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General Methods and Instrumentation: 

All chemicals were purchased from either Aldrich or Fisher and used without further purification. N3-

C4H8CO-AAAYSSGAPPMPPF (N3-A2PEPAu, Figure S2) was purchased from ThermoFisher Scientific. Gold 

nanoparticles were purchased from Ted Pella (#15702-20 and #15704-20 for 5 and 15 nm particles, 

respectively).  Peptide oligonucleotide chimeras (POCs) were purified using an Agilent 1200 Series 

reverse-phase high-pressure liquid chromatography (HPLC) instrument equipped with an Agilent Zorbax 

300SB-C18 column. POCs were quantified based on their absorbance at 260 nm and using the total 

extinction coefficient of DNA (195,100 M-1cm-1 and 62,800 M-1cm-1 for PO18C and PO6C, respectively). 

Spectra were collected using an Agilent 8453 UV-Vis spectrometer equipped with deuterium and 

tungsten lamps. Transmission electron microscopy (TEM) samples were prepared by drop-casting 4 µL 

of solution onto a 3-mm-diameter copper grid coated with formvar. After 4 min., the excess solution 

was wicked away and the grid was washed with nanopure H2O (4 µL) and wicked away immediately. 

TEM images were collected with a FEI Morgagni 268 (80 kV) equipped with an AMT side mount CCD 

camera system. AFM samples were prepared by drop-casting 6 µL of solution onto freshly cleaved mica 
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or mica functionalized with 3-aminopropyltriethoxysilane (APTES) and air dried. The samples were 

washed with 30 µL nanopure H2O and wicked away (repeated once). The samples were allowed to air 

dry overnight. AFM images were collected with an Asylum MFP-3D atomic force microscopy using 

tapping-mode. Images were obtained using ultra-sharp AFM tips (NanoandMore, SHR-150), with a 0.8 

Hz scanning rate and 512 pixel resolution. Scanning electron microcopy (SEM) samples were prepared 

by drop-casting 5 µL of solution onto silicon wafers and allowed to air dry. The samples were then 

washed with 5 µL of nanopure H2O (wicked immediately) and then allowed to air dry overnight. SEM 

images were collected using a ZEISS Sigma 500 VP SEM. Matrix-assisted laser desorption/ionization 

time-of-flight mass spectrometry (MALDI-TOF MS) data were collected using an Applied Biosystem 

Voyager System 6174 MALDI-TOF mass spectrometer (negative reflector mode; accelerating voltage: 

20kV) with 3-hydroxypicolinic acid (3-HPA) as the ionization matrix. Nanopure water (NP H2O, 18.2 MΩ) 

was obtained from a Barnstead DiamondTM water purification system. All TEM measurements were 

made using ImageJ software. 

 

Preparation of Azido-Modified Oligonucleotide Conjugate (O18-N3 and O6-N3).   

In a typical procedure, syntheses were carried out from the 3′ direction using controlled pore glass (CPG) 

beads possessing 1 µmol of adenine (Glen Research, dA-CPG #20-2001-10, (1000 Å, 38 µmol/g)). The 

CPG beads were placed in a 1 µmol synthesis column and Ultramild 3′-phosphoramidites (Glen Research, 

Pac-dA-CE phosphoramidite #10-1601-05, Ac-dC-CE phosphoramidite #10-1015-C5, iPr-Pac-dG-CE 

phosphoramidite #10-1621-05, dT-CE phosphoramidite #10-1030-C5) and 5′-Iodo-dT phosphoramidite 

(Glen Research, #10-1931-90) were then added using the standard 1 μmol protocol on an Expedite 8909 

synthesizer.  Note, a mild Cap A Mix (Glen Research, 5% Phenoxyacetic anhydride in THF, #40-4212-52) 

was also used for synthesis due to the lability of the Iodo moiety. At the end of the synthesis, the beads 

were dried overnight and kept in a tightly capped vial at ambient conditions. 



