SUPPORTING INFORMATION

Interception of Amide Ylides with Sulfonamides: Synthesis of (*E*)-*N*-Sulfonyl Amidines Catalyzed by Zn(OTf)₂

Jijun Chen, Wenhao Long, Shangwen Fang, Yonggang Yang,* and Xiaobing Wan*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,

Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.

R. China

Email: wanxb@suda.edu.cn

List of Contents

General Information	
General Procedures for Reactions	S2
Optimization of the Reaction Conditions	S4
Mechanistic Probes	
Compound Characterizations	S14
References	S44
Spectroscopic Data for Products	
XRD Data of the Compound 4a and 8d	S123

General Information

All manipulations were carried out under air atmosphere. Column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions. The ¹H NMR (400MHz) and ¹³C NMR (100MHz) data were recorded using CDCl₃ as solvent at room temperature unless specified otherwise. ¹⁹F NMR (376 MHz) data was recorded using CDCl₃ as solvent at room temperature unless specified otherwise. ¹⁹F NMR (376 MHz) data was recorded using CDCl₃ as solvent at room temperature. The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. ¹H NMR spectra was recorded with tetramethylsilane (δ = 0.00 ppm) as internal reference; ¹³C NMR spectra was recorded with CDCl₃ (δ = 77.00 ppm) as internal reference. IR, MS, HRMS, and GC-MS were performed by the State-authorized Analytical Center in Soochow University.

General procedures for reactions

(a) The procedure for the synthesis of *N*-arylpyrrolidone¹

A flame-dried resealable Schlenk tube was charged with Pd(OAc)₂ (8.8 mg, 0.04 mmol, 1 mol%), Xantphos (34.8 mg, 0.06 mmol, 1.5 mol%), the solid reactant(s) (4.0 mmol of the aryl halide/triflate and 4.8 mmol of the amide), and Cs₂CO₃ (1824 mg, 5.6 mmol). The Schlenk tube was capped with a rubber septum, evacuated and backfilled with argon; this evacuation/backfill sequence was repeated one additional time. The liquid reactant(s) and 1,4-dioxane (4 mL) were added through the septum. The septum was replaced with a teflon screwcap. The Schlenk tube was sealed, and the mixture was stirred at the indicated temperature (45-110 °C) for 24h. The reaction mixture was then cooled to room temperature, diluted with dichloromethane (20 mL),

filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to give corresponding the desired *N*-arylpyrrolidone.

(b) The procedure for the synthesis of benzamide derivatives²

Aryl acyl chloride (20 mmol) was added dropwise to a solution of amine (22 mmol), Et₃N (25 mmol) and dichloromethane (100mL) at room temperature. The reaction mixture was stirred for 12 h at room temperature and then was diluted with dichloromethane. The solution was transferred to a separation funnel and was washed with 1N HCl. The organic layer was dried with Na₂SO₄, filtered and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to give corresponding the desired benzamide derivatives.

(c) The procedure for the synthesis of alkyl amide derivatives³

To a solution of amine (20 mmol) in dichloromethane (100 mL) was added Et₃N (25 mmol). Acyl chloride (22 mmol) was then added dropwise to the mixture at room temperature. The reaction mixture was stirred for 12 h at room temperature and then was diluted with dichloromethane. The solution was transferred to a separation funnel and was washed with 1N HCl. The organic layer was dried with Na₂SO₄, filtered and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to give corresponding the desired benzamide derivatives.

(d) The procedure for the synthesis of (*E*)-*N*-Sulfonyl Amidines

Zn(OTf)₂ (0.02 mmol), amides (0.2 mmol), and sulfamides (0.2 mmol) were added to a 20 mL test tube with a stirring bar. Cyclohexane (1.0 mL), diazo compounds (0.4 mmol) were added via syringe. The reaction mixture was heated in an oil bath at reflux (Tips: severe reflux, recommendation temperature: 90 °C) for 12 h under air (Tips: even if solvent volatilization, still no problem). After, the solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography using petroleum ether/ ethylacetate to give the desired products.

(Tips: In many cases, (*E*)-*N*-Sulfonyl Amidines slightly soluble in ethyl acetate, soluble in dichloromethane)

ÎL .		N ₂ cataly	st (10 mol%), solvent (1	mL) N
Ph-N		$R^1 R^2$	air, reflux, 12 h	Ph-N
1a	2a	3		4a
Entry	Catalyst	Diazo (equiv)	Solvent	Yield (%) ^b
1	Cu(OAc) ₂	3a (0.5)	$C_{6}H_{12}$	trace
2	Cu(OAc) ₂	3a (1.0)	C ₆ H ₁₂	9
3	Cu(OAc) ₂	3a (2.0)	C ₆ H ₁₂	18
4	Cul	3a (2.0)	C ₆ H ₁₂	19
5	Co(BF ₄) ₂ ·6H ₂ O	3a (2.0)	C ₆ H ₁₂	56
6	Rh ₂ (OAc) ₄	3a (2.0)	C ₆ H ₁₂	25
7	Pd(OAc) ₂	3a (2.0)	C ₆ H ₁₂	< 5
8	Ag ₂ CO ₃	3a (2.0)	C ₆ H ₁₂	24
9	Zn(OTf) ₂	3a (2.0)	C ₆ H ₁₂	98
10 ^c	Zn(OTf) ₂	3a (2.0)	EA	60
11 ^c	Zn(OTf) ₂	3a (2.0)	DCE	66
12 ^c	Zn(OTf) ₂	3a (2.0)	[/] PrOH	< 5
13 ^c	Zn(OTf) ₂	3a (2.0)	DME	< 5
14 ^c	Zn(OTf) ₂	3a (2.0)	PhH	79
15 ^c	Zn(OTf) ₂	3a (2.0)	DMSO	< 5
16	—	3a (2.0)	$C_{6}H_{12}$	< 5
17	Zn(OTf) ₂		C ₆ H ₁₂	< 5
18	Zn(OTf) ₂	3b (2.0)	C ₆ H ₁₂	98
19	Zn(OTf) ₂	3c (2.0)	C ₆ H ₁₂	93
20	Zn(OTf) ₂	3d (2.0)	C ₆ H ₁₂	30
21	Zn(OTf) ₂	3e (2.0)	C ₆ H ₁₂	< 5
22	Zn(OTf) ₂	3f (2.0)	C_6H_{12}	11
N₂ H 3a, F 3b, F 3c, F	COOR ₃ Ph $R_3 = Et$ $R_3 = Pr$ $R_3 = Ph$	N ₂ CO ₂ Et Me 3d	O ₂ C CO ₂ Me	H TMS

Table S1. Optimization of the Reaction Conditions^{*a*}

^{*a*}Conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), **3** (2.0 equiv), catalyst (10 mol%) in C_6H_{12} was stirred at reflux for 12 h under air. ^{*b*}Isolated yields. ^{*c*}80 °C.

°L		o catalys	t (10 mol%), solvent (1 mL)	Ts N
Ph-N +		N ₂ OEt	air, reflux, 12 h	Ph-N
1a	2a	3a		4a
entry	catalyst	diazo (equiv)	solvent	yield (%) ^[b]
1	Cu(OAc) ₂	3a (2.0)	C_6H_{12}	18
2	Cul	3a (2.0)	C ₆ H ₁₂	19
3	CuO	3a (2.0)	C ₆ H ₁₂	< 5
4	Co(acac) ₂	3a (2.0)	C ₆ H ₁₂	< 5
5	Co(BF ₄) ₂ ·6H ₂ O	3a (2.0)	C_6H_{12}	56
6	Rh ₂ (OAc) ₄	3a (2.0)	C ₆ H ₁₂	25
7	Pd(OAc) ₂	3a (2.0)	C ₆ H ₁₂	< 5
8	Ag ₂ CO ₃	3a (2.0)	C_6H_{12}	24
9	Zn(OTf) ₂	3a (2.0)	C ₆ H ₁₂	98
10	Cu(OTf) ₂	3a (2.0)	C ₆ H ₁₂	< 5
11	AgOTf	3a (2.0)	C ₆ H ₁₂	42
12	Ni(OTf) ₂	3a (2.0)	C ₆ H ₁₂	39
13	Bi(OTf) ₃	3a (2.0)	C ₆ H ₁₂	62
14	In(OTf) ₃	3a (2.0)	$C_{6}H_{12}$	34
15	Sc(OTf) ₃	3a (2.0)	C ₆ H ₁₂	31
16	Mg(OTf) ₂	3a (2.0)	C_6H_{12}	60
17	ZnCl ₂	3a (2.0)	C_6H_{12}	30
18	Zn(OAc) ₂ ·2H ₂ O	3a (2.0)	C ₆ H ₁₂	26
19	Znl ₂	3a (2.0)	C ₆ H ₁₂	26
20	ZnF_2	3a (2.0)	C_6H_{12}	28
21	ZnO	3a (2.0)	C ₆ H ₁₂	< 5

Table S2. Screening of the Reaction Catalysts^a

^{*a*}Conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), **3a** (0.4 mmol), catalyst (10 mol%) in C_6H_{12} was stirred at reflux for 12 h under air.

Scheme S1. Mechanistic probes.

Figure S1. The Outcome of EDA.

Mechanistic Probes

(a) Cyclopropanation experiment (carbene traps experiment):

(b) Control reaction:

(c) High-resolution mass spectrometry (HRMS) analysis:

[¹⁸O]-1a, detected by HRMS

(d) Trapping of intermediate:

(e) Identify the outcome of EDA:

(f) NMR study on the model reaction to identify the outcome of EDA:

f(a) ¹H NMR:

f(b) ¹H NMR:

Compound Characterizations

(*E*)-4-Methyl-*N*-(1-phenylpyrrolidin-2-ylidene)benzenesulfonamide (4a). Petroleum ether/ ethylacetate = 3:1, white solid, 61.4 mg, 98% yield, mp: 124.5–125.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.78 (m, 2H), 7.48–7.46 (m, 2H), 7.36–7.32 (m, 2H), 7.24–7.18 (m, 3H), 3.88 (t, *J* = 7.2 Hz, 2H), 3.30 (t, *J* = 8.0 Hz, 2H), 2.37 (s, 3H), 2.20–2.12 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 142.1, 140.1, 138.5, 129.1, 128.7, 126.30, 126.27, 122.9, 52.0, 31.9, 21.3, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₁₈N₂O₂S+H⁺: 315.1162, Found: 315.1169; IR (neat, cm-1): υ 2917, 2849, 1743, 1536, 1300, 1146, 824, 651.

(*E*)-*N*-(1-Phenylpyrrolidin-2-ylidene)benzenesulfonamide (4b). Petroleum ether/ ethylacetate = 3:1, white solid, 57.4 mg, 96% yield, mp: 137.3–139.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92–7.90 (m, 2H), 7.50–7.41 (m, 5H), 7.36–7.32 (m, 2H), 7.22–7.19 (m, 1H), 3.89 (t, *J* = 7.2 Hz, 2H), 3.32 (t, *J* = 8.0 Hz, 2H), 2.22–2.14 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 142.9, 138.5, 131.6, 128.7, 128.5, 126.4, 126.3, 123.0, 52.1, 32.0, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₁₆N₂O₂S+H⁺: 301.1005, Found: 301.1011; IR (neat, cm-1): υ 2924, 2852, 1742, 1536, 1300, 1146, 855, 690.

