SUPPORTING INFORMATION

Snapshot of Inorganic Janovsky Complex Analogues featuring a Nucleophilic Boron Center

Di Wu,^a Yongxin Li,^b Rakesh Ganguly,^b and Rei Kinjo^{*,a}

^aDivision of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, ^bNTU-CBC Crystallography Facility, Nanyang Technological University, Singapore 637371, Singapore

CONTENTS

- 1. Synthesis, physical and spectroscopic data
- 2. Crystal Structure Determination
- 3. Theoretical calculation
- 4. References
- 5. NMR spectra

1. Synthesis, physical and spectroscopic data for all new compounds

General considerations: All reactions were performed under an atmosphere of dry argon using standard Schlenk or dry box techniques; solvents were dried over Na metal, K metal or CaH₂., and distilled under nitrogen. Reagents were of analytical grade, obtained from commercial suppliers and used without further purification. ¹H, ¹³C, ¹¹B and ³¹P NMR spectra were recorded on a Bruker AVIII 400 MHz or Bruker AV 400 MHz, spectrometers at 298 K. NMR multiplicities are abbreviated as follows: s = singlet, d = doublet, m = multiplet. Coupling constants *J* are given in Hz. In the ¹³C NMR spectra of compounds **2**, **3**, **4**, **5**, **6**, **7** signals for the carbon atoms directly bonding to the boron atom could not be observed, presumable due to the coupling with the boron atom. Electrospray ionization (ESI) mass spectra were obtained at the Mass Spectrometry Laboratory at the Division of Chemistry and Biological Chemistry, Nanyang Technological University. Melting points were measured with OptiMelt (Stanford Research System).

Compound 2/2': Phenyl lithium (0.007 g, 0.081 mmol) was added into a THF- d_8 (0.45 mL) solution of 1,3,2,5-diazadiborinine **1** (0.025 g, 0.067 mmol) in a J-Young NMR tube at room temperature. The tube was sealed, shaken and the reaction was monitored by NMR spectroscopy, which indicated the formation of **2** (Figure S1).* Subsequently, 12-crown-4 ether (22 µL, 0.134 mmol) was added into the solution. After 2 hours, the red crystal generated was filtered off, washed with THF (5 ml), and then dried under vacuum to afford **2'** as a red powder (0.038 g, 70% yield). (*Single crystals of **2** suitable for X-ray diffraction analysis were obtained from a concentrated solution of THF at –10 °C without addition of 12-crown-4.)

M.p.: 125 °C (dec.); ¹H NMR (400 MHz, C₅D₅N): δ = 0.87 (s, 12 H, CH₃), 3.67 (s, 32 H, OCH₂CH₂O), 3.94 (s, 4 H, CH₂), 6.85-8.92 (m, 15 H, ArH); ¹³C NMR (100 MHz, C₅D₅N): δ = 26.1 (CH₃), 62.1 (<u>C</u>(CH₃)₂), 70.6 (OCH₂CH₂O), 81.9 (CH₂), 125.3 (CH x2), 126.9 (CH x4), 127.2 (CH x3), 133.2 (CH x2); ¹³C NMR (DEPT-135, 100 MHz, C₅D₅N): δ = 26.1 (CH₃), 125.3 (CH x2), 126.9 (CH x4), 127.2 (CH x3), 133.2 (CH x2); 136.3 (CH x4); ¹¹B NMR (76.8 MHz, C₅D₅N): δ = -0.9 (s), 1.4 (s); HRMS (ESI): *m*/*z* calcd for C₂₈H₃₁B₂N₂O₂: 449.2572 [(*M*)]⁻; found: 449.2589.

Figure S1. ¹¹B NMR (THF-*d*₈) spectrum of a mixture of 1 and Phenyl lithium after 2 hours at ambient temperature.

Compound 3: Methyl iodide (5 μ L, 0.081 mmol) was added into a THF-*d*₈ (0.45 mL) solution of **2** (0.031 g, 0.067 mmol) in a J-Young NMR tube at room temperature. The reaction occurred immediately as confirmed by NMR spectroscopy. After removal of all volatiles, the solid residue was recrystallized from a THF/hexane mixed solution to afford colorless crystals of **3** (0.024 g, 76% yield).