The terminal Iodo groups were substituted for azides using an established procedure.1 The CPG 

beads were kept in the columns while a saturated mixture of sodium azide in anhydrous 

dimethylformamide (DMF) was prepared (approximately 30 mg per 1 mL, per 1 μmol). Upon pulling up 

1 mL of the mixture in a syringe, the column was firmly attached with an empty syringe on one end and 

the one containing the mixture in the other. The mixture was slowly passed over the CPG beads several 

times before either being left at ambient overnight or placed in a shaker at 60 °C for 1 h.  The beads 

were then washed thoroughly with DMF and acetone before drying with nitrogen. The solid-phase 

coupling reactions with the organic core were performed using these dry CPG beads. 

 

Attachment of Azido-Modified Oligonucleotides to Diacetylene Biphenyl Organic Core 

Dry CPG beads containing azide-modified DNA were placed in an Eppendorf tube.  The biphenyl core 

(200 mM in DMF, 200 equivalents based on the azide-DNA strands on CPG beads, assuming a 100% yield 

in the oligonucleotide synthesis), tris(3-hydroxypropyltriazolylmethyl)amine (THPTA, 100 mM in DMF, 

100 equivalents based on the azide-DNA strands on CPGs), CuSO4·5H2O (100 mM in DMF, 100 

equivalents based on the azide-DNA strands on CPGs), and L-ascorbic acid (100 mM in DMF, 100 

equivalents based on the azide-DNA strands on CPGs) were also added.  The reaction mixture was then 

blanketed with nitrogen before capping and shook for 7 to 18 h at 25 °C in an Eppendorf® Thermomixer® 

R (Eppendorf, #022670107) at 1000 rpm. It is important that the CPG beads are constantly agitated while 

mixing and not sitting at the bottom of the tube.  

Once the reaction was complete, the CPG beads were filtered using a one-side fritted 1 µmol 

Expedite DNA synthesis column (Glen Research, #20-0021-01), then the beads were washed with DMF 

(5×1 mL) and acetone (5×1 mL) and dried with nitrogen. The beads were then placed in 1 mL of AMA 

(CAUTION:  Only fresh AMA solutions that are not more than two weeks old and have been kept in the 

refrigerator below 0 °C should be used) at 65 °C for 15 min to cleave the conjugates from the solid 

supports.  Afterwards, the ammonia and methyl amine were removed by passing a stream of nitrogen 



over the solution.  To the remaining material was added ultrapure deionized H2O (affording roughly 1 

mL at the end), and the resulting solution was filtered through 0.45 μm nylon syringe filter (Acrodisc® 

13 mm syringe filter #PN 4426T). The filtered solution was purified using reverse-phase HPLC eluting 

with a linear gradient of CH3CN and 0.1 M TEAA (5/95 to 45/55 over 30 min.). 

 

Attachment of Azido-Modified Peptide onto the Biphenyl Organic Core. 

The POCs were prepared using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) 2-3 in which N3-

A2PEPAu (Figure S2) was reacted with the azido-modified 18mer and 6mer conjugates (Scheme S1). The 

following stock solutions were prepared: A, 198.3 mM CuSO4 in NP H2O; B, 37.3 mM THPTA in NP H2O; 

C, 2 M urea in NP H2O; and D, 60.6 mM sodium ascorbate in NP H2O. Lyophilized N3-A2PEPAu (125 nmol) 

was dissolved in 70 µL of DMF and 50 µL of NP H2O and the solution was transferred to a vial containing 

On-N3 (100 nmol, Scheme S1). To this vial was added a mixture of A and B (1.05 µL A mixed with 5.58 µL 

B), 1.5 µL of C, and 13.8 µL of D. The vial was sealed with parafilm wrap, wrapped in aluminum foil, and 

stirred for at least 4 h at room temperature. DMF/NP H2O (1:1) was added to bring the total volume to 

500 µL. The resulting solution was desalted using a NAP-5 desalting column (GE Healthcare Life Sciences, 

#17-0853-02). The eluted solution was purified using reverse-phase HPLC eluting with a linear gradient 

of CH3CN and 0.1 M TEAA (5/95 to 45/55 over 30 min).  

 

POC Assembly Experiments. 

