Acid/base-controllable Fluorescent Molecular

Switches Based on Cryptands and N-Heteroaromatics

Ming Cheng,^a Jing Zhang,^a Xintong Ren,^a Shuwen Guo,^a Tangxin Xiao,^b Xiao-Yu Hu,^a Juli Jiang,^{*a} and Leyong Wang^{*a,b}

a. Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023(China).
b. Institute for Natural & Synthetic Organic Chemistry, Changzhou University, Changzhou, 213164, China. E-mail: jjl@nju.edu.cn, lywang@nju.edu.cn

SUPPORTING INFORMATION

Table of Contents

1. Materials and methods······S2
2. Experimental procedures······S2
3. Association constants and Job plots······S7
4. Partial 2D NOESY NMR spectrum······S21
5. X-ray crystal data for 1⊃paraquat·····S24
6. References······S25

1. Materials and methods

All reactions were performed in open atmosphere unless otherwise stated. All reagents, unless otherwise indicated, were obtained from commercial sources. Anhydrous CH_2Cl_2 was obtained by distillation from CaH_2 under N_2 atmosphere. Melting points (M.p.) were determined using a Focus X-4 apparatus and were not corrected. All yields were given as isolated yields. NMR spectra were recorded on a Bruker DPX 400 MHz or 500 MHz spectrometer with internal standard tetramethylsilane (TMS) and solvent signals as internal references, and the chemical shifts (δ) were expressed in ppm and *J* values were given in Hz. 2D ROESY experiments were performed on a Bruker DPX 400 MHz spectrometer. High-resolution electrospray ionization mass spectra (HR-ESI-MS) were recorded on an Agilent 6540Q-TOF LC-MS equipped with an electrospray ionization (ESI) probe operating in positive-ion mode with direct infusion.

2. Experimental procedures.

Scheme S1. Synthesis of cryptand 1.

Compound 8: A mixture of 7^1 (0.55 g, 0.98 mmol) and compound Potassium phthalimide (0.36 g, 1.96 mmol) in anhydrous DMF was stirred for 24 h. The reaction mixture was filtered. The filtrate was removed in vacuum and the residue was dissolved in CH₂Cl₂. The organic phase was washed with water, dried over anhydrous Na₂SO₄ and concentrated under vacuum. The residue was

purified by silica-gel column chromatography using (PE/EA = 4:1, v/v) to afford **8** (4.07 g, 60.0%) as a yellow solid. M.p.113-115 °C ; The ¹H NMR & ¹³C NMR spectra of **8** are shown in Fig. S1-S2. ¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm): 7.96-7.94 (m, 4H), 7.81-7.79(m, 4H), 7.75 (d, J = 8.1 Hz, 2H), 7.64 (s, 2H), 7.37-7.33 (m, 2H), 7.23 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.38 Hz, 2H), 5.33-5.20 (m, 4H), 4.67-4.64 (m, 4H), 2.99 (s, 6H).; ¹³C NMR (100 MHz, CDCl₃, 298 K) δ (ppm): 168.3, 152.0, 134.2, 133.6, 132.2, 130.6, 129.8, 127.9, 126.9, 126.6, 126.0, 125.3, 125.2, 123.6, 99.3, 57.0, 37.6.; HR-MS (ESI): calcd. for [**8** + Na]⁺: 775.2051, found m/z = 715.2049.

Compound 9: **8** (1.00 g, 1.44 mmol) in tetrahydrofuran was heated to reflux at 80 °C. Then N₂H₄·H₂O (0.70 mL, 14.45 mmol) was added. The reaction system was refluxed for 12 h. After the solution was cooled to 25 °C, the solvent was evaporated under reduced pressure. The residue was dissolved in CH₂Cl₂ (30 mL), and the organic phase was washed with water (2 × 30 mL), dried over anhydrous Na₂SO₄ and concentrated under vacuum. The residue was purified by silicagel column chromatography (CH₂Cl₂/CH₃OH = 50:1, ν/ν) to afford **9** as a yellow oil (0.45 g, 1.56 mmol, 72%). The ¹H & ¹³C NMR spectra of **9** are shown in Figure S4-S5. ¹H NMR (400 MHz, CD₃CN, 298K) δ (ppm): 8.06 (s, 2H), 7.93 (d, *J* = 8.2 Hz, 2H), 7.41 (t, *J* = 7.1 Hz, 2H), 7.21 (dd, *J* = 11.2, 4.1 Hz, 2H), 7.04 (d, *J* = 8.4 Hz, 2H), 4.52 (dd, *J* = 35.0, 5.6 Hz, 4H), 4.05 (q, *J* = 15.2 Hz, 4H), 2.88 (s, 6H), 2.09 (b, 4H); ¹³C NMR (CDCl₃, 75 MHz, 298K) δ (ppm): 153.1, 136.9, 133.5, 131.0, 128.1, 127.9, 126.5, 126.0, 125.3, 125.2, 99.3, 57.0, 42.9, 30.4, 29.8, 29.8, 22.8, 14.2.; HR-MS (ESI): Calcd. for [**8** + H]⁺: 433.2122; Found: 433.2119.