(*E*)-4-Chloro-*N*-(1-phenylpyrrolidin-2-ylidene)benzenesulfonamide (4c). Petroleum ether/ ethylacetate = 3:1, white solid, 65.5 mg, 98% yield, mp: 136.3–137.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.82 (m, 2H), 7.45–7.33 (m, 6H), 7.24–7.20 (m, 1H), 3.91 (t, *J* = 7.2 Hz, 2H), 3.33 (t, *J* = 8.0 Hz, 2H), 2.25–2.17 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 141.5, 138.3, 137.8,

128.8, 128.7, 127.8, 126.6, 123.0, 52.2, 32.1, 19.4. HRMS (ESI-TOF): Anal. Calcd. For $C_{16}H_{15}{}^{35}CIN_2O_2S+Na^+$: 357.0435, $C_{16}H_{15}{}^{37}CIN_2O_2S+Na^+$: 359.0405, Found: 357.0438, 359.0396; IR (neat, cm-1): v 2919, 2849, 1745, 1530, 1298, 1147, 752, 619.

(E)-N-(1-phenylpyrrolidin-2-ylidene)-4-(trifluoromethyl)benzenesulfonamide

(**4d**). Petroleum ether/ ethylacetate = 3:1, white solid, 67.3 mg, 92% yield, mp: 149.8–151.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03–8.01 (m, 2H), 7.70–7.68 (m, 2H), 7.44–7.42 (m, 2H), 7.38–7.34 (m, 2H), 7.27–7.22 (m, 1H), 3.94 (t, *J* = 7.2 Hz, 2H), 3.36 (t, *J* = 8.0 Hz, 2H), 2.27 – 2.20 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 146.4, 138.2, 133.24 (q, *J* = 32 Hz), 128.8, 126.84, 126.81, 125.7 (q, *J* = 4 Hz), 123.4 (q, *J* = 271 Hz), 123.2, 52.4, 32.3, 19.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₁₅F₃N₂O₂S+H⁺: 369.0879, Found: 369.0884; IR (neat, cm-1): v 2919, 2849, 1748, 1547, 1304, 1103, 689.

(*E*)-4-Bromo-*N*-(1-phenylpyrrolidin-2-ylidene)benzenesulfonamide (4e). Petroleum ether/ ethylacetate = 3:1, white solid, 70.8 mg, 94% yield, mp: 141.1–142.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77–7.74 (m, 2H), 7.57–7.55 (m, 2H), 7.44–7.42 (m, 2H), 7.37–7.33 (m, 2H), 7.24–7.20 (m, 1H), 3.91 (t, *J* = 7.2 Hz, 2H), 3.32 (t, *J* = 8.0 Hz, 2H), 2.24–2.16 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 142.1, 138.3, 131.7, 128.8, 128.0, 126.6, 126.3, 123.1, 52.2, 32.1, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₁₅⁷⁹BrN₂O₂S+Na⁺: 400.9930, C₁₆H₁₅⁸¹BrN₂O₂S+Na⁺: 402.9909, Found: 400.9941, 402.9943; IR (neat, cm-1): v 2920, 2850, 1737, 1533, 1147, 742, 608.

(*E*)-4-Fluoro-*N*-(1-phenylpyrrolidin-2-ylidene)benzenesulfonamide (4f). Petroleum ether/ ethylacetate = 3:1, white solid, 62.1 mg, 98% yield, mp: 108.4–109.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92–7.89 (m, 2H), 7.46–7.44 (m, 2H), 7.37–7.33 (m, 2H), 7.23–7.20 (m, 1H), 7.13–7.08 (m, 2H), 3.91 (t, *J* = 7.2 Hz, 2H), 3.33 (t, *J* = 8.0 Hz, 2H), 2.25–2.16 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 164.4 (d, *J* = 251 Hz), 139.14 (d, *J* = 3 Hz), 138.4, 128.9 (d, *J* = 9 Hz), 128.8, 126.5, 123.0, 115.6 (d, *J* = 23 Hz), 52.2, 32.1, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₁₅FN₂O₂S+Na⁺: 341.0730, Found: 341.0740; IR (neat, cm-1): v 2918, 2849, 1748, 1536, 1305, 1148, 844, 671.

(*E*)-4-Methoxy-*N*-(1-phenylpyrrolidin-2-ylidene)benzenesulfonamide (4g). Petroleum ether/ ethylacetate = 2:1, white solid, 58.3 mg, 88% yield, mp: 68.2-69.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.82 (m, 2H), 7.48–7.46 (m, 2H), 7.36–7.32 (m, 2H), 7.21–7.17 (m, 1H), 6.92–6.90 (m, 2H), 3.88 (t, *J* = 7.2 Hz, 2H), 3.81 (s, 3H), 3.29 (t, *J* = 8.0 Hz, 2H), 2.20–2.13 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 162.0, 138.5, 135.0, 128.7, 128.3, 126.2, 122.9, 113.6, 55.4, 52.0, 31.9, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₁₈N₂O₃S+H⁺: 331.1111, Found: 331.1109; IR (neat, cm-1): v 2923, 2849, 1748, 1546, 1142, 672.

(*E*)-4-(*tert*-butyl)-*N*-(1-phenylpyrrolidin-2-ylidene)benzenesulfonamide (4h). Petroleum ether/ ethylacetate = 3:1, white solid, 66.4 mg, 94% yield, mp: 113.9–115.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.82 (m, 2H), 7.50–7.49 (m, 2H), 7.46–7.44 (m, 2H), 7.37–7.33 (m, 2H), 7.22–7.18 (m, 1H), 3.89 (t, *J* = 7.2 Hz, 2H), 3.32 (t, *J* = 8.0 Hz, 2H), 2.21–2.14 (m, 2H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 155.1, 140.0, 138.6, 128.7, 126.3, 126.1, 125.5, 122.9, 52.0, 34.9, 32.0, 31.0, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₂₀H₂₄N₂O₂S+Na⁺: 379.1451, Found: 379.1464; IR (neat, cm-1): v 2961, 2923, 1749, 1551, 1150, 760, 628.

(*E*)-4-Iodo-*N*-(1-phenylpyrrolidin-2-ylidene)benzenesulfonamide (4i). Petroleum ether/ ethylacetate = 3:1, white solid, 81.5 mg, 96% yield, mp: 132.7–133.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78–7.76 (m, 2H), 7.62–7.60 (m, 2H), 7.44–7.42 (m, 2H), 7.37–7.33 (m, 2H), 7.23–7.20 (m, 1H), 3.90 (t, *J* = 7.2 Hz, 2H), 3.31 (t, *J* = 8.0 Hz, 2H), 2.23–2.16 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 142.7, 138.3, 137.6, 128.8, 127.9, 126.6, 123.0, 98.6, 52.2, 32.1, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₁₅IN₂O₂S+Na⁺: 448.9791, Found: 448.9798; IR (neat, cm-1): υ 3043, 2941, 1736, 1532, 1298, 1148, 737.

(*E*)-2-Methyl-*N*-(1-phenylpyrrolidin-2-ylidene)benzenesulfonamide (4j). Petroleum ether/ ethylacetate = 3:1, white solid, 61.4 mg, 98% yield, mp: 118.7–119.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02–8.01 (m, 1H), 7.45–7.44 (m, 2H), 7.38–7.32 (m, 3H), 7.26–7.19 (m, 3H), 3.87 (t, *J* = 7.2 Hz, 2H), 3.30 (t, *J* = 8.0 Hz, 2H), 2.61 (s, 3H), 2.21–2.13 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 140.8, 138.5, 137.4, 132.0, 131.7, 128.7, 127.5, 126.5, 125.4, 123.2, 52.1, 32.0, 20.3, 19.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₁₈N₂O₂S+H⁺: 315.1162, Found: 315.1168; IR (neat, cm-1): v 2923, 2852, 1745, 1558, 1273, 1115, 692.

Methyl (*E*)-2-(*N*-(1-phenylpyrrolidin-2-ylidene)sulfamoyl)benzoate (4k). Petroleum ether/ ethylacetate = 2:1, white solid, 41.7 mg, 59% yield, mp: 117.4–118.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09–8.06 (m, 1H), 7.54–7.51 (m, 3H), 7.47–7.45 (m, 2H), 7.35–7.31 (m, 2H), 7.22–7.18 (m, 1H), 3.91 (t, *J* = 7.2 Hz, 2H), 3.74 (s, 3H), 3.28 (t, *J* = 8.0 Hz, 2H), 2.23–2.16 (m, 2H). ¹³C NMR

(100 MHz, CDCl₃) δ 169.0, 168.1, 140.7, 138.4, 131.6, 131.4, 130.3, 128.7, 128.7, 128.3, 126.5, 123.3, 52.6, 52.3, 32.3, 19.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₁₈N₂O₄S+H⁺: 359.1060, Found: 359.1063; IR (neat, cm-1): v 2920, 2850, 1732, 1542, 1289, 1152, 759.

(*E*)-2-nitro-*N*-(1-phenylpyrrolidin-2-ylidene)benzenesulfonamide (4l). Petroleum ether/ ethylacetate = 3:1, light yellow solid, 68.1 mg, 99% yield, mp: 104.5–107.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17– 8.13 (m, 1H), 7.65–7.55 (m, 3H), 7.39–7.37 (m, 2H), 7.34–7.30 (m, 2H), 7.22–7.18 (m, 1H), 3.93 (t, *J* = 7.2 Hz, 2H), 3.37 (t, *J* = 8.0 Hz, 2H), 2.28–2.20 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 147.5, 138.1, 135.7, 132.5, 131.9, 129.6, 128.8, 126.9, 124.1, 123.6, 52.7, 32.9, 19.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₁₅N₃O₄S+H⁺: 346.0856, Found: 346.0864; IR (neat, cm-1): v 2923, 2852, 1745, 1531, 1300, 1149, 733.

(*E*)-2-bromo-*N*-(1-phenylpyrrolidin-2-ylidene)benzenesulfonamide (4m). Petroleum ether/ ethylacetate = 3:1, white solid, 66.9 mg, 89% yield, mp: 107.1–108.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17–8.15 (m, 1H), 7.68–7.66 (m, 1H), 7.50–7.48 (m, 2H), 7.37–7.27 (m, 4H), 7.20–7.16 (m, 1H), 3.91 (t, *J* = 7.2 Hz, 2H), 3.38 (t, *J* = 8.0 Hz, 2H), 2.24–2.16 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 141.5, 138.3, 134.9, 132.7, 129.7, 128.7, 127.2, 126.5, 123.3, 120.3, 52.3, 32.7, 19.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₁₅⁷⁹BrN₂O₂S+Na⁺: 400.9930, C₁₆H₁₅⁸¹BrN₂O₂S+Na⁺: 402.9909, Found: 400.9941, 402.9945; IR (neat, cm-1): v 2921, 2850, 1736, 1532, 1300, 1146, 740.