In a 250 µL plastic vial, lyophilized POCs (20 nmol) were dissolved in 40 μL CaCl2 solutions. The solutions 

were sonicated for 2 min. and centrifuged briefly. The vials were placed in a 1.5 mL centrifuge tube 

containing water that was pre-heated at 80°C and placed in an Eppendorf® Thermomixer® R (Eppendorf, 

# 022670107). The POC solutions were allowed to incubate for 15 min. at 80°C. After incubation, the 

temperature setting was lowered 1°C every 5 minutes until the temperature reached 25°C. At 70°C, the 

samples were centrifuged very briefly to maintain POC concentration of the solution. After cooling to 



25°C, the POC solutions were removed from the 1.5 mL centrifuge tube and allowed to sit overnight at 

room temperature. TEM samples were prepared after 15 h.   

 

Preparation of Complementary DNA-Functionalized Gold Nanoparticles. 

5 and 15 nm gold nanoparticles were functionalized using reported methods.4 Lyophilized 

complementary oligonucleotides functionalized with a thiol hexyl linker at the 5′ end (purchased from 

IDT, 10 OD) were dissolved in 200 µL of freshly prepared dithiothreitol (DTT) and phosphate buffer (PB) 

solution (100 mM DTT in 170 mM PB) to cleave any disulfide bonds. The solution was allowed to sit for 

1 hr. The thiol-terminated oligonucleotides were separated from the DTT using a NAP-5 column. The 

purified oligonucleotides (in 1 mL NP H2O) were then added to 10 mL of particles. The particle solution 

was allowed to sit overnight. The next morning, the concentrations of PB and sodium dodecyl sulfate 

(SDS) were brought to 0.01 M and 0.01%, respectively. The oligonucleotide/gold nanoparticle solution 

was allowed to incubate at room temperature for 30 min. The concentration of NaCl was increased 

slowly to 0.5 M (in 6 increments) using 2 M NaCl. After each addition of NaCl, the solution was sonicated 

for 10 sec. and incubated for 30 min. before the next addition. After the salting procedure, excess 

oligonucleotides were removed via centrifugation (1 hr.; 16,100 x g for 15 nm particles and 10900 x g 

for 5 nm particles), and subsequent supernatant removal. The remaining pellets were combined and the 

washing process was repeated twice. The final oligonucleotide/functionalized nanoparticle pellet was 

suspended in 100 µL of NP H2O. The gold nanoparticle concentration was determined via UV-Vis 

spectroscopy using extinction coefficients of 2.4 x 108 L/(mol·cm)4 and 9.696 x 106 L/(mol·cm) (from Ted 

Pella) for 15 and 5 nm particles, respectively. The concentrations of these stock solutions of 

nanoparticles were 4.09 x 1014 and 2.17 x 1013 particles in 100 µL NP H2O for the 5 nm and 15 nm stock 

solutions, respectively.  

 

 



Functionalized Gold Nanoparticle Addition to PO18C Vesicles. 

To a solution of PO18C vesicles (30 µL) assembled in 50 mM CaCl2 was added 1 µL of a 25x diluted solution 

of the 15 nm stock solution prepared above. The mixture was mixed and vortexed briefly and allowed 

to sit at room temperature. TEM samples were prepared after 1 h.  

 

Functionalized Gold Nanoparticle Addition to PO6C Fibres. 

To a solution of PO6C fibres (30 µL) assembled in 50 mM CaCl2 was added 1 µL of a 10x diluted solution 

of the 5 nm stock solution prepared above. The mixture was mixed and vortexed briefly and allowed to 

sit at room temperature. TEM samples were prepared after 1 h. 

 

Calculation of the Charge Ratio Value. 

 

The charge ratio value is the ratio of positive to negative charges of the assembly solution (N=number 

of oligonucleotide bases; the ‘+2‘ results from the additional azido-functionalized T residue (used to link 

the 18mer to the biphenyl core; Fig. S1), and the deprotonated COO- terminus of the peptide. 

 

 

 

 

 

 

 

 

 



 

Supplementary Data (Scheme S1, and Figures S1-S21) 

 

 

 

 
 

Scheme S1. POC synthesis scheme. 
 

 

 

 

 

 

 

 

 

 

Figure S1. Structure of the (a) 18-base azido-modified oligonucleotide (O18-N3) and (b) 6-base azido-

modified oligonucletide (O6-N3). 

 

 

 

 



 
 

Figure S2. Chemical structure of the azido-modified peptide (N3-C4H8CO-AAAYSSGAPPMPPF). 

