Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information

for

Dehalogenation of Vicinal Dihalo Compounds by 1,1'-Bis(trimethylsilyl)-1*H*,1'*H*-4,4'-bipyridinylidene for Giving Alkenes and Alkynes in a Salt-free Manner

Supriya Rej, Suman Pramanik, Hayato Tsurugi,* and Kazushi Mashima*

Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

E-mail: mashima@chem.es.osaka-u.ac.jp, tsurugi@chem.es.osaka-u.ac.jp

Table of Contents

1.	General information
2.	General procedure for the preparation of vicinal dibromo substrates
3.	General procedure for the preparation of vicinal dichloro substrates
4.	General procedure for the preparation of vicinal dibromo alkene substrates
5.	General procedure for the organosilicon reductant-mediated debromination reaction of vicinal
	dibromo alkanes
6.	Stereoselective formation of (<i>E</i>)-alkene from <i>dl</i> -1,2-dibromo-1,2-diphenylethane
7.	Procedure for organosilicon reductant-mediated dechlorination reaction
8.	General procedure for the organosilicon reductant-mediated debromination reaction of vicinal
	dibromo alkenes
9.	Spectral data of Starting Materials7
9.1	. Vicinal dibromo alkanes7
9.2	. Vicinal dichloro alkanes
9.3	. Vicinal dibromo alkenes
10.	Spectral data of Products
10.	1. Spectral data of alkenes
10.	2. Spectral data of alkynes
11.	NMR Spectra of starting materials
12.	NMR Spectra of Products
12.	1. NMR Spectra of alkenes
12.	2. NMR Spectra of alkynes
Ref	ferences

1. General information.

All reactions and manipulations involving air- and moisture-sensitive organosilicon compounds were operated using the standard Schlenk or glovebox techniques under argon atmosphere. Organosilicon reductants 1, 2a-c, and 3 are prepared according to the modified procedure of the literature by replacing potassium metal by sodium metal except for the synthesis of **2c** that needed the use of potassium.¹ Anhydrous acetonitrile was purchased from Kanto Chemical, and further purified by pass through activated alumina under positive argon pressure as described by Grubbs *et al.*² Deuterated solvents (CDCl₃, toluene- d_8 , THF d_8 , CD₂Cl₂) were distilled over CaH₂, degassed, and stored under Ar-filled glovebox. Other solid chemicals were purchased and used without further purification, whereas liquid compounds are purified through freeze-pump-thaw. ^{1}H NMR (400 MHz), and $^{13}C{^{1}H}$ NMR (100 MHz) spectra were measured on Bruker Avance III-400 spectrometers. All ¹H NMR chemical shifts were recorded in ppm (δ) and referenced to the residual internal solvent. All ¹³C{¹H} NMR chemical shifts were recorded in ppm (δ) relative to carbon resonances in CDCl₃ at δ 77.16. Flash column chromatography was performed using silica gel 60 (0.040–0.0663) nm, 230-400 mesh ASTM). For UV-irradiation MAX-303 (Asahi Spectra) was used with compact Xenon light source.

2. General procedure for the preparation of vicinal dibromo substrates³

To a solution of olefin (1.0 equiv, 1.00 mmol) in 10 mL of CCl₄, a mixture of Br₂ (1.1 equiv, 1.00 mmol) and CCl₄ (10 mL) was added dropwise at 0 °C temperature for 10 minutes time period while stirring. The reaction was stirred overnight at room temperature. The

reaction progress was monitored by thin layer chromatography (TLC) and after completion of the reaction, the excess Br_2 was quenched with NaHSO₃ by vigorous stirring. After quenching the reaction mixture, saturated NaHCO₃ and brine solution were added and the resulting mixture was extracted with DCM (3×15 mL). The solvent was evaporated and the crude mixture was purified by flash column chromatography on silica gel using EtOAc and hexane as eluent.

$$R' \xrightarrow{R''} + Br_2 \xrightarrow{CCl_4} R'' \xrightarrow{Br} R'' \xrightarrow{R'''} (1)$$

