Electronic Supplementary Information

Silver-induced self-immolative CI-F exchange fluorination of arylsulfur chlorotetrafluorides: Synthesis of arylsulfur pentafluorides

Benqiang Cui,^a Shichong Jia,^a Etsuko Tokunaga,^a Norimichi Saito,^b and Norio Shibata*^a

^aDepartment of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan, ^bPharmaceutical Division, Ube Industries Ltd. 1-2-1 Shibaura Minato-ku, Tokyo 105-8449, Japan

Table of contents

1.	All General Information	2
2.	General Procedure for Synthesis of arylsulfur chlorotetrafluorides ¹	2
3.	General Method for Synthesis of arylsulfur pentafluorides	2
4.	Optimization study of silver-induced Cl-F exchange reaction of 2a	3
5.	¹⁹ F NMR spectra of the Cl-F exchange reaction process	4
6.	Release CO ₂ in the process of silver carbonate induced CI-F exchange reaction	5
7.	Examples of unsuccessful substrates for the silver salts induced Cl-F reaction	6
8.	Table S2. The procedure, yields, appearance and ¹⁹ F NMR data of arylsulfur	
chlo	orotetrafluorides	6
9.	Synthesis of disulfides	8
10.	Preparation of Compounds	8
11.	References	14
12.	¹ H, ¹⁹ F and ¹³ C NMR Spectra of Products	16

1. All General Information

All reactions were performed in oven-dried glassware under a positive pressure of nitrogen. Solvents were transferred via syringe and were introduced into the reaction vessels though a rubber septum. Column chromatography was carried out on a column packed with silica-gel 60N spherical neutral size 63-210 μ m. NMR spectra were recorded on a JEOL JNM-ECZ700R, Bruker Avance 500, Bruker Avance 400 and Varian Mercury 300 instruments and are calibrated using residual undeutetrated solvent (CHCl₃ at 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). The CFCl₃ [δ = 0.00 (CDCl₃)] was used as internal standard for ¹⁹NMR. Mass spectra were recorded on a SHIMADZU GCMS-QP5050A (EI-MS) and SHIMAZU LCMS-2020 (ESI-MS). High resolution mass spectrometry were recorded on a Waters Synapt G2 HDMS (ESI-MS). Infrared spectra were recorded on a JASCOFT/IR-4100 spectrometer. Melting points were recorded on a BUCHI M-565. Commercially available chemicals were obtained from Acro Organics, Aldrich Chemical Co., Alfa Aesar, TCI, Ark Farm and used as received unless otherwise stated.

2. General Procedure for Synthesis of arylsulfur chlorotetrafluorides¹

Procedure I

An oven-dried 30 ml FEP bottle with magnetic stirring bar was charged with disulfide (1.88 mmol), anhydrous spray dried KF (1.75 g, 30.08 mmol) and anhydrous MeCN (10 ml) inside the glove box. The bottle was cooled in an ice/water bath while chlorine gas was bubbled through the stirred reaction mixture for approximately 5 minutes. The bottle was sealed and the reaction mixture was stirred at room temperature for 12-48 h. After reaction was complete, solution was filtrated under N_2 to another 30 ml FEP bottle using a PP/ETFE filter. The residue was washed with MeCN (2 ml×2). MeCN was evaporated in vacuo to give arylsulfur chlorotetrafluorides.

Procedure II

An oven-dried 60 ml FEP bottle with magnetic stirring bar was charged with aryl sulfur (5.3 mmol), anhydrous spray dried KF (2.77 g, 47.7 mmol) and anhydrous MeCN (20 ml) inside the glove box. The bottle was cooled in an ice/water bath while chlorine gas was bubbled through the stirred reaction mixture for approximately 5 minutes. The bottle was sealed and the reaction mixture was stirred at room temperature overnight. After reaction was complete, solution was filtrated under N_2 to another 60 ml FEP bottle using a PP/ETFE filter. The residue was washed with Hexane (5 ml×2). The solvent was evaporated in vacuo to give arylsulfur chlorotetrafluorides.

3. General Method for Synthesis of arylsulfur pentafluorides

Method A:

Crude arylsulfur chlorotetrafluoride (1.0 mmol) and Ag_2CO_3 (138 mg, 0.5 mmol) were carefully weighed into FEP bottle containing a small magnetic stirrer bar in the glove box. Dry CH_2Cl_2 (5 ml) was added. The reaction was stirred at room temperature for 12 h then filtrated through a pad of Kieselguhr and washed with CH_2Cl_2 . Then combined filtrate was concentrated under vacuum in the ice bath. The crude was purified by chromatography on silica gel, eluting with pentane/ CH_2Cl_2 to give arylsufur pentafluoride.

Method B:

Crude arylsulfur chlorotetrafluoride (1.0 mmol) and Ag_2CO_3 (138 mg, 0.5 mmol) were carefully weighed into FEP bottle containing a small magnetic stirrer bar in the glove box. Dry CH_2Cl_2 (5 ml) was added. The reaction was stirred at 40 °C for 12-24 h then filtrated through a pad of Kieselguhr and washed with CH_2Cl_2 . Then combined

filtrate was concentrated under vacuum in the ice bath. The crude was purified by chromatography on silica gel, eluting with pentane/ CH_2Cl_2 to give arylsufur pentafluoride.