 

 

 

 

Figure S3. (a) Reverse-phase HPLC trace and (b) MALDI spectrum of PO18C. (c) Reverse-phase HPLC trace 

and (d) MALDI spectrum of PO6C. Note: m/1 and m/2 peaks were observed in the MALDI spectra. 

 

 

 

 



 

Figure S4. TEM images of 500 µM PO18C in 50 mM CaCl2 after 15 h at room temperature. 

 

 

Figure S5. TEM images of 500 µM PO18C in 50 mM CaCl2 after slow-cooling from 60°C to room 

temperature and left overnight for 15 h. 

 

 

Figure S6. TEM images of 500 µM PO18C in 50 mM CaCl2 after slow-cooling from 80°C to room 

temperature and left overnight for 15 h. 



 

Figure S7. AFM images of PO18C vesicles deposited on APTES-functionalized mica. The labeled vesicles 

and their corresponding height traces are shown. In general, larger vesicles appear to flatten more than 

smaller vesicles. 



 

Figure S8. Phase image of PO18C vesicles reveal the different deformation response between the sphere 

edge and sphere centre. 

 



 

Figure S9. AFM image of PO18C vesicles on a TEM grid after exposure to the high-vacuum TEM 

environment. Labeled vesicles and their corresponding height traces reveal a height of approximately 

30 nm. A majority of the vesicles appear to flatten completely, except for a few that retained more of 

its shape (e.g. spheres 6 and 10). 

 

 



 

Figure S10. PO18C length. The length of the extended 18mer oligonucleotide was reported to be 7.7 

nm.5-6  

 

 

 

 

 

Figure S11. (a) UV-vis spectrum of free 15 nm gold nanoparticles functionalized with complementary 

O18 sequence (black line) and gold nanoparticle-decorated vesicles after addition of the complementary 

functionalized gold nanoparticles to a solution containing PO18C vesicles (red line). (b) Corresponding 

TEM image of the gold nanoparticle-decorated PO18C vesicles after 2 h.  

 

 

 

 



 

Figure S12. Additional TEM images of gold nanoparticle-decorated PO18C vesicles after 2 h of exposure 

to complementary oligonucleotide-functionalized gold nanoparticles. 

 

 

 

 

 

 

 

 

 



 

Figure S13. TEM images of 500 µM PO18C in 300 mM CaCl2 after 15 h. Fibres were observed. 

 

 

 

Figure S14. TEM images of 500 µM PO18C in 150 mM CaCl2 after 15 h. Spherical/pseudo-spherical 

assemblies were the major products. Few fibre assemblies were also observed. 

 

 

 

Figure S15. TEM images of 500 µM PO18C in 10 mM CaCl2 after 15 h. Few aggregates were observed. 

 

 



 

Figure S16. (a) Greater charge shielding can allow for tighter packing of POCs, which can lead to fibre 

formation. (b) Greater repulsion due to less charge shielding favors the formation of vesicles. 

 

 

 

 

Figure S17. TEM image of 500 µM PO6C in 10 mM CaCl2 after 15 h. Fibres, aggregates, and spherical 

assemblies were observed. 

 

 

 

 



 

Figure S18. TEM images of 500 µM PO6C in 50 mM CaCl2 after 15 h. Fibres were observed. 

 

 

 

Figure S19. TEM images of 500 µM PO6C in 150 mM CaCl2 after 15 h. Fibres and fibre networks were 

observed. 

 

 

Figure S20. TEM images of 500 µM PO6C in 300 mM CaCl2 after 15 h. Fibres and fibre networks were 

observed. 

 



 

Figure S21. PO6C assemblies assembled in (a) 50 mM CaCl2 and (b) 10 mM CaCl2. (c-e) Zoomed-in TEM 

images of the dashed boxes shown in b (the border colors correspond to the colors of the dashed boxes).  

 

 

 

 

 

 

 

 



 

Figure S22. FTIR spectra showing the amide I bands of PO18C vesicles (red line) and PO6C fibres (blue 

line) assembled in 50 mM CaCl2. 

 

 

 

 



 

Figure S23. PO18C (500 μM) assembled in the (a,b) absence of complement and in the (c,d) presence of 

complement. Both experiments were conducted in 150 mM CaCl2. 
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