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Nanostructured silicon ferromagnet collected by a permanent neodymium
magnet

Nanostructured Si (N-Si) was prepared by anodic electroetching of a p-type silicon wafer, which
was sliced along the (100) plane, in 24% HF-ethanol solution.” The electroetching was carried out
under a current density of 100 mA ¢cm™2 for 2, 10, 20, or 30 min. The powdered Si was scratched from
the wafer with a spatula after the electroetching process, then subsequently rinsed with distilled water
and dried in a vacuum oven. The Si wafer, crystalline powder from the Si wafer (C-Si), and the
obtained samples, which were labelled as P-Si x (x = 2, 10, 20, and 30), were used for characterisation
by X-ray diffraction (XRD) (UltimalV, Rigaku), field emission scanning electron microscopy (FE-
SEM) (JSM-6330F, JEOL), transmission electron microscopy (TEM) (H-7650, Hitachi), electron spin
resonance (ESR) spectroscopy (JES-TE200, JEOL), X-ray photoelectron spectroscopy (XPS) (JPS-
9010MX, JEOL), Raman spectroscopy (NRS-3100, JASCO), and SQUID magnetometry (MPMSR2,
Quantum Design). XPS spectra were deconvoluted into seven peaks: Si (0), standard; Si (1+) Si,0,
—0.95 eV; Si (2+) SiO, —1.75 eV; Si (3+) Si203, —2.48 eV; Si (4+) SiO», —3.90 eV; Si (4+) thick SiO»;
Si (remaining atom).> %

The magnetisation of P-Si x depended on the electroetching time (Fig. S1). The Si wafer exhibited
a diamagnetic behaviour. Crystalline Si powder obtained from the Si wafer exhibited paramagnetism

because of a small and positive magnetisation, which increases linearly with increasing magnetic field.
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Fig. S1 Magnetisation curves of nanostructured silicon (P-Si x) obtained by the electroetching
for various times (x min), O: Si wafer; @: C-Si (crystalline Si powder from Si wafer) at 2 K.



In P-Si x samples, a greater saturation magnetisation and coercivity were obtained at shorter

electroetching times. The magnet was found to be ferromagnetic because the magnetic hysteresis was

observed for all P-Si x samples, although the
hysteresis loops were very small.

The temperature-dependence curves of a
magnetic susceptibility (y) of the Si wafer, C-Si and
P-Si x are shown in Fig S2. The Si wafer is
diamagnetic, with a negative, small, and constant y.
C-Si is also understood to be paramagnetic because
of a positive and higher y at low temperatures. As
shown in Fig. S1, P-Si 2 exhibits the highest y and
is almost insensitive to temperature because it is
ferromagnetic and its Curie temperature is greater
than 150 K.

Fig. S3 shows the XRD patterns of the C-Si and
P-Si x samples. The pattern of C-Si is a typical
pattern of powdered Si. The patterns of P-Si 20 and
30 are similar to that of C-Si, although the peaks are
broad because of the low crystallinity of the P-Si x
samples. By contrast, the patterns of P-Si 2 and 10
differ slightly, showing a relatively strong peak
assigned to the (400) plane. The intensity of this
peak is attributed to the Si wafer being sliced along
the (100) plane. The P-Si 2 and 10 samples had a
residual structure oriented to the plane of the Si
wafer because of the short electroetching time. The
primary particle size was calculated from the
patterns using the Scherrer equation: > 100 nm, 43
nm, 34 nm, 29 nm and 17 nm for C-Si, P-Si 2, P-Si
10, P-Si 20 and P-Si 30, respectively. Thus, the P-Si
x samples are nanostructured solids.

The porosity of P-Six samples was examined via

N> gas adsorption measurements at 77 K; the results

are shown in Fig. S4. The C-Si is found to be
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Fig. S2 Temperature dependence of

magnetic

susceptibility (v of

nanostructured silicon (P-Si x) obtained
by the electroetching for various times (x
min). Magnetic field: 1 T.
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nonporous, whereas P-Si x samples are
mesoporous. The pore size distribution was
obtained via Barrett—Joyner—Halenda (BJH)
analysis of the isotherms (Fig. S5). All of the P-
Si x samples have mesopores with pore
diameters 10 nm or larger. The longer etching
times caused a broad pore size distribution for
pores larger than 15 nm. Thus, the
electroetching produced nanopores on the Si
crystal. The nanostructure should be intrinsic to

the ferromagnetism of P-Si x.
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Fig. S5 Pore size distribution after the
BJH analysis from the N> adsorption
isotherms of P-Si x (Fig. S4).

Fig. S6 TEM image of mN-Si.
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Fig. S7 Electron spin resonance (ESR) spectra of N-Si (blue) and mN-Si (red).
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Fig. S8 Electron spin formed in a silicon nanostructure.)



Surface states and nanostructures

Property (Apparatus) MN:=Si N-Si
Magnetism (SQUID) Superpara Ferro
Unpaired electron (ESR) Si dangling bond (pb center)
Crystallite size (Raman, XRD) Smaller (21.2 nm) Larger (39.2 nm)
[SiO,/Si2p] Peak area ratio (XPS) 36.6% 22.6%
[01s/Si2p] Peak area ratio (XPS) 50.9% 23.6%
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Fig. S9 Surface states and nanostructures of N-Si and mN-Si.
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