Supporting Information

Ligand-induced reactivity of β -diketiminate magnesium complexes for regioselective functionalization of fluoroarenes via C-H or C-F bond activations

Laia Davin,^a Ross McLellan,^a Alan R. Kennedy^a and Eva Hevia^{*a}

Table of Contents

Expertimental Section1
General remarks1
X-ray crystallography2
Synthesis of compounds
 Synthesis of [(^{Dipp}Nacnac)Mg(C₆H₃F₂)(THF)] (3a)
 Synthesis of [(^{Dipp}Nacnac)Mg(C₆H₂F₃)(THF)] (3b)
 Synthesis of [(^{Dipp}Nacnac)Mg(C₆HF₄)(THF)] (3c)
 Synthesis of [(^{Dipp}Nacnac)Mg(C₆F₅)(THF)] (3d)
DOSY NMR Studies
General Experimental Procedure for Metallation Reactions at NMR Tube Scale
General Experimental Procedure for Negishi Cross-Coupling Reactions (4a-4d)
C-F Activation 2-(2,4-difluorophenyl)pyridine (7a-7c)11
Synthesis of [{(Dipp Nacnac)MgTHF{C ₈ H ₅ O}] (8)
NMR spectra of compounds 14
Reaction with TEMPO 36
Competition experiments 37

Expertimental Section

General remarks

All the experiments were performed under protective argon inert atmosphere and using standard Schlenk techniques. The use of a glovebox has also been required. Hexane, toluene and THF were dried by heating to reflux over sodium, benzophenone ketyl and distilled under nitrogen prior to use. The $[(^{Dip}Nacnac)Mg(TMP)]$ $(^{Dip}Nacnac= ArNC(Me)CHC(Me)NAr; Ar = 2,6-^{i}Pr_2-C_6H_3$ and TMP = 2,2,6,6tetramethylpiperidide) base **1**, **2**, **3e** and **6** were synthesized according to literature method. ^[1,2,3] All reagents were purchased from Sigma-Aldrich, Alfa Aesar or Fluorochem (1,2-difluorobenzene, 1,3,5trifluorobenzene, 1,2,4,5-tetrafluorobenzene, pentafluorobenzene and 2-(2,4difluorophenyl)pyridine) and were dried before use where applicable.

All NMR spectra were recorded on a Bruker AV3 or AV 400 MHz, or on a AV 600 MHz spectrometer, operating at 400.13 MHz for ¹H, 100.61 MHz for ¹³C and 376.40 MHz for ¹⁹F. All ¹³C NMR spectra were proton decoupled. ¹H, ¹³C{¹H} and ¹⁹F{¹H} chemical shifts are expressed in parts per million (δ , ppm) and referenced to residual solvent peaks. Elemental analyses were performed using a Perkin Elmer 2400 elemental analyzer.

X-ray crystallography

Data for samples **3c** and **8** were collected on Oxford Diffraction Gemini S or Xcalibur E instruments with graphite-monochromated Mo K α (λ = 0.71073 Å) or Cu K α (λ = 1.54180 Å) radiation. Data collection and processing used Rigaku and Bruker software.^[4,5] All structures were solved and refined to convergence on F^2 for all independent reflections by the full-matrix least squares method using SHELXL-2014/7^[3,4] or by the GaussNewton algorithm using OLEX2.^[6] Selected crystallographic data are shown in Table S1 and full details in .cif format are available from the CCDC (1567107-1567108).

	3c	8
CCDC code	1567107	1567108
Empirical formula	$C_{39}H_{50}F_4MgN_2O$	$C_{41}H_{54}MgN_2O_2$
Mol. Mass	663.14	576.77
Crystal system	Monoclinic	Triclinic
Space group	P 2 ₁ /n	P-1
a/ Å	12.4430(4)	9.1082(8)
b/ Å	16.6363(6)	11.6359(9)
c/ Å	18.2241(6)	18.2169(17)
А	90	72.767(7)
В	97.499(3)	86.724(7)
Г	90	84.098(7)
V/ Å ³	3740.2(2)	1833.5(3)
Z	4	2
λ/Å	1.54184	0.71073
μ mm ⁻¹	1.1776	1.0446
2θmax °	146.34	58
Measured reflections	15184	18824
Unique reflections	7339	9403
R _{int}	0.0246	0.0310
Observed rflns [I> $2\sigma(I)$]	6085	6415
GooF	1.0423	0.9380
R [on F, obs rflns only]	0.0539	0.0906
ωR [on F^2 , all data]	0.1603	0.3118
Largest diff. Peak/hole. e/Å ⁻³	0.4161/-0.2267	0.9639/-0.3915

Table S 1: Selected crystallographic and refinement parameters.

Synthesis of compounds (3a-3e)

Synthesis of [(^{Dipp}Nacnac)Mg(C₆H₃F₂)(THF)] (3a)

To a solution of **1** (0.56 g, 1 mmol) in THF (5 mL), 1,3-difluorobenzene (0.1 mL, 1 mmol) was added. The yellow solution was stirred for 2 hours at room temperature. The solvent was concentrated to 1 mL and 2 mL of hexane were added. The resulting yellow solution was stored at -15 $^{\circ}$ C. After 48 hours a white solid precipitated, and was isolated and placed in a glovebox

(0.417 g, 66%). Quantitative formation of **3a** is observed after two hours, as evidenced by following the reaction by ¹H and ¹⁹F NMR spectroscopy in d_{g} -THF in a J. Young NMR tube.