Mp: 173 °C. ¹H NMR (400 MHz, THF- d_8): $\delta = 0.35$ (s, 3 H, BCH₃), 0.61 (s, 12 H, CH₃), 3.92-3.97 (m, 4 H, CH₂), 7.00-7.91 (m, 15 H, ArH); ¹³C NMR (100 MHz, THF- d_8): $\delta = 25.6$ (CH₃), 25.7 (CH₃), 68.0 (<u>C</u>(CH₃)₂), 81.8 (CH₂), 125.4 (CH x1), 127.3 (CH x1), 127.4 (CH x1), 127.5 (CH x2), 127.9 (CH x2), 128.0 (CH x2), 133.4 (CH x2), 135.2 (CH x2), 135.4 (CH x2); ¹³C NMR (DEPT-135, 100 MHz, THF- d_8): $\delta = 25.6$ (CH₃), 25.7 (CH₃), 125.4 (CH x1), 127.3

(CH x1), 127.4 (CH x1), 127.5 (CH x2), 127.9 (CH x2), 128.0 (CH x2), 133.4 (CH x2), 135.2 (CH x2), 135.4 (CH x2); ¹¹B NMR (76.8 MHz, THF- d_8): = -19.3 (s), -0.8 (s). HRMS (ESI): m/z calcd for C₂₉H₃₅B₂N₂O₂: 465.2885 [(M+H)]⁺; found: 465.2896.

Compound 4: Cy₃PAuCl (0.034 g, 0.067 mmol) was added into a THF- d_8 (0.45 mL) solution of 2 (0.031 g, 0.067 mmol) in a J-Young NMR tube at room temperature. The reaction occurred immediately as confirmed by NMR spectroscopy. After removal of all volatiles, the solid residue was recrystallized from a THF/hexane mixed solution to afford colorless crystals of 4 (0.040 g, 65% yield).

M.p.: 175 °C (dec.); ¹H NMR (400 MHz, THF- d_8): $\delta = 0.64$ (s, 6 H, CH₃), 0.66 (s, 6 H, CH₃), 1.26-2.11 (m, 33 H), 4.01-4.07 (m, 4 H, CH₂), 7.12-7.95 (m, 15 H, ArH); ¹³C NMR (100 MHz, THF- d_8): $\delta = 25.2$ (CH₃), 25.5 (CH₃), 26.7 (CH₂), 27.7 (CH₂), 27.8 (CH₂), 31.4 (CH₂), 33.4 (CH), 33.7 (CH), 69.0 (<u>C</u>(CH₃)₂), 82.1 (CH₂), 126.9 (CH x1), 127.6 (CH x2), 127.67 (CH x1), 127.70 (CH x1), 128.18 (CH x2), 128.20 (CH x2), 133.3 (CH x2), 135.1 (CH x2), 135.3 (CH x2); ¹³C NMR (DEPT-135, 100 MHz, THF- d_8): $\delta = 25.2$ (CH₃), 25.5 (CH₃), 33.4 (CH), 33.7 (CH), 126.9 (CH x1), 127.6 (CH x2), 127.68 (CH x1), 127.70 (CH x1), 128.19 (CH x2), 128.21 (CH x2), 133.3 (CH x2), 135.1 (CH x2), 135.3 (CH x2); ¹¹B NMR (76.8 MHz, THF- d_8): $\delta = -11.6$ (s), -0.4 (s); ³¹P NMR (162 MHz, CDCl₃): $\delta = 53.3$ (s); HRMS (ESI): m/z calcd for C₄₆H₆₅AuB₂N₂O₂P: 927.4635 [(M+H)]⁺; found: 927.4644.

Compound 5: By following the procedure for the synthesis of **2**', the reaction of **1** with the **methyl lithium** solution afforded **5** as a red powder (0.039 g, 77 % yield).