Method C:

Crude arylsulfur chlorotetrafluoride (1.0 mmol) and Ag_2CO_3 (138 mg, 0.5 mmol) were carefully weighed into FEP bottle containing a small magnetic stirrer bar in the glove box. The reaction was stirred at 70 °C for 60-72 h then CH_2Cl_2 was added. The solution was filtrated through a pad of Kieselguhr and washed with CH_2Cl_2 . Then combined filtrate was concentrated under vacuum in the ice bath. The crude was purified by chromatography on silica gel, eluting with pentane/ CH_2Cl_2 to give arylsufur pentafluoride.

4. Optimization study of silver-indeced Cl-F exchange reaction of 2a

F .	Metal salts	Fluorinating			T : (1)	Temp.	Yieldª
Entry	(equiv)	reagents (equiv)	Additive (equiv)	Solvent	Time (n)	(°C)	
1	Ag ₂ CO ₃ (1.0)	SelectFluor (2.0)		DCM	24	40	75
2	Ag ₂ CO ₃ (1.0)	SelectFluor (2.0)		CHCl₃	24	70	70
3	Ag ₂ CO ₃ (1.0)	TMAF (2.0)		DCM	24	40	0
4	Ag ₂ CO ₃ (1.0)	DMPU·HF (2.0)		DCM	24	40	36
5	Ag ₂ CO ₃ (1.0)	Py∙HF (2.0)		DCM	24	40	35
6	Ag ₂ CO ₃ (1.0)	TBAF (2.0)		DCM	24	40	25
7	Ag ₂ CO ₃ (0.5)	DAST (2.0)		DCM	24	r.t	23
8	Ag ₂ CO ₃ (0.5)	Fluolead (1.0)		DCM	24	40	80
9		Fluolead (1.0)		DCM	24	40	0
10	Ag ₂ CO ₃ (1.0)			DCM	24	40	78
11	Ag ₂ CO ₃ (0.7)			DCM	24	40	79
12	Ag ₂ CO ₃ (0.6)			DCM	24	40	79
13	Ag ₂ CO ₃ (0.5)			DCM	24	40	79
14	Ag ₂ CO ₃ (0.4)			DCM	24	40	78
15	Ag ₂ CO ₃ (0.3)			DCM	24	40	55
16	Ag ₂ CO ₃ (0.2)			DCM	24	40	29
17	Ag ₂ CO ₃ (0.5)			DCM	24	r.t	79
18	Ag ₂ CO ₃ (0.5)			Hexane	24	r.t	49
19	Ag ₂ CO ₃ (0.5)			THF	24	r.t	12
20	Ag ₂ CO ₃ (0.5)			MeCN	24	r.t	trace
21	Ag ₂ CO ₃ (0.5)			Dioxane	24	r.t	11
22	Ag ₂ CO ₃ (0.5)			Toluene	24	r.t	7
23	Ag ₂ CO ₃ (0.5)			Solkane 367/227	24	r.t	74
24	AgF (1.0)			DCM	24	r.t	29

25	AgCl (1.0)	 	DCM	24	r.t	0
26	AgO (1.0)	 	DCM	24	r.t	68
27	AgOTf (1.0)	 	DCM	24	r.t	32
28	Ag ₂ O (0.5)	 	DCM	24	r.t	30
29	AgOAc (1.0)	 	DCM	24	r.t	9
30	CuF ₂ (1.0)	 	DCM	24	r.t	0
31	ZnF ₂ (1.0)	 	DCM	24	r.t	0
32	CuO (1.0)	 	DCM	24	r.t	0
33	ZnO (1.0)	 	DCM	24	r.t	0
34	Cul (1.0)	 	DCM	24	r.t	trace
35	Na ₂ CO ₃ (1.0)	 	DCM	24	r.t	0
36	Cs ₂ CO ₃ (1.0)	 	DCM	24	r.t	0
37	Ag ₂ CO ₃ (0.3)	 Pyridine (0.3)	DCM	24	r.t	13
38	Ag ₂ CO ₃ (0.3)	 Et ₃ B (0.088)	DCM	24	r.t	58
39	Ag ₂ CO ₃ (0.2)	 Na ₂ S ₂ O ₈ (2.0)	DCM	24	r.t	28
40	Ag ₂ CO ₃ (0.5)	 	DCM	1	r.t	29
41	Ag ₂ CO ₃ (0.5)	 	DCM	2	r.t	42
42	Ag ₂ CO ₃ (0.5)	 	DCM	3	r.t	53
43	Ag ₂ CO ₃ (0.5)	 	DCM	4	r.t	56
44	Ag ₂ CO ₃ (0.5)	 	DCM	6	r.t	73
45	Ag ₂ CO ₃ (0.5)	 	DCM	10	r.t	79
46	Ag ₂ CO ₃ (0.5)	 	DCM	12	r.t	79
47	Ag ₂ CO ₃ (0.5)	 	DCM	18	r.t	77

Conditions: **2a** (51 mg, 0.2 mmol). [a] Yield determined by ¹⁹F NMR spectroscopy with fluorobenzene as an internal standard.