¹**H NMR (400.13 MHz**, *d*₈-**THF**, **298 K)** δ 7.06 [s, 6H, Ar of ^{Dipp}Nacnac], 6.89 [q, 1H, *J* = 7.6 Hz, C₆H₃F₂], 6.40 [dd, 2H *J* = 3.6 Hz, *J* = 8.4 Hz, C₆H₃F₂], 4.97 [s, 1H, CH of ^{Dipp}Nacnac], 3.27 [m, 4H, CH, ^{*i*}Pr, Ar of ^{Dipp}Nacnac], 1.72 [s, 6H, CH₃ of ^{Dipp}Nacnac], 1.30 [m, 4H, CH, ^{*i*}Pr, Ar of ^{Dipp}Nacnac], 1.13 [d, 12 H, *J* = 4, CH₃, ^{*i*}Pr, Ar of ^{Dipp}Nacnac], 0.94 [d, 12H, *J* = 8 CH₃, ^{*i*}Pr, Ar of ^{Dipp}Nacnac].

¹³C NMR {¹H} (100.62 MHz, *d₈*-THF, 298 K) δ 172.2 [dd, *J* = 230, *J* = 30, *C*₆H₃F₂], 168.9 [C_q, CHC(Me) of ^{Dipp}Nacnac], 146.1 [*C*, Ar of ^{Dipp}Nacnac], 143.1 [*C*, Ar of ^{Dipp}Nacnac], 128.7 [t, *J* = 8, *C*₆H₃F₂], 125.3 [*C*H, Ar of ^{Dipp}Nacnac], 123.9 [CH, Ar of ^{Dipp}Nacnac], 108.7 [dd, *J* = 35, *J* = 4, *C*₆H₃F₂], 95.3 [*C*H of ^{Dipp}Nacnac], 49.9 [CH, ⁱPr, Ar of ^{Dipp}Nacnac], 28.4 [CH, ⁱPr, Ar of ^{Dipp}Nacnac], 24.6 [CH₃, ⁱPr, Ar of ^{Dipp}Nacnac], 24.5 [CH₃, ⁱPr, Ar of ^{Dipp}Nacnac], 19.1 [CH₃, ⁱPr, Ar of ^{Dipp}Nacnac].

¹⁹F NMR {¹H} (376.40 MHz, *d*₈-THF, 298 K) δ -82.2 [s, C₆H₃F₂].

Elemental analysis: (C₃₉H₅₂F₂MgN₂O) *Calculated:* C: 74.69 % H: 8.36 % N: 4.47 %. *Found:* C: 74.55 % H: 8.26 % N: 4.55 %.

• Synthesis of [(^{Dipp}Nacnac)Mg(C₆H₂F₃)(THF)] (3b)

To a solution of **1** (0.28 g, 0.5 mmol) in THF (5 mL), 1,3,5-trifluorobenzene (0.05 mL, 0.5 mmol) was added. The yellow solution was stirred for 2 hours at room temperature. The solvent was removed and 5 mL of hexane were added obtaining a yellow solution that was stored at -70 $^{\circ}$ C. After 48 hours a white solid precipitated, and was isolated and placed in a glovebox (0.14 g, 43%). Quantitative formation of **3b** is observed after

two hours, as evidenced by following the reaction by ¹H and ¹⁹F NMR spectroscopy in d_8 -THF in a J. Young NMR tube.

¹H NMR (400.13 MHz, *d*₈-THF, 298 K) δ 7.07 [s, 6H, Ar of ^{Dipp}Nacnac] 6.21 [dd, *J* = 9.8, *J* = 3.4 Hz, 2H, C₆H₂F₃], 4.97 [s, 1H, CH of ^{Dipp}Nacnac], 3.62 [m, 4H, OCH₂, THF], 3.24 [sept, 4H, *J* = 6.8 Hz, CH, ^{*i*}Pr, Ar of ^{Dipp}Nacnac], 1.77 [m, 4H, CH₂, THF], 1.72 [s, 6H, CH₃ of ^{Dipp}Nacnac], 1.14 [d, 12H, *J* = 6.8 Hz, CH₃, ^{*i*}Pr, Ar of ^{Dipp}Nacnac], 0.96 [d, 12H, *J* = 5.9 Hz, CH₃, ^{*i*}Pr, Ar of ^{Dipp}Nacnac].

¹³C NMR {¹H} (100.62 MHz, *d_g*-THF, 298 K) 169.1 [C_q, CHC(Me) of ^{Dipp}Nacnac], 146.0 [CH, Ar of ^{Dipp}Nacnac], 143.1 [CH, Ar of ^{Dipp}Nacnac], 125.4 [CH, Ar of ^{Dipp}Nacnac], 124.0 [CH, Ar of ^{Dipp}Nacnac], 95.3 [CH of ^{Dipp}Nacnac], 68.0 [OCH₂, THF], 28.4 [CH, ⁱPr, Ar of ^{Dipp}Nacnac], 26.3 [CH₂, THF], 24.6 [CH₃, ⁱPr, Ar of ^{Dipp}Nacnac], 24.4 [CH₃, ⁱPr, Ar of ^{Dipp}Nacnac] (C_q of C-Mg and C₆H₂F₃ were not observed in the spectrum).

¹⁹F NMR {¹H} (376.40 MHz, *d*₈-THF, 298 K) δ -82.0 [br, 2F, C₆H₂F₃], -116 [s, 1F, C₆H₂F₃].

Elemental analysis: (C₃₅H₄₃F₃MgN₂) *Calculated:* C: 72.61 % H: 7.97 % N: 4.34 %. *Found:* C: 72.38 % H: 8.42 % N: 5.47 %.

