Photolysis of Polymeric Self-Assembly Controlled by DonorAcceptor Interaction

Tingjuan Qian, ${ }^{\text {a Feiyi Chen, }}{ }^{\text {a }}$ Yulan Chen, ${ }^{*}{ }^{\text {a }}$ Yi-Xuan Wang ${ }^{* a}$ and Wenping Hu ${ }^{a}$
${ }^{\text {a Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry, School of }}$ Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.

E-mail: yulan.chen@tju.edu.cn; yx_wang@tju.edu.cn

Contents

Section 1. General information

Section 2. Synthesis of An-bOMV

Section 3. Characterization of supramolecular assembly

Section 4. Characterization of D-A interaction

Section 5. Light-induced dissipation
Section 6. NMR and Mass spectra of guest molecule
Section 7. Supporting References

1. General information

The commercially available reagents and solvents were used as purchased. All yields were given as isolated yields. The pre-irradiated solution, which was bubbled for 30 min by oxygen, was placed in centrifugal tubes (5 mL) and further irradiated using a 300 W Xenon lamp (CEL-HXF300). The regulation of pH is executed by hydrochloric acid and sodium hydroxide. ${ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (100 MHz) and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectra were recorded in deuterated solvents on a Bruker ADVANCE 400 at $25^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectra recorded in $\mathrm{D}_{2} \mathrm{O}$ were referenced to the internal $\mathrm{CH}_{3} \mathrm{CN}$ signal at 2.06 ppm . MALDI-TOF mass spectra were recorded on a Bruker New Autoflex Speed LIN Spectrometer using a 337 nm nitrogen laser with dithranol as matrix. UV-vis absorption spectra were obtained on a PerkinElmer Lambda 750 spectrophotometer at $25^{\circ} \mathrm{C}$. Fluorescence spectra were recorded on a Hitachi model F-7000 spectrofluorometer. Atomic force microscopy (AFM) was performed on a Bruker Multimode 8 on the mica sheet. High-resolution electrospray ionization mass spectra (HR-ESI-MS) were recorded on a Bruker mior OTOF-QII spectrometer. The Electrospray Ionization Mass Spectra (EI-MS) were recorded on a SHIMADZU GCMS-QP2010 SE. The cyclic voltammetry experiments were carried out on a CHI660E B14511 electrochemical workstation comprising a platinum carbon working electrode, a Pt coil counter electrode, and a $\mathrm{Hg} / \mathrm{Hg}_{2} \mathrm{Cl}_{2}$ (SCE) reference electrode. The hydrodynamic diameter $\left(\mathrm{D}_{\mathrm{h}}\right)$ was determined by DLS experiments at $25^{\circ} \mathrm{C}$. Solution samples were examined by NanoBrook 173 plus at scattering angle of 90°. Viscometer measurements were carried out on a SCHOTT-Ubbelohde micro capillary viscometer (DIN 53810, 0.40 mm inner diameter) at $30^{\circ} \mathrm{C}$.

2. Synthesis of An-bOMV

Scheme S1. Synthesis of An-bOMV.

Synthesis of Compound 1. ${ }^{1}$ A mixture of triethylene glycol ($8.0 \mathrm{~mL}, 0.06 \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}$ ($25.0 \mathrm{~mL}, 0.18 \mathrm{~mol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. A solution of tosyl chloride ($25.0 \mathrm{~g}, 0.13 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added in portions to this mixture during 1 h under a nitrogen atmosphere. After that, the reaction mixture was stirred overnight at room temperature. It was then washed with saturated NaHCO_{3} aqueous solution. The organic phase was dried by MgSO_{4} and the solvent was removed via rotary evaporation under reduced pressure. The crude product was purified by column chromatography over silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether to afford $\mathbf{1}$ as a white solid (19.4 g, 71\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72$ (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$), 7.27 (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.08-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.60-3.57(\mathrm{~m}, 4 \mathrm{H}), 3.46(\mathrm{~s}, 4 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H})$.

