d, J = 8.0 Hz, 4 H), 7.16 (d, J = 8.0 Hz, 4 H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.7$ (Cq), 142.6 (Cq), 124.6 (CH), 119.6 (CH) ppm; EI-MS *m/z* for 264.1 [M⁺], 236.1, 208.1.

4,4'-Dioximeazobenzene 10. To a suspension of **8**^{S4} in EtOH (103 mL) and H₂O (103 mL) was added hydroxylamine hydrochloride (0.34 g, 4.94 mmol) at 0 °C. Then NaOH (0.40 g, 9.87 mmol) was added with stirring. Then the solution was stirred at room temperature for 1 h, acidified with 1 N HCl_(aq) to pH = 7 at 0 °C, and extracted with diethyl ether. The organic layer was dried over MgSO₄, and concentrated under vacuum to give product **10** (0.53 g, 96 %). $R_f = 0.48$ (ethyl acetate/*n*-hexane = 1/1); mp 252-254 °C; ¹H NMR (400 MHz, *d*₆-Acetone): $\delta = 11.02$ (s, 2 H), 8.23 (s, 4 H), 7.96 (d, *J* = 8.5 Hz, 4 H), 7.83 (d, *J* = 8.5 Hz, 2 H) ppm. ¹³C NMR (100 MHz, *d*₆-Acetone): $\delta = 152.8$ (Cq), 147.7 (CH), 136.3 (Cq), 127.5 (CH), 123.1 (CH) ppm; HRMS *m*/*z* calcd for C₁₄H₁₃N₄O₂ [M + H⁺] 269.1033; found 269.1037.

4,4'-di(hydroximoyl bromide)azobenzene 11. To a solution of 10 (0.41 g, 1.52 mmol) in DMF (3.04 mL) was added *N*-bromosuccinimide (0.68 g, 3.80 mmol) in small portions while keeping the temperature at 0 °C. The mixture was stirred at 0 °C for 1 h, poured into water, and extracted with dichloromethane (20 mL × 2). The organic layer was washed with brine and dried over MgSO₄, and the solvent was removed to give product 11 (0.42 g, 65%). $R_f = 0.58$ (ethyl acetate/*n*-hexane = 1/1); ¹H NMR (400 MHz, CDCl₃): δ_H 7.98 (d, J = 8.6 Hz, 4 H), 7.69 (d, J = 8.6 Hz, 4 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ_C 152.8 (Cq), 133.1 (CH), 123.8 (CH), 116.7 (Cq) ppm.

Solvent	1	2	3	4	
CH ₂ Cl ₂	Sª	S	I	S	
CHCl₃	S	S	Р	S	
1,2-dichloroethane	S	Р	I	Р	
DMSO	S	S	G (5.0 w/v%)	Р	
DMF	S	S	G (5.0 w/v%)	Р	
THF	S	S	Р	S	
benzene	P ^b	Р	Р	Р	
toluene	S	Р	Р	Р	
<i>p</i> -Xylene	G ^c (3.3 w/v%) ^d 48 ^o C ^g	Р	Р	Р	
<i>p</i> -dioxane	S	S	Р	S	
pyridine	S	S	PG ^f	Р	
ethyl acetate	S	S	I	Р	
acetone	S	S	I	PG	
acetonitrile	G (1.4 w/v%) ^d 40 °C ^g	Р	I	Р	
<i>n</i> -hexane	l ^e	I	I	I	
MeOH	G (0.15 w/v%) ^d 65 °C ^g	I	I	I	
EtOH	G (0.16 w/v%) ^d 78 °C ^g	I	I	I	
<i>n</i> -propanol	G (0.45 w/v%) ^d 78 °C ^g	Р	I	Ι	
Isopropanol	G (0.19 w/v%) ^d 75 °C ^g	I	I	Ι	
<i>n</i> -butanol	G (0.71 w/v%) ^d 70 °C ^g	Р	I	Р	
<i>t</i> -butanol	G (0.53 w/v%) ^d 63 °C ^g	I	I	Ι	

Table S1. Gelation properties of azobenzene derivatives 1-4 in various organic solvents.

^a S = solution; ^b P = Precipitate; ^c G = gel; ^d w/v% = the minimum amount of sample (g) which forms gel in 100 mL of solvent; ^e I = Insoluble; ^f PG = Partial gel; ^g Tg = sol-gel transition temperature ($^{\circ}$ C) at minimum gelation concentration (MGC).

Fig. S1. DLS diagram of a solution of E-1 (1 mM) in acetonitrile at 25 °C.

