Supporting Information

for

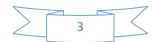
Cu/Pd Cooperatively Catalyzed Tandem Intramolecular anti-

Markovnikov Hydroarylation of Unsaturated Amides: Facile

Construction of 3,4-Dihydroquinolinones via

Borylation/Intramolecular C(sp³)-C(sp²) Cross Coupling

Table of Contents


1. General Information
2. Optimization of Experimental Conditions
3. General Process for the Synthesis of 2a and 6a
4. General Process for the Synthesis of 2m and 2n on 1.5 mmol7
5. Characterization Data for Products
6. NMR Spectroscopic Data15
7. References

1. General Information

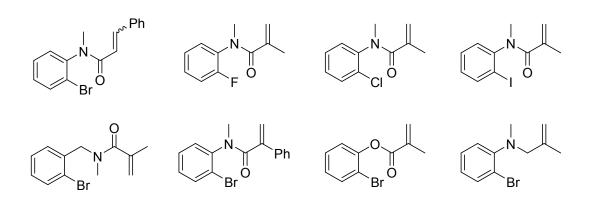
All reagents and solvents were purchased from Adamas Reagent, energy chemical company, J&K Scientific Ltd, Bide Pharmatech Ltd and Tansoole and used without further purification. Unless otherwise stated, all experiments were conducted in a Schlenk tube under N_2 atmosphere which had been oven-dried. All reagents were dry. Reactions were monitored by TLC or GC-MS analysis. Flash column chromatography was performed over silica gel (200-300 mesh).

¹H NMR (in CDCl₃ or DMSO-d₆), ¹⁹F NMR (in CDCl₃) and ¹³C NMR spectra (in CDCl₃) were recorded at ambient temperature using 500 MHz spectrometers (500 MHz ¹H, 125 MHz ¹³C, 471 MHz ¹⁹F). The data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. High-resolution mass spectra data were obtained by peak matching.

2. Optimization of Experimental Conditions

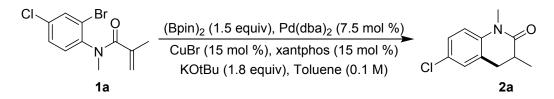
CI Br O	(Bpin) ₂ (1.5 equiv), Pd(dba) ₂ (10 mol %) CuBr (10 mol %), xantphos (10 mol %) toluene(dry), N ₂ , 110 °C, 12 h	CI NO	Cl Bpin
1a , 0.2 mmol		2a	3a
entry	base (1.5 equiv)	yield 2a	(%) 3a
1	NaO ^t Bu		17
2	LiO ^t Bu		23
3	Cs ₂ CO ₃	41	5
4	K ₂ CO ₃	39	4
5	Na ₂ CO ₃	43	3
6	DBU	31	10
7	NaHCO ₃		28
8	K ₃ PO ₄		39
9	K ₂ HPO ₄	36	22
10	Li ₂ CO ₃	31	5
11	NaOAc		37
12	NaOMe		36

Reaction conditions: all reactions were performed on 0.2 mmol scale with respect to 1a; yields were determined by GC by utilizing dodecane as internal standard. The reaction mixture contained approximately 0.3% w/w water.

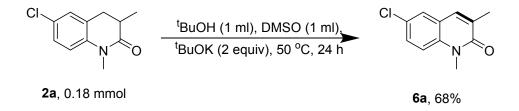

The method to determine the water contamination:

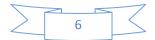
Instrument: Automatic Karl Fischer moisture analyzer MKC-520D, Electronic Balance AT261/1994392H2054. Method: GB/T 6283-2008.

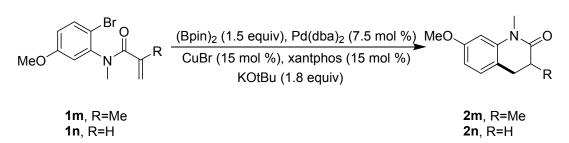
Reaction Mixture	Before Reaction	Reaction Over
Water Contamination (w/w)	0.0041	0.0024



Some incompatible substrates




3. General Process for the Synthesis of 2a and 6a



To a 25 mL Schlenk tube, under a nitrogen atmosphere, was added 0.20 mmol of unsaturated amide (1) followed by 0.30 mmol of (Bpin)₂ (1.5 equiv), 0.015 mmol of Pd(dba)₂ (0.075 equiv), 0.03 mmol of CuBr (0.15 equiv), 0.03 mmol of xantphos (0.15 equiv), 0.36 mmol of KO^tBu (1.8 equiv), in toluene (2 mL). The Schlenk tube was sealed and stirred at 110 °C for further 12 h. Then, the reaction mixture was washed by water, and extracted with EA. Then the organic layers were dried with Na₂SO₄, and concentrated to dryness. The crude product was purified by silica gel chromatography (silica gel, PE: EA = 10:1 - 6:1, v/v) to afford the product **2** (31.7 mg, 75%) as a light yellow oil.

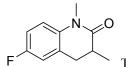
To a 25 mL tube was added 0.18 mmol of 6-chloro-1,3-dimethyl-3,4-dihydroquinolin-2(1H)one (2a) and 0.36 mmol of KO^tBu (2.0 equiv), in DMSO (1 mL) and tert butanol (1mL). The tube was sealed and stirred at 50 °C for further 24 h under air. Then, the reaction mixture was extracted with EA/H₂O. Then the organic layers were dried with Na₂SO₄, and concentrated to dryness. The crude product was purified by silica gel chromatography (silica gel, PE: EA = 10:1 - 6:1, v/v) to afford the product 6a (25.5)68%) light yellow solid. mg, as а

4. General Process for the Synthesis of 2m and 2n on 1.5 mmol


To a 25 mL Schlenk tube, under a nitrogen atmosphere, was added 1.50 mmol of unsaturated amide (**1m** or **1n**) followed by 2.3 mmol of (Bpin)₂ (1.5 equiv), 0.225 mmol of CuBr (0.15 equiv), 0.225 mmol of xantphos (0.15 equiv), 2.7 mmol of KO'Bu (1.8 equiv), in toluene (8 mL). The Schlenk tube was sealed and stirred at 110 °C for further 10 min, subsequently, 0.113 mmol of Pd(dba)₂ (0.075 equiv) in 2 ml toluene was added with syringe, and stirred overnight at the same temperature. Then, the reaction mixture was cooled to room temperature, washed by water, and extracted with EA. Then the organic layers were dried with Na₂SO₄, and concentrated to dryness. The crude product was purified by silica gel chromatography (silica gel, PE: EA = 10:1 - 6:1, v/v) to afford the product (**2m**, 191 mg, 60 %; **2n**, 205 mg, 70%) as a light yellow solid.

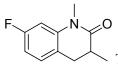
Caution:	The	reactants	were	added	by	order.
----------	-----	-----------	------	-------	----	--------

5. Characterization Data for Products


6-Chloro-1,3-dimethyl-3,4-dihydroquinolin-2(1*H*)-one (2a)^[1]

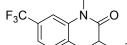
The reaction was performed following the general procedure. The residue

was purified by flash column chromatograph (silica gel, PE: EA =10:1 - 6:1, v/v) to give the product as a yellow oil (31.7 mg, 75%).¹H NMR (500 MHz, DMSO) δ 7.31 – 7.27 (m, 2H), 7.09 – 7.06 (m, 1H), 3.23 (s, 3H), 2.92 (dd, *J* = 15.3, 5.4 Hz, 1H), 2.64 (dd, *J* = 15.2, 11.8 Hz, 1H), 2.55 (dt, *J* = 12.6, 6.4 Hz, 1H), 1.11 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.8, 139.0, 127.8, 127.7, 127.4, 127.2, 115.6, 35.2, 31.0, 29.9, 15.6.


6-Fluoro-1,3-dimethyl-3,4-dihydroquinolin-2(1*H*)-one (2b)

The reaction was performed following the general procedure. The residue

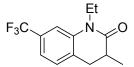
was purified by flash column chromatograph (silica gel, PE: EA =10:1 - 6:1, v/v) to give the product as a yellow oil (34.7 mg, 90%). ¹H NMR (500 MHz, DMSO) δ 7.12 - 7.05 (m, 3H), 3.23 (s, 3H), 2.91 (dd, *J* = 15.4, 5.5 Hz, 1H), 2.64 (dd, *J* = 15.3, 11.7 Hz, 1H), 2.53 (dt, *J* = 14.8, 4.4 Hz, 1H), 1.11 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.7, 158.3 (d, *J* = 240.9 Hz), 136.6 (d, *J* = 2.5 Hz), 127.7 (d, *J* = 7.6 Hz), 115.5 (d, *J* = 8.2 Hz), 114.9 (d, *J* = 22.8 Hz), 113.5 (d, *J* = 22.1 Hz), 35.2, 33.2, 30.0, 15.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -121.0. HRMS (ESI, m/z) calcd for C₁₁H₁₃FNO [M+H] ⁺: 194.0976; found: 194.0978.


7-Fluoro-1,3-dimethyl-3,4-dihydroquinolin-2(1*H*)-one (2c)

The reaction was performed following the general procedure. The residue was

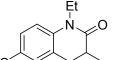
purified by flash column chromatograph (silica gel, PE: EA =10:1 - 6:1, v/v) to give the product as a yellow oil (23.5 mg, 61%).¹H NMR (500 MHz, DMSO) δ 7.21 (dd, *J* = 7.8, 6.9 Hz, 1H), 6.96 (dd, *J* = 11.3, 2.5 Hz, 1H), 6.81 (td, *J* = 8.5, 2.5 Hz, 1H), 3.23 (s, 3H), 2.90 (dd, *J* = 14.5, 4.9 Hz, 1H), 2.56 (ddd, *J* = 19.1, 13.1, 9.2 Hz, 2H), 1.11 (d, *J* = 6.6 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 173.0, 162.2 (d, *J* = 241.6 Hz), 141.7 (d, *J* = 10.1 Hz), 128.7 (d, *J* = 9.3 Hz), 121.1 (d, *J* = 3.1 Hz), 108.7 (d, *J* = 21.0 Hz), 102.5 (d, *J* = 26.5 Hz), 35.5, 32.6, 29.8, 15.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -114.2. HRMS (ESI, m/z) calcd for C₁₁H₁₃FNO [M+H] +: 194.0976; found: 194.0976.