3. General procedure for the preparation of vicinal dichloro substrates^{4a,b}

Procedure A:^{4a} In a round bottom flask PhIO (1.2 equiv, 1.20 mmol) and conc. HCl (12 M, 5.00 mmol) was mixed in DCM (8 mL) for 15 minutes time period. To the resultant reaction mixture *E*-ethyl cinnamate (1.0 equiv, 1.00 mmol) was added and the reaction mixture was stirred for 4 hours. After completion of the reaction, the mixture was neutralized with saturated solution of NaHCO₃ and it was extracted with DCM (3×15 mL). The organic layer was evaporated and the crude mixture was purified by column chromatography on silica gel using EtOAc and hexane as eluent. Only *erythro*-isomer was isolate.

PhIO (1.2 equiv)
Ph
$$CO_2Et$$
 $12M HCI (5.0 equiv)$
 CH_2CI_2
rt, 4 h
 CI
 CO_2Et (2)

Procedure B:^{4b} In a round bottom flask KMnO₄ (0.3 equiv, 1.20 mmol) and CH₃CN (20 mL) were mixed, followed by addition of HCl (4.5 equiv, 37%, 1.50 mL, 18.0 mmol) and the reaction mixture stirred for 10 min. After addition of the proper substrate (styrene or (*E*)-stilbene) (1.0 equiv, 4.00 mmol) into the reaction mixture, stirring was continued for 6 h. After completion, the solvent was removed under vacuum and crude was extracted with CHCl₃ (3×25 mL). The organic layer was evaporated and the crude mixture was purified by column chromatography on silica gel using EtOAc and hexane as eluent. In the case of, (*E*)-stilbene only *meso*-isomer of 1,2-dibromo-1,2-diphenylethane was isolated.

4. General procedure for the preparation of vicinal dibromo alkene substrates⁵

In a Schlenk tube, CuBr₂ (2.1 equiv, 6.00 mmol) and molecular sieves 4 Å (120 mg) were taken in acetonitrile (10 mL) and the appropriate alkyne (1.0 equiv, 2.90 mmol) was added into the mixture. The reaction mixture was stirred at room temperature for 6 h. After completion, the reaction mixture was concentrated and the residue was purified by column chromatography on silica gel using hexane as eluent.

$$R' \longrightarrow R'' + CuBr_2 \longrightarrow R' R'' \qquad (4)$$

$$(2.1 \text{ equiv}) \qquad \qquad CH_3CN \qquad Br \qquad Br$$

5. General procedure for the organosilicon reductant-mediated debromination reaction of vicinal dibromo alkanes

To a solution of reductant **1** (1.0 equiv, 0.40 mmol) in acetonitrile (1.2 mL) at room temperature, corresponding dibromo compound (1.0 equiv, 0.40 mmol) was added under argon atmosphere. The reaction was stirred at room temperature for 2 h. After completion of the reaction, the solvent was directly evaporated and the crude mixture was purified by flash column chromatography on silica gel using EtOAc and hexane as eluent.

6. Stereoselective formation of (*E*)-alkene from *dl*-1,2-dibromo-1,2-diphenylethane

In a similar method as mentioned above, when dl-1,2-dibromo-1,2-diphenylethane was treated with organosilicon reductant **1**, selectively (*E*)-stilbene formed in 91% yield.

7. Procedure for organosilicon reductant-mediated dechlorination reaction

To a solution of reductant 1 (1.0 equiv, 0.40 mmol) in acetonitrile (1.2 mL) at room temperature, vicinal dichloro compounds (1.0 equiv, 0.40 mmol) was added under argon

atmosphere. The reaction was stirred at room temperature for 18 h under the UV-irradiation (385 nm). After completion of the reaction, the solvent was evaporated and the crude mixture was purified by flash column chromatography on silica gel using EtOAc and hexane as eluent.