Compound 1: a solution of 10^2 (0.50 g, 0.76 mmol) in dry CH₂Cl₂ (50 mL) was added slowly to a solution of **9** (0.33 g, .076 mmol) and Et₃N (2.00 mL) in dry CH₂Cl₂ (300 mL) under argon gas protection. After complete addition, the mixture was stirred at room temperature for 3 days. After the solvent was removed under vacuum, dissolved in dichloromethane (30 mL), the organic phase was washed with water (2 × 30 mL). The organic phase condensed in vacuum to give a white solid. The solid was re-dissolved with the solution of HCl in ethanol. The solution was refluxed for 2 hours, remove the organic solvents under vacuum. The residue was dissolved in CH₂Cl₂ (30 mL), and the organic phase was washed with water (2 × 30 mL) the organic phase under vacuum. The residue was dissolved in CH₂Cl₂ (30 mL), and the organic phase was washed with water (2 × 30 mL) dried over anhydrous Na₂SO₄ and concentrated under vacuum. The residue was purified by silica-gel column chromatography using (CH₂Cl₂/CH₃OH = 60:1, ν/ν) to afford **1** (0.14 g, 20%) as a white solid. M.p.133-135 °C ; The ¹H

NMR & ¹³C NMR spectra of **1** are shown in Fig. S7-S8. ¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm): 7.98 (s, 2H), 7.85 (d, J = 8.1 Hz, 2H), 7.36-7.28 (m, 6H), 7.17 (d, J = 8.2 Hz, 2H), 6.84 (s, 4H), 6.54 (s, 2H), 4.86-4.77 (m, 4H), 4.04-3.94 (m, 8H), 3.77-3.58 (m, 24H).; ¹³C NMR (100 MHz, CD₃CN, 298 K) δ (ppm): 165.9, 159.7, 159.6, 148.9, 145.7, 144.4, 138.6, 138.2, 114.4, 111.6, 107.6, 107.5, 107.5, 107.2, 102.1, 100.3, 100.2, 71.5, 71.0, 70.1, 69.9, 68.9, 67.3, 67.2, 46.7, 44.2, 25.5.; HR-MS (ESI): calcd. for [**1** + H]⁺: 933.3804, found m/z = 933.3791.

Fig. S2 ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of compound 8.

2008

Fig. S4 ¹H NMR spectrum (400 MHz, CD₃CN, 298 K) of compound 9. (*signals of CH₂Cl₂).

-153.1 -153.6 -133.6 -133.6 -133.6 -133.6 -133.6 -133.6 -133.6 -133.6 -133.6 -133.6 -133.6 -133.6 -53.0 -5

Fig. S5¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of compound 9.

Fig. S8 ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of compound 1.

Fig. S9 HR-ESI-MS of compound 1.

3. Association constants and Job plots.

Fig. S10 Partial ¹HNMR spectra (500MHz, CD₃CN, 298 K): (A) 5.00 mM **3** + 4.0 equiv. **TFA**; (B) 5.00 mM **3** + 4.0 equiv. **TFA** + 5.00 mM **1**; (C) 5.00 mM **3** + 4.0 equiv. **TFA** + 5.00 mM **1** + 6.0 equiv. **TEA**; (D) 5.00 mM **3**.

Fig. S11 Partial ¹HNMR spectra (500MHz, CD₃CN, 298 K): (A) 5.00 mM **4** + 4.0 equiv. **TFA**; (B) 5.00 mM **4** + 4.0 equiv. **TFA** + 5.00 mM **1**; (C) 5.00 mM **4** + 4.0 equiv. **TFA** + 5.00 mM **1** + 6.0 equiv. **TFA**; (D) 5.00 mM **4**.