5. ¹⁹F NMR spectra of the CI-F exchange reaction process

Figure S1. ¹⁹F NMR spectra of the Cl-F exchange reaction process

Entry	Time (h)	Yield ^a of ArSO ₂ F (%)
1	1	5
2	3	7
3	6	11
4	12	12
5	24	12

6. Release of CO₂ in the process of silver carbonate-induced Cl-F exchange reaction

Crude 4-chlorophenylsulfur chlorotetrafluoride (51.0 mg, 0.2 mmol) and Ag_2CO_3 (27.5 mg, 0.1 mmol) were carefully weighed into FEP tube containing a small magnetic stirrer bar in the glove box. Dry CH_2Cl_2 (1 ml) was added. The reaction was stirred at room temperature for 12 h. Then, using argon gas, the generated gas was transferred slowly into another tube filled with saturated aqueous $Ca(OH)_2$. The aqueous solution became turbid, and white precipitate of $CaCO_3$ was observed in the aqueous solution. It indicates that CO_2 generated during the silver carbonate-induced Cl-F exchange reaction of $ArSF_4Cl$.

Clear, aqueous solution of $Ca(OH)_2$ (left). Transferring the gas, generated in the reaction mixture, into another tube filled with aqueous solution of $Ca(OH)_2$ (right).

After bubbling the gas generated in the reaction mixture, white precipitates were observed on the bottom of bottle (left). The precipitate was not dissolved by adding water (right). It indicates the formation of CaCO₃.

7. Examples of substrates failed for the silver salts induced Cl-F reaction.

Figure S2.Substrates failed for the silver salts induced Cl-F reaction, analyzed by ¹⁹F NMR and GC-MS

8. Table S2. The procedure, yields, appearance and NMR data of arylsulfur chlorotetrafluorides

Entry	Structure	Procedure	Yield ^a	Appearance	NMR (CDCl₃; δ, ppm)
	CI VI	П	81%	oil	¹ H NMR (300 MHz, CDCl ₃) δ 7.68 (d, <i>J</i> = 9.1
2a	SF4CI				Hz, 2H), 7.43 (d, <i>J</i> = 8.9 Hz, 2H). ¹⁹ F NMR (282
					MHz, CDCl₃) δ 136.79 (s, 4F).

20 NMR (282 MHz, CDCl ₃) δ 137.10 ((s, 4F)
	7 74 /
^F II 67% oil ¹ H NMR (300 MHz, CDCl ₃) δ 7.80	– 7.71 (m,
2c 2H), 7.13 (t, J = 8.4 Hz, 2H). ¹⁹ F	NMR (282
MHz, CDCl ₃) δ -107.46 (s, 1F)	
Me II 71% oil ¹H NMR (300 MHz, CDCl₃) δ 7.61	(d, J = 8.5
2d Hz, 2H), 7.23 (d, J = 8.2 Hz, 2H), 2	.39 (s, 3H).
¹⁹ F NMR (282 MHz, CDCl ₃) δ 137.	56 (s, 4F)
SF ₄ CI II 80% solid ¹ H NMR (300 MHz, CDCl ₃) δ 7.94	(d, J = 8.6
Hz, 1H), 7.65 (dd, J = 11.9, 4.4 Hz	z, 2H), 7.44
(d, J = 8.8 Hz, 1H), 1.39 – 1.27 (r	m, 9H). ¹⁹ F
NMR (282 MHz, CDCl ₃) δ135.87 (s	s, 4F).
Cl SF ₄ Cl II 64% oil ¹ H NMR (300 MHz, CDCl ₃) δ 7.77	– 7.72 (m,
1H), 7.65 (d, <i>J</i> = 8.1 Hz, 1H), 7.55	– 7.47 (m,
2f 1H), 7.46 – 7.36 (m, 1H). ¹⁹ F NMR	(282 MHz,
CDCl ₃) δ 136.04 (s, 4F).	
Bry SF4CI II 79% oil ¹ H NMR (300 MHz, CDCl ₃) δ 7.92	– 7.86 (m,
1H), 7.73 – 7.60 (m, 2H), 7.34 (t,	J = 8.3 Hz,
2g 1H). ¹⁹ F NMR (282 MHz, CDCl ₃) δ	138.11 (s,
4F).	
FSF4Ci II 69% oil ¹ H NMR (300 MHz, CDCl ₃) δ 7.58	– 7.51 (m,
1H), 7.50 – 7.39 (m, 2H), 7.24 – 7.	18 (m, 1H).
2h 1 ³ F NMR (282 MHz, CDCl ₃) δ 136.2	28 - 136.11
(m, 4F), -110.11 (dd, <i>J</i> = 14.3, 7.7	Hz, 1F).
F II 71% oil ¹ H NMR (300 MHz, CDCl ₃) δ 7.80	– 7.70 (m,
SF4CI 1H), 7.51 (dd, J = 12.5, 7.3 Hz, 2	1H), 7.26 –
2i 7.13 (m, 2H). ¹⁹ F NMR (282 MH:	z, CDCl₃) δ
140.32 (d, J = 24.0 Hz, 4F), -107.85	5 – -108.46
(m, 1F)	
O2N I 87% solid ¹ Η NMR (300 MHz, CDCl ₃) δ 8.32	(d, J = 8.7
2j Hz, 2H), 7.95 (d, J = 8.9 Hz, 2H). ¹⁹ F	NMR (282
MHz, CDCl ₃) δ 134.98 (s, 4F)	
I 84% solid ¹ H NMR (300 MHz, CDCl ₃) δ 8.0	66 (s, 1H),
0 ₂ N SF ₄ Cl 8.42 (d, J = 7.6 Hz, 1H), 8.11 (d,	J = 6.4 Hz,
2k 1H), 7.73 (t, <i>J</i> = 8.0 Hz, 1H). ¹⁹ F	NMR (282
MHz, CDCl ₃) δ 135.74 (s, 4F)	
CI CI CI II 80% oil ¹H NMR (300 MHz, CDCI₃) δ 7.85	(d, J = 2.3
21 Hz, 1H), 7.57 (dt, <i>J</i> = 16.0, 5.7 H	Iz, 2H). ¹⁹ F
NMR (282 MHz, CDCl ₃) δ 136.24 ((s, 4F)
F II 66% oil ¹ H NMR (300 MHz, CDCl ₃) δ 7.67	– 7.58 (m,
F 1H), 7.58 – 7.50 (m, 1H), 7.31 – 7.	20 (m, 1H).
2m ¹⁹ F NMR (282 MHz, CDCl ₃) δ 136.8	38 - 136.57
(m, 4F), -130.98 – -131.50 (m, 1F)	, -133.92 –
-134.47 (m, 1F)	