1,3-Dimethyl-7-(trifluoromethyl)-3,4-dihydroquinolin-2(1*H*)-one (2d)

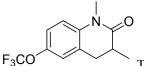


The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, PE: EA =10:1 - 6:1, v/v) to give the

product as a yellow solid (34.1 mg, 70%, mp: 78.4-79.6 °C)). ¹H NMR (500 MHz, DMSO) δ 7.44 (d, *J* = 7.7 Hz, 1H), 7.36 (d, *J* = 7.8 Hz, 1H), 7.31 (s, 1H), 3.30 (s, 3H), 3.07 – 2.99 (m, 1H), 2.77 – 2.69 (m, 1H), 2.63 – 2.55 (m, 1H), 1.13 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.8, 140.9, 129.9 (d, *J* = 32.3 Hz), 129.5 (d, *J* = 0.9 Hz), 128.2, 124.0 (d, *J* = 270.5 Hz), 119.4 (q, *J* = 3.7 Hz), 111.1 (q, *J* = 3.7 Hz), 35.1, 33.1, 29.9, 15.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.5. HRMS (ESI, m/z) calcd for C₁₂H₁₃F₃NO [M+H] ⁺: 244.0944; found: 244.0944.


1-Ethyl-3-methyl-7-(trifluoromethyl)-3,4-dihydroquinolin-2(1H)-one (2e)

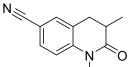
The reaction was performed following the general procedure. The residue


was purified by flash column chromatograph (silica gel, PE: EA =10:1 - 6:1, v/v) to give the product as a yellow solid (31.9 mg, 62%, mp: 52.9-53.3 °C).¹H NMR (500 MHz, DMSO) δ 7.59 (d, *J* = 7.0 Hz, 2H), 7.29 (d, *J* = 9.2 Hz, 1H), 4.02 - 3.84 (m, 2H), 3.02 (dd, *J* = 15.4, 5.5 Hz, 1H), 2.70 (dd, *J* = 15.3, 12.0 Hz, 1H), 2.63 - 2.55 (m, 1H), 1.12 (dt, *J* = 7.1, 3.7 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 172.2, 139.9, 130.1, 129.8 (d, *J* = 7.1 Hz), 128.5, 124.0 (d, *J* = 271.3 Hz), 119.2 (q, *J* = 3.9 Hz), 111.0 (q, *J* = 3.9 Hz), 37.7, 35.1, 33.3, 15.5, 12.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.5. HRMS (ESI, m/z) calcd for C₁₃H₁₅F₃NO [M+H] +: 258.1100; found: 258.1101.

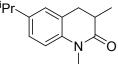
1-Ethyl-3-methyl-6-(trifluoromethyl)-3,4-dihydroquinolin-2(1H)-one (2f)

 F_3C The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, PE: EA =10:1 - 6:1, v/v) to give the product as a light yellow solid (30.8 mg, 60%, mp: 49.1-49.7 °C). ¹H NMR (500 MHz, DMSO) δ 7.59 (d, J = 5.7 Hz, 2H), 7.31 – 7.27 (m, 1H), 4.02 – 3.83 (m, 2H), 3.02 (dd, J = 15.4, 5.4 Hz, 1H), 2.70 (dd, J = 15.2, 12.1 Hz, 1H), 2.64 – 2.55 (m, 1H), 1.12 (dt, J = 7.0, 3.7 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 172.4, 142.2, 126.3, δ 125.2, 125.1 (q, J = 3.6 Hz), 124.7 (q, J = 3.9 Hz), 124.0 (dd, J = 111.6, 78.8 Hz), 114.2, 37.7, 35.1, 33.2, 15.5, 12.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -61.9. HRMS (ESI, m/z) calcd for C₁₃H₁₅F₃NO [M+H] ⁺: 258.1100; found: 258.1103.

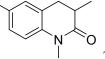
1,3-Dimethyl-6-(trifluoromethoxy)-3,4-dihydroquinolin-2(1H)-one (2g)



The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, PE: EA =10:1 - 6:1, v/v) to give the product as a light yellow oil (38.3 mg, 74%).¹H NMR (500 MHz, DMSO) δ 7.25 (d, *J* = 9.1 Hz, 2H), 7.15 (d, *J* = 8.5 Hz, 1H), 3.26 (s, 3H), 2.96 (dd, *J* = 15.4, 5.5 Hz, 1H), 2.68 (dd, *J* = 15.3, 12.1 Hz, 1H), 2.61 – 2.52 (m, 1H), 1.12 (d, *J* = 6.8 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 172.8, 144.1 (dd, *J* = 3.7, 1.9 Hz), 139.1, 127.4, 120.5 (q, *J* = 255.0 Hz), 119.9, 117.4, 115.3, 35.1, 33.1,

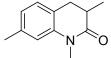

30.0, 15.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -58.2. HRMS (ESI, m/z) calcd for C₁₂H₁₃F₃NO₂ [M+H] +: 260.0893; found: 260.0893.

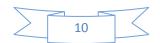
1,3-Dimethyl-2-oxo-1,2,3,4-tetrahydroquinoline-6-carbonitrile (2h)


The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, PE: EA =10:1 - 5:1, v/v) to give the product as a light yellow oil (13.5 mg, 32%). ¹H NMR (500 MHz, DMSO) δ 7.74 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.69 (s, 1H), 7.23 (d, *J* = 8.5 Hz, 1H), 3.27 (s, 3H), 2.98 (dd, *J* = 15.3, 5.4 Hz, 1H), 2.70 (dd, *J* = 15.2, 12.1 Hz, 1H), 2.65 - 2.56 (m, 1H), 1.13 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.8, 144.1, 132.0, 131.2, 126.6, 118.8, 114.8, 105.7, 35.0, 32.8, 29.9, 15.6. HRMS (EI, m/z) calcd for C₁₂H₁₂N₂O [M+H] ⁺: 200.0950; found: 200.0956.

6-Isopropyl-1,3-dimethyl-3,4-dihydroquinolin-2(1*H*)-one (2i)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, PE: EA =10:1 - 5:1, v/v) to give the product as a light yellow oil (40 mg, 92%). ¹H NMR (500 MHz, CDCl₃) δ 7.11 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.02 (d, *J* = 1.6 Hz, 1H), 6.89 (d, *J* = 8.3 Hz, 1H), 3.34 (s, 3H), 2.93 – 2.82 (m, 2H), 2.63 (ddt, *J* = 13.5, 11.9, 9.0 Hz, 2H), 1.27 – 1.23 (m, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 173.1, 143.3, 138.2, 125.9, 125.6, 125.0, 114.3, 35.5, 33.4, 33.3, 29.7, 24.02, 24.03, 15.7. HRMS (ESI, m/z) calcd for C₁₄H₂₀NO [M+H] +: 218.1539; found: 218.1540.


1,3,6-Trimethyl-3,4-dihydroquinolin-2(1*H*)-one (2j)^[1]

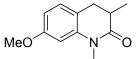

The reaction was performed following the general procedure. The residue was

purified by flash column chromatograph (silica gel, PE: EA =10:1 - 6:1, v/v) to give the product as a light yellow oil (28.2 mg, 74%). ¹H NMR (500 MHz, DMSO) δ 7.05 (d, *J* = 8.2 Hz, 1H), 7.01 (s, 1H), 6.95 (d, *J* = 8.2 Hz, 1H), 3.22 (s, 3H), 2.86 (dd, *J* = 15.0, 5.3 Hz, 1H), 2.59 (dd, *J* = 14.7, 11.8 Hz, 1H), 2.54 - 2.46 (m, 2H), 2.24 (s, 3H), 1.10 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 138.0, 132.1, 128.6, 127.7, 125.5, 114.3, 35.5, 33.3, 29.8, 20.5, 15.7.

1,3,7-Trimethyl-3,4-dihydroquinolin-2(1*H*)-one (2k)

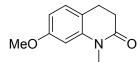
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, PE: EA =10:1 - 6:1, v/v) to give the product as

a light yellow oil (26.1 mg, 70%).¹H NMR (500 MHz, DMSO) δ 7.07 (d, J = 7.5 Hz, 1H), 6.90 (s, 1H), 6.81 (dd, J = 7.5, 0.7 Hz, 1H), 3.24 (s, 3H), 2.85 (dd, J = 14.8, 5.2 Hz, 1H), 2.60 – 2.54 (m, 1H), 2.53 – 2.45 (m, 1H), 2.30 (s, 3H), 1.10 (d, J = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 140.2, 137.1, 127.6, 123.2, 122.7, 115.3, 35.6, 32.9, 29.8, 21.5, 15.7. HRMS (ESI, m/z) calcd for C₁₂H₁₆NO [M+H] ⁺: 190.1226; found: 190.1226.