8. General procedure for the organosilicon reductant-mediated debromination reaction of vicinal dibromo alkenes

To a solution of reductant **1** (1.0 equiv, 0.40 mmol) in acetonitrile (1.2 mL) at room temperature, corresponding dibromo alkenes (1.0 equiv, 0.40 mmol) was added under argon atmosphere. The reaction was stirred at room temperature for 8 h. After completion of the reaction, the solvent was directly evaporated and the crude mixture was purified by flash column chromatography on silica gel using hexane as eluent.

9. Spectral data of Starting Materials

9.1. Vicinal dibromo alkanes

4-(1,2-dibromoethyl)phenyl acetate (4d) [CAS: 360068–17–3]

Purified by flash column chromatography (silica gel, EtOAc/hexane = 1/20); White solid; IR (neat KBr, v/cm⁻¹) 2918, 2850, 1685, 1655, 1637, 1073, 670, 645; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.42 (d, *J* = 8.4 Hz, 2H, Ar), 7.12 (d, *J* = 8.4 Hz, 2H, Ar), 5.14 (dd, *J* = 10.6 Hz, *J* = 5.2 Hz 1H, CHBr), 4.08–3.95 (m, 2H, CH₂Br), 2.30 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 169.2, 151.2, 136.2, 129.0, 122.1, 50.2, 35.1, 21.3; HRMS (FAB⁺, *m/z*): [M+H]⁺ calculated for C₁₀H₁₁Br₂O₂: 320.9120, found 320.9125.

meso-ethyl 2,3-dibromo-3-phenylpropanoate (4e)^{6a} [CAS: 5464–70–0]

Purified by flash column chromatography (silica gel, EtOAc/hexane = 1/20); Colorless oil; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.41–7.26 (m, 5H, Ph), 5.34 (d, *J* = 11.6 Hz, 1H, CHBr), 4.83 (d, *J* = 11.6 Hz, 1H, CHBr), 4.37 (q, *J* = 7.2 Hz, 2H, CO₂CH₂CH₃), 1.38 (t, *J* = 7.2 Hz, 3H, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃): 168.0, 137.8, 129.5, 129.0, 128.2, 62.8, 50.9, 47.2, 14.0.

dl-1,2-dibromo-1,2-diphenylethane^{6b} (4f) [CAS: 5789–30–0]

Purified by flash column chromatography (silica gel, EtOAc/hexane = 1/5); White solid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.20–7.16 (m, 10H, Ph), 5.48 (s, 2H, CHBr); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 138.0, 128.9, 128.7, 128.3, 59.3.

(**1,2-dibromopropan-2-yl)benzene** (**4g**)⁷ [CAS: 36043–44–4]

Purified by flash column chromatography (silica gel, EtOAc/hexane = 1/25); Colorless liquid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.58 (d, *J* = 7.6 Hz, 2H, Ph), 7.41–7.31 (m, 3H, Ph), 4.44–4.31 (m, 1H, C*H*HBr), 4.16 (d, *J* = 10.4 Hz, 1H, CH*H*Br), 2.34 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 142.4, 128.64, 128.59, 126.7, 63.9, 43.6, 30.1.

1,2-dibromoethyl benzoate (4h)

Purified by flash column chromatography (silica gel, EtOAc/hexane = 1/20); Colorless liquid; IR (neat KBr, v/cm⁻¹) 3066, 3034, 2918, 2849, 1685, 1655, 1637, 1097, 1060, 670, 610; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 8.10 (d, *J* = 7.6 Hz, 2H, Ph), 7.64 (t, *J* = 7.6 Hz, 1H, Ph), 7.49 (t, *J* = 7.6 Hz, 2H, Ph), 6.97 (dd, *J* = 10.0 Hz, *J* = 2.6 Hz, 1H, CHBrCH₂Br), 4.10 (dd, *J* = 11.0 Hz, *J* = 10.0 Hz, 1H, CHBrCH*H*Br), 3.98 (dd, *J* = 11.0 Hz, *J* = 2.6 Hz, 1H, CHBrC*H*HBr); ¹³C NMR (100 MHz, CDCl₃): 163.9, 134.3, 130.3, 128.8, 128.3, 71.4, 33.4; HRMS (FAB⁺, *m/z*): [M+H]⁺ calculated for C₉H₉Br₂O₂: 306.8964, found 306.8971.