	FF	Ш	62%	oil	¹ H NMR (300 MHz, CDCl ₃) δ 8.01 – 7.69 (m,
2n	SF4CI				1H), 7.12 (t, J = 8.8 Hz, 1H), 7.06 – 6.83 (m,
211					1H). ^{19}F NMR (282 MHz, CDCl_3) δ 140.83 (d,
					J = 23.7 Hz, 4F), -98.60 – -112.98 (m, 2F)
	F	П	73%	oil	¹ H NMR (300 MHz, CDCl ₃) δ 7.51 – 7.42 (m,
	F SF₄CI				1H), 7.25 – 7.15 (m, 2H). ¹⁹ F NMR (282 MHz,
20					CDCl ₃) δ 139.25 (d, J = 24.3 Hz, 4F), -113.40
					114.12 (m, 1F), -116.46 (dd, J = 13.8, 7.5
					Hz, 1F)
	O ₂ N F	I	79%	solid	¹ H NMR (300 MHz, cdcl ₃) δ 8.12 (dt, <i>J</i> = 13.5,
	SF4CI				4.4 Hz, 2H), 7.98 (dd, <i>J</i> = 9.4, 6.4 Hz, 1H). ¹⁹ F
2p					NMR (282 MHz, CDCl ₃) δ 136.07 (d, <i>J</i> = 12.3
					Hz, 4F), -110.25 (d, J = 5.9 Hz, 4F)
	SF4CI	I	77%	oil	¹ H NMR (300 MHz, CDCl ₃) δ 8.64 (s, 1H),
	F N				8.22 – 8.11 (m, 1H), 7.05 (dd, <i>J</i> = 9.0, 2.8 Hz,
2q					1H). ¹⁹ F NMR (282 MHz, CDCl ₃) δ 138.44 (s,
					4F), -62.22 (s, 1F)
	CI	I	75%	solid	^1H NMR (300 MHz, CDCl_3) δ 8.51 (s, 1H),
	N SF4CI				7.88 (d, J = 8.6 Hz, 1H), 7.70 (d, J = 8.7 Hz,
2r					1H). ¹⁹ F NMR (282 MHz, CDCl ₃) δ 127.99 (s,
					4F).
	Br	I	91%	solid	^1H NMR (300 MHz, CDCl_3) δ 8.61 (s, 1H),
	N SF4CI				8.03 (d, J = 7.5 Hz, 1H), 7.64 (d, J = 8.6 Hz,
25					1H). ^{19}F NMR (282 MHz, CDCl_3) δ 128.14 (s,
					4F)
	0 ₂ N	I	82%	solid	¹ H NMR (300 MHz, CDCl ₃) δ 9.38 (d, <i>J</i> = 2.4
	N SF4CI				Hz, 1H), 8.70 (d, J = 8.7 Hz, 1H), 7.98 (d, J =
2t					8.9 Hz, 1H). ^{19}F NMR (282 MHz, CDCl_3) δ
					127.67 (s, 4F).
	F ₃ C	I	69%	solid	^1H NMR (300 MHz, CDCl_3) δ 8.85 (s, 1H),
	N SF₄CI				8.17 (d, J = 8.6 Hz, 1H), 7.89 (d, J = 8.6 Hz,
2u					1H). ¹⁹ F NMR (282 MHz, CDCl ₃) δ 123.39 (s,
					4F), -63.12 (s, 1F)
		I	70%	oil	¹ H NMR (400 MHz, CDCl ₃) δ 8.98 (s, 2H). ¹⁹ F
2v	N SF4CI				NMR (282 MHz, CDCl ₃) δ 127.17 (s, 4F).
2w	Br	I	67%	oil	¹ H NMR (300 MHz, CDCl ₃) δ 8.92 (s, 2H). ¹⁹ F
	N SF4CI				NMR (282 MHz, CDCl ₃) δ 127.35 (s, 4F).

[a] crude yield, with purities in the range of 80-95% determined by ¹⁹F NMR. [b] aryl sulfur (5.3 mmol), dried CsF (4.78 g, 53 mmol) and anhydrous MeCN (20 ml), rt, 24 h.

9. Synthesis of disulfides

Disulfides were prepared according to the literature procedures.²

10. Preparation of Compounds

A typical procedure (synthesis of **1q**) is shown below:

1,2-difluoro-4-nitrobenzene **S1** (2.22 g, 14.0 mmol) was dissolved in DMF (35 ml). Na₂S (1.20 g, 15.4 mmol) was added and the mixture was stirred at room temperature for around 4 h. After completion, the solution was acidified with HCl aqueous (2 N) to pH 2-3, and extracted with Et₂O (3×20 ml). The combined organic phases were washed with brine and dried with MgSO₄. The crude residue that was obtained after filtration and Et₂O was evaporated in vacuo to give 2-fluoro-4-nitrobenzenethiol **S2**. This material was used for the subsequent disulfidation without further purification.