1,3,5-Trimethyl-3,4-dihydroquinolin-2(1*H*)-one (2l)

The reaction was performed following the general procedure. The residue was

purified by flash column chromatograph (silica gel, PE: EA =10:1 - 6:1, v/v) to give the product as a light yellow oil (22.7 mg, 60%). ¹H NMR (500 MHz, DMSO) δ 7.14 (t, *J* = 7.8 Hz, 1H), 6.90 (dd, *J* = 14.2, 7.8 Hz, 2H), 3.23 (s, 3H), 2.98 – 2.89 (m, 1H), 2.53 – 2.43 (m, 2H), 2.25 (s, 3H), 1.14 (d, *J* = 6.3 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 173.1, 140.5, 135.5, 126.8, 124.7, 124.3, 112.6, 35.0, 30.1, 29.6, 19.5, 15.8. HRMS (ESI, m/z) calcd for C₁₂H₁₆NO [M+H] ⁺: 190.1226; found: 190.1228.


7-Methoxy-1,3-dimethyl-3,4-dihydroquinolin-2(1H)-one (2m) [1]

The reaction was performed following the general procedure. The residue

was purified by flash column chromatograph (silica gel, PE: EA =10:1 - 4:1, v/v) to give the product as a light yellow solid (26 mg, 63%, mp: 78.8-79.6 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.05 (d, *J* = 8.8 Hz, 1H), 6.55 - 6.52 (m, 2H), 3.81 (s, 3H), 3.33 (s, 3H), 2.90 - 2.83 (m, 1H), 2.65 - 2.56 (m, 2H), 1.24 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.4, 159.1, 141.4, 128.3, 117.9, 106.4, 102.2, 55.4, 35.8, 32.5, 29.8, 15.7.

7-Methoxy-1-methyl-3,4-dihydroquinolin-2(1*H*)-one (2n)^[2]

The reaction was performed following the general procedure. The residue

was purified by flash column chromatograph (silica gel, PE: EA =10:1 - 4:1, v/v) to give the product as a light yellow solid (29.5 mg, 77%, mp: 77.1-78.2 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.06 (d, *J* = 7.8 Hz, 1H), 6.56 - 6.52 (m, 2H), 3.81 (s, 3H), 3.32 (s, 3H), 2.85 - 2.81 (m, 2H), 2.62 (dd, *J* = 8.4, 6.3 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.6, 159.1, 141.6, 128.1, 118.4, 106.4, 102.4, 55.4, 32.0, 29.5, 24.5.

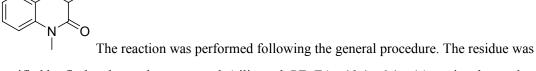
1-Ethyl-3-methyl-3,4-dihydroquinolin-2(1H)-one (2o) [1]

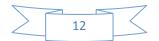
The reaction was performed following the general procedure. The residue was

purified by flash column chromatograph (silica gel, PE: EA =10:1 - 6:1, v/v) to give the product as a light yellow oil (31.9 mg, 85%).¹H NMR (500 MHz, DMSO) δ 7.27 - 7.22 (m, 1H), 7.20 (d, J = 7.3 Hz, 1H), 7.10 (d, J = 7.8 Hz, 1H), 6.98 (td, J = 7.4, 1.0 Hz, 1H), 3.98 - 3.80 (m, 2H), 2.88 (dd, J = 15.1, 5.3 Hz, 1H), 2.61 (dd, J = 15.0, 11.9 Hz, 1H), 2.56 - 2.47 (m, 1H), 1.11 (dt, J = 7.1, 3.7 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 139.4, 128.1, 127.4, 126.0, 122.5, 114.4, 37.6, 35.5, 33.5, 15.6, 12.8.

1-Benzyl-3-methyl-3,4-dihydroquinolin-2(1*H*)-one (2p)^[1]

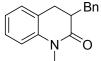
Bn The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, PE: EA =10:1 - 6:1, v/v) to give the product as a light yellow oil (35.4 mg, 70%). ¹H NMR (500 MHz, DMSO) δ 7.30 (t, *J* = 7.6 Hz, 2H), 7.20 (d, *J* = 7.9 Hz, 4H), 7.14 - 7.08 (m, 1H), 6.95 (t, *J* = 7.2 Hz, 1H), 6.89 (d, *J* = 8.1 Hz, 1H), 5.14 (dd, *J* = 60.3, 16.4 Hz, 2H), 3.04 - 2.93 (m, 1H), 2.80 - 2.67 (m, 2H), 1.20 (d, *J* = 6.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 139.7, 137.2, 128.7, 128.0, 127.4, 127.0, 126.3, 125.8, 122.8, 115.3, 46.5, 35.6, 33.5, 15.7.


1-Methyl-3,4-dihydroquinolin-2(1H)-one (2q)^[3]

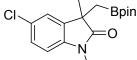

The reaction was performed following the general procedure. The residue was

purified by flash column chromatograph (silica gel, PE: EA =10:1 - 6:1, v/v) to give the product as a light yellow oil (26.4 mg, 83%).¹H NMR (500 MHz, DMSO) δ 7.25 (td, *J* = 8.1, 1.6 Hz, 1H), 7.21 (dd, *J* = 7.3, 1.0 Hz, 1H), 7.10 - 7.05 (m, 1H), 7.00 (td, *J* = 7.4, 1.0 Hz, 1H), 3.24 (s, 3H), 2.88 - 2.81 (m, 2H), 2.52 (dd, *J* = 8.4, 6.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.5, 140.6, 127.7, 127.4, 126.2, 122.7, 114.6, 31.7, 29.5, 25.3.

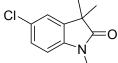
1,3-Dimethyl-3,4-dihydroquinolin-2(1*H*)-one (2r)^[1]



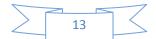
purified by flash column chromatograph (silica gel, PE: EA =10:1 - 6:1, v/v) to give the product as


a light yellow oil (33 mg, 94%). ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.24 (m, 1H), 7.16 (d, J = 7.3 Hz, 1H), 7.01 (td, J = 7.4, 0.9 Hz, 1H), 6.97 (d, J = 8.1 Hz, 1H), 3.36 (s, 3H), 2.93 (dd, J = 14.8, 5.1 Hz, 1H), 2.70 (dd, J = 14.7, 11.2 Hz, 1H), 2.62 (ddd, J = 13.6, 9.2, 6.0 Hz, 1H), 1.26 (d, J = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 140.4, 127.9, 127.4, 125.8, 122.7, 114.5, 35.5, 33.3, 29.8, 15.7.

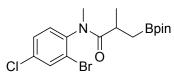
3-Benzyl-1-methyl-3,4-dihydroquinolin-2(1*H*)-one (2s)


The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, PE: EA =10:1 - 6:1, v/v) to give the product as a light yellow oil (20 mg, 40%) with **4s** of 9% (determined by ¹H NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.33 - 7.28 (m, 2H), 7.28 - 7.21 (m, 2H), 7.17 (d, *J* = 7.1 Hz, 2H), 7.07 (t, *J* = 5.3 Hz, 1H), 7.01 (ddd, *J* = 8.1, 6.5, 2.8 Hz, 2H), 3.40 (s, 3H), 3.31 (dd, *J* = 13.7, 3.9 Hz, 1H), 2.81 (dt, *J* = 9.7, 5.4 Hz, 2H), 2.62 - 2.52 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.1, 140.2, 139.1, 129.2, 128.4, 128.2, 127.4, 126.3, 125.1, 122.9, 114.4, 42.4, 35.5, 29.9, 29.3. HRMS (ESI, m/z) calcd for C₁₇H₁₈NO [M+H] ⁺: 252.1383; found: 252.1384.

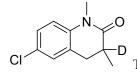
5-Chloro-1,3-dimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3a)^[4]



The reaction was performed following the general procedure but without CuBr and ligand. The residue was purified by flash column chromatograph (silica gel, PE: EA =8:1 - 5:1, v/v) to give the product as a light yellow solid (48 mg, 71%).¹H NMR (500 MHz, DMSO) δ 7.43 (d, *J* = 2.0 Hz, 1H), 7.29 (dd, *J* = 8.3, 2.1 Hz, 1H), 6.98 (d, *J* = 8.3 Hz, 1H), 3.09 (s, 3H), 1.32 - 1.16 (m, 3+2H), 0.96 (s, 6H), 0.90 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 181.2, 141.9, 137.5, 127.5, 127.3, 123.4, 108.5, 83.2, 45.7, 26.3, 25.2, 25.0, 24.7, 24.4.

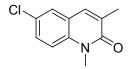

5-Chloro-1,3,3-trimethylindolin-2-one (4a)^[4]

The reaction was performed following the general procedure but without CuBr and ligand. The residue was purified by flash column chromatograph (silica gel, PE: EA =8:1 - 5:1, v/v) to give the product as a light yellow solid (7.8 mg, 18%).¹H NMR (500 MHz, DMSO) δ 7.49 (d, J = 2.1 Hz, 1H), 7.32 (dd, J = 8.3, 2.2 Hz, 1H), 7.03 (d, J = 8.3 Hz, 1H), 3.12 (s, 3H), 1.27 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 180.8, 141.2, 137.4, 127.8, 127.5, 122.9, 108.9, 44.4, 26.3, 24.2.

