Electronic Supplementary Information

Chromium doped Li₂RuO₃ as a positive electrode with superior electrochemical performance for lithium ion batteries

Shengzhou Liu,^a Jiali Wang,^b Zixuan Tian,^a Qian Li,^a Xiaoqing Tian,^a Yanhua Cui^b and Yin Yang^{*a}

^a Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China.

^b Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang, Sichuan, 621000, P. R. China

Corresponding Author: *Email: ias yyang@njtech.edu.cn

Experimental Section

Material Synthesis. All the samples, Li_2RuO_3 (LRO) and Cr-doped Li_2RuO_3 (LiRu_{0.98}Cr_{0.02}O₃, LiRu_{0.95}Cr_{0.05}O₃ and LiRu_{0.9}Cr_{0.1}O₃, denoted as LRO-Cr0.02, LRO-Cr0.05 and LRO-Cr0.1, respectively), were synthesized by high-temperature solid-state sintering method. Stoichiometric amounts of Li_2CO_3 , Cr_2O_3 and RuO_2 as precursors were mixed using a mortar and pestle for 30 min and then ball milled for 40 min with a 10wt% excess amount of Li_2CO_3 to compensate for Li evaporation during sintering. The resultant mixture were placed in separated alumina crucibles and sintered at 900 °C for 12 hours. The furnace heating rate was set at 2 °C/min and then the furnace was naturally cool to room temperature.

Characterization. X-ray diffraction (XRD) patterns were investigated by Bruker D8 Advance diffractometer equipped with Cu K α radiation (λ = 0.15406 nm). The morphological features and elemental analysis of the product were characterized by field emission scanning electron microscopy (FESEM) (HITACHI, S-4800). X-ray photoelectron spectroscopy (XPS, Physical Electronics) was employed to check valence state of elements in the samples.

Electrochemical measurements. Type-2025 coin cells were assembled in an argonfilled glovebox. The positive electrodes were fabricated by mixing active material, super-P carbon, and polyvinylidene fluoride binder (PVDF) with weight ratio of 8:1:1. The mixture was pressed onto an Al foil and vacuum dried at 120 °C overnight. A lithium disc was pressed on a thin stainless steel disc as anode. The electrolyte used was 1 M LiPF₆ solution in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) with weight ratio of 1:1. Galvanostatic charge-discharge measurements were carried out at room temperature with a battery test system (CT2001A, Wuhan Land Electronics). Cyclic voltammertry (CV) and electrochemical impedance spectroscopy (EIS) measurements of all samples were recorded using CHI 660B. CV was conducted at a scan rate of 0.1 mV s⁻¹ in potential window of 2.0-4.6 V and EIS was obtained at 4.2 V during charge process at 1st, 2nd and 30th cycle in the frequency range of 100 kHz to 0.01 Hz.

Typical materials	Current density	Voltage range (V)	Initial capacity (mAh g ⁻¹)	Cycle number	Remaining capacity (mAh/g)	Capacity retention	High rate performance	Ref.
$Li_{2.1}Ru_{0.9}Co_{0.1}O_3$	260 mA g ⁻¹	2.0-1.8	275	50	175	64	_	S 1
Li ₃ CoRuO ₅	0.1 mA cm ⁻²	2.75-4.2	205	6	180	88%	_	S2
Li ₃ NiRuO ₅	0.1 mA cm ⁻²	2.75-4.2	240	6	160	67%	_	S2
Li ₄ CoRuO ₆	30 mA g ⁻¹	2.2-4.2	180	10	130	72%		S3
$Li_5Co_{1.5}Ru_{1.5}O_8$	30 mA g ⁻¹	2.2-4.2	140	10	115	82%	_	S3
$Li_{1.8}Ru_{0.6}Fe_{0.6}O_3$	0.1 mA cm ⁻²	2.0-4.3	125	7	100	80%	_	S4
Li ₂ RuB _{0.15} O ₃	30 mA g ⁻¹	2.0-4.6	220	50	210	95%	_	S5
$Li_2Ru_{0.9}Zr_{0.1}O_3$	0.1 mA cm ⁻²	2.8-4.3	205	20	190	93%	_	S6
Li ₂ RuO ₃	16 mA g ⁻¹	2.0-4.8	288	40	220	76%	_	S7
$Li_2Mn_{0.4}Ru_{0.6}O_3$	16 mA g ⁻¹	2.0-4.8	218	50	165	76%	_	S7
Li ₂ RuO ₃	32 mA g ⁻¹	2.0-4.6	280	50	224	80%		S 8
$Li_2Ru_{0.75}Sn_{0.25}O_3$	32 mA g ⁻¹	2.0-4.6	220	50	180	82%		S 8
$Li_2Ru_{0.75}Ti_{0.25}O_3$	32 mA g ⁻¹	2.0-4.6	243	50	175	72%	_	S8
Li ₂ RuO ₃	30 mA g ⁻¹	2.0-4.6	260	30	220	85%		S9
Li _{1.23} Ni _{0.155} Ru _{0.615} O ₂	22 mA g ⁻¹	2.2-4.3	295	50	210	71%	145 mAh g ⁻¹ (220 mA g ⁻¹)	S10
$Li_2Ru_{0.75}Sn_{0.25}O_3$	143 mA g ⁻¹	2.0-4.8	180	50	140	78%	107 mAh g ⁻¹ (458 mA g ⁻¹)	S11
$Li_2Ru_{0.75}Ti_{0.25}O_3$	143 mA g ⁻¹	2.0-4.8	225	50	200	89%	140 mAh g ⁻¹ (458 mA g ⁻¹)	S11
$Li_2Ru_{0.6}Mn_{0.4}O_3$	32 mA g ⁻¹	2.0-4.6	250	50	200	80%	42 mAh g ⁻¹ (800 mA g ⁻¹)	S12
$Li_2Ru_{0.9}Ir_{0.1}O_3$	40 mA g ⁻¹	2.0-4.6	200	50	180	90%	82 mAh g ⁻¹ (800 mA g ⁻¹)	S13
$Li_2Ru_{0.95}Cr_{0.05}O_3$	32 mA g ⁻¹	2.0-4.6	298	50	262	88%	179 mAh g ⁻¹ (800 mA g ⁻¹)	TW*
$Li_2Ru_{0.95}Cr_{0.05}O_3$	160 mA g ⁻¹	2.0-4.2	253	120	220	87%	_	TW*