Fig. S3. The ¹H NMR spectra of *E*-1 (1 mM, CDCl₃) (a) before and after irradiation of the solution (a) by 365 nm light for (b) 10 min, (c) 20 min, (d) 30 min, and (e) irradiating the sample (d) with a visible light (> 450 nm) for 1 h.

Van der Walls interaction

Fig. S4. X-ray single crystal structures of *E*-**1** with (a) the intermolecular distance between the two azo groups of *E*-**1** and its molecular length, (b) the dipolar interactions of two *E*-**1** wiht an interplanar distance of 3.963 Å between the two bistriazolylazobenzene moieties, and (c) evidence of the Van der Walls interaction between the upper-rims of two *E*-**1** molecules.

Fig. S5. Variable Temperature $(333 \rightarrow 273 \text{ K})$ UV-Vis spectra of *E*-1 (10^{-5} M) in (a) acetonitrile and (b) *para*-xylene.

Fig. S6. X-ray powder diffraction (XRD) of *E*-1 in (a) acetonitrile and (b) *para*-xylene.

Fig. S7. Variable temperature ¹H NMR spectra (298 to 338 K) of a sample of compound **1** (1 mM, CD₃CN) that was irradiated with UV for 20 min and its respective *E*-**1**/*Z*-**1** ratios at different temperatures: (a) 1/4 at 298 K, (b) 1/3 at 308K, (c) 2/5 at 318K, (d) 1/2 at 328K, and (e) 4/3 at 338K.

Fig. S8. (a) IR spectrum of compound **1** (1 mM in CH₃CN) and (b) its respective IR spectrum after UV irradiation for 1 h. Spectra (c) and (d) are expanded plots of spectra (a) and (b) which showed that the *trans* N=N stretching at 1480 cm⁻¹ decreased by UV irradiation.

Fig. S9. (a) IR spectrum of compound **2** (1 mM in $CH_2Cl_2/MeOH = 1/5$) and (b) its respective IR spectrum after UV irradiation for 1 h. Spectra (c) and (d) are expanded plots of spectra (a) and (b) which showed that the *trans* N=N stretching at 1480 cm⁻¹ decreased by UV irradiation.

Fig. S10. The UV/Vis spectra of compound 1 (10 μ M, CH₃CN) (a) irradiated by UV for different duration, (b) after further irradiation of sample (a) for different duration, and (c) the changes in absorbance of 1 with ten different UV/Vis irradiation cycles. Initially, the absorbance of compound 1 at 345 nm dropped from 0.258 to 0.236, which then stayed almost constant (A = 0.235) for the ten cycles.

Fig. S11 SEM images of samples of molecule $1 (10^{-3} \text{ M}, \text{CH}_3\text{CN})$ after UV light (365 nm) irradiation for 30 min. The white bars on the lower right of Figs. (a)–(c) are 100 nm.

Fig. S12 SEM images of samples of molecule **1** (10^{-4} M, CH₃CN) after UV light (365 nm) irradiation for 30 min. The white bars on the lower right of Figs. (a)–(c) are10 μ m.

Fig. S13 SEM images of molecule **2** (10^{-3} M, CH₂Cl₂/MeOH (v/v = 1/5)), after UV light (365 nm) irradiation for 30 min. The white bars on the lower right of Figs. (a)–(b) are100 µm.

Fig. S14 SEM images of molecule **2** (10^{-4} M, CH₂Cl₂/MeOH (v/v = 1/5)), after UV light (365 nm) irradiation for 30 min. The white bars on the lower right of Fig. (a) was 10 µm and in Figs. (b) was 1 µm.

Fig. S15. SEM images of molecule 1 (10^{-3} M, CH₃CN). The white bars on the lower right of Fig. (a) was 1 µm and in Fig. (b) was 100 nm.

Fig. S16 SEM images of molecule **1** (10^{-4} M, CH₃CN). The white bars on the lower right of Figs. (a) and (c) were 10 µm, Fig. (b) was 1 µm, and Fig. (d) was 100 nm.

Fig. S17 SEM images of molecule **2** (10^{-3} M in CH₂Cl₂/MeOH (v/v = 1/5)). The white bars on the lower right of Figs. (a) and (b) were 1 μ m.

Fig. S18 SEM images of molecule **2** (10^{-4} M in CH₂Cl₂/MeOH (v/v = 1/5)). The white bars on the lower right of Figs. (a) and (b) were 1 μ m.

Fig. S19. ¹H NMR (600 MHz, CDCl₃) spectrum of *E*-1.

Fig. S20. 13 C NMR and DEPT spectra (150 MHz, CDCl₃) of *E*-1.

Fig. S21. ¹H NMR (600 MHz, CDCl₃) spectrum of molecule **2**.