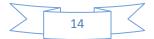

N-(2-bromo-4-chlorophenyl)-N,2-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanamide (5a) ^[5]

The reaction was performed following the general procedure but

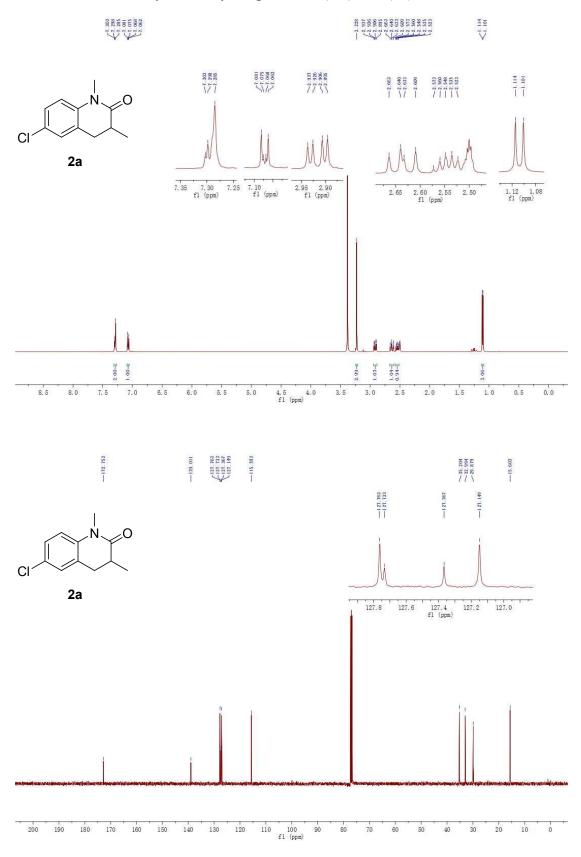
without Pd salt. The residue was purified by flash column chromatograph (silica gel, PE: EA =8:1 - 5:1, v/v) to give the product as a colorless liquid (55 mg, 66%). ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 2.2 Hz, 1H), 7.44 - 7.20 (m, 2H), 3.13 (d, J = 2.2 Hz, 3H), 2.47 - 2.35 (m, 1H), 1.21 (d, J = 10.3 Hz, 12H), 1.10 - 1.05 (m, 1H), 1.03 (d, J = 6.8 Hz, 3H), 0.96 - 0.78 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 177.4, 141.8, 141.6*, 134.5*, 134.4, 133.5*, 133.4, 131.2, 130.5*, 129.0*, 128.9, 124.3*, 123.8, 83.0, 82.8*, 36.1*, 36.0, 33.5*, 32.9, 24.9, 24.8*, 24.7, 24.6*, 19.9, 19.4*.

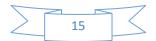

6-chloro-1,3-dimethyl-3,4-dihydroquinolin-2(1H)-one-3-d (D-2a)

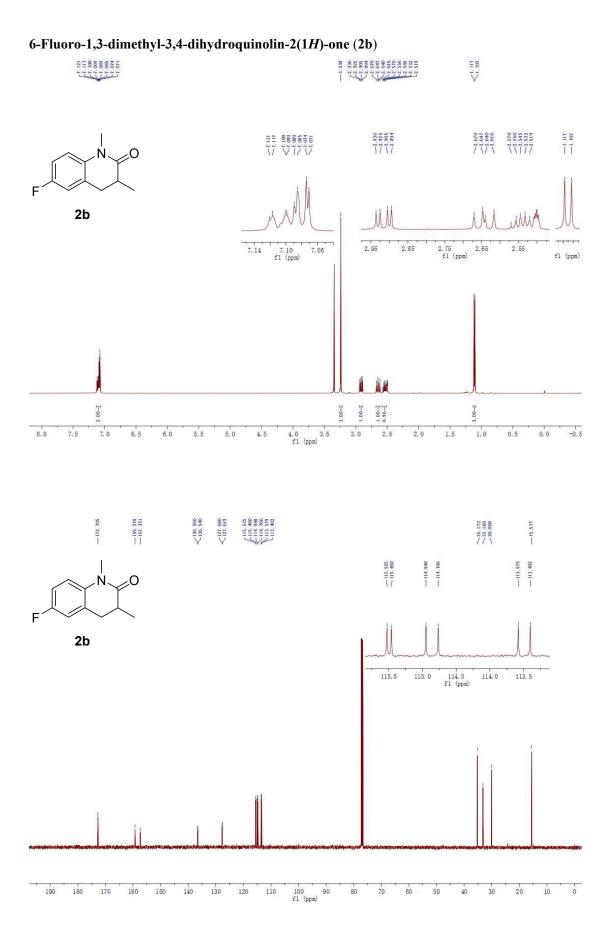
The reaction was performed following the general procedure but with


additional 28 equiv D₃COD. The residue was purified by flash column chromatograph (silica gel, PE: EA =8:1 - 5:1, v/v) to give the product as a colorless liquid (30 mg, 71%). ¹H NMR (500 MHz, CDCl₃) δ 7.20 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.15 - 7.12 (m, 1H), 6.87 (d, *J* = 8.6 Hz, 1H), 3.32 (s, 3H), 2.89 (dd, *J* = 13.1, 2.6 Hz, 1H), 2.69 - 2.56 (m, 1.65H), 1.26 - 1.22 (m, 3H).

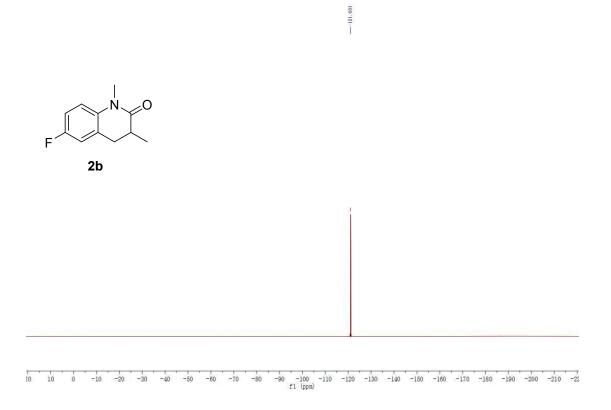
6-Chloro-1,3-dimethylquinolin-2(1H)-one (6a)^[6]

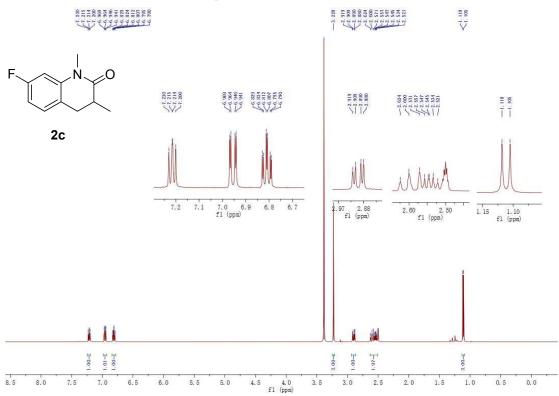

The reaction was performed following the general procedure for 6a. The

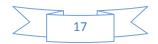

residue was purified by flash column chromatograph (silica gel, PE: EA =10:1 - 6:1, v/v) to give the product as a light yellow solid (25 mg, 68%, mp: 61.2-62.3 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.45 (dt, *J* = 8.9, 2.3 Hz, 3H), 7.26 (d, *J* = 8.9 Hz, 1H), 3.72 (s, 3H), 2.26 (d, *J* = 1.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.5, 137.6, 134.4, 131.6, 129.2, 127.3, 126.8, 121.7, 115.3, 29.9, 17.9.

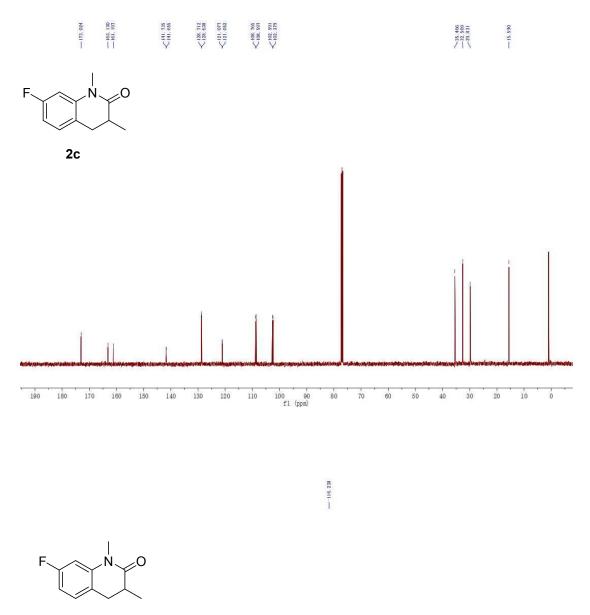


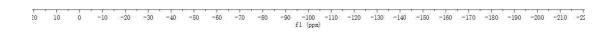
6. NMR Spectroscopic Data

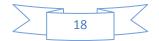

6-Chloro-1,3-dimethyl-3,4-dihydroquinolin-2(1*H*)-one (2a)

