Pyrene-functionalized Foldamer: Structural Impact and Recognition Properties supported by Donor-Acceptor Interactions

Fatima Aparicio, Lara Faour, Magali Allain, David Canevet,* Marc Sallé*
Laboratoire MOLTECH-Anjou, Université d'Angers, UMR CNRS 6200, 2 bd Lavoisier, 49045 Angers Cedex, France.

Figure Si. MALDI-TOF mass spectrum of dimer (1) ${ }_{2}$
Figure S2. X-Ray crystal structure of foldamer 1
Figure S3. Intermolecular hydrogen bonds (left) and $\pi-\pi$ interactions between both strands of dimer ($\mathbf{1})_{2}$

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{1}$ at different concentrations (top) in CDCl_{3} as solvent and corresponding fit (bottom) for the dimerization process

Scheme S1. Structure of previously reported compound Sı
Figure S5. Partial ${ }^{1} \mathrm{H}$ NMR spectra of compound $1\left(2 \times 10^{-3} \mathrm{M}\right)$ in different solvents
Figure S6. Partial ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{1}$ (black, $1.5 \mathrm{mM}, \mathrm{CDCl}_{3}$) in the presence of (a) anthraquinone and (b) 1,4-dicyanobenzene

Figure S7. Cyclic voltammetry of foldamer $\mathbf{1}$, anthraquinone and 7
Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{1}$ upon addition of increasing amounts of 7 in CDCl_{3}

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra of 7 at different concentrations in CDCl_{3}
Figure Sıs. Job plot experiment of compound $\mathbf{1}$ and 7 in CDCl_{3}
Figure Sin. MALDI-TOF mass spectrum of ionized charge transfer complex $1 \cdot 7^{++}$
Figure S12. Calculation of K and K_{D-A} from the titration experiment showed in Figure 4 and s8

Figure s13. (a) Evolution of the UV-vis absorption spectrum of foldamer $\mathbf{1}$ (0.25 mM) upon addition of 7 in CHCl_{3} ($l=0.1 \mathrm{~cm}$). (b) UV-vis absorption spectra of $\mathbf{1}(1.5 \mathrm{mM})$, $7(4.5 \mathrm{mM})$ and a mixture of compound $1(1.5 \mathrm{mM})$ and 7 (3 equivalents) in CHCl_{3}

Figure S14. Left. Stern-Volmer plot of the fluorescence intensity ($\lambda_{\mathrm{em}}=451 \mathrm{~nm}$) of compound $\mathbf{1}(1.5 \mathrm{mM})$ with increasing amounts of 7 in $\mathrm{CHCl}_{3}\left(\lambda_{\text {exc }}=316 \mathrm{~nm}, l=0.5\right.$ cm). Right. Chloroform solutions of $\mathbf{1}(1.5 \mathrm{mM}), \mathbf{1}(1.5 \mathrm{mM})$ mixed with 7 (2.2 eq.$)$, and 7 (from left to right) under a UV lamp

When a guest unfolds a duo...
Graphical abstract. The structure of the dimer (left) corresponds to its X-ray crystal structure. Regarding the donor-acceptor charge-transfer complex (right), this illustration was prepared with the Hyperchem software. To do so, the pyrene-7-pyrene stack was first optimized with the Molecular Mechanics method and the geometry of the rest of the molecule was subsequently optimized with the same method.

Figure S1. MALDI-TOF mass spectrum of dimer (1) $)_{2}$. Matrix: Dithranol

Figure S2. X-Ray crystal structure of foldamer $\mathbf{1}$ (a single strand is presented). Green dashed lines show intramolecular hydrogen bonds.

Figure S3. Intermolecular hydrogen bonds (left) and $\pi-\pi$ interactions between both strands of dimer $(\mathbf{1})_{2}$. Donor pyrene and acceptor pyridyl rings are represented in red and blue respectively.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{1}$ at different concentrations (top) in CDCl_{3} and corresponding fit (bottom) for the dimerization process ($300 \mathrm{MHz}, 298 \mathrm{~K}$). Monomer signals are indicated by red circles.

Concentration dependent ${ }^{1} \mathrm{H}$ NMR experiments showed that the dimer and monomer forms were in slow equilibrium at the NMR time scale ($\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 300 \mathrm{MHz}$).