(3S,8S,9S,10R,13R,14S,17R)-5,6-dibromo-3-chloro-10,13-dimethyl-17-((R)-6-

methylheptan-2-yl)hexadecahydro-1*H*-cyclopenta[*a*]phenanthrene³ (4j) [CAS: 5337-45-1]

Purified by crystallization in DCM/hexane; White solid; Only one isomer isolated. ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 4.81–4.80 (m, 1H, CHBr), 4.69–4.61 (m, 1H, CHCl), 2.82 (dd, *J* = 14.4 Hz, *J* = 11.2 Hz, 1H), 2.69–2.61 (m, 1H), 2.38 (dd, *J* = 14.4 Hz, *J* = 4.4 Hz, 1H), 2.13-0.86 (m, 37H), 0.71 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 89.6, 57.5, 56.2, 55.6, 55.3, 47.5, 46.9, 42.8, 41.9, 39.7, 39.6, 38.1, 37.4, 36.3, 35.9, 31.9, 30.9, 28.3, 28.1, 24.2, 23.9, 22.9, 22.7, 21.3, 20.4, 18.8, 12.3.

(8*S*,9*S*,10*R*,13*S*,14*S*,17*S*)-4,5-dibromo-10,13-dimethyl-3-oxohexadecahydro-1*H*cyclopenta[*a*]phenanthren-17-yl propionate (4k)

Purified by flash column chromatography (silica gel, EtOAc/hexane = 1/10); White solid; IR (neat KBr, v/cm⁻¹) 2964, 2915, 2847, 1872, 1791, 1718, 1685, 1193, 1091, 800, 604; Two

isomer formed in the ratio of 52:48. Combined ¹H NMR data of two diastereomers (400 MHz, CDCl₃, 30 °C) δ 6.55 (d, *J* = 2.0 Hz, 1H), 6.01 (s, 1H), 4.97–4.77 (m, 4H), 4.65–4.59 (m, 2H), 2.61 (ddd, *J* = 12.6 Hz, *J* = 5.0 Hz, *J* = 3.1 Hz, 2H), 2.48 (ddd, *J* = 12.6 Hz, *J* = 5.0 Hz, *J* = 3.1 Hz, 1H), 2.36–2.04 (m, 12H), 1.85–1.58 (m, 12H), 1.32 (s, 3H), 1.20–1.02 (m, 14H), 0.90–0.86 (m, 9H), 0.83 (s, 3H); Combined ¹³C NMR data of two diastereomers (100 MHz, CDCl₃, 30 °C) δ 191.5, 190.8, 174.6, 174.5, 166.8, 165.3, 124.9, 124.7, 82.0, 81.8, 53.5, 52.7, 50.6, 50.4, 50.2, 50.0, 49.82, 49.79, 49.6, 48.3, 44.1, 43.9, 42.7, 42.6, 41.8, 40.3, 37.0, 36.4, 36.3, 31.7, 30.2, 27.8, 27.53, 27.51, 23.5, 23.4, 23.0, 22.7, 20.5, 18.6, 14.2, 12.2, 12.1, 9.3; HRMS (FAB⁺, *m/z*): [M–H]⁺ calculated for C₂₂H₃₁Br₂O₃: 501.0640, found 501.0638.