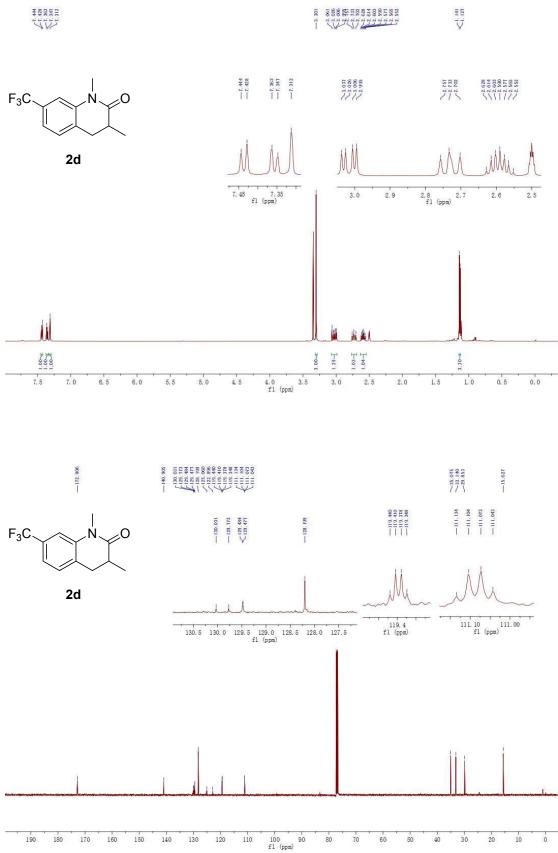


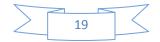


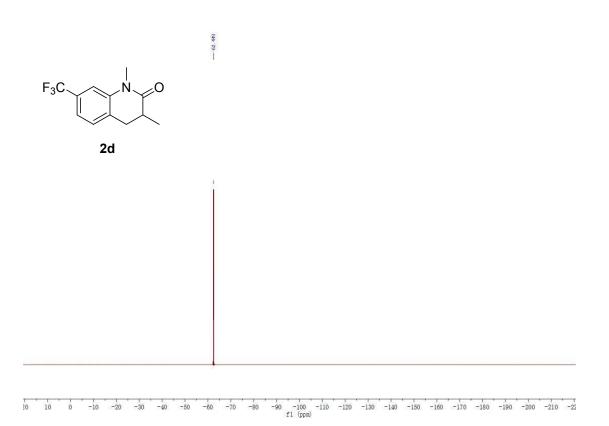


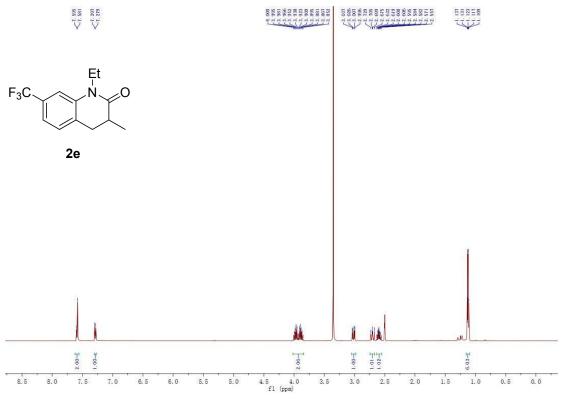


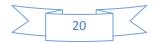

7-Fluoro-1,3-dimethyl-3,4-dihydroquinolin-2(1*H*)-one (2c)

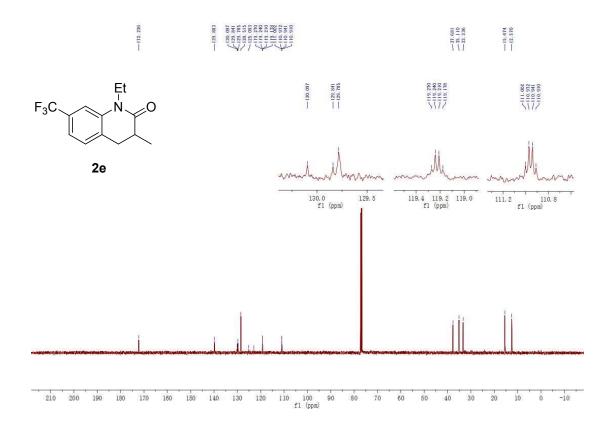




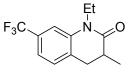


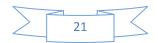


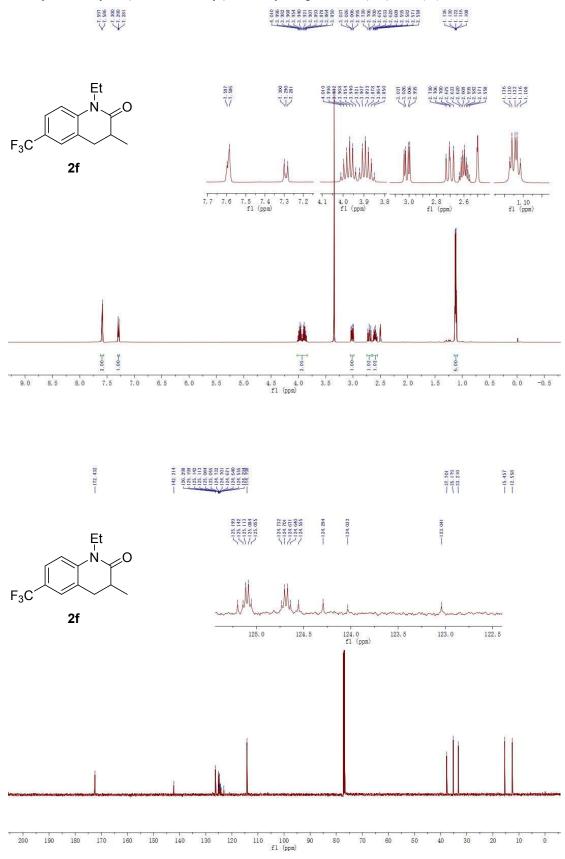

1,3-Dimethyl-7-(trifluoromethyl)-3,4-dihydroquinolin-2(1*H*)-one (2d)

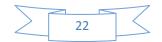


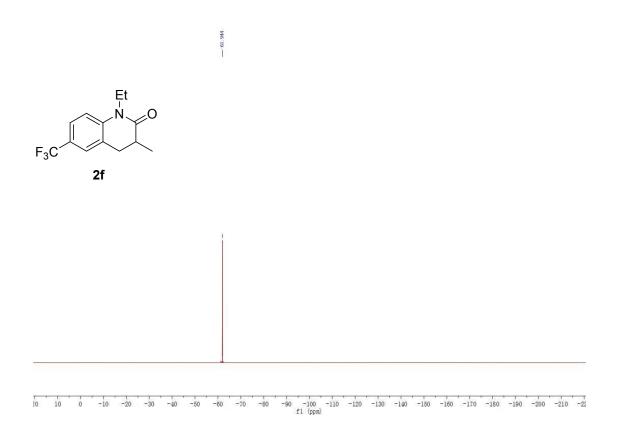
1-Ethyl-3-methyl-7-(trifluoromethyl)-3,4-dihydroquinolin-2(1*H*)-one (2e)

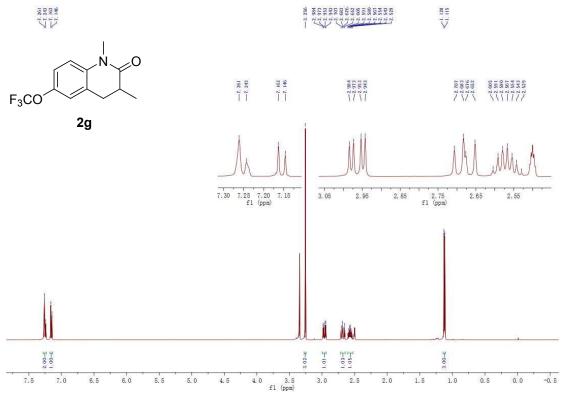


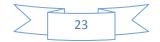


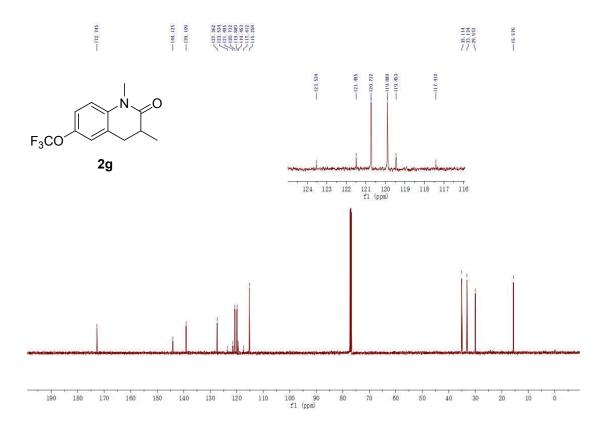

62.484

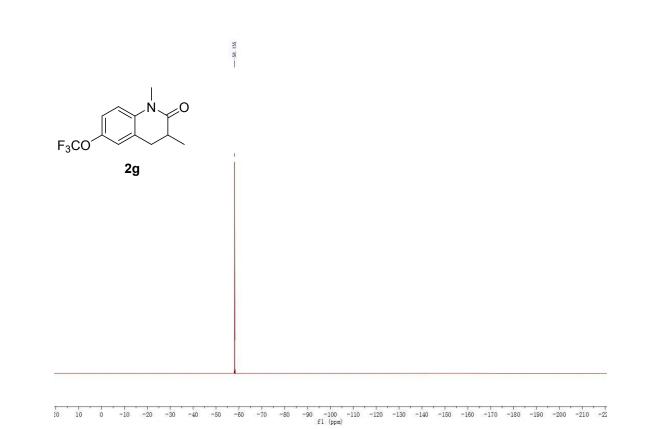



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

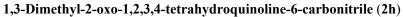


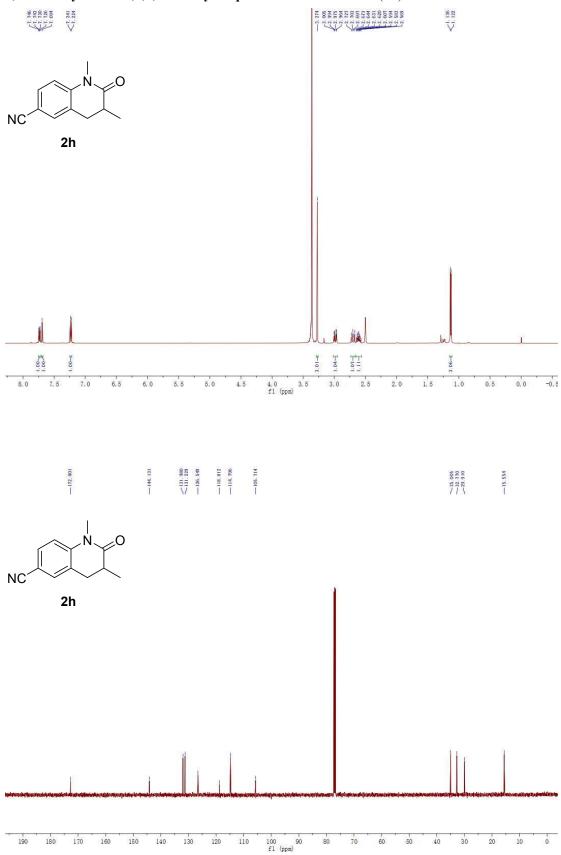

1-Ethyl-3-methyl-6-(trifluoromethyl)-3,4-dihydroquinolin-2(1*H*)-one (2f)