M.p.: 110 °C (dec.); ¹H NMR (400 MHz, C₅D₅N) δ = 0.96 (s, 3 H, BCH₃), 1.17 (s, 6 H, CH₃), 1.47 (s, 6 H, CH₃), 3.67 (s, 32 H, OCH₂CH₂O), 3.87 (d, *J* = 7.2 Hz, 2 H, CH₂), 3.97 (d, *J* = 7.2 Hz, 2 H, CH₂), 6.80-8.84 (m, 10 H, ArH); ¹³C NMR (100 MHz, C₅D₅N): δ = 26.6 (CH₃), 29.0 (CH₃), 61.3 (<u>C</u>(CH₃)₂), 70.8 (OCH₂CH₂O), 82.0 (CH₂), 117.5 (CH x1), 124.8 (CH x1), 126.8 (CH x2), 127.2 (CH x2), 133.0 (CH x2), 133.8 (CH x2); ¹³C NMR (DEPT-135, 100 MHz, C₅D₅N): δ = 26.6 (CH₃), 29.0 (CH₃), 117.5 (CH x1), 124.8 (CH x1), 126.9 (CH x2), 127.2 (CH x2), 133.1 (CH x2), 133.8 (CH x2); ¹¹B NMR (76.8 MHz, C₅D₅N): δ = -1.3 (s), 0.5 (s); HRMS (ESI): *m*/*z* calcd for C₂₃H₂₉B₂N₂O₂: 387.2415 [(*M*)]; found: 387.2431.

Compound 6: By following the procedure for the synthesis of 2° , the reaction of 1 with (**phenylethynyl**)**lithium** afforded **6** as a red powder (0.045 g, 80 % yield).

M.p.: 166 °C (dec.); ¹H NMR (400 MHz, C₅D₅N): $\delta = 1.51$ (s, 6 H, CH₃), 1.86 (s, 6 H, CH₃), 3.67 (s, 32 H, OCH₂CH₂O), 3.93 (d, J = 7.2 Hz, 2 H, CH₂), 4.06 (d, J = 7.2 Hz, 2 H, CH₂), 6.85-8.84 (m, 15 H, ArH); ¹³C NMR (100 MHz, C₅D₅N): $\delta = 26.3$ (CH₃), 27.5 (CH₃), 61.3 (<u>C</u>(CH₃)₂), 70.8 (OCH₂CH₂O), 81.9 (CH₂), 118.2 (CH x1), 125.3 (CH x1), 127.0 (CH x1), 127.1 (CH x2), 127.3 (CH x2), 128.7 (C_q), 129.2 (CH x2), 131.7 (CH x2), 132.0 (C_q), 133.1 (CH x2), 133.8 (CH x2); ¹³C NMR (DEPT-135, 100 MHz, C₅D₅N): $\delta = 26.3$ (CH₃), 27.5 (CH₃), 118.2 (CH x1), 125.3 (CH x1), 127.0 (CH x1), 127.1 (CH x2), 127.3 (CH x2), 129.2 (CH x2), 131.7 (CH x2), 133.8 (CH x2); ¹³C NMR (DEPT-135, 100 MHz, C₅D₅N): $\delta = 26.3$ (CH₃), 27.5 (CH₃), 118.2 (CH x1), 125.3 (CH x1), 127.0 (CH x1), 127.1 (CH x2), 127.3 (CH x2), 129.2 (CH x2), 131.7 (CH x2), 133.1 (CH x2), 133.8 (CH x2); B NMR (76.8 MHz, C₅D₅N): $\delta = -3.9$ (s), -0.4 (s); HRMS (ESI): m/z calcd for C₃₀H₃₁B₂N₂O₂: 473.2572 [(*M*)]⁻; found: 473.2580.

Compound 7: By following the procedure for the synthesis of **2**', the reaction of **2** and **1** -lithio-1-methylimidazolide afforded **7** as a red powder (0.045 g, 82 % yield).