9.2. Vicinal dichloro alkanes

(**1,2-dichloroethyl)benzene**^{4,8} (**6a**) [CAS: 1074–11–9]

Purified by flash column chromatography (silica gel, hexane); Colorless liquid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.42–7.26 (m, 5H, Ph), 5.02 (t, *J* = 7.2 Hz, 2H, CHCl), 4.03–3.92 (m, 2H, CH₂Cl); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 138.1, 129.3, 128.9, 127.5, 61.9, 48.5.

erythro-ethyl 2,3-dichloro-3-phenylpropanoate^{4,9} (6e) [CAS: 23482–69–1]

Purified by flash column chromatography (silica gel, hexane); Colorless liquid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.42–7.39 (m, 5H, Ph), 5.19 (d, *J* = 10.8 Hz, 1H, CHCl), 4.61 (d, *J* =

10.8 Hz, 1H, CHCl), 4.36 (q, *J* = 7.2 Hz, 2H, CH₂CH₃), 1.37 (t, *J* = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 167.6, 136.6, 129.6, 128.9, 128.2, 62.8, 61.2, 59.2, 14.1.

meso-1,2-dichloro-1,2-diphenylethane^{4,9} (6f) [CAS: 15951–99–2]

Purified by flash column chromatography (silica gel, EtOAc/hexane = 1/10); White solid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.47–7.29 (m, 10H, Ph), 5.27 (s, 2H, CHCl); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 138.4, 129.1, 128.6, 128.1, 65.8.

9.3. Vicinal dibromo alkenes

(*E*)-(1,2-dibromovinyl)benzene⁵ (7a) [CAS: 6607–46–1]

Purified by flash column chromatography (silica gel, hexane); Colorless liquid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.55–7.53 (m, 2H, Ph), 7.43–7.41 (m, 3H, Ph), 6.83 (s, 1H, CHBr); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 137.2, 129.5, 129.3, 128.4, 121.5, 103.2.

(*E*)-ethyl 2,3-dibromo-3-phenylacrylate (7b)¹⁰ [CAS: 176246–53–0]

Purified by flash column chromatography (silica gel, hexane); Colorless oil; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.46–7.35 (m, 5H, Ph), 4.39 (q, *J* = 7.0 Hz, 2H, CO₂CH₂CH₃), 1.41 (t,

J = 7.0 Hz, 1H, CO₂CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 164.1, 138.3, 133.1, 129.8, 128.9, 128.7, 128.5, 121.7, 107.8, 63.0, 14.1.

(*E*)-1,2-dibromo-1,2-diphenylethene (7c)¹¹ [CAS: 20432–10–4]

Purified by flash column chromatography (silica gel, hexane); White Solid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.55–7.36 (m, 6H, Ph), 7.21–7.14 (m, 4H, Ph); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 140.9, 139.6, 129.9, 129.2, 129.1, 128.53, 128.5, 128.2, 125.8, 118.2.

(*E*)-5,6-dibromodec-5-ene⁵ (7d)

Purified by flash column chromatography (silica gel, hexane); Colorless liquid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 2.67 (t, *J* = 7.2 Hz, 4H, CH₂CBr), 1.59–1.52 (m, 4H, CH₂CH₂CBr), 1.38–1.31 (m, 4H, CH₃CH₂), 0.94 (t, *J* = 7.2 Hz, 6H, CH₃CH₂); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 121.8, 40.7, 29.7, 21.8, 14.1.

10. Spectral data of Products

10.1. Spectral data of alkenes

styrene (5a)³ [CAS: 100–42–5]

Purified by flash column chromatography (silica gel, pentane); Colorless liquid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.50 (dd, *J* = 7.2 Hz, *J* = 0.8 Hz, 2H, Ph), 7.41 (t, *J* = 7.2 Hz, 2H, Ph), 7.33 (t, *J* = 7.2 Hz, 1H, Ph), 6.81 (d, *J* = 17.6 Hz, *J* = 10.8 Hz, 1H, CHCH₂), 5.84 (d, *J* = 17.6 Hz, 1H, CHCH*H*), 5.33 (d, *J* = 10.8 Hz, 1H, CHC*H*H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 30 °C) δ 137.7, 137.0, 128.6, 127.9, 126.3, 113.9.