Added the whole amount of 2-fluoro-4-nitrobenzenethiol **S2** to the solution of NaOH (0.67 g, 16.76 mmol) in water (30 ml) was stirred for 30 min. The K₃[Fe(CN)₆] (5.52 g, 16.76 mmol) in water (40 ml) was dropwise added and stirred at room temperature for 12 h. The formed precipitate was filtrated ,washed with water and dried in vacuo to give 1,2-bis(2-fluoro-4-nitrophenyl)disulfane **1p** as yellow solid (1.47 g, 61% yield from **S1**); m.p = 100-102 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.09 – 7.96 (m, 4H), 7.52 – 7.37 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -103.16 (t, *J* = 7.5 Hz, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 159.00 (d, *J* = 250.6 Hz), 148.12 (d, *J* = 7.8 Hz), 131.40 (d, *J* = 16.9 Hz), 129.09 (d, *J* = 1.4 Hz), 120.22 (d, *J* = 3.6 Hz), 111.76 (d, *J* = 26.2 Hz). IR (KBr, cm⁻¹): 3099, 3033, 1589, 1525, 1461, 1346, 1218, 933, 898, 879, 829, 808, 740. HRMS (TOF/EI+): Calculated for C₁₂H₆F₂N₂O₄S₂⁺: 343.9737, found: 343.9745.

1,1'-bis(4-dinitrophenyl)disulfide

Brown solid. ¹H NMR (300 MHz, CDCl₃) δ 8.20 (d, *J* = 8.7 Hz, 4H), 7.62 (d, *J* = 8.7 Hz, 4H).

3,3'-bis(6-fluoropyridyl)disulfide

White solid. ¹H NMR (300 MHz, CDCl₃) δ : 8.26 (s, 2H), 7.91 (t, *J* = 6.6 Hz, 2H), 6.96 (dd, *J* = 8.0, 2.1 Hz, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ : -67.46 (s, 2F).

2,2'-bis(5-chloropyridyl)disulfide

White solid. ¹H NMR (300 MHz, CDCl₃) δ 8.43 (d, *J* = 1.5 Hz, 2H), 7.61 – 7.54 (m, 4H).

2,2'-bis(5-bromopyridyl)disulfide

White solid. ¹H NMR (300 MHz, CDCl₃) δ 8.52 (d, *J* = 2.3 Hz, 2H), 7.73 (dd, *J* = 8.6, 2.2 Hz, 2H), 7.50 (d, *J* = 8.6 Hz, 2H).

2,2'-bis(5-trifluoromethylpyridyl)disulfide

White solid. ¹H NMR (300 MHz, CDCl₃) δ 8.74 (s, 2H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.71 (d, *J* = 8.4 Hz, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -62.28 (s, 6F).

2,2'-bis(5-nitropyridyl)disulfide

khaki crystalline solid. ¹H NMR (300 MHz, CDCl₃) δ 9.29 (s, 2H), 8.40 (d, J = 7.2
Hz, 2H), 7.73 (d, J = 8.8 Hz, 2H).

2,2'-bis(5-chloropyrimidyl)disulfide

Yellowish solid. ¹H NMR (300 MHz, CDCl₃) δ 8.53 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 167.22, 156.46, 128.91, 77.41, 77.16, 76.91. IR (KBr, cm⁻¹): 3036, 1630, 1534, 1375, 1251, 1177, 759. HRMS (TOF/EI+): Calculated for C₈H₄Cl₂N₄S₂⁺:

289.9254, found: 289.9256.

2,2'-bis(5-bromopyrimidyl)disulfide

White solid. ¹H NMR (300 MHz, CDCl₃) δ 8.61 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 167.71, 158.55, 117.45, 77.41, 77.16, 76.91. IR (KBr, cm⁻¹): 3023, 1637, 1529, 1383, 1178, 1165, 1108, 762. HRMS (TOF/EI+): Calculated for

C₈H₄Br₂N₄S₂⁺: 377.8244, found: 379.8231.

4-chlorophenylsulfur pentafluoride

Prepared following method A. Flash column chromatography: pentane. Yield 0.147 g, 62%.
⁵ Colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.70 (d, *J* = 6.4 Hz, 2H), 7.45 (d, *J* = 7.1 Hz, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ 84.85 – 82.43 (m, 4F), 63.15 (d, *J* = 150.3 Hz, 1F).

4-bromophenylsulfur pentafluoride

Prepared following method A. Flash column chromatography: pentane. Yield 0.169 g, 60%. Colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.62 (s, 4H). ¹⁹F NMR (282 MHz, CDCl₃) δ 84.85 – 82.13 (m, 1F), 63.02 (d, *J* = 150.4 Hz, 4F).

4-fluorophenylsulfur pentafluoride

Prepared following method A. Flash column chromatography: pentane. Yield 0.133 g, 60%. Colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.85 – 7.71 (m, 2H), 7.15 (t, *J* = 8.4 Hz, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ 85.18 – 82.31 (m, 1F), 63.28 (d, *J* = 150.3 Hz, 4F), -107.60 (s, 1F).

p-tolylsulfur pentafluoride

Prepared following method A. Flash column chromatography: pentane. Yield 0.133 g, 61%.
⁵ Colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 8.1 Hz, 2H), 2.39 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ 86.17 – 83.58 (m, 1F), 62.66 (d, *J* = 149.9 Hz, 2H), 2.39 (s, 3H).