M.p.: 98 °C (dec.); ¹H NMR (400 MHz, C₅D₅N): $\delta = 0.85$ (s, 6 H, CH₃), 0.93 (s, 6 H, CH₃), 3.68 (s, 32 H, OCH₂CH₂O), 3.92-3.96 (m, 4 H, CH₂), 4.01 (s, 3 H, NCH₃), 6.88-8.93 (m, 12 H); ¹³C NMR (100 MHz, C₅D₅N): $\delta = 24.4$ (CH₃), 27.1 (CH₃), 36.6 (NCH₃), 62.1 (<u>C</u>(CH₃)₂), 70.6 (OCH₂CH₂O), 81.7 (CH₂), 118.3 (CH x1), 121.0 (CH x1), 125.2 (CH x1), 126.6 (CH x1), 126.7 (CH x1), 127.2 (CH x3), 128.3 (CH x1), 133.3 (CH x3); ¹³C NMR (DEPT-135, 100 MHz, C₅D₅N): $\delta = 24.4$ (CH₃), 27.1 (CH₃), 27.1 (CH₃), 36.6 (NCH₃), 36.6 (NCH₃), 118.3 (CH x1), 121.0 (CH x1), 125.2 (CH x1), 126.7 (CH x1), 127.2 (CH x3), 128.3 (CH x1), 121.0 (CH x1), 125.2 (CH x1), 126.6 (CH x1), 126.7 (CH x3), 128.3 (CH x1), 118.3 (CH x1), 121.0 (CH x1), 126.6 (CH x1), 126.7 (CH x3), 128.3 (CH x1), 133.3 (CH x3); ¹¹B NMR (76.8 MHz, C₅D₅N): $\delta = -1.8$ (s), -1.1 (s); HRMS (ESI): *m/z* calcd for C₂₆H₃₁B₂N₄O₂: 453.2633 [(*M*)]⁻; found: 453.2639.

2. Crystal Structure Determination of Compounds 2, 3, 4, 5, 6 and 7

X-ray data collection and structural refinement. Intensity data for compounds 2, 3, 4, 5, 6 and 7 were collected using a Bruker APEX II diffractometer. The crystals of 3, 4, 5, 6 and 7 were measured at 100(2) K and the crystal of 2 was measured at 103(2). The structure was solved by direct phase determination (SHELXS-97)^[1] and refined for all data by full-matrix least squares methods on $F^{2,[2]}$ All non-hydrogen atoms were subjected to anisotropic refinement. The hydrogen atoms were generated geometrically and allowed to ride in their respective parent atoms; they were assigned appropriate isotropic thermal parameters and included in the structure-factor calculations. CCDC: 1569030-1569035 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from the Cambridge Crystallography Data Center via www.ccdc.cam.ac.uk/data_request/cif.

	2	3·(toluene) _{0.5}	4
Formula	$C_{44}H_{63}B_2LiN_2O_6$	$C_{32.50}H_{38}B_2N_2O_2$	$C_{46}H_{64}AuB_2N_2O_2P$
Fw	744.52	510.27	926.54
cryst syst	triclinic	triclinic	monoclinic
space group	<i>P-1</i>	P-1	P 1 21/c 1
Size (mm ³)	0. 100 x 0.240 x 0.320	0.140 x 0.220 x 0.320	0.100 x 0.220 x 0.320
Т, К	103(2)	100(2)	100(2)
<i>a</i> , Å	17.0101(4)	13.8934(5)	21.6138(7)
b, Å	17.8543(5)	14.2385(4)	11.4783(3)
<i>c</i> , Å	28.3178(7)	16.4845(5)	18.9214(5)
α, deg	79.6457(17) °	107.9003(9)°	90°
β, deg	87.6737(15)°	98.7434(11)°	114.5269(10)°
γ, deg	88.4679(17) °	106.7165(9)°	90°
V, A^3	8451.5(4)	2866.72(16)	4270.6(2)
Z	8	4	4
$d_{ m calcd} { m g} \cdot { m cm}^{-3}$	1.170	1.182	1.441
μ , mm ⁻¹	0.592	0.072	3.521
Refl collected	29269	130017	71330
T _{min} / T _{max}	0.8330/0.9430	0.9770/0.9900	0.3990/0.7200
N measd	29269	13661	8075
[R _{int}]	0.1677	0.1284	0.0613
R [I>2sigma(I)]	0.0956	0.0724	0.0379
$R_w[I>2sigma(I)]$	0.2796	0.1369	0.0819
GOF	1.022	1.115	1.182
Largest diff peak/hole[e·Å ⁻³]	0.557/-0.500	0.409/-0.267	2.166/-1.183

Table S1. Summary of Data Collection and Structure Refinement.