• Synthesis of [(^{Dipp}Nacnac)Mg(C₆HF₄)(THF)] (3c)

To a solution of **1** (0.28 g, 0.5 mmol) in THF (5 mL), 1,2,4,5tetrafluorobenzene (0.056 mL, 0.5 mmol) was added. The yellow solution was stirred for 1 hour at room temperature. The solvent was reduced to 1 mL of THF and the solution was stored at -70 °C. After 48 hours a crop of colorless crystals yielded the title compound as colourless crystals. In order to obtain a good yield of the compound, after 1 hour of reaction

the solvent was removed and 5 mL of hexane were added. A white solid precipitated, and was isolated and placed in a glovebox (0.22 g, 66%). Quantitative formation of **3c** is observed after two hours, as evidenced by following the reaction by ¹H and ¹⁹F NMR spectroscopy in d_8 -THF in a J. Young NMR tube.

¹**H NMR (400.13 MHz**, *d*₈-**THF**, **298 K)** δ 7.10 [s, 6H, Ar of ^{Dipp}Nacnac] 6.74 [m, 1H, C₆*H*F₄], 5.01 [s, 1H, C*H* of ^{Dipp}Nacnac], 3.62 [m, 4H, OC*H*₂, THF], 3.23 [sept, 4H, *J* = 6.8 Hz, C*H*, ^{*i*}Pr, Ar of ^{Dipp}Nacnac], 1.77 [m, 4H, C*H*₂, THF], 1.74 [s, 6H, C*H*₃ of ^{Dipp}Nacnac], 1.15 [d, 12 H, *J* = 6.8 Hz, C*H*₃, ^{*i*}Pr, Ar of ^{Dipp}Nacnac], 0.95 [d, 12H, *J* = 6.4 Hz, C*H*₃, ^{*i*}Pr, Ar of ^{Dipp}Nacnac].

¹³C NMR {¹H} (100.62 MHz, *d_g*-THF, 298 K) δ 169.4 [C_q, CH*C*(Me) of ^{Dipp}Nacnac], 145.9 [*C*, Ar], 143.2 [*C*, Ar], 125.6 [*C*H, Ar of ^{Dipp}Nacnac], 124.2 [*C*H, Ar of ^{Dipp}Nacnac], 104.0 [t, *J* = 23 Hz C₆HF₄], 95.5 [*C*H of ^{Dipp}Nacnac], 28.4 [*C*H, ^{*i*}Pr, Ar of ^{Dipp}Nacnac], 26.3 [*C*H₃, ^{*i*}Pr, Ar of ^{Dipp}Nacnac], 24.2 [*C*H₃, ^{*i*}Pr, Ar of ^{Dipp}Nacnac], (C_q of *C*-Mg was not observed).

¹⁹F NMR {¹H} (376.40 MHz, *d*₈-THF, 298 K) δ -113.5 [br, 2F, C₆HF₄], -140.0 [m, 2F, C₆HF₄].

Elemental analysis: (C₃₅H₄₂F₄MgN₂) *Calculated:* C: 70.64 % H: 7.60 % N: 4.22 %. *Found:* C: 70.75 % H: 7.48 % N: 4.60 %.

Synthesis of [(^{Dipp}Nacnac)Mg(C₆F₅)(THF)] (3d)

To a solution of **1** (0.28 g, 0.5 mmol) in THF (5 mL), pentafluorobenzene (0.056 mL, 0.5 mmol) was added. The yellow solution was stirred for 1 hour at room temperature. The solvent was removed and 10 mL of hexane were added obtaining a yellow suspension that was stored at - 30 $^{\circ}$ C. After 48 hours a white solid precipitated, and was isolated and placed in a glovebox (0.19 g, 56%). Quantitative formation of **3d** is

observed after two hours, as evidenced by following the reaction by ¹H and ¹⁹F NMR spectroscopy in d_8 -THF in a J. Young NMR tube.

¹**H NMR (400.13 MHz,** *d*₈**-THF, 298 K)** δ 7.10 [s, 6H, Ar of ^{Dipp}Nacnac], 5.02 [s, 1H, CH of ^{Dipp}Nacnac], 3.61 [m, 4H, OCH₂, THF], 3.20 [sept, 4H, *J* = 6.8 Hz, CH, ^{*i*}Pr, Ar of ^{Dipp}Nacnac], 1.77 [m, 4H, CH₂, THF], 1.74 [s, 6H, CH₃ of ^{Dipp}Nacnac], 1.15 [d, 12H, *J* = 7.9 Hz, CH₃, ^{*i*}Pr, Ar of ^{Dipp}Nacnac], 0.96 [d, 12H, *J* = 7.1 Hz, CH₃, ^{*i*}Pr, Ar of ^{Dipp}Nacnac].

¹³C NMR {¹H} (100.62 MHz, *d₈*-THF, 298 K) δ 169.6 [C_q, CHC(Me) of ^{Dipp}Nacnac], 145.7 [CH, Ar of ^{Dipp}Nacnac], 143.1 [CH, Ar of ^{Dipp}Nacnac], 125.7 [CH, Ar of ^{Dipp}Nacnac], 124.2 [CH, Ar of ^{Dipp}Nacnac], 95.5 [CH of ^{Dipp}Nacnac], 68.1 [OCH₂, THF], 28.5 [CH, ⁱPr, Ar of ^{Dipp}Nacnac], 26.2 [CH₂, THF], 24.7 [CH₃, ⁱPr, Ar of ^{Dipp}Nacnac], 24.5 [CH₃, ⁱPr, Ar of ^{Dipp}Nacnac], 24.2 [CH₃, ⁱPr, Ar of ^{Dipp}Nacnac], (C_q of C-Mg and C₆F₅ were not observed in the spectrum.