(*E*)-3-Nitro-*N*-(1-phenylpyrrolidin-2-ylidene)benzenesulfonamide (4n). Petroleum ether/ ethylacetate = 3:1, white solid, 68.5 mg, 99% yield, mp: 132.7–133.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.74–8.73 (m, 1H), 8.33–8.30 (m, 1H), 8.22–8.20 (m, 1H), 7.66–7.62 (m, 1H), 7.44–7.36 (m, 4H), 7.27–7.23 (m, 1H), 3.97 (t, *J* = 7.2 Hz, 2H), 3.39 (t, *J* = 8.0 Hz, 2H), 2.31–2.23 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 147.8, 145.1, 138.0, 131.9, 129.9, 128.9, 127.0, 126.0, 123.3, 121.7, 52.5, 32.4, 19.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₁₅N₃O₄S+H⁺: 346.0856, Found: 346.0859; IR (neat, cm-1): v 2920, 2850, 1749, 1528, 1306, 1154, 661.

(*E*)-3-Bromo-*N*-(1-phenylpyrrolidin-2-ylidene)benzenesulfonamide (4o). Petroleum ether/ ethylacetate = 20:1, white solid, 74.7 mg, 99% yield, mp: 109.2–110.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.83–7.81 (m, 1H), 7.61–7.59 (m, 1H), 7.45–7.43 (m, 2H), 7.39–7.35 (m, 2H), 7.33–7.29 (m, 1H), 7.25–7.21 (m, 1H), 3.92 (t, *J* = 7.2 Hz, 2H), 3.32 (t, *J* = 8.0 Hz, 2H), 2.25–2.17 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 144.8, 138.2, 134.6, 130.1, 129.4, 128.8, 126.7, 124.8, 123.1, 122.3, 52.3, 32.2, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₁₅⁷⁹BrN₂O₂S+H⁺: 379.0110, C₁₆H₁₅⁸¹BrN₂O₂S+H⁺: 381.0090, Found: 371.0109, 381.0100; IR (neat, cm-1): v 2920, 2850, 1747, 1546, 1305, 1149, 654.

(*E*)-*N*-(1-phenylpyrrolidin-2-ylidene)naphthalene-2-sulfonamide (4p). Petroleum ether/ ethylacetate = 2:1, white solid, 62.6 mg, 90% yield, mp: 180.9–182.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.91–7.84 (m, 4H), 7.59 – 7.52 (m, 2H), 7.47–7.45 (m, 2H), 7.35–7.31 (m 2H), 7.21–7.17 (m, 1H), 3.87 (t, *J* = 7.2 Hz, 2H), 3.35 (t, *J* = 8.0 Hz, 2H), 2.20–2.13 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 139.9, 138.4, 134.3, 132.0, 129.1, 128.8, 128.7, 128.1, 127.7, 127.0, 126.7, 126.4, 123.0, 122.6, 52.1, 32.1, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₂₀H₁₈N₂O₂S+H⁺: 351.1162, Found: 351.1163; IR (neat, cm-1): υ 2920, 2849, 1733, 1560, 1267, 1139, 671.

(*E*)-*N*-(1-phenylpyrrolidin-2-ylidene)quinoline-8-sulfonamide (4q). Petroleum ether/ ethylacetate = 1:2, light yellow solid, 50.7 mg, 72% yield, mp: 173.5–175.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.08–9.07 (m, 1H), 8.55–8.53 (m, 1H), 8.22–8.20 (m, 1H), 7.98–7.96 (m, 1H), 7.60–7.56 (m, 1H), 7.50–7.47 (m, 1H), 7.38–7.37 (m, 2H), 7.17–7.13 (m, 2H), 7.08–7.04 (m, 1H), 3.93 (t, J = 7.2 Hz, 2H), 3.70 (t, J = 7.9 Hz, 2H), 2.32–2.25 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 150.7, 147.5, 144.0, 138.7, 136.4, 132.7, 130.3, 128.9, 128.5, 126.0, 125.4, 122.9, 121.5, 52.1, 32.8, 19.9. HRMS (ESI-TOF): Anal. Calcd. For C₁₉H₁₇N₃O₂S+Na⁺: 374.0934, Found: 374.0932; IR (neat, cm-1): v 2959, 2921, 2852, 1733, 1544, 1277, 1138, 609.

(*E*)-*N*-(1-Phenylpyrrolidin-2-ylidene)thiophene-2-sulfonamide (4r). Petroleum ether/ ethylacetate = 20:1, white solid, 60.7 mg, 99% yield, mp: 112.3–113.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.58 (m, 1H), 7.50–7.46 (m, 3H), 7.39–7.35 (m, 2H), 7.25–7.21 (m, 1H), 7.0– 6.98 (m, 1H), 3.91 (t, J = 7.2 Hz, 2H), 3.32 (t, J = 8.0 Hz, 2H), 2.23–2.15 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 144.5, 138.2, 130.4, 130.1, 128.8, 126.7, 126.6, 123.1, 52.3, 32.0, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₄N₂O₂S₂+Na⁺: 329.0389, Found: 329.0398; IR (neat, cm-1): v 3094, 2901, 1539, 1292, 1138, 722.

(*E*)-*N*-(1-Phenylpyrrolidin-2-ylidene)cyclopropanesulfonamide (4s). Petroleum ether/ ethylacetate = 2:1, white solid, 52.2 mg, 99% yield, mp: 69.4–70.7 °C. ¹H NMR (400 MHz,

CDCl₃) δ 7.55–7.53 (m, 2H), 7.41–7.37 (m, 2H), 7.28–7.21 (m, 1H), 3.91 (t, *J* = 7.2 Hz, 2H), 3.32 (t, *J* = 8.0 Hz, 2H), 2.57–2.49 (m, 1H), 2.24–2.16 (m, 2H), 1.16–1.12 (m, 2H), 0.94–0.89 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 138.7, 128.7, 126.1, 122.8, 51.9, 32.2, 31.8, 19.5, 5.1. HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₆N₂O₂S+H⁺: 265.1005, Found: 265.1018; IR (neat, cm-1): υ 2923, 2851, 1750, 1549, 1272, 1136, 733.

(*E*)-*N*-(1-Phenylpyrrolidin-2-ylidene)methanesulfonamide (4t) Petroleum ether/ ethylacetate = 2:1, white solid, 41.2 mg, 87% yield, mp: 103.0–103.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51–7.49 (m, 2H), 7.41–7.38 (m, 2H), 7.28–7.22 (m, 1H), 3.91 (t, *J* = 7.2 Hz, 2H), 3.33 (t, *J* = 8.0 Hz, 2H), 2.98 (s, 3H), 2.25–2.18 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 138.6, 128.7, 126.3, 123.0, 52.0, 42.6, 32.0, 19.6. HRMS (ESI-TOF): Anal. Calcd. For C₁₁H₁₄N₂O₂S+Na⁺: 261.0668, Found: 261.0679; IR (neat, cm-1): v 2920, 2850, 1746, 1555, 1270, 1131, 759.

(*E*)-*N*-(1-Phenylpyrrolidin-2-ylidene)butane-1-sulfonamide (4u). Petroleum ether/ ethylacetate = 3:1, white solid, 51.8 mg, 93% yield, mp: 68.0–69.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51–7.49 (m, 2H), 7.41–7.37 (m, 2H), 7.25–7.22 (m, 1H), 3.91 (t, *J* = 7.2 Hz, 2H), 3.34 (t, *J* = 8.0 Hz, 2H), 3.02 (t, *J* = 8.0 Hz, 2H), 2.25–2.17 (m, 2H), 1.85–1.77 (m, 2H), 1.47–1.37 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 138.6, 128.6, 126.2, 122.9, 54.2, 51.8, 32.1, 25.6, 21.4, 19.6, 13.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₂₀N₂O₂S+H⁺: 281.1318, Found: 281.1319; IR (neat, cm-1): v 2955, 2918, 1749, 1562, 1263, 1129, 860, 695.

(*E*)-1-Phenyl-*N*-(1-phenylpyrrolidin-2-ylidene)methanesulfonamide(4v).Petroleum ether/ ethylacetate = 2:1, white solid, 55.7 mg, 89% yield, mp: 128.7–129.9 °C. ¹H NMR(400 MHz, CDCl₃) δ 7.41 – 7.25 (m, 10H), 4.21 (s, 2H), 3.80 (t, *J* = 7.2 Hz, 2H), 3.06 (t, *J* = 7.9 Hz,2H), 2.08–2.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 138.4, 131.0, 130.3, 128.6, 128.1,128.0, 126.4, 123.3, 60.2, 52.0, 32.0, 19.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₁₈N₂O₂S+Na⁺:337.0981, Found: 337.0993; IR (neat, cm-1): v 2920, 2849, 1735, 1566, 1099, 690.

p-Tolyl (*E*)-(1-phenylpyrrolidin-2-ylidene)sulfamate (4w). Petroleum ether/ ethylacetate = 4:1, white solid, 53.9 mg, 82% yield, mp: 75.7–76.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.34 (m, 4H), 7.30–7.25 (m, 1H), 7.16–7.09 (m, 4H), 3.93 (t, *J* = 7.2 Hz, 2H), 3.25 (t, *J* = 8.0 Hz, 2H), 2.32 (s, 3H), 2.22–2.15 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 148.6, 138.0, 136.0, 129.7, 128.8, 127.0, 123.5, 122.0, 52.9, 32.2, 20.8, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₁₈N₂O₃S+Na⁺: 353.0930, Found: 353.0937; IR (neat, cm-1): v 2917, 2848, 1700, 1557, 1146, 826.

N,*N*-Dimethyl (*E*)-(1-phenylpyrrolidin-2-ylidene)sulfamate (4x). Petroleum ether/ ethylacetate = 4:1, colourless liquid, 33.4 mg, 63% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.56–7.54 (m, 2H), 7.41–7.37 (m, 2H), 7.24–7.21 (m, 1H), 3.93 (t, *J* = 7.1 Hz, 2H), 3.30 (t, *J* = 8.0 Hz, 2H), 2.72 (s, 6H), 2.25–2.17 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 138.9, 128.6, 126.0, 122.8, 52.0, 38.9, 32.0, 19.6. HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₇N₃O₂S+Na⁺: 290.0934, Found: 290.0924; IR (neat, cm-1): v 2961, 2878, 1749, 1563, 1302, 1138, 712.

(*E*)-1-(Benzo[*d*]isoxazol-3-yl)-*N*-(1-phenylpyrrolidin-2-ylidene)methanesulfonami de (5a). Petroleum ether/ ethylacetate = 2:1, white solid, 46.6 mg, 66% yield, mp: 126.9–128.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.78 (m, 1H), 7.58–7.50 (m, 2H), 7.38–7.32 (m, 4H), 7.26–7.19 (m, 2H), 4.71 (s, 2H), 3.83 (t, *J* = 7.2 Hz, 2H), 3.15 (t, *J* = 8.0 Hz, 2H), 2.13–2.05 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 163.5, 150.3, 138.1, 129.9, 128.8, 126.8, 123.8, 123.3, 122.9, 121.0, 109.6, 52.3, 51.3, 32.3, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₁₇N₃O₃S+Na⁺: 378.0883, Found: 378.0871; IR (neat, cm-1): v 2921, 2850, 1748, 1557, 1294, 860, 749.