Fig. S12 Partial ¹HNMR spectra (500MHz, CD₃CN, 298 K): (A) 5.00 mM **5** + 4.0 equiv. **TFA**; (B) 5.00 mM **5** + 4.0 equiv. **TFA** + 5.00 mM **1**; (C) 5.00 mM **5** + 4.0 equiv. **TFA** + 5.00 mM **1** + 6.0 equiv. **TEA**; (D) 5.00 mM **5**.

Fig. S13 Partial ¹HNMR spectra (500MHz, CD₃CN, 298 K): (A) 5.00 mM **6** + 2.0 equiv. **TFA**; (B) 5.00 mM **6** + 2.0 equiv. **TFA** + 5.00 mM **1**; (C) 5.00 mM **6** + 2.0 equiv. **TFA** + 5.00 mM **1** + 3.0 equiv. **TEA**; (D) 5.00 mM **6**.

Fig. S14 Partial ¹HNMR spectra (500MHz, CD₃CN, 298 K): (A) 5.00 mM **3** + 4.0 equiv. **TFA**; (B) 5.00 mM **3** + 4.0 equiv. **TFA** + 5.00 mM **2**; (C) 5.00 mM **3** + 4.0 equiv. **TFA** + 5.00 mM **2** + 6.0 equiv. **TEA**; (D) 5.00 mM **3**.

Fig. S15 Partial ¹HNMR spectra (500MHz, CD₃CN, 298 K): (A) 5.00 mM **4** + 4.0 equiv. **TFA**; (B) 5.00 mM **4** + 4.0 equiv. **TFA** + 5.00 mM **2**; (C) 5.00 mM **4** + 4.0 equiv. **TFA** + 5.00 mM **2** + 6.0 equiv. **TEA**; (D) 5.00 mM **4**.

Fig. S16 Partial ¹HNMR spectra (500MHz, CD₃CN, 298 K): (A) 5.00 mM **5** + 4.0 equiv. **TFA**; (B) 5.00 mM **5** + 4.0 equiv. **TFA** + 5.00 mM **2**; (C) 5.00 mM **5** + 4.0 equiv. **TFA** + 5.00 mM **2** + 6.0 equiv. **TEA**; (D) 5.00 mM **5**.

Fig. S17 Partial ¹HNMR spectra (500MHz, CD₃CN, 298 K): (A) 5.00 mM **6** + 2.0 equiv. **TFA**; (B) 5.00 mM **6** + 2.0 equiv. **TFA** + 5.00 mM **2**; (C) 5.00 mM **6** + 2.0 equiv. **TFA** + 5.00 mM **2** + 3.0 equiv. **TEA**; (D) 5.00 mM **6**.

3.2 Job plot for cryptand 1, cryptand 2 with four guests.

Fig. S18 The Job Plot (NMR titrations) for the complexation of (a) 1 with 3'; (b) 1 with 4'; (c) 1 with 5'; (d) 1 with 6'; in CD₃CN at 298 K. ([H] + [G] = 8 mM).

Fig. S19 The Job Plot (NMR titrations) for the complexation of (a) 2 with 3'; (b) 2 with 4'; (c) 2 with 5'; (d) H2 with 6'; in CD₃CN at 298 K. ([H] + [G] = 8 mM).

3.3 Determination of the association constants

¹H NMR titrations were performed with a constant concentration of host (2.00 mM) and varying concentrations of guest in the range of 1.0 - 40.0 mM. Using a nonlinear curve-fitting method, the association constant was obtained for each host-guest combination from the following equation:

$$\Delta \delta = (\Delta \delta_{\infty} / [H]_0) (0.5[G]_0 + 0.5([H]_0 + 1/K_a) - (0.5 ([G]_0^2 + (2[G]_0(1/K_a - [H]_0)) + (1/K_a + [H]_0)^2)^{0.5})) (Eq. S1)$$

Where $\Delta \delta$ is the chemical shift change of H_{1a} on cryptand **1** (H_{2d} on cryptand **2**) at [H]₀, $\Delta \delta_{\infty}$ is the chemical shift change of H_a when the guest is completely complexed, [G]₀ is the fixed initial concentration of the guest, and [H]₀ is the initial concentration of the host.