¹⁹**F NMR** (376.40 MHz, *d*₈-THF, 298 K) δ -112.8 [br. s, C₆F₅], -160.3 [t, *J* = 19.5Hz C₆H₂F₃], -163.6 [m, C₆H₂F₃].

Elemental analysis: $(C_{35}H_{41}F_5MgN_2)$ Calculated: C: 68.77 % H: 7.25 % N: 4.11 %. Found: C: 68.86 % H: 7.27 % N: 4.26 %.

DOSY NMR Studies

• Reaction of [(^{Dipp}Nacnac)MgTMP] (1) with 1,3,5-trifluorobenzene

In a J. Young's NMR tube, 1,3,5-trifluorobenzene (2.13 μ L, 0.02 mmol) was added to a solution of **1** (0.0112 g, 0.02 mmol) in d_8 -THF (0.5 mL). 2.75 μ L of TMS (tetramethylsilane) were added in order to use as internal standard in the DOSY experiment.^[7]

Table S 2: Possible species formed in d_{g} -THF and the corresponding diffusion coefficient (D), molecular weights (MW) and errors MW_{est}=524 g mol⁻¹.

Compound	D (m ² s ⁻¹)	MW _{calc} (g mol ⁻¹)	Error (%)
[(^{Dipp} Nacnac)Mg(C ₆ H ₂ F ₃)] <i>(a)</i>	1.373E-9	572	9
$[(^{Dipp}Nacnac)Mg(C_6H_2F_3)(THF)]$ (b)	5.7503E-10	644	23
$[(^{Dipp}Nacnac)Mg(C_6H_2F_3)]_2$ (c)	5.7503E-10	1144	118
(a) 🗲 (b)	5.7503E-10	608	16

This experiment suggests that 3b in d_8 -THF solution exists as a monomer without THF solvation. The findings estimate a molecular weight of 524 g mol⁻¹ with an error of 9% for the anticipated monomeric compound where the magnesium atom is coordinated to the β -diketiminate fragment and to the terminal trifluorobenzene ligand (Table S.2). A higher aggregation state, such as a dimeric unit would be inconsistent with the obtained results, as the error value would increase to 118%. Similarly, a THF solvated magnesium β -diketiminate complex would increase the error value to 23%. A lower error of 16% would be obtained for an equilibrium of solvation/desolvation of THF, however, the error of the predicted MW in ECC DOSY method has a maximum of \pm 9% which would indicate that this equilibrium is not present in solution.

General Experimental Procedure for Metallation Reactions at NMR Tube Scale

Metallation reactions were performed in a J. Young's NMR tube at NMR scale following the following procedure. In a glovebox, the NMR tube was filled with 0.2 mmol of base **1**, 10 mol% of ferrocene (0.0035 g, 0.02 mmol) as internal standard and 0.409 g of d_8 -THF. The initial ratio of base calculated by integration in ¹H NMR relative to the ferrocene. 0.2 mmol of fluoroaromatic derivative, was introduced and the reactions times were measured from this point in regular intervals of time until full conversion by ¹H NMR spectrum. All the yields were calculated by integration of the products relative to the ferrocene in the ¹H NMR spectrum. The NMR spectra of the compounds correspond to the isolated species obtained for compounds **3a** to **3e**.

General Experimental Procedure for Negishi Cross-Coupling Reactions

To an oven dried Schlenk **1** (0.56 g, 1 mmol) and the fluoroaromatic derivative (1 mmol) were dissolved in THF (5 mL) during 2 hours at room temperature. $ZnCl_2$ (0.14 g, 1 mmol) was then added and the solution was stirred at room temperature during one hour. 5 mol% of Pd(PPh₃)₄ (0.058 g) and iodobenzene (1.25 or 2 mmol) were added and the solution was refluxed during 18 hours. After this time the solution was opened to air. NH₄Cl was added and the solution was extracted with ethyl acetate (30 mL x 2) and brine (20 mL x 3). The solution was then dried over MgSO₄, and the filtrate was evaporated *in vacuo*. The compound was purified by chromatographic column (silica gel, petroleum ether 40 – 60 °C).

• Synthesis of 2,6-difluorobiphenyl (4a)

The reaction was performed starting from **3a** (0.627 g, 1 mmol). 10 mol% of $Pd(PPh_3)_4$ (0.1167 g) and iodobenzene (0.416 g, 2 mmol) were also employed. 64% isolated yield (0.122 g) was obtained for compound **4a**. Spectra are in agreement with those previously reported.^[8]

¹H NMR (400.13 MHz, CDCl₃, 298 K) δ 7.45 [m, 5H, C₆H₅], 7.30 [m, 1H, CHCH₂CF of C₆H₃F₂], 7.02 [m, 2H, CHCF of C₆H₃F₂].

¹³C NMR {¹H} (100.6 MHz, CDCl₃, 298 K) δ 160.3 [dd, *J* = 10.8 Hz, *J* = 249.9, C_q, *C*F of C₆H₃F₂], 130.4 [CH], 129.3 [C_q, CCF of C₆H₅], 129.0 [CH], 128.4 [CH], 128.3 [CH], 118.6 [C_q, CCF of C₆H₃F₂], 111.8 [m, CH, CHCF of C₆H₃F₂].

¹⁹F NMR {¹H} (376.40 MHz, CDCl₃, 298 K) δ -114.5 [s, 2F].