Fig. S22. ¹³C NMR and DEPT spectra (150 MHz, CDCl₃) of molecule 2.

Fig. S23. ¹H NMR (400 MHz, CDCl₃) spectrum of control molecule **3**.

Fig. S24. ¹³C NMR and DEPT spectra (100 MHz, CDCl₃) of control molecule 3.

Fig. S25. ¹H NMR (400 MHz, CDCl₃) spectrum of control molecule **4**.

Fig. S26. ¹³C NMR and DEPT spectra (100 MHz, CDCl₃) of control molecule 4.

Fig. S27. ¹H NMR (400 MHz, CDCl₃) spectrum of compound **9**.

Fig. S28. ¹³C NMR and DEPT spectra (100 MHz, CDCl₃) of of compound 9.

Fig. S29. ¹H NMR (400 MHz, CDCl₃) spectrum of compound **10**.

Fig. S30. ¹³C NMR and DEPT spectra (100 MHz, CDCl₃) of of compound 10.

Fig. S31. ¹H NMR (400 MHz, CDCl₃) spectrum of compound **11**.

Fig. S32. ¹³C NMR and DEPT spectra (100 MHz, CDCl₃) of of compound 11.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) ic16786_sq

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: ic16786_sq

Bond precision:	C-C = 0.0047 A	Wavelength=1.54178			
Cell:	a=36.5263(18) alpha=90	b=14.3181 beta=110.4	(3) 445(5)	c=26.3568(11) gamma=90	
Temperature:	200 K				
Volume	Calculated 12916.0(10)		Reported 12916.0(1	0)	
Space group					
Hall group	-C 2yC	Γ.	-C 2yc		
Moiety formula	solvent]	[+	?		
Sum formula	C106 H124 N8 O8 solvent]	[+	C106 H124	N8 O8	
Mr	1638.13		1638.12		
Dx,g cm-3	0.842		0.842		
Z	4		4		
Mu (mm-1)	0.416		0.416		
F000	3520.0		3520.0		
F000′	3529.69				
h,k,lmax	43,17,31		43,17,31		
Nref	11770		11734		
Tmin,Tmax	0.905,0.940		0.835,1.0	00	
Tmin'	0.901				
Correction method= # Reported T Limits: Tmin=0.835 Tmax=1.000 AbsCorr = MULTI-SCAN					
Data completeness= 0.997 Theta(max) = 67.986					
R(reflections) =	0.0719(8605)	wR2(ref]	lections)=	0.2248(11734)	
S = 1.331	Npar=	641			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

➔ Alert level C

PLAT213_ALERT_2_C Atom C47 ha	s ADP max/min Ratio	3.5	prolat
PLAT220_ALERT_2_C Non-Solvent Resd 1 C	Ueq(max)/Ueq(min) Range	4.7	Ratio
PLAT222_ALERT_3_C Non-Solvent Resd 1 H	Uiso(max)/Uiso(min) Range	5.3	Ratio
PLAT234_ALERT_4_C Large Hirshfeld Differe	nce C46 C48	0.16	Ang.
PLAT234_ALERT_4_C Large Hirshfeld Differe	nce C46 C49	0.17	Ang.
PLAT340_ALERT_3_C Low Bond Precision on	C-C Bonds 0.	00466	Ang.
PLAT790_ALERT_4_C Centre of Gravity not W	ithin Unit Cell: Resd. #	1	Note
C106 H124 N8 O8			
PLAT906_ALERT_3_C Large K value in the An	alysis of Variance	6.504	Check
PLAT911_ALERT_3_C Missing # FCF Refl Betw	een THmin & STh/L= 0.600	30	Report