Synthesis of Compound 2. ${ }^{2}$ A mixture of compound $1(13.0 \mathrm{~g}, 28.5 \mathrm{mmol}), 9,10-$ anthraquinone ($1.0 \mathrm{~g}, 4.8 \mathrm{mmol}$), and tetrabutylammonium bromide (TBAB) (1.6 g , $4.8 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ under a nitrogen atmosphere. Then the solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(1.7 \mathrm{~g}, 9.5 \mathrm{mmol})$ and $\mathrm{NaOH}(1.9 \mathrm{~g}, 47.7 \mathrm{mmol})$ in nitrogensaturated water (50 mL) was added in portions, and the mixture was stirred under reflux at $40^{\circ} \mathrm{C}$ for 5 days. After cooling to room temperature, it was then washed with saturated NaCl aqueous solution, and the organic phase was dried by MgSO_{4}. The solvent was removed via rotary evaporation under reduced pressure, and the resulting residue was purified by column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /petroleum ether to yield
$2(0.7 \mathrm{~g}, 19 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.27(\mathrm{dd}, J=6.4 \mathrm{~Hz}$, $2.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.71$ (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.39(\mathrm{dd}, J=6.8,3.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 4 \mathrm{H}$), 4.29-4.21 (m, 4H), 4.17-4.09 (m, 4H), 3.94-3.85 (m, 4H), 3.72-3.69 (m, 8 H), 3.67-3.66 (m, 4H), $2.30(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.03,143.76$, 131.91, 128.77, 126.93, 124.31, 124.06, 121.65, 73.75, 69.91, 69.62, 68.28, 67.86, 20.25. MALDI-TOF: $m / z 782.243$ ([M] ${ }^{+}$, calcd for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{O}_{12} \mathrm{~S}_{2}{ }^{+}, 782.243$).

Synthesis of Compound 3. ${ }^{3}$ A mixture of compound $2(0.65 \mathrm{~g}, 0.83 \mathrm{mmol})$ and KI $(1.4 \mathrm{~g}, 8.3 \mathrm{mmol})$ in acetone $(60 \mathrm{~mL})$ was heated under reflux in a nitrogen atmosphere for 24 h and evaporated to dryness after cooling. The residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution. The organic phase was dried by MgSO_{4}. The solvent was removed via rotary evaporation under reduced pressure, and the resulting residue was purified by column chromatography with EtOAc/petroleum to yield $\mathbf{3}$ as a white solid ($250 \mathrm{mg}, 43 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.30$ (dd, J $=6.8,3.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.41(\mathrm{dd}, J=6.8,3.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.44-4.21(\mathrm{~m}, 4 \mathrm{H}), 4.03-3.88(\mathrm{~m}$, $4 \mathrm{H}), 3.88-3.62(\mathrm{~m}, 12 \mathrm{H}), 3.23(\mathrm{t}, J=13.6 \mathrm{~Hz}, 4 \mathrm{H})$.

Synthesis of Compound An-bOMV. ${ }^{3}$ A solution of 4,4-bipyridine ($2.25 \mathrm{~g}, 14.4$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(40 \mathrm{~mL})$ was refluxed under a nitrogen atmosphere. Compound 3 $(1.0 \mathrm{~g}, 1.4 \mathrm{mmol})$ was added in portions during 3 days, seven times per day $(40 \mathrm{mg}$ per portion). The reaction mixture was maintained under reflux for further 48 h , and then was cooled at $4{ }^{\circ} \mathrm{C}$ overnight. The precipitate was collected and dissolved in a minimum of water, followed by the addition of excess $\mathrm{NH}_{4} \mathrm{PF}_{6}$ until no further precipitation was observed. The solid was purified by silica gel column chromatography with acetone $/ \mathrm{NH}_{4} \mathrm{PF}_{6}(\mathrm{aq}, 0.25 \mathrm{M})$. The counterions were exchanged to Br^{-}using tetrabutylammonium bromide to yield An-bOMV as a yellow solid (220 $\mathrm{mg}, 17 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 9.22$ (d, $J=6.4 \mathrm{~Hz}, 4 \mathrm{H}$), 8.64 (d, $J=$ $6.0 \mathrm{~Hz}, 4 \mathrm{H}), 8.52(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.19(\mathrm{dd}, J=6.8,3.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.75(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 4 \mathrm{H}), 7.45(\mathrm{dd}, J=6.8,3.2 \mathrm{~Hz}, 4 \mathrm{H}), 5.08-4.80(\mathrm{~m}, 4 \mathrm{H}), 4.14-4.07(\mathrm{~m}, 8 \mathrm{H}), 3.92-$ $3.62(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): δ 152.50, 150.66, 146.42, 145.67,