To obtain the dimerization constant ($K_{\text {dim }}$), the following model was used in which two molecules of monomer join to form a dimer:

$$
\mathrm{M}+\mathrm{M} \stackrel{K_{\text {dim }}}{\rightleftharpoons} \mathrm{M}_{2}
$$

When the equilibrium is reached, $K_{\text {dim }}$ can be defined by the following equation:

$$
K_{\text {dim }}=\frac{\left[\mathrm{M}_{2}\right]}{[\mathrm{M}]^{2}}
$$

where $[M]$ and $\left[\mathrm{M}_{2}\right]$ are the monomer and dimer concentration, respectively.
Taking into account the mass balance equation:
$C_{T}=[M]+2\left[M_{2}\right]$
where C_{T} is the total concentration, the dimerization constant can be related to the total concentration by the following expression :
$[M]+2 K_{\text {dim }}[M]^{2}-C_{T}=0$
which allows to perform the corresponding non-linear fit by considering the monomer concentration in each experiment. To do so, the concentration of monomer was calculated by signal integration.

Scheme Sı. Structure of previously reported compound S1 (Tetrahedron, 2004, 60, 10029)

Figure S5. Partial ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{1}\left(2 \times 10^{-3} \mathrm{M}\right.$) in different solvents (300 MHz , 298 K). Monomer NH signals are indicated by red circles and dimer NH signals by black circles.

Figure S6. Partial ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{1}$ (black, $1.5 \mathrm{mM}, \mathrm{CDCl}_{3}$) in the presence of (a) anthraquinone (purple, 10 eq ., solubility limit) and (b) 1,4 -dicyanobenzene (purple, 40 eq .). For
comparison purposes, the spectra of the electron poor derivatives are shown at the top of figures (a) and (b) respectively.

Figure \mathbf{S}_{7}. Cyclic voltammetry of foldamer $\mathbf{1}$, anthraquinone and $7\left({ }^{\left(10^{-3}\right.} \mathrm{mM}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NBu}_{4} \mathrm{PF}_{6}\right.$ (o.1 M), working electrode: Pt; reference electrode: $\mathrm{Ag} / \mathrm{Ag} \mathrm{NO}_{3} ; 100 \mathrm{mV} / \mathrm{s}$).

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{1}$ upon addition of increasing amounts of 7 in CDCl_{3} ([1] $=1.5 \mathrm{mM}, 500 \mathrm{MHz}, 298 \mathrm{~K}$). Red and blue circles indicate the signals of monomer $\mathbf{1}$ and acceptor 7 , respectively.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra of 7 at different concentrations in CDCl_{3} ($300 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure SıO. Job plot experiment of compound $\mathbf{1}$ and 7 in CDCl_{3}. Total concentration $=1.5 \mathrm{mM}$, $300 \mathrm{MHz}, 298 \mathrm{~K}$. The variation of the chemical shift at 10.11 ppm corresponding to the monomer unit was chosen for the Job plot analysis.

Figure Sni. MALDI-TOF mass spectrum of ionized charge transfer complex $\mathbf{1 \cdot 7 ^ { + }}$ (matrix: dithranol)

$$
\begin{array}{llll}
1+1 & \rightleftharpoons & 1_{2} & : K_{d i m} \\
1+7 & \rightleftharpoons & & \\
1 \cdot 7 & : K_{D-A} \\
1_{2}+2(7) & \rightleftharpoons & \rightleftharpoons & (1 \cdot 7)
\end{array}
$$

To determine the proportion between dimeric and monomeric species, signals located at 10.84 (dimer) and 10.11-10.39 ppm (monomer) were integrated ($\mathrm{CDCl}_{3},[\mathbf{1}]=1.5 \mathrm{mM}$ - Figures 3 and S8). The concentrations of free monomer 1 and charge transfer complex $1 \cdot 7$ were subsequently calculated thanks to the variations of chemical shift, from 10.11 ppm (absence of 7) to 10.39 ppm (4 equivalents of acceptor 7). This allowed for determining K, and K_{D-A} was subsequently calculated as $\left(K . K_{\text {dim }}\right)^{0.5}$.

Figure S12. Calculation of K and K_{D-A} from the titration experiment showed in Figure 4 and s8.