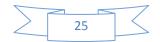


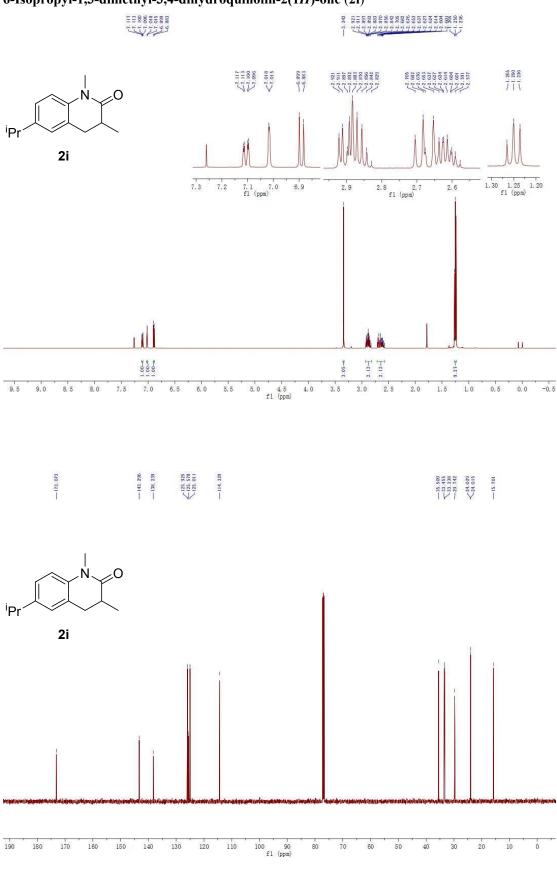


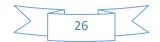
1,3-Dimethyl-6-(trifluoromethoxy)-3,4-dihydroquinolin-2(1H)-one (2g)

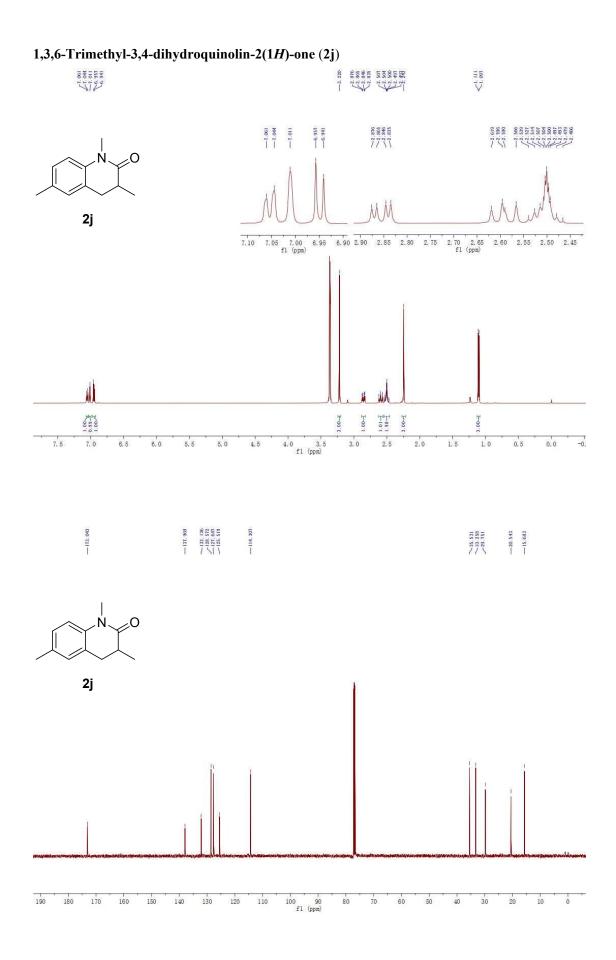




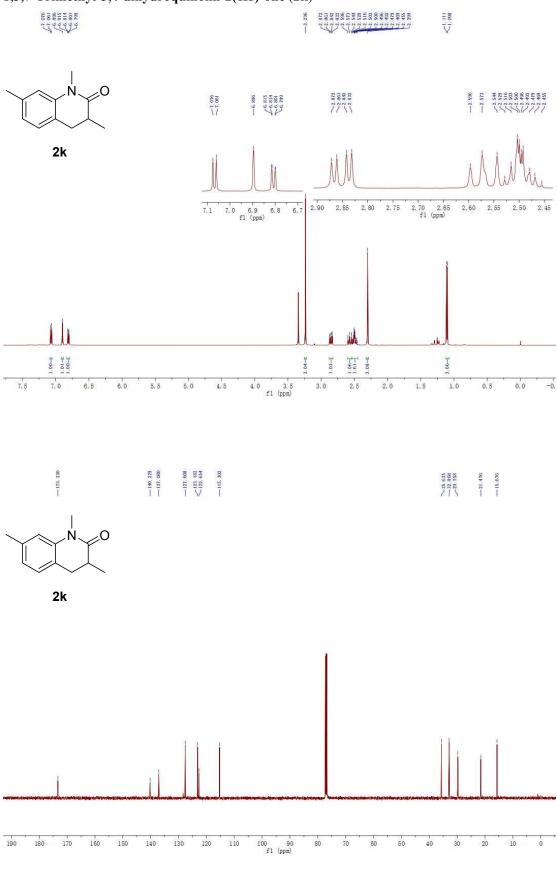




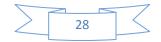


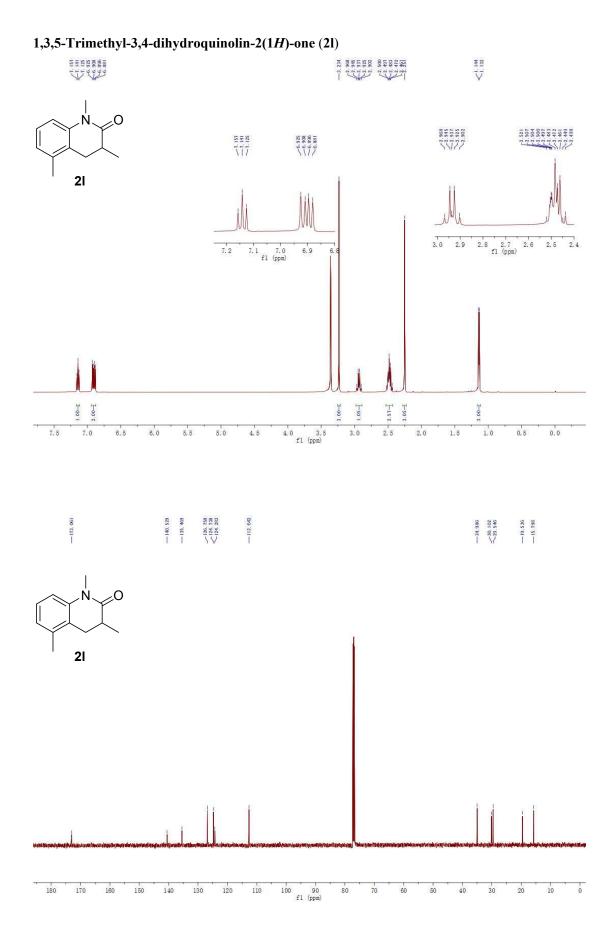


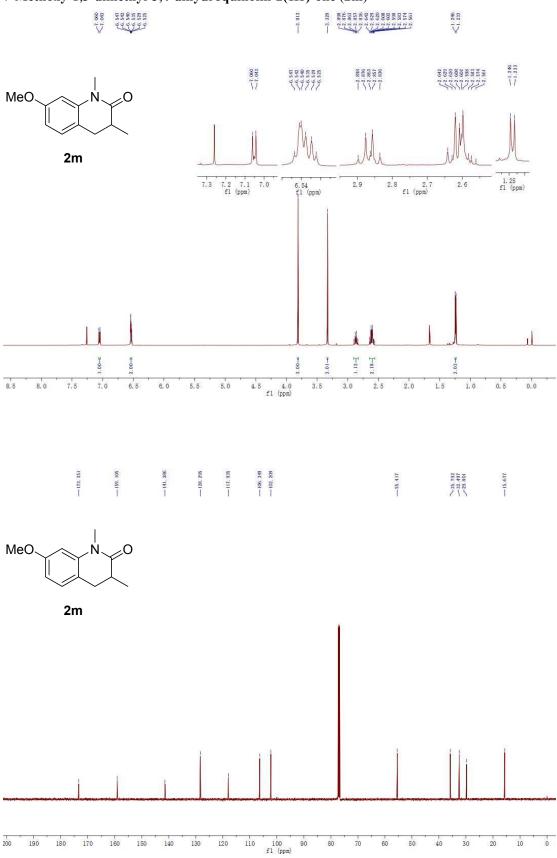




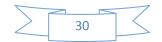
6-Isopropyl-1,3-dimethyl-3,4-dihydroquinolin-2(1*H*)-one (2i)