	5 ·(THF)	6·(THF) _{1.5}	7·(THF) ₂	
Formula	C43H69B2LiN2O11	$C_{52}H_{75}B_2LiN_2O_{11.50}$	$C_{50}H_{79}B_2LiN_4O_{12}$	
Fw	818.56	940.70	956.73	
cryst syst	triclinic	monoclinic	monoclinic	
space group	P-1	P 1 21/n 1	P 1 21/c 1	
Size (mm ³)	0.142 x 0.206 x 0.217	0.060 x 0.300 x 0.320	0.179 x 0.186 x 0.236	
Т, К	100(2)	100(2)	100(2)	
<i>a</i> , Å	11.8344(4)	12.1544(3)	11.7547(3)	
b, Å	12.2694(4)	23.3935(6)	28.7561(8)	
<i>c</i> , Å	15.7797(5)	17.8383(5)	15.7165(4)	
α, deg	92.1118(10)°	90°	90°	
β, deg	103.9532(11)°	96.1514(10)°	108.0772(12) ^o	
γ, deg	93.1230(10)°	90°	90°	
V, A^3	2217.36(13)	5042.8(2)	5050.3(2)	
Z	2	4	4	
$d_{\rm calcd} {\rm g} \cdot {\rm cm}^{-3}$	1.226	1.239	1.258	
μ , mm ⁻¹	0.086	0.085 0.088		
Refl collected	44237	44237 62962 48424		
T_{min}/T_{max}	0.9820/0.9880	0.9730/0.9950	0.9800/0.9840	
N measd	9013	11104	8908	
[R _{int}]	0.0828	0.1118	0.0562	
R [I>2sigma(I)]	0.0635	0.0596	0.0725	
$R_w[I>2sigma(I)]$	0.1598	0.1644	0.1614	
GOF	1.032	1.018	1.191	
Largest diff peak/hole[e·Å ⁻³]	0.532/-0.430	0.430/-0.519	0.503 /-0.344	

3. Theoretical calculation

Gaussian 09E was used for all density functional theory (DFT) calculations.^[3] Geometry optimization, frequency calculations, and Natural bond order (NBO) analysis on compound **2** was performed at the B3LYP/6-311G(d,p) level of theory.

Figure S2. Calculated optimized structures for 2 at B3LYP/6-311G(d,p) level of theory.

Table S2. Optimized structures of 2 (atom, x-, y-, z- positions in Å)

В	-1.078108	-0.000019	0.000024
В	2.114265	0.000110	0.000175
С	-1.966595	0.725964	1.201600
С	-1.329901	0.982785	2.431831
Η	-0.303074	0.655959	2.559984
С	-1.959383	1.653009	3.478787
Η	-1.422472	1.834758	4.405617
С	-3.275445	2.097099	3.337373
Η	-3.773953	2.616668	4.149940
С	-3.934903	1.867833	2.132255
Η	-4.957138	2.211221	1.998504
С	-3.284266	1.200000	1.089923
Η	-3.828053	1.061202	0.162203
С	-1.966207	-0.726118	-1.201754
С	-3.283840	-1.200327	-1.090448
Η	-3.827920	-1.061613	-0.162883
С	-3.934102	-1.868237	-2.132979
Η	-4.956322	-2.211772	-1.999500
С	-3.274298	-2.097362	-3.337926
Η	-3.772503	-2.616983	-4.150647
С	-1.958264	-1.653061	-3.478983
Η	-1.421093	-1.834693	-4.405685
С	-1.329157	-0.982790	-2.431842
Η	-0.302351	-0.655799	-2.559712
С	-1.817653	2.416768	-2.032801
Η	-1.751330	1.690764	-2.843556
Η	-1.962521	3.413513	-2.465032
Η	-2.701095	2.183482	-1.439202
С	-0.547844	2.423268	-1.177247
С	-0.669502	3.471901	-0.046377
Η	-1.492292	3.240652	0.627211
Η	-0.844843	4.464852	-0.477617
Η	0.253107	3.507349	0.537872