(*E*)-*N*-(1-Phenylpyrrolidin-2-ylidene)-4-(5-(*p*-tolyl)-3-(trifluoromethyl)-1*H*-pyraz ol-1-yl)benzenesulfonamide (5b). Petroleum ether/ ethylacetate = 3:1, white solid, 95.8 mg, 90% yield, mp: 171.7–172.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.88 (m, 2H), 7.43–7.38 (m, 4H), 7.36–7.32 (m, 2H), 7.26–7.21 (m, 1H), 7.16–7.14 (m, 2H), 7.10–7.08 (m, 2H), 6.72 (s, 1H), 3.92 (t, *J* = 7.2 Hz, 2H), 3.32 (t, *J* = 7.9 Hz, 2H), 2.36 (s, 3H), 2.25–2.17 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 145.0, 142.6, 141.5, 139.5, 138.2, 129.6, 128.8, 128.6, 127.4, 126.6, 125.6, 125.1, 123.1, 105.9, 52.3, 32.1, 21.2, 19.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.35. HRMS (ESI-TOF): Anal. Calcd. For C₂₇H₂₃F₃N₄O₂S+Na⁺: 547.1386, Found: 347.1398; IR (neat, cm-1): v 3141, 2922, 2852, 1741, 1550, 1147, 968,636.

((3aS,5aR,8aR,8bS)-2,2,7,7-Tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-*b*:4' ,5'-*d*]pyran-3a-yl)methyl ((*E*)-1-phenylpyrrolidin-2-ylidene)sulfamate (5c). Petroleum ether/ ethylacetate = 3:1, colorless sticky liquid, 94.1 mg, 98% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.51–7.49 (m, 2H), 7.40–7.36 (m, 2H), 7.26-7.23 (m, 1H), 4.55 (dd, *J* = 7.8, 2.2 Hz, 1H), 4.38 (d, *J* = 1.7 Hz, 1H), 4.22 (d, *J* = 8.2 Hz, 1H), 4.17 (d, *J* = 4.7 Hz, 2H), 3.96 (t, *J* = 7.2 Hz, 2H), 3.89 (d, *J* = 12.9 Hz, 1H), 3.73 (d, *J* = 13.0 Hz, 1H), 3.31 (t, *J* = 7.9 Hz, 2H), 2.26–2.19 (m, 2H), 1.52 (s, 3H), 1.40 (s, 3H), 1.39 (s, 3H), 1.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 138.1, 128.8, 126.7, 123.2, 108.9, 108.8, 101.0, 70.6, 69.9, 69.4, 61.1, 52.8, 32.0, 26.4, 25.7, 25.1, 23.9, 19.3. HRMS (ESI-TOF): Anal. Calcd. For C₂₂H₃₀N₂O₈S+Na⁺: 505.1615, Found: 505.1616; IR (neat, cm-1): υ 2988, 2934, 1557, 1156, 862, 606.

(*E*)-*N*-(1-(4-fluorophenyl)pyrrolidin-2-ylidene)-4-methylbenzenesulfonamide (6a). Petroleum ether/ ethylacetate = 3:1, light yellow solid, 65.9 mg, 99% yield, mp: 128.2–129.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78–7.76 (m, 2H), 7.46–7.41 (m, 2H), 7.27–7.23 (m, 2H), 7.06–7.00 (m, 2H), 3.86 (t, *J* = 7.2 Hz, 2H), 3.29 (t, *J* = 8.0 Hz, 2H), 2.38 (s, 3H), 2.22–2.14 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 160.4 (d, *J* = 245 Hz), 142.2, 134.0, 134.54 (d, *J* = 4 Hz), 129.1, 126.3, 124.9 (d, *J* = 8 Hz), 115.6 (d, *J* = 22 Hz), 52.2, 31.8, 21.4, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₁₇FN₂O₂S+H⁺: 333.1068, Found: 333.1058; IR (neat, cm-1): v 2920, 2850, 1738, 1503, 1146, 824, 656.

(E)-N-(1-(4-chlorophenyl)pyrrolidin-2-ylidene)-4-methylbenzenesulfonamide

(**6b**). Petroleum ether/ ethylacetate = 3:1, white solid, 65.8 mg, 95% yield, mp: 142.5–143.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.77 (m, 2H), 7.46–7.42 (m, 2H), 7.3–7.27 (m, 2H), 7.26–7.24 (m, 2H), 3.86 (t, *J* = 7.2 Hz, 2H), 3.30 (t, *J* = 8.0 Hz, 2H), 2.39 (s, 3H), 2.22–2.14 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 142.3, 139.8, 137.1, 131.5, 129.2, 128.8, 126.3, 124.0, 51.8, 31.9, 21.4, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₁₇³⁵ClN₂O₂S+H⁺: 349.0772, C₁₇H₁₇³⁷ClN₂O₂S+H⁺: 351.0743, Found: 349.0767, 351.0762; IR (neat, cm-1): v 2920, 2850, 1721, 1545, 1145, 831, 658.

(E)-N-(1-(4-bromophenyl)pyrrolidin-2-ylidene)-4-methylbenzenesulfonamide

(6c). Petroleum ether/ ethylacetate = 3:1, white solid, 78.1 mg, 99% yield, mp: 147.1–148.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.78 (m, 2H), 7.45–7.43 (m, 2H), 7.39–7.37 (m, 2H), 7.26–7.24 (m, 2H), 3.85 (t, *J* = 7.2 Hz, 2H), 3.30 (t, *J* = 8.0 Hz, 2H), 2.39 (s, 3H), 2.21–2.14 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 142.4, 139.8, 137.6, 131.7, 129.2, 126.3, 124.3, 119.3, 51.7, 31.9, 21.4, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₁₇⁷⁹BrN₂O₂S+H⁺: 393.0267, C₁₇H₁₇⁸¹BrN₂O₂S+H⁺: 395.0246, Found: 393.0256, 395.0251; IR (neat, cm-1): v 2918, 2849, 1716, 1297, 1144, 827.

(E)-4-methyl-N-(1-(p-tolyl)pyrrolidin-2-ylidene)benzenesulfonamide (6d).

Petroleum ether/ ethylacetate = 3:1, white solid, 65.0 mg, 99% yield, mp: 75.8–76.7 °C. ¹H NMR

(400 MHz, CDCl₃) δ 7.79–7.77 (m, 2H), 7.35–7.33 (m, 2H), 7.24–7.21 (m, 2H), 7.15–7.13 (m, 2H), 3.85 (t, *J* = 7.2 Hz, 2H), 3.28 (t, *J* = 8.0 Hz, 2H), 2.37 (s, 3H), 2.31 (s, 3H), 2.19–2.11 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 142.0, 140.2, 136.2, 136.0, 129.2, 129.1, 126.3, 122.8, 52.1, 31.9, 21.3, 20.9, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₂₀N₂O₂S+H⁺: 329.1318, Found: 329.1319; IR (neat, cm-1): v 2921, 2853, 1708, 1540, 1147, 815, 665.

(E)-N-(1-(4-methoxyphenyl)pyrrolidin-2-ylidene)-4-methylbenzenesulfonamide

(**6e**). Petroleum ether/ ethylacetate = 2:1, white solid, 67.9 mg, 99% yield, mp: 111.2–112.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.77 (m, 2H), 7.38–7.35 (m, 2H), 7.24–7.22 (m, 2H), 6.88–6.84 (m, 2H), 3.84 (t, *J* = 7.2 Hz, 2H), 3.78 (s, 3H), 3.28 (t, *J* = 8.0 Hz, 2H), 2.38 (s, 3H), 2.20–2.13 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 157.7, 142.0, 140.3, 131.5, 129.1, 126.3, 124.5, 113.9, 55.4, 52.4, 31.8, 21.4, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₂₀N₂O₃S+H⁺: 345.1267, Found: 345.1279; IR (neat, cm-1): v 2924, 2851, 1707, 1146, 834, 666.

(*E*)-*N*-(1-(4-cyanophenyl)pyrrolidin-2-ylidene)-4-methylbenzenesulfonamide (6f). Petroleum ether/ ethylacetate = 2:1, white solid, 67.3 mg, 99% yield, mp: 161.4–162.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.78 (m, 2H), 7.71–7.68 (m, 2H), 7.62–7.59 (m, 2H), 7.28–7.26 (m, 2H), 3.93 (t, *J* = 7.2 Hz, 2H), 3.35 (t, *J* = 8.0 Hz, 2H), 2.41 (s, 3H), 2.26–2.18 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 142.8, 142.4, 139.4, 132.6, 129.3, 126.4, 122.4, 118.2, 108.8, 51.3, 32.1, 21.4, 19.3. HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₁₇N₃O₂S+H⁺: 340.1114, Found: 340.1132; IR (neat, cm-1): v 2921, 2852, 2222, 1299, 1149, 836, 665.

(E) - N - (1 - (4 - (tert- butyl) phenyl) pyrrolidin-2-ylidene) - 4 - methylbenzenesulfonamide

(6g). Petroleum ether/ ethylacetate = 3:1, white solid, 56.8 mg, 77% yield, mp: 138.3–140.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81–8.79 (m, 2H), 7.42–7.40 (m, 2H), 7.36–7.34 (m, 2H), 7.25–7.23 (m, 2H), 3.87 (t, *J* = 7.2 Hz, 2H), 3.28 (t, *J* = 8.0 Hz, 2H), 2.38 (s, 3H), 2.19–2.11 (m, 2H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 149.2, 142.1, 140.2, 135.9, 129.1, 126.4, 125.6, 122.4, 52.1, 34.4, 31.9, 31.2, 21.4, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₂₁H₂₆N₂O₂S+H⁺: 371.1788, Found: 371.1783; IR (neat, cm-1): v 2947, 2862, 1709, 1539, 1301, 1150, 656.

(*E*)-4-methyl-*N*-(1-(4-(trifluoromethoxy)phenyl)pyrrolidin-2-ylidene)benzenesulf onamide (6h). Petroleum ether/ ethylacetate = 3:1, white solid, 43.6 mg, 55% yield, mp: 131.2–132.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.77 (m, 2H), 7.55–7.52 (m, 2H), 7.27–7.24 (m, 2H), 7.20–7.18 (m, 2H), 3.89 (t, *J* = 7.2 Hz, 2H), 3.32 (t, *J* = 8.0 Hz, 2H), 2.40 (s, 3H), 2.24–2.16 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 142.5, 139.8, 137.1, 129.2, 126.4, 124.2, 121.2, 52.0, 31.9, 21.4, 19.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.96. HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₁₇F₃N₂O₃S+Na⁺: 421.0804, Found: 421.0800; IR (neat, cm-1): v 2924, 2853, 1713, 1551, 1147, 674.

Methyl (*E*)-4-(2-(tosylimino)pyrrolidin-1-yl)benzoate (6i). Petroleum ether/ ethylacetate = 3:1, white solid, 39.2 mg, 53% yield, mp: 122.6–123.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01–7.99 (m, 2H), 7.81–7.79 (m, 2H), 7.63–7.61 (m, 2H), 7.27–7.25 m, 2H), 3.94 (t, *J* = 7.2 Hz, 2H), 3.90 (s, 3H), 3.36 (t, *J* = 7.9 Hz, 2H), 2.40 (s, 3H), 2.25–2.18 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 166.2, 142.5, 142.5, 139.7, 130.1, 129.2, 127.2, 126.4, 121.9, 52.1, 51.6, 32.2, 21.4, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₉H₂₀N₂O₄S+H⁺: 373.1217, Found: 373.1223; IR (neat, cm-1): ν 2922, 2852, 1710, 1278, 1148, 664.