Table S1. Comparison of electrochemical performance of Cr-doped Li_2RuO_3 with other reported Ru-based layered oxides.

TW*: This Work

0		0.02		0.05		0.1	
$_{\rm f}(\Omega)$]	$R_{ct}(\Omega)$	$R_{f}(\Omega)$	$R_{ct}\left(\Omega\right)$	$R_{f}(\Omega)$	$R_{ct}(\Omega)$	$R_{f}(\Omega)$	$R_{ct}(\Omega)$
4.34	76.73	24.15	32.42	14.28	29	51.75	123.4
1.56	130	40.24	73.43	40.01	64.56	45.92	85.34
9.68	231.3	6.088	156.9	5.59	127.1	8.816	132.8
	(Ω) 4.34 1.56 .68	$\begin{array}{c c} \hline (\Omega) & R_{ct} (\Omega) \\ \hline 4.34 & 76.73 \\ \hline 1.56 & 130 \\ \hline .68 & 231.3 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table S2. Fitting values of R_f and R_{ct} of $Li_2Ru_xCr_{1-x}O_3$ (x=0, 0.02, 0.05, 0.1) series.

Fig. S1 EDS spectra of $LiRu_{1-x}Cr_xO_3$ series with (a) x=0; (b) x=0.02; (c) x=0.05 and (d) x=0.1. The inset tables show the designed and experimental values for molar ratio of Cr/Ru.

Fig. S2 EIS plots of $LiRu_{1-x}Cr_xO_3$ (x=0, 0.02, 0.05, 0.1) series at (a) the initial cycle; (b) 2nd cycle and (c) 30th cycle.

Fig. S3 The chemical diffusion coefficients of Li^+ for $Li_2Ru_xCr_{1-x}O_3$ (x=0, 0.02, 0.05, 0.1) series at different state of charge from EIS.

References

- S1. P. Arunkumar, W. J. Jeong, S. Won and W. B. Im, *Journal Of Power Sources*, 2016, **324**, 428-438.
- S2. S. Laha, E. Moran, R. Saez-Puche, M. A. Alario-Franco, A. J. Dos Santos-Garcia, E. Gonzalo, A. Kuhn, S. Natarajan, J. Gopalakrishnan and F. Garcia-Alvarado, *J Mater Chem A*, 2013, 1, 10686-10692.
- S3. S. Tamilarasan, D. Mukherjee, S. Sampath, S. Natarajan and J. Gopalakrishnan, *Solid State Ionics*, 2016, 297, 49-58.
- S4. H. Kobayashi, R. Kanno, M. Tabuchi, H. Kageyama, O. Nakamura and M. Takano, *Journal Of Power Sources*, 1997, **68**, 686-691.
- S5. B. Li, H. J. Yan, Y. X. Zuo and D. G. Xia, Chem Mater, 2017, 29, 2811-2818.
- S6. G. J. Moore, C. S. Johnson and M. M. Thackeray, *Journal Of Power Sources*, 2003, **119**, 216-220.
- S7. D. Mori, H. Kobayashi, T. Okumura and Y. Inaguma, *Electrochemistry*, 2015, 83, 1071-1076.
- S8. M. Sathiya, A. M. Abakumov, D. Foix, G. Rousse, K. Ramesha, M. Saubanere, M. L. Doublet, H. Vezin, C. P. Laisa, A. S. Prakash, D. Gonbeau, G. VanTendeloo and J. M. Tarascon, *Nat Mater*, 2015, 14, 230-238.
- S9. B. A. Li, R. W. Shao, H. J. Yan, L. An, B. Zhang, H. Wei, J. Ma, D. G. Xia and X. D. Han, *Adv Funct Mater*, 2016, 26, 1330-1337.
- S10. X. B. Wang, W. F. Huang, S. Tao, H. Xie, C. Q. Wu, Z. Yu, X. Z. Su, J. X. Qi, Z. U. Rehman, L. Song, G. B. Zhang, W. S. Chu and S. Q. Wei, *Journal Of Power Sources*, 2017, **359**, 270-276.
- S11. A. K. Kalathil, P. Arunkumar, D. H. Kim, J. W. Lee and W. B. Im, Acs Appl Mater Inter, 2015, 7, 7118-7128.
- S12. M. Sathiya, K. Ramesha, G. Rousse, D. Foix, D. Gonbeau, A. S. Prakash, M. L. Doublet, K. Hemalatha and J. M. Tarascon, *Chem Mater*, 2013, 25, 1121-1131.
- S13. S. Sarkar, P. Mahale and S. Mitra, J Electrochem Soc, 2014, 161, A934-A942.