Figure s13. (a) Evolution of the UV-vis absorption spectrum of foldamer $\mathbf{1}$ (0.25 mM) upon addition of 7 in $\mathrm{CHCl}_{3}(l=0.1 \mathrm{~cm})$. (b) UV-vis absorption spectra of $\mathbf{1}(1.5 \mathrm{mM}), 7(4.5 \mathrm{mM})$ and a mixture of compound $\mathbf{1}(1.5 \mathrm{mM})$ and 7 (3 equivalents) in $\mathrm{CHCl}_{3}(l=0.1 \mathrm{~cm}$).

Figure S14. Left. Stern-Volmer plot of the fluorescence intensity ($\lambda_{\mathrm{em}}=451 \mathrm{~nm}$) of compound $\mathbf{1}$ $(1.5 \mathrm{mM})$ with increasing amounts of 7 in $\mathrm{CHCl}_{3}\left(\lambda_{\text {exc }}=316 \mathrm{~nm}, l=0.5 \mathrm{~cm}\right)$. Right. Chloroform solutions of $\mathbf{1}(1.5 \mathrm{mM})$, $\mathbf{1}(1.5 \mathrm{mM})$ mixed with 7 (2.2 eq .), and $\mathbf{7}$ (from left to right) under a UV lamp.

Experimental details

General.

The starting materials were purchased and used without further purification. All solvents were dried according to standard procedures. All air-sensitive reactions were carried out under argon atmosphere. Thin-layer chromatography (TLC) was performed on aluminium plates coated with MerckSilica gel 60 F254. Developed plates were air-dried and scrutinized under a UV lamp. Silica gel 60 ($35-70$ mesh, SDS) was used for preparative silica gel chromatography. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using the deuterated solvent as an internal reference on a BRUKER Advance DRX 300 or 500 spectrometer. Coupling constants (J) are denoted in Hz and chemical shifts (δ) in parts per million (ppm). Multiplicities are denoted as follows: $s=$ singlet, $d=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. The mass spectra were recorded on a Jeol JMS 700 (high resolution mass spectra (HRMS) or a Bruker Biflex III spectrometer (MALDI-TOF). The infrared absorption spectra were recorded on an FTIR BRUKER VERTEX 70. X-Ray single-crystal diffraction data were collected at 150 K on an Agilent SuperNova diffractometer equipped with an Atlas CCD detector and micro-focus $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation ($\lambda=1.54184 \AA$). The structure was solved by direct methods, expanded and refined on F^{2} by full matrix least-squares techniques using SHELX97 programs (G.M. Sheldrick, 1998). All non-H atoms were refined anisotropically and the hydrogen atoms (added on the central core of the molecule, not on the alkyl chains) were included in the calculation without refinement. Multiscan empirical absorption was corrected using CrysAlisPro program (CrysAlisPro, Agilent Technologies, V1.171.37.35g, 2014). The structure refinement showed disordered electron density which could not be reliably modeled and the program PLATON/SQUEEZE were used to remove the scattering contribution corresponding to chloroform molecules and missing atoms from the intensity data. The unit cell contains 2 voids of $4723 \AA^{3}$ containing 2256 electrons from which 1848 electrons can be attributed to the 208 carbon and 600 hydrogen missing atoms (alkyl chains) in the unit cell. The remaining 408 electrons can be attributed to approximately eight chloroform molecules. The assumed solvent composition (2 chloroform molecules per asymmetric unit) was used in the calculation of the empirical formula, formula weight, density, linear absorption coefficient and F(ooo). UV-vis absorption spectra were recorded on a JASCO V-730 spectrophotometer. Fluorescence spectra were recorded on a Photon Technology International QuantaMaster 4. The cyclic voltammetry experiments were carried out on a potentiostat-galvanostat EG\&G PAR model 273. Tetrabutylammonium hexafluorophosphate (0.1 M) was used as supporting electrolyte. The cell was equipped with three electrodes: a platinum working electrode ($\varnothing=2 \mathrm{~mm}$), a platinum wire as auxiliary electrode and a silver/silver nitrate reference electrode. The potentials are given with respect to the ferrocene/ferrocenium redox couple.