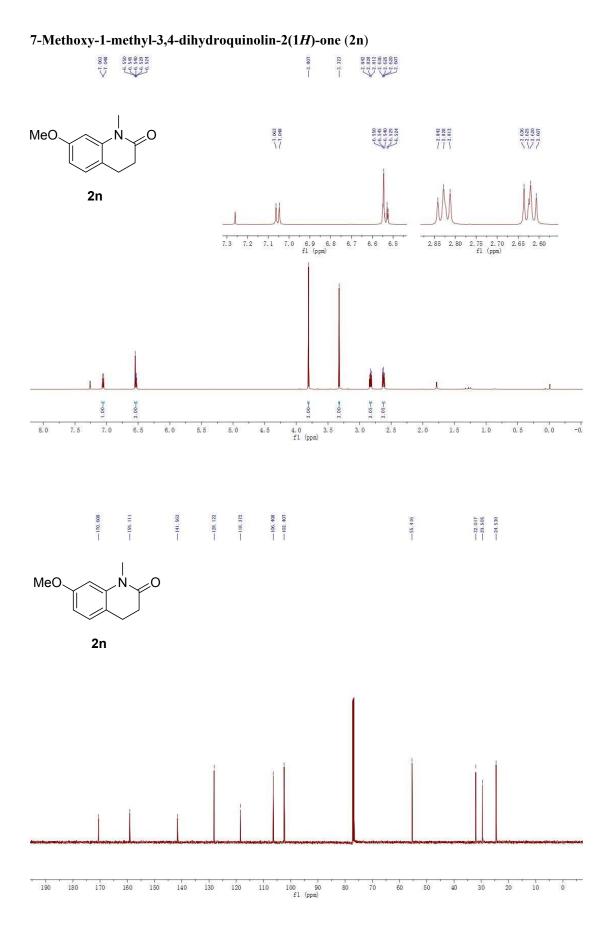


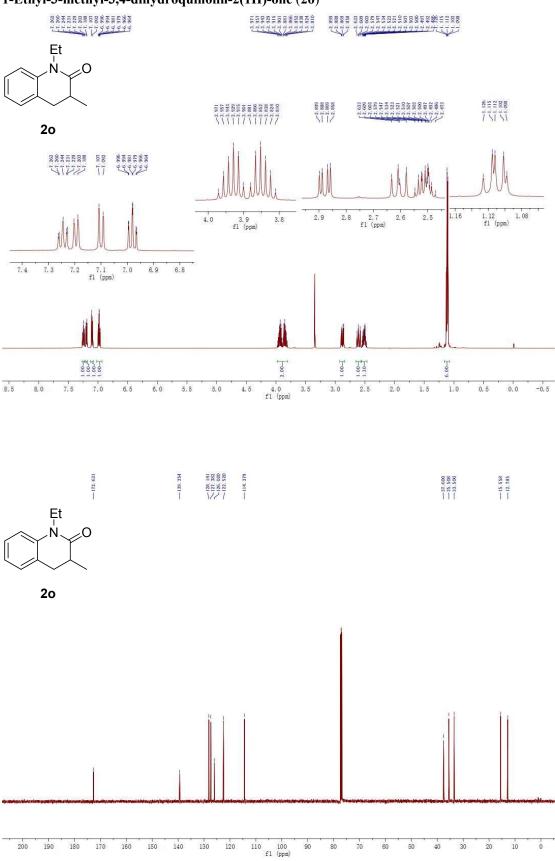


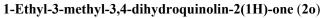


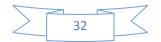
1,3,7-Trimethyl-3,4-dihydroquinolin-2(1*H*)-one (2k)

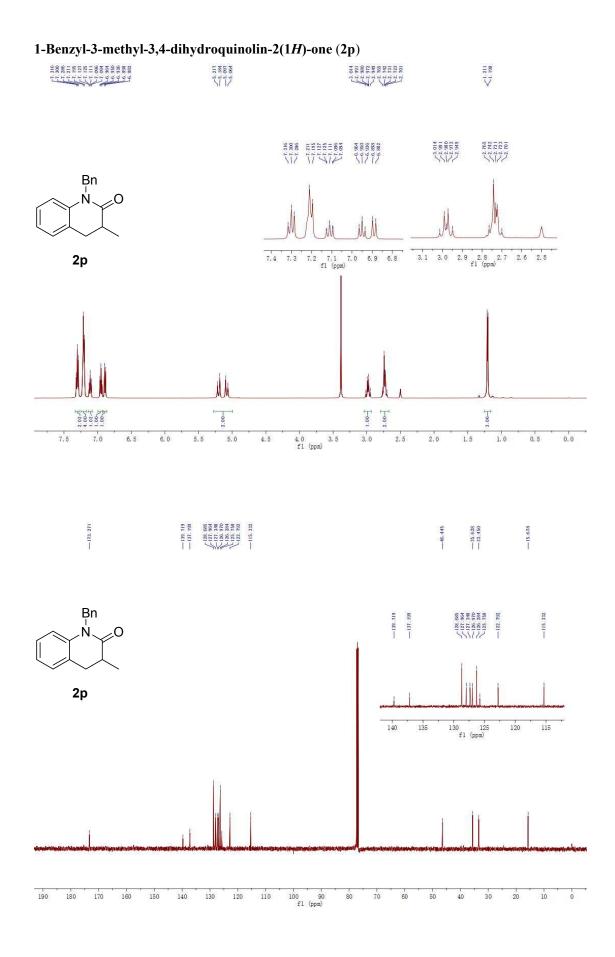


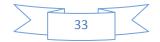


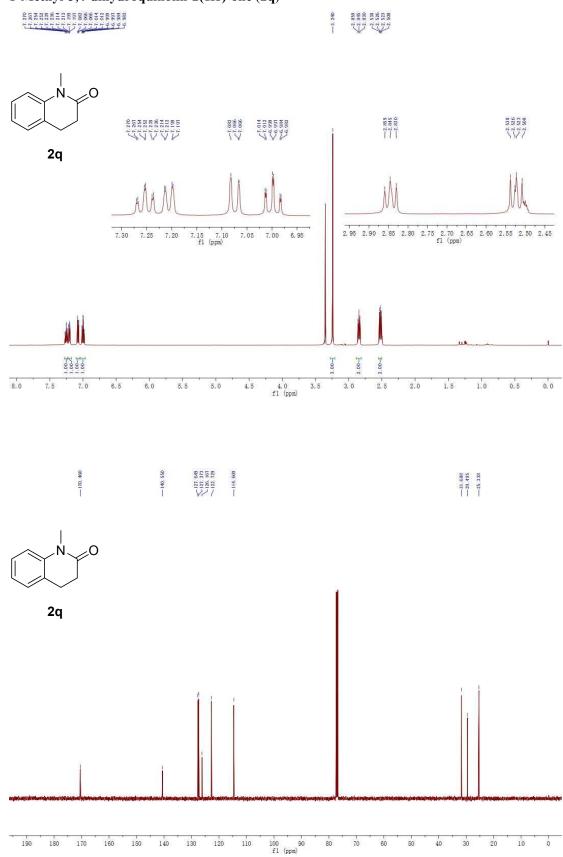


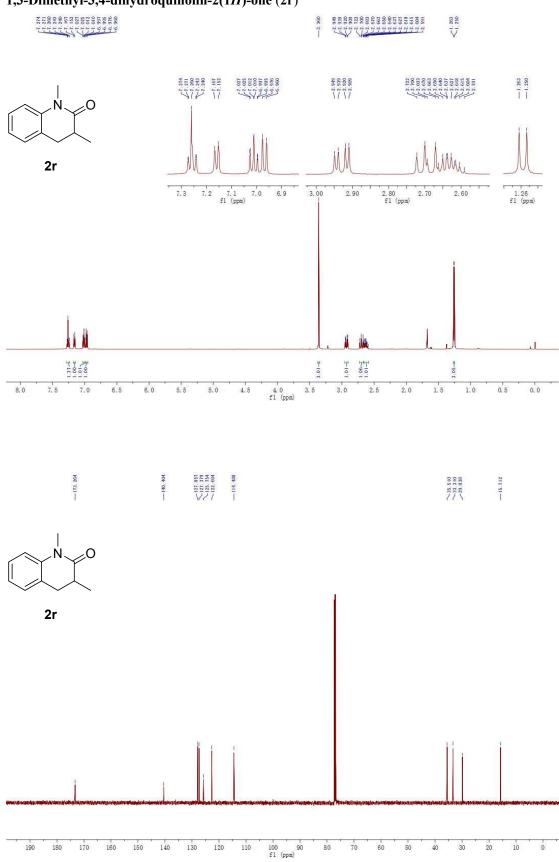

7-Methoxy-1,3-dimethyl-3,4-dihydroquinolin-2(1*H*)-one (2m)