. G

PLAT002_ALERT_2_G Number of Dista	ance or Angle Restraints on AtSite	23	Note
PLAT003_ALERT_2_G Number of Uiso	or Uij Restrained non-H Atoms	8	Report
PLAT171_ALERT_4_G The CIF-Embedde	ed .res File Contains EADP Records	3	Report
PLAT172_ALERT_4_G The CIF-Embedde	ed .res File Contains DFIX Records	6	Report
PLAT173_ALERT_4_G The CIF-Embedde	ed .res File Contains DANG Records	1	Report
PLAT175_ALERT_4_G The CIF-Embedde	ed .res File Contains SAME Records	1	Report
PLAT178_ALERT_4_G The CIF-Embedde	ed .res File Contains SIMU Records	2	Report
PLAT301_ALERT_3_G Main Residue D	Disorder (Resd 1)	19%	Note
PLAT606_ALERT_4_G VERY LARGE Solv	vent Accessible VOID(S) in Structure	1	Info
PLAT773_ALERT_2_G Check long C-C	Bond in CIF: C46' C47' .	1.71	Ang.
PLAT860_ALERT_3_G Number of Least	t-Squares Restraints	91	Note
PLAT869_ALERT_4_G ALERTS Related	to the use of SQUEEZE Suppressed	1	Info
PLAT870_ALERT_4_G ALERTS Related	to Twinning Effects Suppressed	1	Info
PLAT909_ALERT_3_G Percentage of I	I>2sig(I) Data at Theta(Max) Still	53%	Note
PLAT910_ALERT_3_G Missing # of FC	CF Reflection(s) Below Theta(Min).	3	Note
PLAT912_ALERT_4_G Missing # of FC	CF Reflections Above STh/L= 0.600	4	Note
PLAT931_ALERT_5_G Found Twin Law	(0 0 1)[] Estimated BASF	0.18	Check
PLAT933_ALERT_2_G Number of OMIT	Records in Embedded .res File	17	Note

ALERT level A = Most likely a serious problem - resolve or explain
ALERT level B = A potentially serious problem, consider carefully
ALERT level C = Check. Ensure it is not caused by an omission or oversight
ALERT level G = General information/check it is not something unexpected
ALERT type 1 CIF construction/syntax error, inconsistent or missing data
ALERT type 2 Indicator that the structure model may be wrong or deficient
ALERT type 3 Indicator that the structure quality may be low
ALERT type 4 Improvement, methodology, query or suggestion
ALERT type 5 Informative message, check