Crystallographic data

$(\mathbf{1})_{2}+2 \mathrm{CHCl}_{3}: \mathrm{C}_{204} \mathrm{H}_{232} \mathrm{Cl}_{6} \mathrm{~N}_{22} \mathrm{O}_{18}, \mathrm{M}=3492.82$, colourless prism, $0.314 \times 0.222 \times 0.094 \mathrm{~mm}^{3}$, monoclinic, space group $C c, a=19.7171(8) \AA, b=48.1436(19) \AA, c=22.2536(6) \AA, \beta=110.350(4)^{\circ}$, $\mathrm{V}=19805.8(12) \AA^{3}, \mathrm{Z}=4, \rho \mathrm{calc}=1.171 \mathrm{~g} / \mathrm{cm}^{3}, \mu(\mathrm{CuK} \alpha)=1.317 \mathrm{~mm}^{-1}, \mathrm{~F}(\mathrm{ooo})=7424, \theta \mathrm{~min}=2.56^{\circ}$, $\theta \max =72.96^{\circ}, 88348$ reflections collected, 32932 unique ($\mathrm{R}_{\text {int }}=0.034$), parameters / restraints = $1705 / 41, \mathrm{Rl}_{1}=0.0792$ and $\mathrm{wR2}=0.2173$ using 14597 reflections with $\mathrm{I}>2 \sigma(\mathrm{I}), \mathrm{R}_{1}=0.1154$ and wR 2
$=0.2516$ using all data, GOF $=0.864,-0.187<\Delta \rho<0.498$ e. A^{-3}. CCDC-1574008 contains the supplementary crystallographic data for this paper.

Synthetic details and characterization

Diaminopyridine and 1-pyrenemethylamine hydrochloride were purchased from a commercial source. Dimethyl 4-hydroxypyridine-2,6-dicarboxylate was prepared by following the reported procedure (M. Di Antonio, K. I. E. McLuckie, S. J. Balasubramanian, J. Am. Chem. Soc. 2014, 136, 5860) and showed identical spectroscopic properties to those reported therein.

Dimethyl 4-(dodecyloxy)pyridine-2,6-dicarboxylate (2)

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{5}$
Molecular Weight: 379.50
Dimethyl 4-hydroxypyridine-2 ,6-dicarboxylate ($10.67 \mathrm{~g}, 50 \mathrm{mmol}$), 1-bromododecane (12.58 g , $50 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(13.95 \mathrm{~g}, 101 \mathrm{mmol})$ were dissolved in dry DMF $(25 \mathrm{~mL})$ and the mixture was heated to $50^{\circ} \mathrm{C}$ under argon atmosphere for 17 h . Diethyl ether was added and the mixture was washed with water and ice. The organic phase was dried over anhydrous MgSO_{4} and the solvent was evaporated under reduced pressure. The residue was purified by precipitation in chloroform and methanol affording compound 2 as a white solid ($17.65 \mathrm{~g}, 92 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.8 \mathrm{o}(2 \mathrm{H}, \mathrm{s}), 4.13(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.54 \mathrm{~Hz}), 4.01(6 \mathrm{H}, \mathrm{s}), 1.84(2 \mathrm{H}, \mathrm{m}), 1.47$ $(2 \mathrm{H}, \mathrm{br}) 1.27(16 \mathrm{H}, \mathrm{br})$, o. $88(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.39 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.3,165.4$, 149.9, 114.7, 69.3, 53.4, 32.1, 29.8, 29.7, 29.7 29.6, 29.5, 29.4, 28.8, 26.0, 22.8, 14.3 ppm; FT-IR (neat): $v=2918,2850,1748,1717,1594,1441,1344,1257,1227,1180,1154,1106,1033,991,876,797,784,734$, $587,454 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$) calcd. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}, 380.2436$; found, 380.2434 .