С	0.681746	2.747432	-2.029744
Η	0.593671	2.321822	-3.038762
Η	0.900739	3.814785	-2.100420
С	1.235310	1.029861	-0.651223
С	1.235337	-1.029703	0.651546
С	-0.547745	-2.423264	1.177392
С	-1.817577	-2.416934	2.032902
Η	-1.751357	-1.690966	2.843699
Η	-1.962350	-3.413716	2.465075
Η	-2.701022	-2.183713	1.439286
С	-0.669287	-3.471819	0.046436
Η	-1.492086	-3.240582	-0.627148
Η	-0.844549	-4.464821	0.477587
Η	0.253338	-3.507128	-0.537794
С	0.681826	-2.747408	2.029918
Η	0.593685	-2.321883	3.038966
Η	0.900894	-3.814752	2.100520
С	3.688534	0.000130	0.000156
С	4.455799	1.062701	-0.546965
Η	3.939735	1.908283	-0.981610
С	5.848588	1.063681	-0.549356
Η	6.379202	1.907805	-0.983922
С	6.567869	0.000156	0.000094
Η	7.653757	0.000158	0.000053
С	5.848630	-1.063385	0.549568
Η	6.379277	-1.907498	0.984116
С	4.455841	-1.062430	0.547241
Η	3.939817	-1.908032	0.981896
Ν	-0.126639	1.090299	-0.655690
Ν	-0.126602	-1.090239	0.655899
0	1.754463	2.108012	-1.340097
0	1.754530	-2.107851	1.340376

Figure S3. Plots of the frontier orbitals of compounds 2.

Table S3. The NPA charges of **2** calculated at B3LYP/6-311G(d,p) level of theory.

Ator	n No	Charge Natural	Core	Valence	Rydberg	Total
В	1	0.82974	1.99886	2.13951	0.03188	4.17026
В	2	0.05230	1.99861	2.93257	0.01653	4.94770
С	3	-0.27999	1.99891	4.25105	0.03003	6.27999
С	4	-0.19214	1.99907	4.17623	0.01684	6.19214
Η	5	0.21139	0.00000	0.78625	0.00237	0.78861
С	6	-0.21792	1.99914	4.20069	0.01809	6.21792
Η	7	0.19268	0.00000	0.80571	0.00161	0.80732
С	8	-0.23263	1.99914	4.21466	0.01883	6.23263
Н	9	0.19053	0.00000	0.80780	0.00167	0.80947
С	10	-0.22112	1.99914	4.20367	0.01831	6.22112
Н	11	0.18973	0.00000	0.80859	0.00167	0.81027
С	12	-0.22019	1.99907	4.20461	0.01652	6.22019
Н	13	0.19538	0.00000	0.80184	0.00278	0.80462
С	14	-0.27999	1.99891	4.25106	0.03003	6.27999
С	15	-0.22020	1.99907	4.20461	0.01652	6.22020
Н	16	0.19538	0.00000	0.80185	0.00278	0.80462
С	17	-0.22112	1.99914	4.20367	0.01831	6.22112
Η	18	0.18973	0.00000	0.80859	0.00167	0.81027
С	19	-0.23263	1.99914	4.21466	0.01883	6.23263
Н	20	0.19053	0.00000	0.80780	0.00167	0.80947
С	21	-0.21792	1.99914	4.20069	0.01809	6.21792
Η	22	0.19268	0.00000	0.80571	0.00161	0.80732
С	23	-0.19214	1.99907	4.17623	0.01684	6.19214
Н	24	0.21139	0.00000	0.78624	0.00237	0.78861
С	25	-0.57936	1.99925	4.56918	0.01092	6.57936
Н	26	0.21532	0.00000	0.78312	0.00156	0.78468
Η	27	0.19072	0.00000	0.80790	0.00138	0.80928
Η	28	0.21410	0.00000	0.78442	0.00148	0.78590
С	29	0.11407	1.99914	3.86273	0.02406	5.88593
С	30	-0.58572	1.99927	4.57488	0.01157	6.58572