4F).

4-(tert-butyl)phenylsulfur pentafluoride

Prepared following method A. Flash column chromatography: pentane. Yield 0.158 g, 61%. Colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.66 (d, *J* = 8.5 Hz, 2H), 7.45 (d, *J* = 7.7 Hz, 2H), 1.32 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃) δ 86.34 – 83.33 (m, 1F), 62.64 (d, *J* = 149.9

Hz, 4F).

3-chlorophenylsulfur pentafluoride

Prepared following method B. Flash column chromatography: pentane. Yield 0.140 g, 59%. Colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.77 (t, *J* = 1.9 Hz, 1H), 7.66 (d, *J* = 8.1 Hz, 1H), 7.51 (d, *J* = 8.1 Hz, 1H), 7.47 – 7.38 (m, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ 83.78 – 81.21 (m, 160 A H = 4E)

1F), 62.31 (d, *J* = 150.4 Hz, 4F).

3-bromophenylsulfur pentafluoride

Br $_{SF_5}$ Prepared following method B. Flash column chromatography: pentane. Yield 0.141 g, 50%. **3g** Colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.91 (t, J = 1.9 Hz, 1H), 7.74 – 7.64 (m, 2H), 7.36 (t, J = 8.2 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ 83.80 – 81.01 (m, 1F), 62.34 (d, J = 150.5 Hz, 4F).

3-fluorophenylsulfur pentafluoride

Prepared following method B. Flash column chromatography: pentane. Yield 0.100 g, 45%. Colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.57 (d, *J* = 8.3 Hz, 1H), 7.53 – 7.41 (m, 2H), 7.29 – 7.20 (m, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ 84.31 – 81.54 (m), 62.72 (d, *J* = 150.3 Hz), -

109.76 (dd, J = 14.2, 7.7 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 161.83 (d, J = 250.2 Hz), 155.27 – 154.13 (m), 130.23 (d, J = 7.9 Hz), 122.24 – 121.60 (m), 119.00 (d, J = 20.9 Hz), 114.85 – 113.77 (m). IR (KBr, cm⁻¹): 3127, 3091,

2362, 1590, 1506, 1101, 844, 809, 688, 574. HRMS (TOF/EI+): Calculated for $C_6H_4F_6S^+$: 221.9938, found: 221.9954.

2-fluorophenylsulfur pentafluoride

Prepared following method B. Flash column chromatography: pentane. Yield 0.126 g, 57%. Colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.81 – 7.71 (m, 1H), 7.59 – 7.46 (m, 1H), 7.30 – 7.16 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ 82.71 – 79.85 (m, 1F), 67.60 (dd, *J* = 150.9, 24.7 Hz, 4F), -108.32 –

-109.04 (m, 1F).

4-nitrophenylsulfur pentafluoride

Prepared following method C. Flash column chromatography: Pentane/CH₂Cl₂ 3/1. Yield 0.164 g, 66%. Yellowish liquid. ¹H NMR (300 MHz, CDCl₃) δ 8.35 (d, *J* = 8.5 Hz, 2H), 7.98 (d, *J* = 8.7 Hz, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ 82.16 – 79.19 (m, 1F), 62.15 (d, *J* = 150.7 Hz, 4F).

3-nitrophenylsulfur pentafluoride

Prepared following method C. Flash column chromatography: pentane/CH₂Cl₂ 3/1. Yield 0.127 g, 51%. ¹H NMR (300 MHz, CDCl₃) δ 8.66 (s, 1H), 8.42 (d, *J* = 7.9 Hz, 1H), 8.11 (d, *J* = 8.2 Hz, 1H), 7.73 (t, *J* = 8.2 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ 81.79 – 79.42 (m, 1F), 62.35

(d, J = 150.9 Hz, 4F).

3,4-dichlorophenylsulfur pentafluoride

Prepared following method C. Flash column chromatography: pentane. Yield 0.144 g, 53%. Colorless oil. m.p = 39-40 °C ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, *J* = 2.3 Hz, 1H), 7.61 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.55 (d, *J* = 8.9 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ 83.67 – 80.89 (m, 1F), 63.24 (d, *J* = 150.7 Hz, 4F). ¹³C NMR (126 MHz, CDCl₃) δ 152.37 (p, *J* = 19.5 Hz), 136.59

(s), 133.27 (s), 130.58 (s), 128.37 (p, J = 4.8 Hz), 125.39 (p, J = 4.6 Hz). IR (KBr, cm⁻¹): 3102, 3021, 1461, 1384, 1145, 1037, 860, 842, 765, 601, 536. HRMS (TOF/EI+): Calculated for C₆H₃Cl₂F₅S⁺: 271.9253, found: 271.9276.

3,4-difluorophenylsulfur pentafluoride

Prepared following method C. Flash column chromatography: Pentane. Yield 0.065 g, 27%. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.68 – 7.60 (m, 1H), 7.60 – 7.52 (m, 1H), 7.35 – 7.22 (m, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ 83.85 – 81.25 (m, 1F), 63.59 (d, *J* = 150.8 Hz, 4F), -130.56 – -131.12 (m, 1F), -133.39 – -133.96 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 152.05 (dd,

J = 256.2, 12.3 Hz), 149.60 – 149.07 (m), 149.44 (dd, J = 253.1, 13.4 Hz), 123.30 – 122.96 (m), 117.48 (d, J = 18.6 Hz), 117.05 – 116.49 (m). IR (KBr, cm⁻¹): 3141, 3099, 1617, 1517, 1427, 1286, 1083, 854, 813, 622, 597. HRMS (TOF/EI+): Calculated for C₆H₃F₇S⁺: 239.9844, found: 239.9840.