4-(Dodecyloxy)-6-(methoxycarbonyl)picolinic acid (3)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{5}$
Molecular Weight: 365.47
Sodium hydroxide ($105 \mathrm{mg}, 2.64 \mathrm{mmol}$) was dissolved in methanol (20 mL) and was added slowly to a solution of compound $2(1 \mathrm{~g}, 2.64 \mathrm{mmol})$ in methanol (20 mL). The mixture was stirred at room temperature overnight. Then, methanol was evaporated under reduced pressure and the crude was purified by silica gel chromatography (dichloromethane:methanol 95:5) to recover
the starting product and to isolate the corresponding carboxylate. The latter was dissolved in dichloromethane, protonated with hydrochloric acid 3 M , washed with water, dried over magnesium sulfate and evaporated to afford 3 as a white solid ($773 \mathrm{mg}, 80 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $9.45(1 \mathrm{H}, \mathrm{br}), 7.79(\mathrm{iH}, \mathrm{d}, \mathrm{J}=2.19 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.19 \mathrm{~Hz}), 4.11$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.46 \mathrm{~Hz}), 3.96(3 \mathrm{H}, \mathrm{s}), 1.8 \mathrm{o}(2 \mathrm{H}, \mathrm{m}), 1.42(2 \mathrm{H}, \mathrm{br}), 1.35-1.17(16 \mathrm{H}, \mathrm{br}), \mathrm{o} .83(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9$ Hz); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.0$, 164.4, 164.1, 148.4, 148.1, 115.8, 112.4, 69.5, 53.1, 31.9, 29.6, 29.6, 29.5, 29.4, 29.3, 29.2, 28.7, 25.8, 22.6 ppm; FT-IR (neat): $v=3224,2954,2915,2851,1719,1590$, 1445, 1366, 1304, 1226, 1109, 1031, 890, 787, 715, 695, $583 \mathrm{~cm}^{-1}$. HRMS (FAB ${ }^{+}$) calcd. for $\mathrm{C}_{20 \mathrm{H}}^{3} \mathrm{H} \mathrm{NO}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}, 366.228 \mathrm{o}$; found, 366.2278 .

Methyl 4-(dodecyloxy)-6-((pyren-1-ylmethyl)carbamoyl)picolinate (4)

Compound 3 ($1.07 \mathrm{~g}, 2.95 \mathrm{mmol}$), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride $(1.37 \mathrm{~g}, 8.85 \mathrm{mmol})$, 4-dimethylaminopyridine ($1.08 \mathrm{~g}, 8.85 \mathrm{mmol}$) and 1-hydroxybenzotriazole hydrate ($0.44 \mathrm{~g}, 3.24 \mathrm{mmol}$) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and stirred for 15 minutes under argon atmosphere. 1-Pyrenemethylamine hydrochloride ($0.71 \mathrm{~g}, 2.65 \mathrm{mmol}$) was subsequently added portionwise. The reaction mixture was stirred at room temperature for 16 hours. After evaporation of the solvent, the residue was purified by silica gel chromatography (eluent: chloroform/methanol $100 / \mathrm{o} .3$) affording compound 4 as a white solid ($0.91 \mathrm{~g}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.59(\mathrm{iH}, \mathrm{t}, \mathrm{J}=5.90 \mathrm{~Hz}), 8.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.21 \mathrm{~Hz}), 8.17(1 \mathrm{H}, \mathrm{br}), 8.15$ ($1 \mathrm{H}, \mathrm{br}$), $8.12(1 \mathrm{H}, \mathrm{br}), 8.09(1 \mathrm{H}, \mathrm{br}), 8.05-7.95(4 \mathrm{H}, \mathrm{br}), 7.92$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.45 \mathrm{~Hz}$), $7.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $2.45 \mathrm{~Hz}), 5.37(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}), 4.07(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.52 \mathrm{~Hz}), 3.82(3 \mathrm{H}, \mathrm{s}), 1.81(2 \mathrm{H}, \mathrm{m}), 1.45(2 \mathrm{H}$, br), $1.28(16 \mathrm{H}, \mathrm{br})$, o.90 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.31 \mathrm{~Hz}$) ppm ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,165.1,163.5$, 152.0, 148.1, 131.3, 131.2, 131.0, 130.8, 129.1, 128.2, 127.5, 127.4, 127.1, 126.1, 125.4, 125.3, 125.0, 124.8, 124.8, 123.0, 114.7, 111.1, 69.1, 52.8, 41.9, 32.0, 29.8, 29.8, 29.7, 29.6, 29.5, 29.4, 28.8, 25.9, 22.8, 14.2 ppm; FT-IR (neat): $v=3370,2916,2851,1923,1678,1597,1563,1447,1353,1339,1183,116,1029,889$, 879, 850, 838, 784, 703, $560 \mathrm{~cm}^{-1}$. HRMS (ESI $)$ calcd. for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}$, 578.3144 ; found, 578.3140 .