• Synthesis of 2,4,6-trifluorobiphenyl (4b)

In this reaction 2 equivalents of iodobenzene (0.416 g, 2 mmol) were employed. 63% isolated yield (0.129 g) was obtained for compound **4b**. Spectra are in agreement with those previously reported.^[8]

¹H NMR (400.13 MHz, CDCl₃, 298 K) δ 7.45 [m, 5H, C₆H₅], 6.76 [m, 2H,

 $C_6H_2F_3].$

¹³C NMR {¹H} (100.6 MHz, CDCl₃, 298 K) δ 161.7 [dt *C*F of C₆H₂F₃, *J* = 250.0 and 14.9 Hz], 160.3 [dm *C*F of C₆H₂F₃, *J* = 248.7 Hz], 130.4 [*C*H of C₆H₅], 128.5 [*C*H of C₆H₅], 115.1 [m *C*_q of C₆H₂F₃] 100.6 [m, *C*H of C₆H₂F₃].

¹⁹F NMR (376.40 MHz, CDCl₃, 298 K) δ -109.0 [m, 2F, C₆H₂F₃], -101.3 [t, 1F, J = 6.5 Hz C₆H₂F₃].

• Synthesis of 2,3,5,6-tetrafluorobiphenyl (4c)

In this reaction 1.25 equivalents of iodobenzene (0.260 g, 1.25 mmol) were employed. 65% isolated yield (0.145 g) was obtained for compound **4c**. Spectra are in agreement with those previously reported.^[8]

¹H NMR (400.13 MHz, CDCl₃, 298 K) δ 7.49 [m, 5H, C₆H₅], 7.07 [m, 1H, C₆HF₄].

¹³C NMR {¹H} (100.6 MHz, CDCl₃, 298 K) δ 146.4 [dm CF of C₆H₂F₃, *J* = 241.4 Hz], 143.2 [dm CF of C₆H₂F₃, *J* = 238.9 Hz], 130.2 [CH of C₆H₅], 129.3 [CH of C₆H₅], 128.7 [CH of C₆H₅], 127.6 [C_q], 121.6 [C_q], 104.9 [t, CH of C₆HF₄, *J* = 24.6 Hz].

¹⁹**F NMR (376.40 MHz, CDCl₃, 298 K)** δ -139.2 [m, 2F, C₆H*F*₄], -143.9 [m, 2F, C₆H*F*₄].

• Synthesis of 2,3,4,5,6-pentafluorobiphenyl (4d)

¹³C NMR {¹H} (100.6 MHz, CDCl₃, 298 K) δ 144.3 [dm CF of C₆H₂F₃, *J* = 255.3 Hz], 140.5 [dm CF of C₆H₂F₃, *J* = 253.2 Hz], 138.9 [dm CF of C₆H₂F₃, *J* = 242.5 Hz] 130.2 [CH of C₆H₅], 129.4 [CH of C₆H₅], 128.9 [CH of C₆H₅], 126.6 [C_q of C₆H₅], 116.1 [t, C_q of C₆F₅].

¹⁹**F NMR {**¹**H} (376.40 MHz, CDCl₃, 298 K)** δ -143.2 [m, C₆F₅], -155.6 [m, C₆F₅], -162.2 [m, C₆F₅].

• Synthesis of 2-(2,4-difluoro-3-phenyl-phenyl)pyridine (4e)

In this reaction 2 equivalents of iodobenzene (0.416 g, 2 mmol) were employed. 68% isolated yield (0.182 g) was obtained for compound **4e**.

¹H NMR (400.13 MHz, CDCl₃, 298 K) δ 8.75 [dt, 1H, Ar-*H*], 7.98 [td, 1H, Ar-*H*], 7.78 [m, 2H, 2Ar-*H*], 7.48 [m, 5H, 5Ar-*H*], 7.29 [m, 1H, Ar-*H*] and 7.14 ppm [dt, 1H, Ar-*H*].

¹³C NMR {¹H} (100.6 MHz, CDCl₃, 298 K) δ 160.4 [dd, CF of ArCF], 157.7 0 [dd, ArCF], 153.1 [quaternary C], 150.0 [ArCH], 136.6 [ArCH], 132.2 [t, quaternary C], 130.7 [ArCH], 130.5 [ArCH], 129.4 [quaternary C], 128.4 [ArCH], 124.5 [d ArCH], 122.6 [ArCH], 118.9 [quaternary C], 112.1 [dd ArCH].
 ¹⁹F NMR {¹H} (376.40 MHz, CDCl₃, 298 K) δ -113.1 [m, C₆F₂], -117.6 [m, C₆F₂].

C-F Activation 2-(2,4-difluorophenyl)pyridine

To a solution of **2** (0.28 g, 0.5 mmol) in toluene (5 mL), 2-(2,4-difluorophenyl)pyridine (0.1 g, 0.5 mmol) was added. The yellow solution was stirred for 24 hours at room temperature. The solvent was removed and 5 mL of hexane were added obtaining a white solid precipitate **5**, which was isolated and placed in a glovebox. The solvent from the filtrate was removed and placed into the glovebox. C_6D_6 was then added as well as ferrocene (9.5 mg, 0.05 mmol). The ¹H NMR spectrum suggests the presence of a 92% of compound **7a** from the integration versus ferrocene. ¹H, ¹³C and ¹⁹F NMR experiments are in agreement with the literature.^[9,10]

• Synthesis of [^{Dipp}NacnacMg(F)] (5)^[9]

¹**H NMR (400.13 MHz, C₆D₆, 298K)** δ 7.06 [br. m, 12H, Ar of ^{Dipp}Nacnac], 4.84 [s, 2H, CH of ^{Dipp}Nacnac], 3.01 [m, 8H, CH, ⁱPr, Ar of ^{Dipp}Nacnac], 1.49 [s, 12H, CH3 of ^{Dipp}Nacnac], 1.10 [d, 24H, , J = 6.8 Hz, CH3, ⁱPr, Ar of ^{Dipp}Nacnac], 0.96 [d, 24H, , J = 7.6 Hz, CH3, ⁱPr, Ar of ^{Dipp}Nacnac].