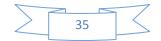


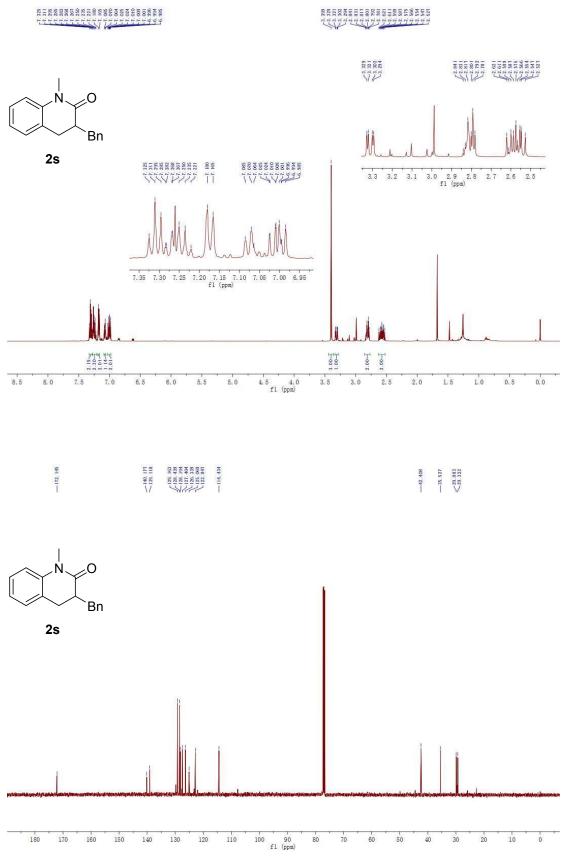


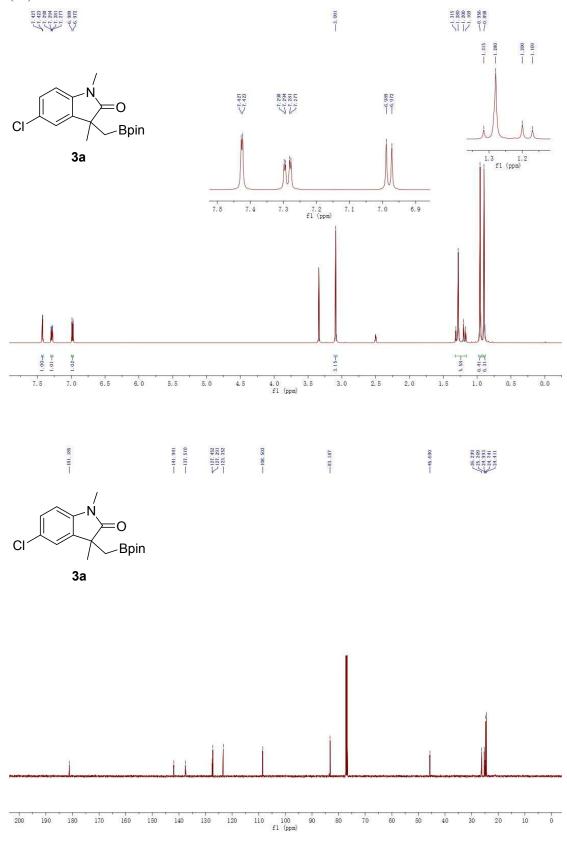


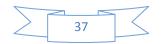




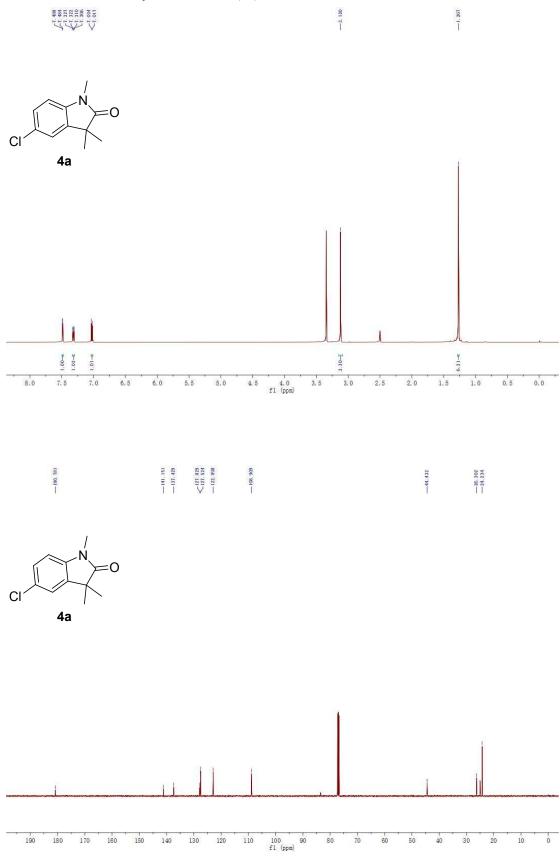

1-Methyl-3,4-dihydroquinolin-2(1*H*)-one (2q)



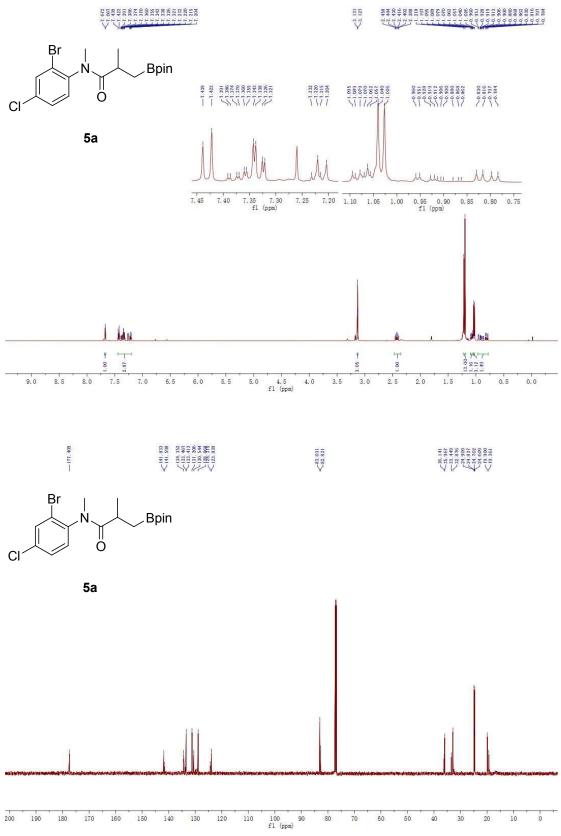

1,3-Dimethyl-3,4-dihydroquinolin-2(1*H*)-one (2r)



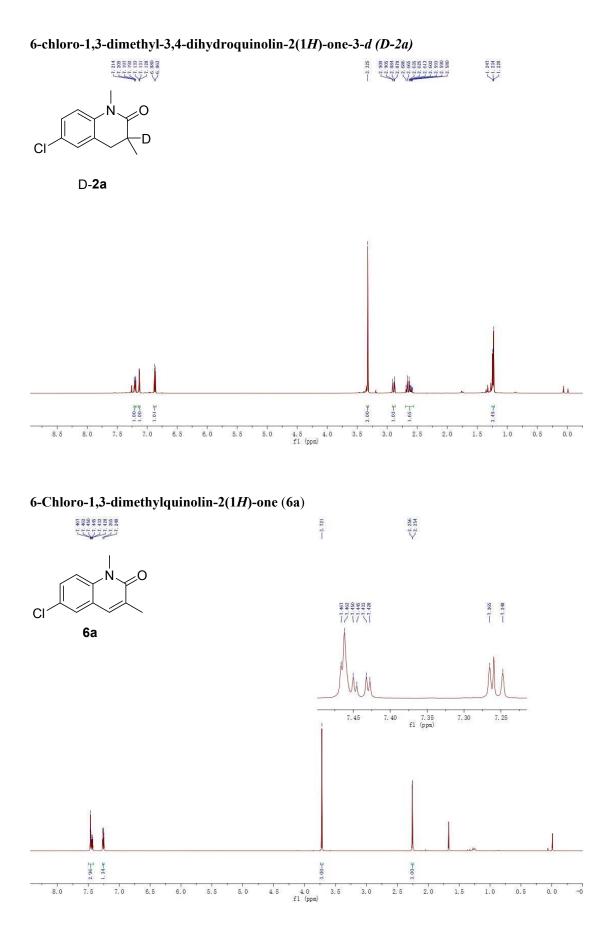
3-Benzyl-1-methyl-3,4-dihydroquinolin-2(1*H***)-one (2s) (with 9% 4s)**

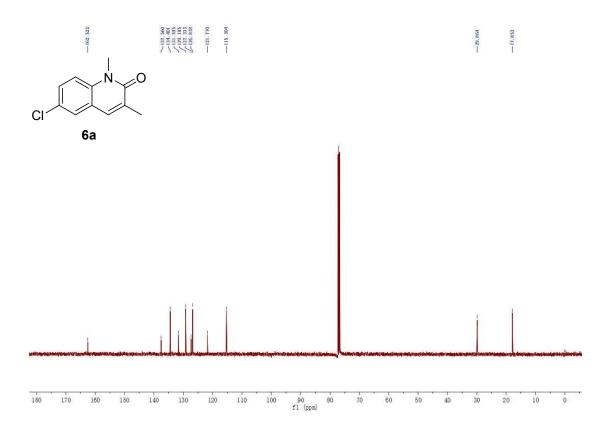


5-Chloro-1,3-dimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3a)

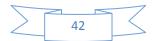


5-Chloro-1,3,3-trimethylindolin-2-one (4a)





N-(2-bromo-4-chlorophenyl)-*N*,2-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanamide (5a)



7. References

- 1. T. Nishio, H. Asai and T. Miyazaki, Helvetica Chimica Acta., 2000, 83, 1475.
- 2. Y. Chen, A. Turlik and T. R. Newhouse, J. Am. Chem. Soc., 2016, 138, 1166-1169.
- 3. Y. Kim and S. Chang, Angew. Chem. Int. Ed., 2016, 55, 218 222.
- 4. F. Wei, L. Wei, L. Zhou, C.-H. Tung, Y. Ma and Z. Xu, Asian J. Org. Chem., 2016, 5, 971.
- 5. H. Chea, H.-S. Sim and J. Yuna, Adv. Synth. Catal., 2009, 351, 855 858.
- 6. D. H. R. Barton and D.W. Jones, J. Chem. Soc., 1965, 3563 3570.