(*E*)-4-methyl-*N*-(1-(4-(methylsulfonyl)phenyl)pyrrolidin-2-ylidene)benzenesulfon amide (6j). Petroleum ether/ ethylacetate = 1:1, white solid, 63.0 mg, 81% yield, mp: $181.0-182.8 \circ C. {}^{1}H NMR (400 MHz, CDCl_3) \delta 7.89-7.87 (m, 2H), 7.81-7.79 (m, 2H), 7.76-7.74 (m, 2H), 7.29-7.27 (m, 2H), 3.95 (t,$ *J*= 7.1 Hz, 2H), 3.36 (t,*J* $= 7.9 Hz, 2H), 3.03 (s, 3H), 2.41 (s, 3H), 2.27-2.19 (m, 2H). {}^{1}C NMR (100 MHz, CDCl_3) \delta 169.0, 143.2, 142.8, 139.4, 136.9, 129.3, 128.0, 126.3, 122.6, 51.5, 44.4, 32.0, 21.4, 19.3. HRMS (ESI-TOF): Anal. Calcd. For$ C₁₈H₂₀N₂O₄S₂+H⁺: 393.0937, Found: 393.0942; IR (neat, cm-1): v 2922, 2852, 1709, 1548, 1144, 698

(E)-4-methyl-N-(1-(m-tolyl)pyrrolidin-2-ylidene)benzenesulfonamide(6k).Petroleum ether/ ethylacetate = 3:1, white solid, 65.0 mg, 99% yield, mp: 95.0–96.4 °C. ¹H NMR(400 MHz, CDCl₃) δ 7.80–7.78 (m, 2H), 7.27–7.20 (m, 5H), 7.02–7.01 (m, 1H), 3.86 (t, J = 7.2 Hz,2H), 3.29 (t, J = 8.0 Hz, 2H), 2.37 (s, 3H), 2.31 (s, 3H), 2.20–2.12 (m, 2H). ¹³C NMR (100 MHz,CDCl₃) δ 168.4, 142.0, 140.2, 138.5, 138.4, 129.0, 128.5, 127.1, 126.2, 123.7, 120.0, 52.1, 31.9,

21.3, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₂₀N₂O₂S+H⁺: 329.1318, Found: 329.1306; IR (neat, cm-1): υ 2921, 2853, 1752, 1546, 1144, 669.

(*E*)-4-methyl-*N*-(1-(3-(trifluoromethyl)phenyl)pyrrolidin-2-ylidene)benzenesulfo namide (6l). Petroleum ether/ ethylacetate = 3:1, colorless sticky liquid, 61.3 mg, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.80 (d, *J* = 8.2 Hz, 2H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.49–7.42 (m, 2H), 7.26–7.24 (m, 2H), 3.92 (t, *J* = 7.2 Hz, 2H), 3.37 (t, *J* = 8.0 Hz, 2H), 2.39 (s, 3H), 2.26–2.18 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 142.5, 139.8, 139.1, 131.0 (q, *J* = 32 Hz), 129.3, 129.2, 127.65 (q, *J* = 271 Hz), 126.2, 125.4, 122.5 (q, *J* = 4 Hz), 119.7 (q, *J* = 4 Hz), 51.5, 32.0, 21.4, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₁₇F₃N₂O₂S+H⁺: 383.1036, Found: 383.1044; IR (neat, cm-1): υ 2922, 2851, 1558, 1327, 1146, 691.

(*E*)-4-methyl-*N*-(1-(2-nitrophenyl)pyrrolidin-2-ylidene)benzenesulfonamide (6m). Petroleum ether/ ethylacetate = 1:1, yellow solid, 69.9 mg, 98% yield, mp: 187.5–189.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.96–7.94 (m, 1H), 7.66–7.64 (m, 3H), 7.47–7.44 (m, 1H), 7.34–7.32 (m, 1H), 7.24–7.22 (m, 2H), 3.89 (t, *J* = 7.1 Hz, 2H), 3.18 (t, *J* = 7.9 Hz, 2H), 2.39 (s, 3H), 2.32–2.24 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 145.4, 142.4, 139.2, 134.3, 131.8, 129.0, 128.5, 126.4, 125.6, 125.4, 52.8, 30.9, 21.4, 20.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₁₇N₃O₄S+H⁺: 360.1013, Found: 360.1001; IR (neat, cm-1): v 2922, 2852, 1698, 1527, 1144, 666.

(E) - N - (1 - (2 - methoxy phenyl) pyrrolidin - 2 - ylidene) - 4 - methyl benzenesulfonamide

(**6n**). Petroleum ether/ ethylacetate = 2:1, white solid, 55.3 mg, 81% yield, mp: 150.0–151.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72–7.70 (m, 2H), 7.30–7.25 (m, 1H), 7.20–7.15 (m, 3H), 6.96–6.91 (m, 2H), 3.76–3.72 (m, 5H), 3.20 (t, *J* = 8.0 Hz, 2H), 2.36 (s, 3H), 2.22–2.15 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 154.1, 141.7, 140.5, 129.4, 128.9, 128.2, 126.6, 126.2, 120.6, 112.0, 55.4, 52.0, 30.9, 21.3, 20.0. HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₂₀N₂O₃S+H⁺: 345.1267, Found: 345.1264; IR (neat, cm-1): v 2918, 2848, 1749, 1557, 1145, 751, 668.

(*E*)-4-methyl-*N*-(1-(o-tolyl)pyrrolidin-2-ylidene)benzenesulfonamide (60). Petroleum ether/ ethylacetate = 2:1, white solid, 49.7 mg, 76% yield, mp: 125.1–126.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69–7.67 (m, 2H), 7.22–7.17 (m, 5H), 7.07–7.05 (m, 1H), 3.71 (t, *J* = 7.2 Hz, 2H), 3.25 (t, *J* = 8.0 Hz, 2H), 2.35 (s, 3H), 2.26–2.19 (m, 2H), 2.11 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 141.9, 140.3, 137.0, 134.9, 131.1, 129.0, 128.4, 126.8, 126.3, 126.2, 52.9, 30.9, 21.3, 20.2, 17.7. HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₂₀N₂O₂S+H⁺: 329.1318, Found: 329.1307; IR (neat, cm-1): v 2920, 2850, 1751, 1283, 1149, 668.

(*E*)-*N*-(1-(2,3-dihydrobenzo[*b*][1,4]dioxin-6-yl)pyrrolidin-2-ylidene)-4-methylben zenesulfonamide (6p). Petroleum ether/ ethylacetate = 2:1, white solid, 73.5 mg, 99% yield, mp: 153.2–155.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.78 (m, 2H), 7.25–7.22 (m, 2H), 6.99– 6.97 (m, 1H), 6.94–6.91 (m, 1H), 6.82–6.79 (m, 1H), 4.22 (s, 4H), 3.81 (t, *J* = 7.2 Hz, 2H), 3.25 (t, *J* = 8.0 Hz, 2H), 2.38 (s, 3H), 2.18–2.10 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 143.2, 142.0, 142.0, 140.2, 131.9, 129.1, 126.3, 117.0, 116.5, 112.6, 64.2, 52.4, 31.8, 21.3, 19.3. HRMS (ESI-TOF): Anal. Calcd. For C₁₉H₂₀N₂O₄S+H⁺: 373.1217, Found: 373.1214; IR (neat, cm-1): υ 2919, 2850, 1749, 1506, 1273, 1145, 662.

(*E*)-*N*-(1-(3,5-dimethylphenyl)pyrrolidin-2-ylidene)-4-methylbenzenesulfonamide (6q). Petroleum ether/ ethylacetate = 3:1, white solid, 67.6 mg, 99% yield, mp: 59.1–60.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.79 (m, 2H), 7.24–7.22 (m, 2H), 7.06 (s, 2H), 6.85 (s, 1H), 3.85 (t, *J* = 7.2 Hz, 2H), 3.28 (t, *J* = 8.0 Hz, 2H), 2.38 (s, 3H), 2.27 (s, 6H), 2.19–2.12 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 142.0, 140.4, 138.3, 138.3, 129.0, 128.1, 126.2, 120.9, 52.2, 31.9, 21.3, 21.2, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₉H₂₂N₂O₂S+H⁺: 343.1475, Found: 343.1473; IR (neat, cm-1): υ 2917, 2849, 1748, 1549, 1144, 668.

(*E*)-4-methyl-*N*-(1-(3,4,5-trimethoxyphenyl)pyrrolidin-2-ylidene)benzenesulfona mide (6r). Petroleum ether/ ethylacetate = 1:1, white solid, 67.2 mg, 84% yield, mp: 151.6–152.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.80 (m, 2H), 7.25–7.23 (m, 2H), 6.73 (s, 2H), 3.90 (t, *J* = 7.2 Hz, 2H), 3.81 (s, 3H), 3.70 (s, 6H), 3.35 (t, *J* = 8.0 Hz, 2H), 2.39 (s, 3H), 2.24–2.16 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 152.8, 142.2, 140.2, 136.1, 134.3, 129.0, 126.3, 100.7, 60.8, 55.9, 52.2, 32.1, 21.3, 19.3. HRMS (ESI-TOF): Anal. Calcd. For C₂₀H₂₄N₂O₅S+H⁺: 405.1479, Found: 405.1480; IR (neat, cm-1): υ 2919, 2848, 1558, 1120, 665.

(E)-4-methyl-N-(1-(naphthalen-2-yl)pyrrolidin-2-ylidene)benzenesulfonamide

(6s). Petroleum ether/ ethylacetate = 2:1, white solid, 72.0 mg, 99% yield, mp: 116.5–117.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82–8.77 (m, 5H), 7.75–7.72 (m, 1H), 7.69–7.66 (m, 1H), 7.48–7.42 (m, 2H), 7.22–7.20 (m, 2H), 3.94 (t, *J* = 7.2 Hz, 2H), 3.34 (t, *J* = 8.0 Hz, 2H), 2.35 (s, 3H), 2.21–2.14 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 142.1, 140.1, 136.1, 133.0, 131.4, 129.1, 128. 4, 127.7, 127.5, 126.5, 126.3, 126.1, 121.7, 120.8, 52.2, 32.0, 21.3, 19.5. HRMS (ESI-TOF): Anal. Calcd. For C₂₁H₂₀N₂O₂S+H⁺: 365.1318, Found: 365.1314; IR (neat, cm-1): v 2919, 2849, 1714, 1549, 1146, 706.

(*E*)-4-methyl-*N*-(1-(thiophen-3-yl)pyrrolidin-2-ylidene)benzenesulfonamide (6t). Petroleum ether/ ethylacetate = 3:1, white solid, 61.9 mg, 97% yield, mp: 136.2–137.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85–7.83 (m, 2H), 7.53–7.52 (m, 1H), 7.38–7.36 (m, 1H), 7.28–7.23 (m, 3H), 3.91 (t, *J* = 7.3 Hz, 2H), 3.29 (t, *J* = 8.0 Hz, 2H), 2.40 (s, 3H), 2.22–2.14 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 142.3, 140.0, 136.8, 129.2, 126.4, 124.6, 121.3, 113.2, 51.6, 31.7, 21.4, 19.2. HRMS (ESI-TOF): Anal. Calcd. For C₁₅H₁₆N₂O₂S₂+H⁺: 321.0726, Found: 321.0736; IR (neat, cm-1): v 2919, 2850, 1736, 1521, 1279, 666.