¹⁹F {¹H} NMR (376.40 MHz, C₆D₆, 298K) δ -188.1 [s, 2F].

• Synthesis of 2-(2-butyl-4-fluorophenyl)pyridine (7a)^[10]

¹H NMR (400.13 MHz, CDCl₃, 298K) δ 8.67 [d, J = 5.1 Hz, 1H], 7.72 [td, J = 1.9 Hz, J = 7.6 Hz, 1H], 7.32 [m, 2H], 7.23 [m, 1H], 7.00 [m, 1H], 6.95 [m, 1H], 2.68 [m, 2H, CH₂ of Bu], 1.43 [m, 2H, CH₂ of Bu], 1.21 [m, 2H, CH₂ of Bu], 0.78 (t, J = 7.5 Hz, 3H, CH₃ of Bu]. In agreement with reported data.^[8] ¹⁹F {¹H} NMR (376.40 MHz, C₆D₆, 298K) δ -114.4 [s, 1F]. In agreement with reported data.^[10]

• Synthesis of 2-(2-phenyl-4-fluorophenyl)pyridine (7b)^[10]

In a similar experiment [^{Dipp}NacnacMg(C₆H₅)THF] (**13**) (74 mg, 0.125 mmol) was reacted with ppf (25 mg, 0.125 mmol) in deuterated toluene (0.5 mL) in a J. Young NMR tube at 60°C for 72 hours, and reaction was monitored by ¹H and ¹⁹F NMR spectroscopy. Comparison of the resulting resonances in the ¹H NMR spectrum, against ferrocene as an internal standard reveal formation of **7b** in an 82% yield.¹H NMR (**400.13 MHz**, *d₈*-toluene, **298K**) ; δ 8.50 [d, *J* = 5.4 Hz, 1H], 7.74 [m, 1H], 7.13 [m, 1H], 7.0 [m, 5H], 6.90 [td, *J* = 8.4 and 3.1 Hz, 1H], 6.80 [td, *J* = 7.7 and 1.50 Hz, 1H], 6.66 [dt; *J* = 8.4 Hz, 1H], 6.57 [m, 1H]. In agreement with reported data.^[8]

¹⁹F {¹H} NMR (376.40 MHz, d_{g} -toluene, 298K) δ -114.0 [s, 1F]. In agreement with reported data.^[10]

Synthesis of 2-(2-{C₈H₅O}-4-fluorophenyl)pyridine (7c)

 $[^{Dipp}$ NacnacMgTMP] (1) (140 mg, 0.25 mmol) and 2,3-benzofuran (28 μ L, 0.25 mmol) was stirred in THF 2 mL for 2 hours. All volatiles were removed *in vacuo* and the resulting residue stirred in pentane, before solvent removal to ensure all remaining THF is removed. A solution of **ppf** (46 mg 0.25 mol) in toluene (3 mL) was added and then reacted at 60 °C for 72 hours. The reaction was

quenched with water and **7c** was isolated as a viscous pale yellow oil in 71% yield (43 mg) after purification via flash column chromatography, eluting with hexane:EtOAc (10:1).

¹H NMR (400.13 MHz, CDCl₃, 298 K): δ 8.73 [m, 1H, Ar-H], 7.68 [m, 2H, Ar-H], 7.54 [dd, 1H, *J* = 8.5 and 5.4 Hz, Ar-H], 7.44 [d, 1H, *J* = 7.2 Hz, Ar-H], 7.40 [d, 1H, *J* = 8.1 Hz, Ar-H], 7.30 [m, 3H,Ar-H], 7.20 [2H. m, Ar-H], 6.17 [s, 1H, Ar-H of C₅H₅O]

¹³C NMR {¹H} (100.62 MHz, CDCl₃, 298 K): δ 161.7 [d Ar-CF], 157.8 [quaternary-C], 153.5 [quaternary-C], 152.7 [quaternary-C], 148.7 [Ar-CH], 135.3 [Ar-CH], 134.5 [d, *J* = 3.4 Hz, quaternary-C], 131.6 [d, *J* = 8.9 Hz, Ar-CH], 130.1 [d, *J* = 8.9 Hz, quaternary-C], 127.8 [quaternary-C], 123.8 [Ar-CH], 123.5 [Ar-CH], 122.0 [Ar-CH], 121.4 [Ar-CH], 120.2 [Ar-CH], 114.6 [d, *J* = 21.3 Hz, Ar-CH], 114.2 [d, *J* = 23.9 Hz, Ar-CH], 110.2 [Ar-CH], 105.1 [CH of C₈H₅O].

¹⁹F NMR (376.40 MHz, *d*₈-toluene, 298K): δ -113.2 [s, 1F].