Η	31	0.22068	0.00000	0.77767	0.00165	0.77932
Η	32	0.18248	0.00000	0.81590	0.00162	0.81752
Η	33	0.21143	0.00000	0.78723	0.00135	0.78857
С	34	-0.01779	1.99903	3.99742	0.02135	6.01779
Η	35	0.16570	0.00000	0.83228	0.00203	0.83430
Η	36	0.17784	0.00000	0.82050	0.00166	0.82216
С	37	0.41623	1.99873	3.54899	0.03605	5.58377
С	38	0.41625	1.99873	3.54897	0.03605	5.58375
С	39	0.11407	1.99914	3.86273	0.02406	5.88593
С	40	-0.57935	1.99925	4.56918	0.01092	6.57935
Η	41	0.21531	0.00000	0.78312	0.00156	0.78469
Η	42	0.19072	0.00000	0.80790	0.00138	0.80928
Η	43	0.21409	0.00000	0.78443	0.00148	0.78591
С	44	-0.58572	1.99927	4.57488	0.01157	6.58572
Η	45	0.22068	0.00000	0.77767	0.00165	0.77932
Η	46	0.18248	0.00000	0.81590	0.00162	0.81752
Η	47	0.21143	0.00000	0.78722	0.00135	0.78857
С	48	-0.01780	1.99903	3.99742	0.02135	6.01780
Η	49	0.16570	0.00000	0.83228	0.00203	0.83430
Η	50	0.17784	0.00000	0.82050	0.00166	0.82216
С	51	-0.22954	1.99900	4.21140	0.01915	6.22954
С	52	-0.21082	1.99911	4.19426	0.01744	6.21082
Η	53	0.20727	0.00000	0.78980	0.00294	0.79273
С	54	-0.22516	1.99914	4.20704	0.01897	6.22516
Η	55	0.18152	0.00000	0.81671	0.00177	0.81848
С	56	-0.27018	1.99914	4.24875	0.02228	6.27018
Η	57	0.18239	0.00000	0.81581	0.00179	0.81761
С	58	-0.22516	1.99914	4.20704	0.01897	6.22516
Η	59	0.18152	0.00000	0.81671	0.00177	0.81848
С	60	-0.21082	1.99911	4.19427	0.01744	6.21082
Η	61	0.20726	0.00000	0.78980	0.00294	0.79274
Ν	62	-0.71120	1.99924	5.68635	0.02561	7.71120
Ν	63	-0.71119	1.99924	5.68634	0.02560	7.71119
0	64	-0.56541	1.99974	6.54811	0.01756	8.56541
0	65	-0.56540	1.99974	6.54810	0.01756	8.56540
* Total * -1.00000 67.96984 171.27921 0.75095 240.00000						

4. References

- [1] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, **1997**.
- [2] Bruker AXS SHELXTL, Madison, WI; SHELX-97G. M. Sheldrick, *Acta Crystallogr. A*, **2008**, *64*, 112–122, SHELX-2013, <u>http://shelx.uni-ac.gwdg.de/SHELX/index.php</u>.
- [3] Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2013**.

$\frac{^{13}\mathrm{C}\{^{1}\mathrm{H}\}}{\mathrm{NMR}}$ (THF- d_{8})

$^{31}P{^{1}H} NMR (THF-d_8)$

$^{11}B{}^{1}H} NMR (C_5D_5N)$

$^{11}B{}^{1}H} NMR (C_5D_5N)$