(*E*)-4-methyl-*N*-(1-(thiophen-2-yl)pyrrolidin-2-ylidene)benzenesulfonamide (6u). Petroleum ether/ ethylacetate = 3:1, white solid, 57.3 mg, 90% yield, mp: 136.3–137.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85–7.83 (m, 2H), 7.53–7.52 (m, 1H), 7.38–7.36 (m, 1H), 7.28–7.23 (m, 3H), 3.91 (t, *J* = 7.4 Hz, 2H), 3.29 (t, *J* = 8.0 Hz, 2H), 2.40 (s, 3H), 2.22–2.14 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 142.3, 140.0, 136.8, 129.2, 126.4, 124.6, 121.3, 113.2, 51.6, 31.7, 21.4, 19.1. HRMS (ESI-TOF): Anal. Calcd. For C₁₅H₁₆N₂O₂S₂+H⁺: 321.0726, Found: 321.0727; IR (neat, cm-1): v 2921, 2852, 1736, 1520, 1279, 666.

Ethyl (*R*,*E*)-1-phenyl-5-(tosylimino)pyrrolidine-2-carboxylate (7a). Petroleum ether/ ethylacetate = 3:1, white solid, 74.7 mg, 97% yield, mp: 120.6–121.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76–7.74 (m, 2H), 7.34–7.33 (m, 4H), 7.23–7.21 (m, 3H), 4.74–4.70 (m, 1H), 4.17–4.05 (m, 2H), 3.47–3.39 (m, 1H), 3.31–3.22 (m, 1H), 2.59–2.49 (m, 1H), 2.37 (s, 3H), 2.27–2.19 (m, 1H), 1.13 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 169.7, 142.2, 139.8, 137.3, 129.1, 128.8, 127.2, 126.2, 124.7, 64.5, 61.8, 30.3, 24.9, 21.3, 13.8. HRMS (ESI-TOF): Anal. Calcd. For C₂₀H₂₂N₂O₄S+Na⁺: 409.1192, Found: 409.1196; IR (neat, cm-1): v 2965, 2922, 2852, 1728, 1560, 1082, 699.

(E)-4-methyl-N-(2-phenyl-2-azaspiro[4.5]decan-3-ylidene)benzenesulfonamide

(**7b**). Petroleum ether/ ethylacetate = 5:1, white solid, 58.6 mg, 77% yield, mp: 148.3–149.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.78 (m, 2H), 7.48–7.47 (m, 2H), 7.36–7.32 (m, 2H), 7.24–7.17 (m, 3H), 3.65 (s, 2H), 3.16 (s, 2H), 2.38 (s, 3H), 1.55–1.45 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 142.1, 140.2, 138.8, 129.1, 128.7, 126.3, 126.2, 122.8, 62.6, 44.2, 38.0, 36.0, 25.4, 22.8, 21.4. HRMS (ESI-TOF): Anal. Calcd. For C₂₂H₂₆N₂O₂S+H⁺: 383.1788, Found: 383.1772; IR (neat, cm-1): ν 2919, 2850, 1747, 1558, 1150, 681.

(*E*)-4-methyl-*N*-(1-phenylazetidin-2-ylidene)benzenesulfonamide (7c). Petroleum ether/ ethylacetate = 3:1, light yellow solid, 35.5 mg, 60% yield, mp: 105.9–107.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86–7.84 (m, 2H), 7.44–7.42 (m, 2H), 7.35–7.31 (m, 2H), 7.29–7.27 (m, 2H), 7.15–7.11 (m, 1H), 3.98 (t, *J* = 4.1 Hz, 2H), 3.50 (t, *J* = 4.1 Hz, 2H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 142.8, 139.5, 137.8, 129.3, 129.1, 126.6, 125.1, 117.3, 45.0, 32.3, 21.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₁₆N₂O₂S+Na⁺: 323.0825, Found: 323.0830; IR (neat, cm-1): ν 2923, 2853, 1734, 1610, 1147, 895, 681.

(*E*)-*N*-(1-phenylazetidin-2-ylidene)thiophene-2-sulfonamide (7d). Petroleum ether/ ethylacetate = 1:3, white solid, 50.2 mg, 86% yield, mp: 128.8–129.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68–7.67 (m, 1H), 7.55–7.53 (m, 1H), 7.48–7.45 (m, 2H), 7.38–7.34 (m, 2H), 7.18–7.15 (m, 1H), 7.07–7.05 (m, 1H), 4.02 (t, *J* = 4.1 Hz, 2H), 3.53 (t, *J* = 4.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 143.7, 137.7, 131.1, 131.0, 129.2, 127.0, 125.4, 117.5, 45.2, 32.2. HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₂N₂O₂S₂+H⁺: 293.0413, Found: 293.0417; IR (neat, cm-1): υ 2920. 1735, 1307, 1138, 1015, 891, 681.

(*E*)-3-nitro-*N*-(1-phenylazetidin-2-ylidene)benzenesulfonamide (7e). Petroleum ether/ ethylacetate = 1:3, white solid, 43.8 mg, 66% yield, mp: 160.6–161.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.805–8.796 (m, 1H), 8.40–8.38 (m, 1H), 8.32–8.30 (m, 1H), 7.74–7.70 (m, 1H), 7.44– 7.42 (m, 2H), 7.38–7.34 (m, 2H), 7.19–7.16 (m, 1H), 4.08 (t, *J* = 4.1 Hz, 2H), 3.58 (t, *J* = 4.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 148.1, 144.4, 137.5, 132.3, 130.2, 129.2, 126.6, 125.7, 121.9, 117.5, 45.3, 32.6. HRMS (ESI-TOF): Anal. Calcd. For C₁₅H₁₃N₃O₄S+H⁺: 332.0700, Found: 332.0697; IR (neat, cm-1): v 2919, 1576, 1347, 1013, 895, 762, 677.

(*E*)-4-methyl-*N*-(1-methylpyrrolidin-2-ylidene)benzenesulfonamide (7f). Petroleum ether/ ethylacetate = 1:1, white solid, 46.8 mg, 93% yield, mp: 157.8–159.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.80 (m, 2H), 7.26–7.24 (m, 2H), 3.45 (t, *J* = 7.3 Hz, 2H), 3.03 (t, *J* = 8.0 Hz, 2H), 2.96 (s, 3H), 2.39 (s, 3H), 2.08–2.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 141.9, 140.5, 129.1, 126.4, 51.6, 31.9, 30.6, 21.4, 18.9. HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₆N₂O₂S+Na⁺: 275.0825, Found: 375.0834; IR (neat, cm-1): v 2922, 2852, 1733, 1596, 1278, 668.

(*E*)-*N*-(1-ethylpyrrolidin-2-ylidene)-4-methylbenzenesulfonamide (7g). Petroleum ether/ ethylacetate = 1:1, white solid, 38.5 mg, 73% yield, mp: 106.0–107.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.80 (m, 2H), 7.26–7.24 (m, 2H), 3.49–3.43 (m, 4H), 3.03 (t, *J* = 8.0 Hz, 2H), 2.40 (s, 3H), 2.07–2.00 (m, 2H), 1.13 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 141.9, 140.6, 129.1, 126.4, 48.8, 39.6, 31.0, 21.4, 19.0, 11.7. HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₈N₂O₂S+Na⁺: 289.0981, Found: 289.0989; IR (neat, cm-1): v 2922, 2852, 1729, 1579, 1280, 1142, 666.

(*E*)-4-methyl-*N*-(1-octylpyrrolidin-2-ylidene)benzenesulfonamide (7h). Petroleum ether/ ethylacetate = 3:1, white solid, 53.0 mg, 76% yield, mp: 81.2-82.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.79 (m, 2H), 7.25–7.23 (m, 2H), 3.45–3.38 (m, 4H), 3.04 (t, *J* = 8.0 Hz, 2H), 2.39 (s, 3H), 2.07–1.99 (m, 2H), 1.56–1.50 (m, 2H), 1.34–1.22 (m, 10H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 141.8, 140.7, 129.0, 126.3, 49.4, 44.8, 31.7, 31.0, 29.1, 29.0, 26.6, 26.5, 22.5, 21.4, 19.1, 14.0. HRMS (ESI-TOF): Anal. Calcd. For C₁₉H₃₀N₂O₂S+Na⁺: 373.1920, Found: 373.1921; IR (neat, cm-1): v 2925, 2852, 1732, 1580, 1303, 1143, 672.

(*E*)-*N*-(1-cyclohexylpyrrolidin-2-ylidene)-4-methylbenzenesulfonamide (7i). Petroleum ether/ ethylacetate = 4:1, white solid, 37.4 mg, 59% yield, mp: 188.6–190.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.79 (m, 2H), 7.26–7.24 (m, 2H), 4.20–4.13 (m, 1H), 3.40 (t, *J* = 7.3 Hz, 2H), 3.01 (t, *J* = 8.0 Hz, 2H), 2.40 (s, 3H), 2.02–1.95 (m, 2H), 1.80–1.66 (m, 5H), 1.43–1.30 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 141.8, 140.8, 129.1, 126.4, 52.8, 45.0, 31.3, 29.6, 25.3, 25.1,
21.4, 19.1. HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₂₄N₂O₂S+Na⁺: 343.1451, Found: 343.1461; IR (neat, cm-1): v 2921, 2849, 1733, 1556, 1137, 666.

(*E*)-*N*-(1-benzylpyrrolidin-2-ylidene)-4-methylbenzenesulfonamide (7j). Petroleum ether/ ethylacetate = 3:1, white solid, 56.4 mg, 86% yield, mp: 137.7–139.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.82 (m, 2H), 7.31–7.25 (m, 5H), 7.21–7.18 (m, 2H), 4.58 (s, 2H), 3.34 (t, *J* = 7.3 Hz, 2H), 3.10 (t, *J* = 8.0 Hz, 2H), 2.40 (s, 3H), 2.04–1.97 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 142.0, 140.4, 134.9, 129.1, 128.7, 128.3, 127.9, 126.4, 48.8, 48.6, 30.9, 21.4, 18.9. HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₂₀N₂O₂S+Na⁺: 351.1138, Found: 351.1147; IR (neat, cm-1): υ 2923, 2854, 1749, 1571, 1140, 667.

(*E*)-*N*-methyl-*N*-phenyl-*N'*-tosylacetimidamide (8a). Petroleum ether/ ethylacetate = 5:1, white solid, 59.2 mg, 98% yield, mp: 78.5–79.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.89 (m, 2H), 7.46–7.42 (m, 2H), 7.40–7.36 (m, 1H), 7.30–7.28 (m, 2H), 7.16–7.14 (m, 2H), 3.34 (s, 3H), 2.41 (s, 3H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 143.1, 142.0, 140.8, 130.0, 129.1, 128.5, 126.7, 126.3, 40.3, 21.4, 19.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₁₈N₂O₂S+H⁺: 303.1162, Found: 303.1170; IR (neat, cm-1): υ 2921, 2869, 1745, 1537, 1270, 1083, 770, 681.

(*E*)-*N*,*N*-diphenyl-*N'*-tosylacetimidamide (8b). Petroleum ether/ ethylacetate = 4:1, light yellow solid, 71.5 mg, 99% yield, mp: 147.9–148.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.60 (m, 2H), 7.35–7.21 (m, 10H), 7.15–7.13 (m, 2H), 2.53 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 141.8, 140.4, 129.6, 129.4, 128.8, 127.1, 126.3, 126.0, 21.3, 20.3. HRMS (ESI-TOF): Anal. Calcd. For C₂₁H₂₀N₂O₂S+H⁺: 365.1318, Found: 365.1315; IR (neat, cm-1): υ 2917, 2849, 1743, 1489, 1271, 1088, 684.