HR-MS (ESI): m/z calcd. for $[M]^+ C_{19}H_{12}FNO = 290.0976$. Found 290.0974

• Synthesis of [{(^{Dipp}Nacnac)MgTHF{C₈H₅O}] (8)

To a solution of compound **1** (0.56 g, 1 mmol) in THF (10 mL), benzofuran (0.11 mL, 1 mmol) was added. The dark yellow solution was stirred for 2 hours at room temperature. The solvent was removed and a mixture of 3 mL of hexane and 4 mL of toluene were added. The suspension was warmed until a solution was obtained, then placed at -33 $^{\circ}$ C. After 48 hours a crop of colourless crystals were isolated and placed in a glovebox

(0.329g, 59%). In order to improve yield of the compound, after 5 hours of reaction the solvent was removed and 10 mL of hexane were added, the suspension was placed at -33 $^{\circ}$ C. The resulting solid was isolated and placed in a glovebox (0.413g, 74%).

¹H NMR (400.13 MHz, C₆D₆, 298 K) δ 7.55 [br. d, 1H, C₈H₅O], 7.45 [br. d, 1H, C₈H₅O], 7.13 [s, 6H, Ar of ^{Dipp}Nacnac], 7.07 [m, 2H, C₈H₅O], 6.64 [d, 1H, *J* = 4 Hz, C₈H₅O], 4.90 [s, 1H,CH], 3.45 [br. m, 4H, CH, ^{*i*}Pr, Ar of ^{Dipp}Nacnac], 1.72 [s, 6H, CH₃ of ^{Dipp}Nacnac], 1.21 [d, 12 H, *J* = 8 Hz, CH₃, ^{*i*}Pr, Ar of ^{Dipp}Nacnac], 1.18 [br. m, 6H, CH₃, ^{*i*}Pr, Ar of ^{Dipp}Nacnac], 1.09 [br. m, 6H, CH₃, ^{*i*}Pr, Ar of ^{Dipp}Nacnac].

¹³C NMR {¹H} (100.62 MHz, C₆D₆, 298 K) δ 192.8 [C_q, Mg-C_α of C₈H₅O], 168.9 [C_q, CHC(Me) of ^{Dipp}Nacnac], 159.9 [C_q of C₈H₅O], 145.4 [CH, Ar of ^{Dipp}Nacnac], 142.9 [C, Ar of ^{Dipp}Nacnac], 130.6 [C_q of C₈H₅O], 125.5 [CH, Ar of ^{Dipp}Nacnac], 124.0 [CH, Ar of ^{Dipp}Nacnac], 121.2 [CH of C₈H₅O], 120.9 [CH of C₈H₅O], 119.6 [CH of C₈H₅O], 119.1 [CH of C₈H₅O], 110.4 [CH of C₈H₅O], 94.7 [CH of ^{Dipp}Nacnac], 69.8 [C_q, ⁱPr, Ar of ^{Dipp}Nacnac], 28.4 [CH, ⁱPr, Ar of ^{Dipp}Nacnac], 25.2 [CH₃, ⁱPr, Ar of ^{Dipp}Nacnac], 25.0 [CH₃, ⁱPr, Ar of ^{Dipp}Nacnac], 24.6 [CH₃, ⁱPr, Ar of ^{Dipp}Nacnac], 24.1 [CH₃, ⁱPr, Ar of ^{Dipp}Nacnac].

Elemental analysis: (C₃₇H₄₆MgN₂O) *Calculated:* C: 79.49 % H: 8.29 % N: 4.35 %. *Found:* C: 79.53 % H: 9.06 % N: 4.70 %.

NMR spectra of compounds

Figure 1: ¹H NMR spectrum of **3a** in d_8 -THF.

Figure 2: ¹³C NMR spectrum of **3a** in d_8 -THF.

Figure 3: ¹⁹F NMR spectrum of **3a** in d_8 -THF.

Figure 4: ¹H NMR spectrum of **3b** in d_8 -THF

Figure 5: ¹³C NMR spectrum of **3b** in d_8 -THF.

Figure 6: ¹⁹F NMR spectrum of **3b** in d_8 -THF.

Figure 7: ¹H DOSY NMR spectrum of 3b in d_8 -THF.

Figure 8: ¹H NMR spectrum of 3c in d_8 -THF.

Figure 9: ¹³C NMR spectrum of **3c** in d_8 -THF.

Figure 10: ¹⁹F NMR spectrum of **3c** in d_8 -THF.

Figure 11: ¹H NMR spectrum of **3d** in d_{g} -THF.

Figure 12: ¹³C NMR spectrum of **3d** in d_{g} -THF.

Figure 13:¹⁹F NMR spectrum of **3d** in d_8 -THF.

Figure 14: a) ¹H NMR spectrum of 1,3-difluorobenzene in d_8 -THF. b) ¹H NMR spectrum of base **1** in d_8 -THF. c) ¹H NMR spectrum for the reaction of **1** (0.2 mmol) and 1 equivalent of C₆H₄F₂ (0.2 mmol) at RT in d_8 -THF after 30 min, mixture of **1** and **3a**. d) ¹H NMR spectrum for the reaction of **1** (0.2 mmol) and 1 equivalent of C₆H₄F₂ (0.2 mmol) at RT in d_8 -THF after 2 hours, formation of **3a**.

Figure 15: ¹H NMR spectrum of 4a in CDCl₃.

Figure 16: ¹³C NMR spectrum of 4a in CDCl₃.

Figure 17: ¹⁹F NMR spectrum of 4a in CDCl₃.

Figure 18: ¹H NMR spectrum of 4b in CDCl₃.

Figure 19: ¹³C NMR spectrum of 4b in CDCl₃.

24

Figure 21: ¹H NMR spectrum of 4c in CDCl₃.