1-methyl-4-vinylbenzene (5b)³ [CAS: 622–97–9]

Purified by flash column chromatography (silica gel, pentane); Colorless liquid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.36 (d, *J* = 7.6 Hz, 2H, Ar), 7.20 (d, *J* = 7.6 Hz, 2H, Ar), 6.74 (dd, *J* = 17.6 Hz, *J* = 11.0 Hz 1H, CHCH₂), 5.75 (d, *J* = 17.6 Hz, 1H, CHCHH), 5.23 (d, *J* = 11.0 Hz, 1H, CHCHH), 2.39 (s, 3H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃, 30 °C) δ 137.7, 136.9, 135.0, 129.3, 126.3, 112.9, 21.3.

1-chloro-4-vinylbenzene (5c)¹² [CAS: 1037–67–2]

CI

Purified by flash column chromatography (silica gel, pentane); Colorless liquid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.35–7.28 (m, 4H, Ar), 6.67 (d, J = 17.6 Hz, J = 10.8 Hz, 1H, CHCH₂),

5.72 (d, *J* = 17.6 Hz, 1H, CHCH*H*), 5.27 (d, *J* = 10.8 Hz, 1H, CHC*H*H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 30 °C) δ 136.2, 135.8, 133.6, 128.8, 127.6, 114.6.

4-vinylphenyl acetate (5d)¹³ [CAS: 2628–16–2]

Purified by flash column chromatography (silica gel, EtOAc/hexane = 1/20); Yellow liquid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.45 (d, J = 8.4 Hz, 2H, Ar), 7.09 (d, J = 8.4 Hz, 2H, Ar), 6.74 (dd, J = 17.6 Hz, J = 10.8 Hz, 1H, CHCH₂), 5.74 (d, J = 17.6 Hz, 1H, CHCH*H*), 5.28 (d, J = 10.8 Hz, 1H, CHCH*H*), 2.32 (s, 3H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃, 30 °C) δ 169.4, 150.3, 136.0, 135.4, 127.2, 121.7, 114.1, 21.1.

(*E*)-ethyl cinnamate $(5e)^3$ [CAS: 103–36–6]

Purified by flash column chromatography (silica gel, EtOAc/hexane = 1/20); Yellowish liquid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.69 (d, *J* = 16.0 Hz, 1H, PhC*H*), 7.53–7.51 (m, 2H, Ph), 7.39–7.37 (m, 3H, Ph), 6.44 (d, *J* = 16.0 Hz, 1H, C*H*CO₂Et), 4.27 (q, *J* = 7.0 Hz, 2H, OC*H*₂CH₃), 1.34 (t, *J* = 7.0 Hz, 3H, OCH₂C*H*₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): 167.1, 144.7, 134.6, 130.3, 129.0, 128.1, 118.4, 60.6, 14.4.

(*E*)-1,2-diphenylethene (5f)³ [CAS: 103–30–0]

Purified by flash column chromatography (silica gel, hexane); White solid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.56 (d, *J* = 8.0 Hz, 4H, Ph), 7.40 (t, *J* = 7.2 Hz, 4H, Ph), 7.32–7.28 (m, 2H, Ph), 7.15 (s, 2H, CH); ¹³C{¹H} NMR (100 MHz, CDCl₃, 30 °C) δ 137.5, 128.85, 128.83, 127.8, 126.7.

prop-1-en-2-ylbenzene (5g)³ [CAS: 98–83–9]

Purified by flash column chromatography (silica gel, CH₂Cl₂/hexane = 1/5); Colorless liquid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.56–7.54 (m, 2H, Ph), 7.42–7.34 (m, 3H, Ph), 5.46– 5.45 (m, 1H, CC*H*H), 5.17–5.16 (m, 1H, CCH*H*), 2.25 (s, 3H, CH₃); ¹³C {¹H} NMR (100 MHz, CDCl₃): 143.5, 141.4, 128.3, 127.5, 125.6, 112.5, 21.9

vinyl benzoate (5h)³ [CAS: 769–78–8]