(*E*)-*N*-methyl-*N*-phenyl-*N'*-tosylbenzimidamide (8c). Petroleum ether/ ethylacetate = 4:1, white solid, 40.7 mg, 56% yield, mp: 104.7–106.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.60 (m, 2H), 7.19–7.05 (m, 10H), 6.95–6.93 (m, 2H), 3.52 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 143.3, 141.7, 140.7, 132.3, 129.4, 129.1, 128.8, 128.7, 127.4, 127.3, 127.3, 126.5, 40.8, 21.4. HRMS (ESI-TOF): Anal. Calcd. For C₂₁H₂₀N₂O₂S+Na⁺: 387.1138, Found: 387.1139; IR (neat, cm-1): ν 3355, 3260, 2921, 2851, 1741, 1522, 1147, 679.

(*E*)-*N*-(1-(indolin-1-yl)ethylidene)-4-methylbenzenesulfonamide (8d). Petroleum ether/ ethylacetate = 2:1, white solid, 58.1 mg, 93% yield, mp: 177.5–178.6 °C. ¹H NMR (400 MHz,

CDCl₃) δ 8.20–8.18 (m, 1H), 7.87–8.86 (m, 2H), 7.28–7.26 (m, 2H), 7.17–7.15 (m, 1H), 7.10–7.01 (m, 2H), 4.03 (t, *J* = 8.2 Hz, 2H), 3.15 (t, *J* = 8.1 Hz, 2H), 2.63 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.2, 142.1, 141.7, 140.6, 132.7, 129.2, 127.4, 126.3, 125.0, 124.6, 119.3, 49.7, 27.1, 21.4, 20.6. HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₁₈N₂O₂S+H⁺: 315.1162, Found: 315.1169; IR (neat, cm-1): v 2918, 2849, 1734, 1132, 754, 660.

(*E*)-*N*-(1-(3,4-dihydroquinolin-1(2*H*)-yl)ethylidene)-4-methylbenzenesulfonamide (8e). Petroleum ether/ ethylacetate = 5:1, white solid, 63.6 mg, 97% yield, mp: 104.5–107.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.88 (m, 2H), 7.29–7.27 (m, 2H), 7.22–7.18 (m, 3H), 7.03–7.02 (m, 1H), 3.87 (t, *J* = 6.9 Hz, 2H), 2.67 (t, *J* = 6.5 Hz, 2H), 2.63 (s, 3H), 2.41 (s, 3H), 1.97–1.90 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 142.0, 140.6, 137.5, 129.0, 128.3, 127.0, 126.4, 126.2, 126.1, 124.8, 45.8, 26.4, 23.7, 21.3, 20.1. HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₂₀N₂O₂S+H⁺: 329.1318, Found: 329.1326; IR (neat, cm-1): v 2922, 2851, 1749, 1492, 1082, 753.

(*E*)-*N*-(2-(4-chlorophenoxy)-1-(pyrrolidin-1-yl)ethylidene)-4-methylbenzenesulfo namide (8f). Petroleum ether/ ethylacetate = 3:1, white solid, 53.2 mg, 68% yield, mp: 118.8–120.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.80 (m, 2H), 7.23– 7.21 (m, 4H), 6.89–6.87 (m, 2H), 5.26 (s, 2H), 3.62 (t, *J* = 6.7 Hz, 2H), 3.53 (t, *J* = 7.0 Hz, 2H), 2.38 (s, 3H), 1.98–1.91 (m, 2H), 1.88–1.82 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 155.7, 142.0, 140.8, 129.4, 129.0, 126.8, 126.2, 115.8, 64.2, 49.4, 48.7, 26.0, 23.5, 21.3. HRMS (ESI-TOF): Anal. Calcd. For C₁₉H₂₁³⁵CIN₂O₃S+H⁺: 393.1034, C₁₉H₂₁³⁷CIN₂O₃S+H⁺: 395.1005, Found: 393.1024, 395.0978; IR (neat, cm-1): ν 2921, 2851, 1541, 1082, 837, 696.

(E)-4-methyl-N-(3-phenyl-1-(pyrrolidin-1-yl)propylidene)benzenesulfonamide

(**8g**). Petroleum ether/ ethylacetate = 4:1, white solid, 39.5 mg, 56% yield, mp: 126.6–128.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89–7.87 (m, 2H), 7.31–7.19 (m, 7H), 3.49 (t, J = 6.5 Hz, 2H), 3.30 (t, J = 6.2 Hz, 2H), 3.15–3.11 (m, 2H), 3.08–3.04 (m, 2H), 2.39 (s, 3H), 1.86–1.80 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 141.7, 141.6, 140.1, 129.0, 128.5, 128.5, 126.5, 126.1, 48.6, 47.5, 34.8, 32.8, 25.7, 24.1, 21.4. HRMS (ESI-TOF): Anal. Calcd. For C₂₀H₂₄N₂O₂S+H⁺: 357.1631, Found: 357.1624; IR (neat, cm-1): ν 2919, 2850, 1747, 1541, 1252, 697.

(*E*)-*N*-(cyclohexyl(morpholino)methylene)-4-methylbenzenesulfonamide (8h). Petroleum ether/ ethylacetate = 2:1, white solid, 31.5 mg, 45% yield, mp: 133.9–135.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.79 (m, 2H), 7.26–7.24 (m, 2H), 3.72–3.62 (m, 9H), 2.40 (s, 3H), 1.87– 1.70 (m, 6H), 1.61–1.52 (m, 2H), 1.19–1.13 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 141.7, 141.6, 129.0, 126.1, 66.6, 47.6, 43.4, 40.2, 29.6, 29.2, 28.3, 26.0, 25.7, 25.4, 21.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₂₆N₂O₃S+H⁺: 351.1737, Found: 351.1725; IR (neat, cm-1): υ 2922, 2850, 1740, 1534, 1138, 870, 667.

(*E*)-4-methyl-*N*-(1-morpholinoethylidene)benzenesulfonamide (8i). Petroleum ether/ ethylacetate = 1:1, white solid, 49.2 mg, 88% yield, mp: 116.7–117.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.79 (m, 2H), 7.27–7.25 (m, 2H), 3.75–3.73 (m, 2H), 3.72–3.69 (m, 2H), 3.67–3.65 (m, 2H), 3.53–3.50 (m, 2H), 2.52 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 142.0, 140.7, 129.1, 126.2, 66.2, 66.2, 46.5, 44.5, 21.4, 17.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₈N₂O₃S+Na⁺: 305.0930, Found: 309.0940; IR (neat, cm-1): v 2921, 2856, 1730, 1535, 1260, 675.

Methyl (*E*)-(1-(tosylimino)ethyl)-*L*-prolinate (8j). Petroleum ether/ ethylacetate = 1:1, colorless sticky liquid, 42.0 mg, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.75–7.73 (m, 2H), 7.24–7.22 (m, 2H), 4.53–4.50 (m, 1H), 3.71–3.66 (m, 1H), 3.59–3.55 (m, 1H), 3.53 (s, 3H), 2.51 (s, 3H), 2.39 (s, 3H), 2.25–2.10 (m, 2H), 2.04–2.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 164.0, 141.8, 140.7, 128.9, 126.1, 60.7, 52.0, 48.4, 29.2, 24.3, 21.4, 18.8. HRMS (ESI-TOF): Anal. Calcd. For C₁₅H₂₀N₂O₄S+H⁺: 325.1217, Found: 325.1203; IR (neat, cm-1): v 2923, 2852, 1741, 1538, 114, 704.

(*E*)-*N*,*N*-dimethyl-*N'*-tosylacetimidamide (8k). Petroleum ether/ ethylacetate = 1:1, white solid, 32.2 mg, 68% yield, mp: 105.6–107.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83–7.81 (m, 2H), 7.26–7.24 (m, 2H), 3.09 (s, 3H), 3.07 (s, 3H), 2.49 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 141.8, 141.1, 129.1, 126.2, 38.8, 38.8, 21.4, 18.0. HRMS (ESI-TOF): Anal. Calcd. For

C₁₁H₁₆N₂O₂S+Na⁺: 263.0825, Found: 263.0831; IR (neat, cm-1): v 2921, 2851, 1729, 1572, 1251, 683.

(*E*)-2-chloro-*N*,*N*-diethyl-*N'*-tosylacetimidamide (81). Petroleum ether/ ethylacetate = 3:1, yellow solid, 24.7 mg, 40% yield, mp: $68.5-69.5 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.82 (m, 2H), 7.27–7.24 (m, 2H), 4.71 (s, 2H), 3.51–3.44 (m, 4H), 2.40 (s, 3H), 1.28 (t, *J* = 8.0 Hz, 3H), 1.09 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 142.1, 140.5, 129.0, 126.2, 43.6, 43.5, 34.4, 21.4, 14.1, 11.6. HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₉³⁵ClN₂O₂S+H⁺: 325.0748, C₁₃H₁₉³⁷ClN₂O₂S+H⁺: 327.0718, Found: 325.0758, 327.0714; IR (neat, cm-1): v 2978, 2874, 1733, 1556, 1143, 669.

(*E*)-*N*,*N*-dimethyl-*N'*-tosylformimidamide (9a). Petroleum ether/ ethylacetate = 1:1, white solid, 44.4 mg, 98% yield, mp: 124.3–125.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.78–7.76 (m, 2H), 7.26–7.24 (m, 2H), 3.12 (s, 3H), 3.00 (s, 3H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 142.3, 139.5, 129.2, 126.4, 41.4, 35.4, 21.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₀H₁₄N₂O₂S+Na⁺: 249.0668, Found: 249.0676; IR (neat, cm-1): v 2922, 2852, 1619, 1278, 1143, 910, 667.

(E)-N-methyl-N-phenyl-N'-tosylformimidamide (9b). Petroleum ether/ ethylacetate =
5:1, white solid, 56.9 mg, 99% yield, mp: 94.7–96.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H),
7.84–7.82 (m, 2H), 7.45–7.41 (m, 2H), 7.34–7.28 (m, 3H), 7.20–7.19 (m, 2H), 3.44 (s, 3H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 143.1, 142.8, 138.8, 129.8, 129.3, 127.2, 126.6, 122.0,

35.9, 21.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₅H₁₆N₂O₂S+H⁺: 289.1005, Found: 289.1016; IR (neat, cm-1): υ 2921, 2851, 1743, 1566, 1143, 763, 672.

(*E*)-*N*,*N*-diethyl-*N'*-tosylformimidamide (9c). Petroleum ether/ ethylacetate = 2:1, white solid, 50.2 mg, 99% yield, mp: 54.5–55.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.77–7.75 (m, 2H), 7.26–7.24 (m, 2H), 3.47 (q, *J* = 7.2 Hz, 2H), 3.38 (q, *J* = 7.2 Hz, 2H), 2.39 (s, 3H), 1.25 (t, *J* = 7.2 Hz, 3H), 1.13 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 142.1, 139.7, 129.2, 126.2, 46.9, 40.8, 21.3, 14.4, 12.0. HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₈N₂O₂S+Na⁺: 277.0981, Found: 277.0976; IR (neat, cm-1): v 2984, 2875, 1748, 1607, 1280, 1142, 670.