4-(Dodecyloxy)-6-((pyren-1-ylmethyl)carbamoyl)picolinic acid (5)

Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}$ Molecular Weight: 564.73
$\mathrm{NaOH}(0.12 \mathrm{~g}, 3.16 \mathrm{mmol})$ was dissolved in water $(4 \mathrm{~mL})$ and was then added to a solution of compound $4(0.91 \mathrm{~g}, 1.58 \mathrm{mmol})$ in dioxane $(22 \mathrm{ml})$. The mixture was stirred at room temperature for 2 h . Then, an excess of acetic acid was added. The suspension was then filtered and washed with minimal amount of water and the residue obtained was dried to give pure 5 as a white solid ($0.83 \mathrm{~g}, 93 \%$).
 $8.17(2 \mathrm{H}, \mathrm{s}), 8.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.92 \mathrm{~Hz}), 8.09(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.62 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.38 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=2.46 \mathrm{~Hz}), 5.32(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.90 \mathrm{~Hz}), 4.21(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.36 \mathrm{~Hz}), 1.75(2 \mathrm{H}, \mathrm{m}), 1.41(2 \mathrm{H}, \mathrm{br}), 1.23(16 \mathrm{H}$, $\mathrm{br})$, o. $84(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.96 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,165.0$, 163.0, 157.0, 132.3, 131.5, 130.1, 130.3, 130.2, 128.1, 127.8, 127.4, 127.2, 126.7, 126.3, 125.3, 125.2, 124.8, 124.1, 123.9, 123.1, 112.4, 111.0, 79.2, 68.8, 31.3, 29.0, 29.0, 28.9, 28.7, 28.6, 28.2, 25.2, 22.1, 14.0. ppm; FT-IR (neat): $v=$ 3265, 2922, 2851, 1757, 1644, 1598, 1534, 1448, 1359, 1339, 1280, 1175, 1108, 1045, 997, 842, 758, 581 cm^{-1}. HRMS (ESI ${ }^{+}$) calcd. for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}, 564.2988$; found, 564.2976 .
N^{2}, N^{6}-Bis(6-aminopyridin-2-yl)-4-(dodecyloxy)pyridine-2,6-dicarboxamide (6)

A 1.6 mM solution of $n \mathrm{BuLi}$ ($40 \mathrm{~mL}, 64 \mathrm{mmol}$) in hexane was added dropwise to a solution of 2,6-diaminopyridine ($7.33 \mathrm{~g}, 67.2 \mathrm{mmol}$) in dry THF (200 mL) at $-78^{\circ} \mathrm{C}$. After stirring for 20 min , a solution of compound $2(3.62 \mathrm{~g}, 9.5 \mathrm{mmol})$ in dry THF (25 mL) was added dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 8 h , gradually warmed to r.t. and stirred overnight. Then, a solution of NaHCO_{3} was added until pH 8 -10 and the solution was extracted with chloroform. The combined organic extracts were evaporated to dryness and purified by column chromatography (silica gel, chlororform:methanol $100: 2$) affording 6 as a beige solid ($1.58 \mathrm{~g}, 31 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.15(2 \mathrm{H}, \mathrm{s}), 7.94(2 \mathrm{H}, \mathrm{s}), 7.78(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.01 \mathrm{~Hz}), 7.55(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $8.01 \mathrm{~Hz}), 6.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.01 \mathrm{~Hz}), 4.54(4 \mathrm{H}, \mathrm{s}), 4.18(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.54 \mathrm{~Hz}), 1.86(2 \mathrm{H}, \mathrm{m}), 1.48(2 \mathrm{H}, \mathrm{br})$ $1.27(16 \mathrm{H}, \mathrm{br})$, o. $88(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.39 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4,161.6$, 157.5, 150.7, 149.5, 140.5, 112.0, 105.1, 104.0, 69.4, 32.1, 31.0, 29.8, 29.7, 29.5, 29.4, 28.9, 26.0, 22.8, 19.7, 14.3. ppm;

FT-IR (neat): $v=3476,3363,3341,2946,2850,1691,1622,1600,1532,1458,1343,1296,1249,1206$, 1128, 1065, 1035, 985, 971, 894, 868, 791, 716, 669, 638, 614, 579, 541, $467 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$) calcd. for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, 534.3192; found, $534 \cdot 3187$.
$N^{2}, N^{2}{ }^{\prime}-\left(6,6{ }^{\prime}-\left(\left(4^{-(D o d e c y l o x y}\right) p y r i d i n e-2,6-d i c a r b o n y l\right) b i s(a z a n e d i y l)\right) b i s(p y r i d i n e-6,2-$ diyl))bis(4-(dodecyloxy)- N^{6}-(pyren-1-ylmethyl)pyridine-2,6-dicarboxamide) (1)