2,4-difluorophenylsulfur pentafluoride

Prepared following method C. Flash column chromatography: pentane. Yield 0.115 g, 48%. Colorless oil. ¹H NMR (700 MHz, CDCl₃) δ 7.80 – 7.74 (m, 1H), 7.01 – 6.91 (m, 2H). ¹⁹F NMR (659 MHz, CDCl₃) δ 82.03 – 80.85 (m, 1F), 68.88 (dd, J = 152.3, 22.9 Hz, 4F), -102.52 (s, 1F), -102.62 – -102.86 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 164.50 (dd, J = 257.3, 12.8 Hz), 157.12 (dd, J = 261.3, 10.6 Hz), 137.32 – 135.89 (m), 130.74 – 130.10 (m), 111.72 (dd, J = 22.4, 3.7 Hz), 106.01 (t, J = 265 Hz). HRMS (TOF/EI+): Calculated for C₆H₃F₇S⁺: 239.9844, found: 239.9854.

2,5-difluorophenylsulfur pentafluoride

Prepared following method C. Flash column chromatography: pentane. Yield 0.098 g, 41%. Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.53 – 7.44 (m, 1H), 7.28 – 7.18 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ 81.43 – 78.61 (m, 1F), 68.42 – 67.17 (m, 4F), -113.31 – -114.26 (m, 1F), -

115.63 - -116.27 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 157.31 (d, J = 246.9 Hz), 152.39 (d, J = 257.1 Hz), 140.63 - 139.87 (m), 120.86 (dd, J = 23.6, 9.0 Hz), 119.15 (dd, J = 26.5, 8.1 Hz), 115.91 (dp, J = 28.2, 5.1 Hz). IR (KBr, cm⁻¹): 3131, 3097, 1502, 1411, 1122, 1068, 657, 605, 566. HRMS (TOF/EI+): Calculated for C₆H₃F₇S⁺: 239.9844, found: 239.9835.

2-fluoro-4-nitrophenylsulfur pentafluoride

Prepared following method C, under 100°C, reaction time for 60 h. Flash column chromatography: petane/CH₂Cl₂ 10/1. Yield 0.109 g, 41%. Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.12 (t, *J* = 7.6 Hz, 2H), 8.05 – 7.95 (m, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ 79.73 –

76.86 (m, 1F), 68.60 - 67.13 (m, 4F), -101.47 - -102.42 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 156.75 (d, J = 266.4 Hz), 150.73 (d, J = 8.0 Hz), 145.56 - 144.48 (m), 130.74 (p, J = 5.0 Hz), 119.58 (d, J = 4.1 Hz), 114.59 (d, J = 28.8 Hz). IR (KBr, cm⁻¹): 3124, 3062, 1544, 1482, 1355, 1243, 1066, 863, 838, 740, 609, 582, 541. HRMS (TOF/EI+): Calculated for C₆H₃F₆NO₂S⁺: 266.9789, found: 266.9805.

3-(6-fluoropyridyl)sulfur pentafluoride

Prepared following method C, under 100°C, reaction time for 60 h. Flash column chromatography: Pentane/CH₂Cl₂ 3/1. Yield 0.033 g, 15%. Colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ 8.66 (s, 1H), 8.29 – 8.12 (m, 1H), 7.08 (dd, J = 8.9, 3.1 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ 82.71 –

79.80 (m, 1F), 65.36 (d, J = 151.4 Hz, 4F), -62.12 (s, 1F).

2-(5-chloropyridyl)sulfur pentafluoride

Prepared following method C, under 100°C, reaction time for 60 h. Flash column chromatography: Pentane/CH₂Cl₂ 3/1. Yield 0.065 g, 27%. Colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ 8.54 (d, *J* = 2.3 Hz, 1H), 7.95 – 7.85 (m, 1H), 7.73 (d, *J* = 8.7 Hz, 1H). ¹⁹F NMR (282

MHz, CDCl₃) δ 79.06 – 76.34 (m), 53.24 (d, *J* = 150.3 Hz).

2-(5-bromopyridyl)sulfur pentafluoride

Br Prepared following method C, under 100°C, reaction time for 60 h. Flash column
$$3s$$

chromatography: Pentane/CH₂Cl₂ 3/1. Yield 0.099 g, 35%. Colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ 8.65 (d, J = 2.2 Hz, 1H), 8.11 – 8.00 (m, 1H), 7.67 (d, J = 8.6 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ 79.03 – 76.18 (m, 1F), 53.14 (d, J = 150.3 Hz, 4F).

2-(5-trifluoropyridyl)sulfur pentafluoride

Prepared following method C, under 100°C, reaction time for 60 h. Flash column F_5 chromatography: Pentane/CH₂Cl₂ 3/1. Yield 0.057 g, 21%. Colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ 8.88 (s, 1H), 8.19 (d, J = 8.1 Hz, 1H), 7.93 (d, J = 8.6 Hz, 1H). ¹⁹F NMR (282

MHz, CDCl₃) δ 77.76 – 75.11 (m, 1F), 52.35 (d, *J* = 150.5 Hz, 4F), -62.63 (s, 1F).