(*E*)-*N*,*N*-diisopropyl-*N'*-tosylformimidamide (9d). Petroleum ether/ ethylacetate = 5:1, white solid, 55.0 mg, 98% yield, mp: 103.6–104.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.76–7.74 (m, 2H), 7.26–7.24 (m, 2H), 4.52 (dt, *J* =13.6, 6.8 Hz, 1H), 3.69 (dt, *J* = 13.6, 6.8 Hz, 1H), 2.39 (s, 3H), 1.31 (d, *J* = 6.8 Hz, 6H), 1.21 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 142.0, 139.8, 129.1, 126.1, 48.4, 47.8, 23.5, 21.3, 19.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₂₂N₂O₂S+H⁺: 283.1475, Found: 283.1478; IR (neat, cm-1): υ 2925, 2854, 1747, 1595, 1146, 669.

(*E*)-4-methyl-*N*-(piperidin-1-ylmethylene)benzenesulfonamide (9e). Petroleum ether/ ethylacetate = 3:1, white solid, 52.7 mg, 99% yield, mp: 150.3–151.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.77–7.75 (m, 2H), 7.26–7.24 (m, 2H), 3.58 (t, *J* = 5.0 Hz, 2H), 3.41 (t, *J* = 5.0 Hz, 2H), 2.39 (s, 3H), 1.70–1.66 (m, 4H), 1.59–1.55 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 142.2, 139.6, 129.2, 126.3, 51.8, 44.5, 26.3, 24.7, 23.8, 21.3. HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₈N₂O₂S+H⁺: 267.1162, Found: 267.1170; IR (neat, cm-1): υ 2924, 2856, 1732, 1603, 1145, 670.

(*E*)-4-methyl-*N*-(morpholinomethylene)benzenesulfonamide (9f). Petroleum ether/ ethylacetate = 1:1, white solid, 52.9 mg, 99% yield, mp: 164.1–165.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.77–7.75 (m, 2H), 7.28–7.26 (m, 2H), 3.75–3.72 (m, 2H), 3.66 (s, 4H), 3.51–3.49 (m, 2H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 142.5, 139.1, 129.3, 126.4, 66.7, 65.8, 50.2, 44.1, 21.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₆N₂O₃S+H⁺: 269.0954, Found: 269.0961; IR (neat, cm-1): v 2922, 2851, 1735, 1605, 853, 668.

References

- 1. J. Yin and S. L. Buchwald, Org. Lett., 2000, 2, 1101.
- 2. G. Barbe and A. B. Charette, J. Am. Chem. Soc., 2008, 130, 18.
- 3. B. Peng, D. Geerdink, C. Far ès and N. Maulide, Angew. Chem. Int. Ed., 2014, 53, 5462.

Spectroscopic data for products

S51

- 10 - 0 - -10 - -20

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl(ppm)

S79

S91

S93

S113

XRD data of the compound 4a

Figure S2. ORTEP structural drawing of 4a. (CCDC: 1565960)

complex	4a
Empirical formula	$C_{17}H_{18}N_2O_2S$
Formula weight(g mol ⁻¹)	314.39
Temperature	120 (2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
space group	P2 (1) /n
	a = 12.3640 (7) Å
	b = 7.4331 (4) Å
Unit call dimensions	c = 16.5987 (9) Å
Unit cell dimensions	$\alpha = 90$ °
	$\beta = 105.575$ (2) °
	$\gamma = 90$ °
Volume (Å ³)	1469.45 (14)
Z	4
ρ(g cm ⁻³)	1.421

 $Table \ S3. \ Crystallography \ data \ for \ 4a.$

F(000)	664
Crystal size(mm ³)	0.20 x 0.15 x 0.10
Theta range for data collection	1.84 °to 25.50 °
	-14<=h<=14
Limiting indices	-9<=k<=9
	-20<=l<=20
Reflections collected / unique	19816 / 2716
Data / restraints / parameters	2716 / 0 / 200
GOF	1.188
$R1, wR2[I > 2\sigma(I)]$	R1 = 0.0328
	wR2 = 0.0940
<i>R1,wR2</i> (all data)	R1 = 0.0395
	wR2 = 0.1085
Largest diff. peak and hole(e $Å^3$)	0.368 and -0.516

Table S4. Bond lengths [Å] and angles [] for 4a.

S(1)-O(2) 1.4397(13)	S(1)-O(1) 1.4400(13)	S(1)-N(1) 1.6226(15)	S(1)-C(15) 1.7707(18)
N(1)-C(1) 1.308(2)	N(2)-C(1) 1.353(2)	N(2)-C(5) 1.424(2)	N(2)-C(4) 1.481(2)
C(1)-C(2) 1.503(2)	C(2)-C(3) 1.526(2)	C(3)-C(4) 1.522(3)	C(5)-C(6) 1.395(2)
C(5)-C(10) 1.400(2)	C(6)-C(7) 1.386(3)	C(7)-C(8) 1.387(3)	C(8)-C(9) 1.389(3)
C(9)-C(10) 1.385(3)	C(11)-C(12) 1.507(3)	C(12)-C(17) 1.390(3)	C(12)-C(13) 1.400(3)
C(13)-C(14) 1.380(3)	C(14)-C(15) 1.391(2)	C(15)-C(16) 1.389(2)	C(16)-C(17) 1.392(3)
O(2)-S(1)-O(1) 117.05(8)	O(2)-S(1)-N(1) 113.00(8)	O(1)-S(1)-N(1) 105.37(7)	O(2)-S(1)-C(15) 107.35(8)
O(1)-S(1)-C(15) 107.00(8)	N(1)-S(1)-C(15) 106.47(8)	C(1)-N(1)-S(1) 120.16(12)	C(1)-N(2)-C(5) 127.01(14)
C(1)-N(2)-C(4) 112.40(14)	C(5)-N(2)-C(4) 119.87(14)	N(1)-C(1)-N(2) 121.58(16)	N(1)-C(1)-C(2) 129.36(16)
N(2)-C(1)-C(2) 109.03(15)	C(1)-C(2)-C(3) 104.94(15)	C(4)-C(3)-C(2) 104.48(14)	N(2)-C(4)-C(3) 103.79(14)
C(6)-C(5)-C(10) 119.17(16)	C(6)-C(5)-N(2) 118.42(16)	C(10)-C(5)-N(2) 122.40(15)	C(7)-C(6)-C(5) 120.71(17)
C(6)-C(7)-C(8) 120.02(17)	C(7)-C(8)-C(9) 119.48(17)	C(10)-C(9)-C(8) 120.98(17)	C(9)-C(10)-C(5) 119.61(16)
C(17)-C(12)-C(13) 118.49(17)	C(17)-C(12)-C(11) 120.50(16)	C(13)-C(12)-C(11) 121.01(17)	C(14)-C(13)-C(12) 121.19(17)
C(13)-C(14)-C(15) 119.33(16)	C(16)-C(15)-C(14) 120.72(17)	C(16)-C(15)-S(1) 119.06(14)	C(14)-C(15)-S(1) 120.07(13)
C(15)-C(16)-C(17) 119.16(17)	C(12)-C(17)-C(16) 121.07(16)		

XRD data of the compound 8d

Figure S3. ORTEP structural drawing of 8d. (CCDC: 1565961)

complex	8d
Empirical formula	$C_{17}H_{18}N_2O_2S$
Formula weight(g mol ⁻¹)	314.39
Temperature	120 (2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
space group	P-1
	a = 7.4252 (7) Å
	b = 9.8673 (10) Å
	c = 11.2350 (11) Å
Unit cell dimensions	$\alpha = 77.187(3)^{\circ}$
	$\beta = 79.103(3)^{\circ}$
	$\gamma = 69.194(3)^{\circ}$
Volume (Å ³)	744.80 (13)
Z	2
ρ(g cm ⁻³)	1.402
F(000)	332
Crystal size(mm ³)	0.22 x 0.20 x 0.18

Table S5. Crystallography data for 8d.

Theta range for data collection	1.87 °to 27.55 °
	-9<=h<=9
Limiting indices	-12<=k<=12
	-14<=l<=14
Reflections collected / unique	15180 / 3404
Data / restraints / parameters	3404 / 0 /201
GOF	1.096
$R1, wR2[I > 2\sigma(I)]$	R1 = 0.0418
	wR2 = 0.1133
<i>R1,wR2</i> (all data)	R1 = 0.0558
	wR2 = 0.1321
Largest diff. peak and hole(e Å ³)	0.428 and -0.489

 Table S6. Bond lengths [Å] and angles [] for 8d.

S(1)-O(2) 1.4378(14)	S(1)-O(1) 1.4426(14)	S(1)-N(2) 1.6123(16)	S(1)-C(5) 1.7663(19)
N(1)-C(8) 1.346(2)	N(1)-C(17) 1.422(2)	N(1)-C(10) 1.487(2)	N(2)-C(8) 1.316(2)
C(1)-C(2) 1.508(3)	C(2)-C(7) 1.388(3)	C(2)-C(3) 1.398(3)	C(3)-C(4) 1.386(3)
C(4)-C(5) 1.393(2)	C(5)-C(6) 1.387(2)	C(6)-C(7) 1.387(3)	C(8)-C(9) 1.500(3)
C(10)-C(11) 1.526(3)	C(11)-C(12) 1.500(3)	C(12)-C(13) 1.377(3)	C(12)-C(17) 1.398(3)
C(13)-C(14) 1.392(3)	C(14)-C(15) 1.386(3)	C(15)-C(16) 1.396(3)	C(16)-C(17) 1.392(3)
O(2)-S(1)-O(1) 116.39(8)	O(2)-S(1)-N(2) 105.08(8)	O(1)-S(1)-N(2) 114.52(8)	O(2)-S(1)-C(5) 107.37(8)
O(1)-S(1)-C(5) 107.82(8)	N(2)-S(1)-C(5) 104.89(9)	C(8)-N(1)-C(17) 128.34(15)	C(8)-N(1)-C(10) 122.03(15)
C(17)-N(1)-C(10) 109.63(14)	C(8)-N(2)-S(1) 124.18(14)	C(7)-C(2)-C(3) 118.37(17)	C(7)-C(2)-C(1) 121.05(17)
C(3)-C(2)-C(1) 120.57(18)	C(4)-C(3)-C(2) 121.43(17)	C(3)-C(4)-C(5) 118.95(17)	C(6)-C(5)-C(4) 120.51(17)
C(6)-C(5)-S(1) 120.12(14)	C(4)-C(5)-S(1) 119.31(13)	C(7)-C(6)-C(5) 119.65(18)	C(6)-C(7)-C(2) 121.05(17)
N(2)-C(8)-N(1) 117.25(16)	N(2)-C(8)-C(9) 126.62(17)	N(1)-C(8)-C(9) 116.14(17)	N(1)-C(10)-C(11) 105.90(15)
C(12)-C(11)-C(10) 104.22(15)	C(13)-C(12)-C(17) 120.31(17)	C(13)-C(12)-C(11) 128.89(17)	C(17)-C(12)-C(11) 110.80(16)
C(12)-C(13)-C(14) 119.42(18)	C(15)-C(14)-C(13) 119.99(18)	C(14)-C(15)-C(16) 121.54(18)	C(17)-C(16)-C(15) 117.60(17)
C(16)-C(17)-C(12) 121.13(17)	C(16)-C(17)-N(1) 129.42(16)	C(12)-C(17)-N(1) 109.44(16)	