.0_//

Purified by flash column chromatography (silica gel, EtOAc/hexane = 1/20); Colorless liquid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 8.11 (dd, J = 8.2 Hz, J = 1.0 Hz, 2H, Ph), 7.58 (t, J = 7.6 Hz, 1H, Ph), 7.53 (dd, J = 14.0 Hz, J = 6.2 Hz, 1H, OCHCH₂), 7.45 (t, J = 7.6 Hz, 2H, Ph), 5.08 (dd, J = 14.0 Hz, J = 1.6 Hz, 1H, OCHCHH), 4.70 (dd, J = 6.2 Hz, J = 1.6 Hz, 1H, OCHCHH); ¹³C{¹H} NMR (100 MHz, CDCl₃, 30 °C) δ 163.6, 141.5, 133.6, 130.0, 129.0, 128.6, 98.2. cholesteryl chloride (5j)³ [CAS: 910–31–6]

Purified by flash column chromatography (silica gel, EtOAc/hexane = 1/25); White solid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 5.38–5.36 (m, 1H, CHCl), 3.81–3.72 (m, 1H), 2.60–2.47 (m, 2H), 2.08–1.81 (m, 6H), 1.56-1.33 (m, 10H), 1.16–0.85 (m, 22H), 0.68 (s, 3H, CH₃); ¹³C {¹H} NMR (100 MHz, CDCl₃, 30 °C) δ 141.0, 122.6, 60.5, 56.9, 56.3, 50.2, 43.6, 42.5, 39.9, 39.7, 39.3, 36.5, 36.3, 35.9, 33.5, 32.0, 31.9, 28.4, 28.2, 24.4, 24.0, 23.0, 22.7, 21.1, 19.4, 18.9, 12.0.

testosteron propionate (5k)¹⁴ [CAS: 57–85–2]

Purified by flash column chromatography (silica gel, EtOAc/hexane = 1/25); White solid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 5.72 (s, 1H, CHCOCH₂), 4.61 (t, *J* = 8.8 Hz, 1H, CHOCOCH₂CH₃), 2.41–1.02 (m, 27H), 0.83 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 30 °C) δ 199.5, 174.6, 171.0, 124.1, 82.4, 53.9, 50.4, 42.7, 38.8, 36.8, 35.9, 35.6, 34.0, 32.9, 31.6, 27.9, 27.7, 23.6, 20.7, 17.5, 12.2, 9.4.

10.2. Spectral data of alkynes

phenylacetylene (8a)¹⁵ [CAS: 536–74–3]

Purified by flash column chromatography (silica gel, hexane); Colorless liquid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.57–7.55 (m, 2H, Ph), 7.42–7.35 (m, 3H, Ph), 3.13 (s, 1H, CH); ¹³C{¹H} NMR (100 MHz, CDCl₃, 30 °C) δ 132.2, 128.9, 128.4, 122.3, 83.8 (Ph*C*CH), 77.3 (Ph*C*CH).

ethyl phenylpropiolate (8b)¹⁰ [CAS: 2216–94–6]

Purified by flash column chromatography (silica gel, hexane); Colorless liquid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.60 (d, *J* = 7.2 Hz, 2H, Ph), 7.46 (t, *J* = 7.2 Hz, 1H, Ph), 7.38 (t, *J* = 7.2 Hz, 2H, Ph), 4.31 (q, *J* = 7.2 Hz, 2H, CH₂CH₃), 1.37 (t, *J* = 7.2 Hz, 3H, CH₂CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃, 30 °C) δ 154.1, 133.0, 130.7, 128.7, 119.8, 86.1, 80.8, 62.2, 14.2.

1,2-diphenylethyne (8c)¹⁶ [CAS: 501–65–5]

Purified by flash column chromatography (silica gel, hexane); White solid; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.56–7.55 (m, 4H, Ph), 7.37–7.35 (m, 6H, Ph); ¹³C{¹H} NMR (100 MHz, CDCl₃, 30 °C) δ 131.7, 128.5, 128.4, 123.4, 89.5.