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PLAT213_ic16786_sq
;
PROBLEM: Atom C47 has ADP max/min Ratio ..... 3.5 prolat
RESPONSE: ...
```

_vrf_PLAT220_ic16786_sq ; PROBLEM: Non-Solvent Resd 1 C Ueq(max)/Ueq(min) Range 4.7 Ratio RESPONSE: ... ; _vrf_PLAT222_ic16786_sq PROBLEM: Non-Solvent Resd 1 H Uiso(max)/Uiso(min) Range 5.3 Ratio RESPONSE: ... ; _vrf_PLAT234_ic16786_sq ; PROBLEM: Large Hirshfeld Difference C46 -- C48 .. 0.16 Ang. RESPONSE: ... ; _vrf_PLAT340_ic16786_sq ; PROBLEM: Low Bond Precision on C-C Bonds 0.00466 Ang. RESPONSE: ... ; _vrf_PLAT790_ic16786_sq PROBLEM: Centre of Gravity not Within Unit Cell: Resd. # 1 Note RESPONSE: ... ; _vrf_PLAT906_ic16786_sq ; PROBLEM: Large K value in the Analysis of Variance 6.504 Check RESPONSE: ... ; _vrf_PLAT911_ic16786_sq PROBLEM: Missing # FCF Refl Between THmin & STh/L= 0.600 30 Report RESPONSE: ... : # end Validation Reply Form

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 13/08/2017; check.def file version of 27/07/2017

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: ic16676

Bond precision:	C-C = 0.0163 A	1	Wavelength=(0.71073
Cell:	a=36.231(3)	b=14.2891((9)	c=26.170(3)
	alpha=90	beta=109.6	536(11)	gamma=90
Temperature:	200 K			
	Calculated		Reported	
Volume	12761(2)		12761(2)	
Space group	C 2/C		C 2/c	
Hall group	-C 2yc		-C 2yc	
Moiety formula	C107.13 H121.38 4(C H Cl3), 0.8	N4 O10, 74(C H3)	?	
Sum formula	C112 H128 Cl12 H	N4 010	C112 H128 (Cl12 N4 O10
Mr	2115.58		2115.58	
Dx,g cm-3	1.101		1.101	
Z	4		4	
Mu (mm-1)	0.311		0.311	
F000	4448.0		4448.0	
F000′	4456.66			
h,k,lmax	43,16,31		43,16,31	
Nref	11235		18821	
Tmin,Tmax	0.946,0.969		0.908,1.000	0
Tmin'	0.925			
Correction metho AbsCorr = MULTI-	od= # Reported T -SCAN	Limits: T	min=0.908 Tm	nax=1.000
Data completenes	ss= 1.675	Theta(m	ax) = 24.999	
R(reflections) =	0.1561(7060)	wR2(ref	lections) = (0.3969(18821)
S = 1.784	Npar=	= 785		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

🎈 Alert level B

PLAT026_ALERT_3_B Ratio Observed / Unique Reflections (too) Low	38	010
PLAT082_ALERT_2_B High R1 Value	0.16	Report
PLAT084_ALERT_3_B High wR2 Value (i.e. > 0.25)	0.40	Report
PLAT340_ALERT_3_B Low Bond Precision on C-C Bonds	0.01631	Ang.

Alert level C

PLAT094_ALERT_2_C	Ratio of Maximum / Mini	mum Residual 1	Density		2.12	Report
PLAT230_ALERT_2_C	Hirshfeld Test Diff for	C28	C29		5.2	s.u.
PLAT234_ALERT_4_C	Large Hirshfeld Differe	nce N1	C1		0.18	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Differe	nce C4	C5		0.20	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Differe	nce C5	C6		0.20	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Differe	nce C11	C12		0.18	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Differe	nce C20	C21		0.21	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Differe	nce C27	C28		0.19	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Differe	nce C33	C34		0.24	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Differe	nce C34	C51		0.21	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Differe	nce C39	C40		0.18	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Differe	nce C47	C48		0.21	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Differe	nce C47	C49′		0.17	Ang.
PLAT241_ALERT_2_C	High 'MainMol' Ueq as	Compared to 1	Neighbors	of	C28	Check
PLAT241_ALERT_2_C	High 'MainMol' Ueq as	Compared to 1	Neighbors	of	C31	Check
PLAT241_ALERT_2_C	High 'MainMol' Ueq as	Compared to 1	Neighbors	of	C33	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as	Compared to 1	Neighbors	of	C9	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as	Compared to 1	Neighbors	of	C29	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as	Compared to 1	Neighbors	of	C39	Check
PLAT334_ALERT_2_C	Small Average Benzene	C-C Dist. C25	-C30		1.37	Ang.
PLAT413_ALERT_2_C	Short Inter XH3 XHn	H21A	H46F		2.12	Ang.
PLAT414_ALERT_2_C	Short Intra D-HH-X	H4	H24A		1.96	Ang.
PLAT416_ALERT_2_C	Short Intra D-HH-D	НЗ	H4		1.93	Ang.
PLAT601_ALERT_2_C	Structure Contains Solv	ent Accessible	e VOIDS of		48	Ang3
PLAT790_ALERT_4_C	Centre of Gravity not W	ithin Unit Ce	ll: Resd.	#	1	Note
C107	.13 H121.38 N4 O10					

Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 10 Note PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 39 Report PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 1 Report PLAT172 ALERT 4_G The CIF-Embedded .res File Contains DFIX Records 7 Report PLAT177 ALERT 4 G The CIF-Embedded .res File Contains DELU Records 1 Report PLAT178 ALERT 4 G The CIF-Embedded .res File Contains SIMU Records 3 Report PLAT301 ALERT 3 G Main Residue Disorder(Resd 1)... 14% Note PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 2).. 100% Note PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 3).. 100% Note PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 100% Note 4).. PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 5)... 100% Note PLAT302 ALERT 4 G Anion/Solvent/Minor-Residue Disorder (Resd 6).. 100% Note PLAT304 ALERT 4 G Non-Integer Number of Atoms (242.50) in Resd. # 1 Check PLAT304_ALERT_4_G Non-Integer Number of Atoms (2.63) in Resd. # 2 Check PLAT304_ALERT_4_G Non-Integer Number of Atoms (2.37) in Resd. # PLAT304_ALERT_4_G Non-Integer Number of Atoms (1.55) in Resd. # 3 Check 4 Check 5 Check PLAT304 ALERT 4 G Non-Integer Number of Atoms (1.75) in Resd. # 6 Check PLAT395 ALERT 2 G Deviating X-O-Y Angle from 120 Deg for 01 107.6 Degree

PLAT432_ALERT_2_G Short Inter X...Y Contact C20.. C46'2.55 Ang.PLAT432_ALERT_2_G Short Inter X...Y Contact C21.. C46'2.95 Ang.PLAT432_ALERT_2_G Short Inter X...Y Contact C43.. C46'1.81 Ang.PLAT773_ALERT_2_G Check long C-C Bond in CIF: C43-- C46'1.81 Ang.PLAT860_ALERT_3_G Number of Least-Squares Restraints434 NotePLAT870_ALERT_4_G ALERTS Related to Twinning Effects Suppressed! Info

0 ALERT level A = Most likely a serious problem - resolve or explain
4 ALERT level B = A potentially serious problem, consider carefully
25 ALERT level C = Check. Ensure it is not caused by an omission or oversight
25 ALERT level G = General information/check it is not something unexpected
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
21 ALERT type 2 Indicator that the structure model may be wrong or deficient
5 ALERT type 3 Indicator that the structure quality may be low
27 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 13/08/2017; check.def file version of 27/07/2017