(4-biphenyl)sulfur pentafluoride³

Crude 4-bromophenylsulfur chlorotetrafluoride (0.218 g, 0.728 mmol) and Ag₂CO₃ (0.100 g, 0.364 mmol) were carefully weighed into FEP bottle containing a small magnetic stirrer bar in the glove box. Solkane 365/227 (4 ml) was added. The reaction was stirred at 40°C for overnight, then cooled to room temperature and anhydrous EtOH (0.2 ml) was added by using a syringe. To the mixture were added Pd(PPh₃)₄ (16.8 mg, 0.014 mmol), *t*Bu₃P (5.9 mg, 0.029 mmol), K₃PO₄ (463.6 mg, 2.184 mmol), PhB(OH)₂ (133.1 mg, 1.092 mmol) in the glovebox filled with argon gas. The mixture was stirred at 80°C (oil bath temperature) for 24 h. After cooling to room temperature, to the mixture was added saturated aqueous ammonium chloride, filtrated through celite, washed with pentane. The aqueous layer was extracted with pentane. The combined organic layers were washed with brine, dried over MgSO₄ and concentrated under vacuum in the ice bath. The crude was purified by column chromatography on silica gel (pentane) to give compound (4-biphenyl)sulfur pentafluoride **4a** as white solid (0.131 g, 64% yield for 4-bromophenylsulfur chlorotetrafluoride) m.p = 54-56 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, *J* = 8.8 Hz, 2H), 7.66 (d, *J* = 8.9 Hz, 2H), 7.61 – 7.57 (m, 2H), 7.50 – 7.43 (m, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ 86.34 – 83.34 (m, 1F), 63.15 (d, *J* = 150.0 Hz, 4F). ¹³C NMR (126 MHz, CDCl₃) δ 153.47 – 152.62 (m), 144.67 (s), 139.22 (s), 129.20 (s), 128.90 (s), 128.59 (s), 127.42 (d, *J* = 5.2 Hz), 126.55 (p, *J* = 4.5 Hz). IR (KBr, cm⁻¹): 3077, 3033, 1569, 1482, 1398, 1106, 850, 763, 736, 597, 584. HRMS (TOF/EI+): Calculated for C₁₂H₉F₅S⁺: 280.0345, found: 280.0354.

4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenylsulfur pentafluoride⁴

Crude 4-bromophenylsulfur chlorotetrafluoride (0.218 g, 0.728 mmol) and Ag₂CO₃ (0.100 g, 0.364 mmol) were carefully weighed into FEP bottle containing a small magnetic stirrer bar in the glove box. Solkane 365/227 (4 ml) was added. The reaction was stirred at 40 °C for overnight. Then, after cooling to room temperature, to the mixture were added B₂Pin₂ (0.221 g, 0.874 mmol), PdCl₂((PPh₃)₂ (20.4 mg, 0.029 mmol), KOAc (0.357 g, 3.64 mmol) in the glovebox filled with argon gas. The mixture was stirred at 80 °C (oil bath temperature) for 24 h. After cooling to

room temperature, to the mixture was added saturated aqueous ammonium chloride, filtrated through celite, washed with CH_2Cl_2 . The aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried over MgSO₄ and concentrated under vacuum in the ice bath. The crude was purified by column chromatography on silica gel (pentane/ CH_2Cl_2 1:1) to give compound 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenylsulfur pentafluoride **4b** as white solid (0.122 g, 51% yield for 4-bromophenylsulfur chlorotetrafluoride). mp = 86-88 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 8.6 Hz, 2H), 1.35 (s, 12H). ¹⁹F NMR (282 MHz, CDCl₃) δ 85.20 – 82.22 (m, 1F), 61.68 (d, *J* = 149.6 Hz, 4F). ¹³C NMR (126 MHz, CDCl₃) δ 156.19 (p, *J* = 16.9 Hz), 135.25 (s), 125.19 (p, *J* = 4.5 Hz), 84.57 (s), 25.00 (s). IR (KBr, cm⁻¹): 3000, 2981, 2940, 1602, 1402, 1365, 1338, 1274, 1145, 1081, 835, 808. HRMS (TOF/EI+): Calculated for C₁₂H₁₆BF₅O₂S⁺: 330.0884, found: 330.0898.

11. References

- 1) . T. Umemoto, L. M. Garrick, N. Saito, Beilstein J. Org. Chem. 2012, 8, 461.
- a) B. Cui, M. Kosobokov, K. Matsuzaki, E. Tokunaga, N. Shibata, *Chem. Commun.* 2017, **53**, 5997; b) M. Kosobokov, B. Cui, A. Balia, K. Matsuzaki, E. Tokunaga, N. Saito, N. Shibata, *Angew. Chem. Int. Ed.* 2016, **55**, 10781. c) O. S. Kanishchev, W. R. Jr. Dolbier, *Angew. Chem. Int. Ed.* 2015, **54**, 280.
- 3). X.-H. Xu, A. Azuma, A. Kusuda, E. Tokunaga, N. Shibata, Eur. J. Org. Chem. 2012, 2012, 1504.
- 4) . T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508.

12. ¹H, ¹⁹F and ¹³C NMR Spectra of Products.

F3C N CF3

¹H NMR (300 MHz, CDCl₃)

5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -60 -65 -60 -65 -70 f1 (ppm)

18

00.00

ci

¹H NMR (300 MHz, CDCl_b)

¹H NMR (300MHz, CDCI₃)

Br NMR (300 MHz, CDCb)

----0.00