3. Characterization of supramolecular assembly

Figure S1. Dependence of the absorbance of An-bOMV on the increase of $\mathbf{C B}[8]$ in water. [AnbOMV $]=10.0 \mu \mathrm{M}$.

Figure S2. Cyclic voltammograms of An-bOMV with and without CB[8] in phosphate buffer solution (pH 7.0). Scan rate $=100 \mathrm{mVs}^{-1} .[$ An-bOMV $]=[\mathbf{C B}[8]]=0.1 \mathrm{mM}$.

Figure S3. Partial ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY NMR spectrum of the An-bOMV-CB[8] complex in $\mathrm{D}_{2} \mathrm{O}$.
$[\mathbf{A n}-b O M V]=[\mathbf{C B}[8]]=1.0 \mathrm{mM}$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectra of (a) An-bOMV and (b) An-bOMV + CB[8] in $\mathrm{D}_{2} \mathrm{O}$. [An-bOMV]
$=[\mathbf{C B}[8]]=1.0 \mathrm{mM}$.

Figure S5. Specific viscosity of aqueous solutions of An-bOMV, the An-bOMV-CB[8] complex, and the An-bOMV-CB[8] complex after light irradiation for 2 h .

4. Characterization of D-A interaction

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra of (a) An-bOMV in DMSO- d_{6} and (b) An-bOMV in $\mathrm{D}_{2} \mathrm{O}$.

Figure S7. (a) UV-vis absorption spectra of An-bOMV in water. (b) The linear fitting of absorbance at 460 nm versus concentration.

5. Light-induced dissipation

Figure S8. UV-vis absorption spectra of (a) An-bOMV and (b) An-bOMV-CB[8] assembly under irradiation at pH 7 . $[$ An-bOMV $]=[\mathbf{C B}[8]]=0.1 \mathrm{mM}$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra of the products of (a) An-bOMV and (b) An-bOMV-CB[8] assembly, in the organic extract phase after irradiation for 2 h in CDCl_{3}.
(a)

Figure S10. EI-MS spectra of the products of (a) An-bOMV and (b) An-bOMV-CB[8] assembly in the organic extract phase after irradiation for 2 h .

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectra of (a) An-bOMV, and the photolytic products of (b) An-bOMV and (c) An-bOMV-CB[8] assembly in the water phase after extraction measured in DMSO- d_{6}. The $\mathbf{M V}{ }^{+}$moiety of the resulting alkanol is denoted as symbol \bullet.

Figure S12. HR-ESI-MS spectrum of the photolytic product of An-bOMV-CB[8] assembly in the water phase after extraction.

Figure S13. AFM image of An-bOMV-CB[8] assembly after irradiation for 2 h .

6. NMR and Mass spectra of guest molecule

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2}$ in CDCl_{3}.

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2}$ in CDCl_{3}.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of compound An-bOMV in DMSO- d_{6}.

Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum of compound An-bOMV in DMSO- d_{6}.

Figure S18. HR-ESI-MS spectrum of compound An-bOMV

7. Supporting References

1 D. L. Mohler and G. Shen, Org. Biomol. Chem., 2006, 4, 2082-2087.
2 D. Arian, L. Kovbasyuk and A. Mokhir, J. Am. Chem. Soc., 2011, 133, 3972-3980.
3 Z.-J. Zhang, H.-Y. Zhang, L. Chen and Y. Liu, J. Org. Chem., 2011, 76, 8270-8276.