Figure 22: ¹³C NMR spectrum of 4c in CDCl₃.

Figure 23: ¹⁹F NMR spectrum of 4c in CDCl₃.

Figure 24: ¹H NMR spectrum of 4d in CDCl₃.

Figure 25: ¹³C NMR spectrum of 4d in CDCl₃.

-105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 ppm **Figure 26:** ¹⁹F NMR spectrum of **4d** in CDCl₃.

Figure 27: ¹H NMR spectrum of 4e in CDCl₃.

Figure 28: ¹³C NMR spectrum of 4e in CDCl₃.

Figure 29: ¹⁹F NMR spectrum of 4e in CDCl₃.

Figure 31: ¹⁹F NMR spectrum of 5 in C_6D_6 .

Figure 33: ¹⁹F NMR spectrum of **7a** in CDCl₃.

Figure 34: a) ¹⁹F NMR spectrum of 2-(2,4-difluorophenyl)pyridine in C_6D_6 . b) ¹⁹F NMR spectrum of **5** in C_6D_6 . c) ¹⁹F NMR spectrum of **7a** in C_6D_6 (presence of an impurity of **5**).

Figure 35: ¹H NMR spectrum of **7b** in d_8 -toluene.

Figure 36: ¹⁹F NMR spectrum of **7b** in d_g -toluene. Minor signals correspond to unreacted **ppf**.

Figure 37: ¹H NMR spectrum of 7c in CDCl₃.

Figure 38: ¹³C NMR spectrum of 7c in CDCl₃.

Figure 39: ¹⁹F NMR spectrum of 7c in CDCl₃.

Figure 40: ¹H NMR spectrum of **8** in C_6D_6 .

Figure 41: ¹³C NMR spectrum of **8** in C_6D_6 .

Figure 42: ¹H NMR spectra of reaction between **2** and **ppf** in d_8 -toluene. Lower spectrum after one hour at room temperature, and upper spectrum recorded after 24 hours at room temperature. The results demonstrate that formation of **7b** is unaffected by the presence of the radical trap TEMPO. Indicating that the reaction likely proceeds via nucleophilic substitution.

Competition experiments

Reaction between 1, 2 and ppf: 1 (56 mg, 0.1 mmol), **2** (56 mg, 0.1 mmol) **ppf** (20 mg, 0.1 mmol) were added to a J. Young NMR tube and dissolved in d_8 -THF (0.5 mL). The reaction maintained at room temperature and was monitored periodically over 72 hours, via ¹H and ¹⁹F NMR spectroscopy.

Figure 43: Competition experiment between **1**, **2** and **ppf** in d_8 -THF. Bottom spectrum contains only **1** and **2**. Middle spectrum recorded after 15 minutes indicates metalation has already begun. Upper spectrum after 72 hours at room temperature indicates metalation occurs preferentially over C-F activation. Analysis of resonance relating to the proton present on the backbone of the NACNAC ligand provides diagnostic information in this regard. After 15 minutes three singlets are present at *ca*. δ 5 ppm, these correspond to **1**, **2 and 3e**. The top spectrum, after 72 hours, only displays resonances corresponding to **2** and **3e**.

Reaction between 2, TMPH and ppf: 2 (112 mg, 0.2 mmol), TMPH (34 μ L, 0.2 mmol) and **ppf** (40 mg, 0.2 mmol) were added to a J. Young NMR tube and dissolved in d_8 -THF (0.5 mL). The reaction maintained was heated at 80 °C and was monitored periodically over 24 hours, via ¹H and ¹⁹F NMR spectroscopy.

Figure 44: Competition experiment between **1**, TMPH and **ppf** in d_8 -THF. Lower spectrum is recorded after 15 minutes at room temperature and indicates no reaction has occured. Upper spectrum recorded after 24 hours at 80 °C after reveals that only C-F activation, and not metalation occurs.

A competition experiment of an equimolar mixture of **1** and **2** with 1,3,5 trifluorobenzene showed the formation of metallation product **3b** and unreacted **2**. When **2** is refluxed with this fluoroarene product **3b** only occurs at elevated temperatures (60 °C for 138 hours).

References

- S. E. Baillie, V. L. Blair, T. D. Bradley, W. Clegg, J. Cowan, R. W. Harrington, A. Hernán-Gómez,
 A. R. Kennedy, Z. Livingstone, E. Hevia, *Chem. Sci.* 2013, *4*, 1895–1905.
- [2] L. Davin, R. McLellan, A. Hernán-Gómez, W. Clegg, A. R. Kennedy, M. Mertens, I. A. Stepek, E. Hevia, *Chem. Commun.* 2017, *53*, 3653–3656.
- [3] A. P. Dove, V. C. Gibson, P. Hormnirun, E. L. Marshall, J. A. Segal, A. J. P. White and D. J.
 Williams, *Dalton Trans.* 2003, 3088-3097.
- [4] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112–122.
- [5] G. M. Sheldrick, *Acta Crystallogr.* **2015**, *C71*, 3–8.
- [6] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341.
- [7] S. Bachmann, B. Gernert, D. Stalke, *Chem. Commun.* **2016**, *52*, 12861–12864.
- [8] H. Li, C.-L. Sun, B.-J. Li and Z.-J. Shi, Org. Lett. **2011**, *13*, 276-279.
- [9] C. Bakewell, A. J. P. White, M. R. Crimmin, J. Am. Chem. Soc. 2016, 138, 12763–12766.
- [10] Y. Xiong, J. Wu, S. Xiao, J. Xiao, S. Cao, J. Org. Chem. **2013**, 78, 4599–4603.