Fig. S20 Partial ¹H NMR spectrum changes (400 MHz, CD₃CN, 298 K) of **1** (host, 2.00 mM) upon addition of **3'** (guest): (a) 0.00, (b) 0.40, (c) 0.80, (d) 1.20, (e) 1.60, (f) 2.00, (g) 4.00, (h) 8.00, (i) 12.00, (j) 20.00, (k) 30.00, (l) 40.00 mM.

Fig. S21 The non-linear curve-fitting (NMR titrations) for the complexation of **1** (host) with **3'** (guest) in CD₃CN at 298 K. Using the signal of **1** at δ 6.5612 as the reference. The association constant (*K*a) of **1** \supset **3'** in CD₃CN was estimated to be about (7.90 ± 1.10) ×10².

Fig. S22 Partial ¹H NMR spectrum changes (400 MHz, CD₃CN, 298 K) of **1** (host, 2.00 mM) upon addition of **4'** (guest): (a) 0.00, (b) 0.40, (c) 0.80, (d) 1.20, (e) 1.60, (f) 2.00, (g) 4.00, (h) 8.00, (i) 12.00, (j) 20.00, (k) 30.00, (l) 40.00 mM.

Fig. S23 The non-linear curve-fitting (NMR titrations) for the complexation of **1** (host) with **4**' (guest) in CD₃CN at 298 K. Using the signal of **1** at δ 6.5612 as the reference. The association constant (*K*a) of **1** \supset **4**' in CD₃CN was estimated to be about (3.14 ± 0.04) ×10².

Fig. S24 Partial ¹H NMR spectrum changes (400 MHz, CD₃CN, 298 K) of **1** (host, 2.00 mM) upon addition of **5'** (guest): (a) 0.00, (b) 0.40, (c) 0.80, (d) 1.20, (e) 1.60, (f) 2.00, (g) 4.00, (h) 8.00, (i) 12.00, (j) 20.00, (k) 30.00 mM.

Fig. S25 The non-linear curve-fitting (NMR titrations) for the complexation of **1** (host) with **5'** (guest) in CD₃CN at 298 K. Using the signal of **1** at δ 6.5612 as the reference. The association constant (*K*a) of **1** \supset **5'** in CD₃CN was estimated to be about (4.56 ± 0.39) ×10².

Fig. S26 Partial ¹H NMR spectrum changes (400 MHz, CD₃CN, 298 K) of **1** (host, 2.00 mM) upon addition of **6'** (guest): (a) 0.00, (b) 0.40, (c) 0.80, (d) 1.20, (e) 1.60, (f) 2.00, (g) 4.00, (h) 8.00, (i) 12.00, (j) 20.00, (k) 30.00, (l) 40.00 mM.

Fig. S27 The non-linear curve-fitting (NMR titrations) for the complexation of **1** (host) with **6'** (guest) in CD₃CN at 298 K. Using the signal of **1** at δ 6.5612 as the reference. The association constant (*K*a) of **1** \supset **6'** in CD₃CN was estimated to be about (2.91 ± 0.05) ×10².

Fig. S28 Partial ¹H NMR spectrum changes (500 MHz, CD₃CN, 298 K) of **2** (host, 2.00 mM) upon addition of **3'** (guest): (a) 0.00, (b) 0.40, (c) 0.80, (d) 1.20, (e) 1.60, (f) 2.00, (g) 4.00, (h) 8.00, (i) 12.00, (j) 20.00, (k) 30.00, (l) 40.00 mM.

Fig. S29 The non-linear curve-fitting (NMR titrations) for the complexation of **2** (host) with **3'** (guest) in CD₃CN at 298 K. Using the signal of **2** at δ 7.0761 as the reference. The association constant (*K*a) of **2** \supset **3'** in CD₃CN was estimated to be about (2.27 ± 0.69) ×10³.

Fig. S30 Partial ¹H NMR spectrum changes (500 MHz, CD₃CN, 298 K) of **2** (host, 2.00 mM) upon addition of **4'** (guest): (a) 0.00, (b) 0.40, (c) 0.80, (d) 1.20, (e) 1.60, (f) 2.00, (g) 4.00, (h) 8.00, (i) 12.00, (j) 20.00, (k) 30.00, (l) 40.00 mM.