To a solution of compound $5(0.83 \mathrm{~g}, 1.46 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, $\mathrm{N}, \mathrm{N}-$ diisopropylethylamine ($0.52 \mathrm{~mL}, 2.96 \mathrm{mmol}$) was added under argon atmosphere, and the mixture was stirred for 5 min . After that, o-(benzotriazol-1-yl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyluronium hexafluorophosphate (HBTU) ($1.12 \mathrm{~g}, 2.96 \mathrm{mmol}$) was added and the reaction mixture was stirred for 15 min . Compound $6(0.20 \mathrm{~g}, 0.37 \mathrm{mmol})$ was subsequently added portionwise and the mixture was stirred at room temperature for 72 h . After evaporation of the solvent, the residue was purified by silica gel chromatography (eluent: chloroform/methanol $100 / \mathbf{1}$) affording 1 as a white solid ($0.16 \mathrm{~g}, 26 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 373 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 10.79(2 \mathrm{H}, \mathrm{br}), 10.63(2 \mathrm{H}, \mathrm{br}), 9.61(2 \mathrm{H}, \mathrm{br}), 8.26(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=9.18 \mathrm{~Hz}), 8.19(4 \mathrm{H}, \mathrm{br}), 8.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.18 \mathrm{~Hz}), 8.09(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.73 \mathrm{~Hz}), 8.04-7.92(12 \mathrm{H}, \mathrm{br})$, $7.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.73 \mathrm{~Hz}), 7.77(4 \mathrm{H}, \mathrm{br}), 7.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.94 \mathrm{~Hz}), 5.05(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.7 \mathrm{~Hz}), 4.23(2 \mathrm{H}$, br), $4.19(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.31 \mathrm{~Hz}) 1.78(6 \mathrm{H}, \mathrm{m}), 1.44(6 \mathrm{H}, \mathrm{m})$, $1.25(48 \mathrm{H}, \mathrm{br})$, o. 84 ($9 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.09 \mathrm{~Hz}$) ppm ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 167.2$, 166.7, 162.7, 161.6, 161.3, 150.8, 150.3, 149.8, 149.4, 149.1, 139.9, 131.7, 130.3, 129.8, 129.5, 127.2, 126.9, 126.6, 126.2, 125.4, 124.8, 124.5, 124.4, 123.9, 123.6, 123.5, 122.0, 111.2, 111.0, 110.4, 110.3, 78.5, 71.8, 68.6, 68.3, 60.0, 40.1, 40.0, 39.9, 39.8, 39.7, 39.6, 39.6, 39.5, 39.3, 39.2, 39.0, 30.6, 28.3, 28.3, 28.3, 28.2, 28.2, 28.0, 27.9, 27.7, 27.6, 24.7, 24.6, 21.3, 13.0 ppm ; FT-IR (neat): $v=3338,2921,2851,1673,1580,1523,1498,1439,1337,1291,1238,1157,1117,1037,994$, 884, 846, 802, 724, 681, $563 \mathrm{~cm}^{-1}$. HRMS (ESI $)$ calcd. for $\mathrm{C}_{101} \mathrm{H}_{115} \mathrm{~N}_{11} \mathrm{O}_{9}[\mathrm{M}]^{+}, 1625.8879$; found, 1625.8835.

Collection of spectra

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of compound 2.

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of compound 2.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of compound 3.

1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of compound 3.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of compound 4.

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of compound 4.

${ }^{1}{ }^{1} \mathrm{H}$ NMR (DMSO-D ${ }_{6}, 300 \mathrm{MHz}, 298 \mathrm{~K}$) of compound 5.

${ }^{13} \mathrm{C}$ NMR (DMSO-D $\left.6,75 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of compound 5.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of compound 6.

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of compound 6.

${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{D}_{6}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of compound $\mathbf{1}$.

${ }^{13} \mathrm{C}$ NMR (DMSO-D $\left.6,75 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of compound $\mathbf{1}$.