11. NMR Spectra of starting materials

Figure S2. ¹³C NMR Spectrum of 4d.

12. NMR Spectra of Products

12.1. NMR Spectra of alkenes

Figure S8. ¹³C NMR Spectrum of 5a.

Figure S10. ¹³C NMR Spectrum of 5b.

Figure S12. ¹³C NMR Spectrum of 5c.

Figure S14. ¹³C NMR Spectrum of 5d.

Figure S16. ¹³C NMR Spectrum of 5e.

Figure S18. ¹³C NMR Spectrum of 5f.

Figure S20. ¹³C NMR Spectrum of 5g.

Figure S22. ¹³C NMR Spectrum of 5h.

FigureS23. ¹H NMR Spectrum of 5j.

Figure S24. ¹³C NMR Spectrum of 5j.

Figure S26. ¹³C NMR Spectrum of 5k.

Figure S28. ¹³C NMR Spectrum of 8a.

Figure S30. ¹³C NMR Spectrum of 8b.

Figure S31. ¹H NMR Spectrum of 8c.

Figure S32. ¹³C NMR Spectrum of 8c.

References

- 1) W. Kaim, J. Am. Chem. Soc., 1983, 105, 707-713.
- 2) A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, and F. J. Timmers, *Organometallics*, 1996, **15**, 1518–1520.
- W. Chen, H. Tao, W. Huang, G. Wang, S. Li, X. Cheng, and G. Li, *Chem. Eur. J.*, 2016, 22, 9546–9550.
- 4) (a) T. Kitamura, Y. Tazawa, M. H. Morshed, and S. Kobayashi, *Synthesis*, 2012, 44, 1159–1162.
 (b) L. K. Liu and C.-S. Lin, *Chin. Chem. Soc.*, 1996, 43, 61–66
- J. Xiang, R. Yuan, R. Wang, N. Yi, L. Lu, H. Zou, and W. He, J. Org. Chem., 2014, 79, 11378–11382.
- 6) (a) S. D. Sharma, S. Kanwar, and S. Rajpoot, *J. Heterocyclic Chem.*, 2006, 43, 11–19. (b)
 D. C. Braddock, D. Roy, D. Lenoir, E. Moore, H. S. Rzepa, J. I.-C. Wub, and P. R. Schleyer, *Chem. Commun.*, 2012, 48, 8943–8945.
- 7) (a) K. Kikushima, T. Moriuchi, and T. Hirao, *Chem. Asian J.*, 2009, 4, 1213–1216. (b) S.
 Song, X. Li, X. Sun, Y. Yuana, and N. Jiao, *Green Chemistry*, 2015, 17, 3285–3289.
- N. Iranpoor, H. Firouzabadi, G. Aghapour, and A. Nahid, *Bull. Chem. Soc. Jpn.*, 2004, 77, 1885–1891.
- 9) N. Kamigata, T. Satoh, and M. Yoshida, Bull. Chem. Soc. Jpn., 1988, 61, 449-454.
- 10) T. Maji, A. Karmakar, and O. Reiser, J. Org. Chem., 2011, 76, 736–739.
- A. Podgorsek, M. Eissen, J. Fleckenstein, S. Stavber, M. Zupana, and J. Iskra, *Green Chem.*, 2009, **11**, 120–126.
- 12) K. Ando, T. Kobayashi, and N. Uchida, Org. Lett., 2015, 17, 2554–2557.
- 13) B. Schmidt, N. Elizarov, R. Berger, and F. Hölter, Org. Biomol. Chem., 2013, 11, 3674-

3691.

- 14) A. Bartmańska, J. Dmochowska-Gładysz, and E. Huszcza, *Steroids*, 2005, 70, 193–198.
- 15) S. Mao, Y.-R. Gao, X.-Q. Zhu, D.-D. Guo, and Y.-Q. Wang, Org. Lett., 2015, 17, 1692– 1695.
- 16) F. Yang and Y. Wu, Eur J. Org. Chem. 2007, 3476–3479.