Fig. S31 The non-linear curve-fitting (NMR titrations) for the complexation of **2** (host) with **4'** (guest) in CD₃CN at 298 K. Using the signal of **2** at δ 7.0761 as the reference. The association constant (*K*a) of **2**⊃**4'** in CD₃CN was estimated to be about (3.79 ± 0.79) ×10³.

Fig. S32 Partial ¹H NMR spectrum changes (500 MHz, CD₃CN, 298 K) of **2** (host, 2.00 mM) upon addition of **5'** (guest): (a) 0.00, (b) 0.40, (c) 0.80, (d) 1.20, (e) 1.60, (f) 2.00, (g) 4.00, (h) 8.00, (i) 12.00, (j) 20.00, (k) 30.00, (l) 40.00 mM.

Fig. S33 The non-linear curve-fitting (NMR titrations) for the complexation of **2** (host) with 5' (guest) in CD₃CN at 298 K. Using the signal of **2** at δ 7.0761 as the reference. The association constant (*K*a) of **2** \supset **5'** in CD₃CN was estimated to be about (4.04 ± 0.70) ×10³.

Fig. S34 Partial ¹H NMR spectrum changes (500 MHz, CD₃CN, 298 K) of **2** (host, 2.00 mM) upon addition of **6'** (guest): (a) 0.00, (b) 0.40, (c) 0.80, (d) 1.20, (e) 1.60, (f) 2.00, (g) 4.00, (h) 8.00, (i) 12.00, (j) 20.00, (k) 30.00, (l) 40.00 mM.

Fig. S35 The non-linear curve-fitting (NMR titrations) for the complexation of **2** (host) with **6'** (guest) in CD₃CN at 298 K. Using the signal of **2** at δ 7.0761 as the reference. The association constant (*K*a) of **2**⊃**6'** in CD₃CN was estimated to be about (1.90 ± 0.18) ×10³.

4. Partial 2D NOESY NMR spectrum

Fig. S36 Partial 2D NOESY spectra (400MHz, CD₃CN, 298 K) of 1⊃3'

Fig. S37 Partial 2D NOESY spectra (400 MHz, CD₃CN, 298 K) of 1⊃5'

Fig. S38 Partial 2D NOESY spectra (400 MHz, CD₃CN, 298 K) of 1⊃6'

Fig. S39 Partial 2D NOESY spectra (400 MHz, CD₃CN, 298 K) of 2⊃3'

Fig. S40 Partial 2D NOESY spectra (400 MHz, CD₃CN, 298 K) of 2⊃4'

Fig. S41 Partial 2D NOESY spectra (400 MHz, CD₃CN, 298 K) of 2⊃5'

Fig. S42 Partial 2D NOESY spectra (400 MHz, CD₃CN, 298 K) of 2⊃6'

5. X-ray crystal data for cryptand 1.

CCDC number	1557481
Empirical formula	$C_{68}H_{75}F_{12}N_6O_{14}P_2$
Formula weight	1490.28
Temperature	296(2)
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P 21 21 21
a	10.9020 (4) Å
b	17.44447(6) Å
с	38.6793(14) Å
α	90 °
β	90 °
γ	90 °
Volume	7356.1(5) Å ³
Ζ	4

Table 1. Crystal data and structure refinement for 1⊃paraquat.

Density (calculated)	1.346
Absorption coefficient	0.154
F(000)	3100
Crystal size	$0.26\times0.24\times0.22\ mm^3$
Theta range for data collection	2.10 to 25.01 °
Index ranges	-12 <= h <= 12, -16 <= k <=20, -46<= 1 <=46
Reflections collected	54216
Independent reflections	12941 [R(int) = 0.0868]
Completeness to theta = 25.01°	99.8%
Absorption correction	f and w scan
Refinement method	Full-matrix least-squares on F^2
Goodness-of-fit on F2	1.106
Final R indices [I > 2sigma(I)]	R1 = 0.0868, wR2 = 0.2504
R indices (all data)	R1 = 0.0754, wR2 = 0.2337
Largest diff. peak and hole	1.053 and -0.998 e·Å ⁻³

6. References

- 1. H. Li, C.-S. Da, Y.-H. Xiao, X. Li and Y.-N. Su, J. Org. Chem, 2008, 73, 7398-7401.
- 2. M. J. Gunter and M. R. Johnston, *Tetrahedron Lett.*, 1990, **31**, 4801-4804.