Evidence for Heterolytic Cleavage of a Cyclic Oxonium Ylide: Implications for the Mechanism of the Stevens [1,2]-Shift

Seyedeh Nargess Hosseini, a Jeffrey R. Johnston and F. G. Westa

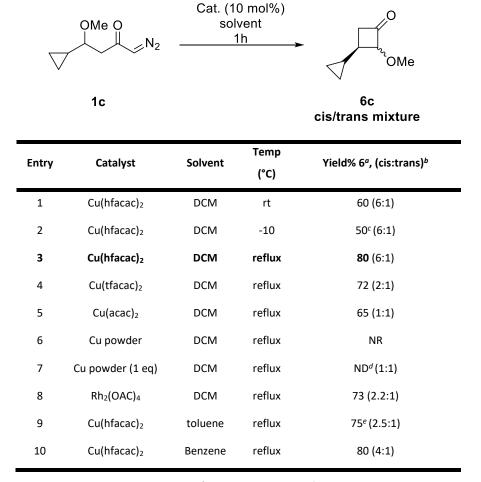
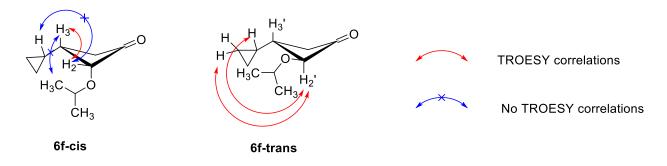
Department of Chemistry, University of Alberta, E3-43 Gunning-Lemieux Chemistry Centre, Edmonton,

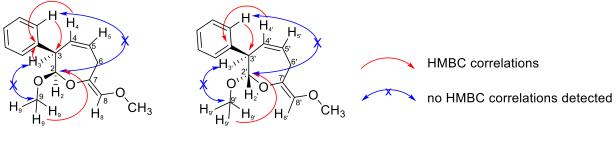
Alberta, T6G 2G2, Canada.

Supplementary Information

Contents

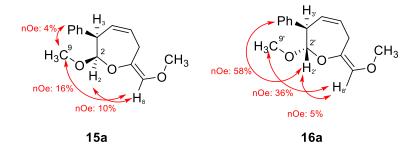
Sch	eme 1: TROESY Corre		S2 S3 S4
	Scheme 2: HMBC Correlations of 15a and 16a		
Sch	eme 3: nOe Correlatio	ons of 15a and 16a	S4
1.	. Experimental Section		
1	1.1 Materials and I	Vethods	S3
2.	Procedures and Characterizations		S4
	2.1 Preparatio	n of Diazo Ketones 1a and 1b	S4
	2.1.1 Prepara	ation of alcohol S-1b	S5
	2.1.2 Genera	Procedure for Preparation of Esters S-2	S5
	2.1.3 Genera	Procedure for the Synthesis of Carboxylic Acids S-3	S6
	2.1.4 Prepara	ation of Diazo Ketone 1a	S7
	2.1.5 Prepara	ation of Diazo Ketone 1b	S8
	2.2 General Pr	ocedure for the Reaction of Diazo Ketones 1a and 1b with Cu(hfacac) ₂ :	S8
	2.3 General Procedure for Construction of Diazo Ketones 1c-f		S10
	2.4 General procedure for Decomposition of Diazo Ketone 1c-f with Cu(hfacac) ₂ to Genera		erate
	Cyclobutanones 6c-f		S17
	2.5 Procedure	for the Formation of Esters 12a and 12b	S20
	2.6 Procedure	for the Treatment of Diazo Ketone 12a with Cu(hfacac) ₂ to Generate	
	Compounds 15a and 16a		S25
3.	References		S26
4.	NMR Spectra		S27
5.	X-Ray Structure of S-5b		S75


Table 1: Formation of the Cyclobutanone Derivatives via Endocyclic [1,2]-Stevens Rearrangement

^oCombined yield of both diastereomers. ^bRatios were determined ¹H NMR analysis via integration of ether O–C–H resonances ^c45% starting diazocarbonyl was recovered. ^dReaction mixture was heated at reflux for 16h and a very messy crude mixture was obtained and the presence of cyclobutanones and starting material was confirmed by crude ¹H-NMR spectrum. ^eThe cyclobutanones **6c** were not isolated as a pure mixture due to very complicated reaction mixture.

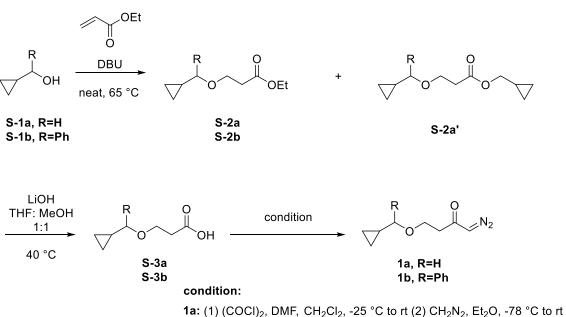
Scheme 4: TROESY Correlations of 6f


Scheme 5: HMBC Correlations of 15a and 16a

15a

16a

Scheme 6: nOe Correlations of 15a and 16a

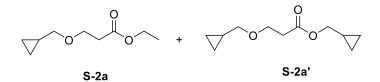

1. Experimental Section

1.1 Materials and Methods

Reactions were carried out in flame or oven dried glassware under a positive argon atmosphere unless otherwise stated. Transfer of anhydrous solvents and reagents was accomplished with oven-dried syringes or cannulae. Solvents and some reagents were distilled before use: methylene chloride, 1,2dichloroethane, diisopropylamine from calcium hydride, tetrahydrofuran and diethylether from sodium/benzophenone ketyl and benzene and toluene from sodium metal. Diazomethane was generated based on the Sigma-Aldrich protocol from Diazald^{*}.¹ All other solvents and commercially available reagents were used without further purification. Thin layer chromatography was performed on glass plates precoated with 0.25 mm silica gel; the stains for TLC analysis were conducted with 2.5 % *p*-anisaldehyde in AcOH-H₂SO₄-EtOH (1:3:86) and further heating until development of color. Flash chromatography was performed on 230-400 mesh silica gel with the indicated eluents. Nuclear magnetic resonance (NMR) spectra were recorded in indicated deuterated solvents and are reported in ppm in the presence of TMS as internal standard and coupling constants (J) are reported in hertz (Hz). The spectra are referenced to residual solvent peaks: CDCl₃ (7.26 ppm, ¹H; 77.26 ppm, ¹³C), CD₂Cl₂ (5.32 ppm, ¹H, 54.00 ppm, ¹³C) as internal standards. Proton nuclear magnetic spectra (¹H NMR) and carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded at 500 and 125 MHz respectively Infrared (IR) spectra were recorded neat and reported in cm⁻¹. Mass spectra were recorded by using electron impact ionization (EI) or electrospray ionization (ESI) as specified in each case.

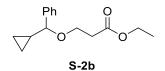
2. Procedures and Characterizations

1b: (1) ethylchloroformate, Et_3N , THF, -15 °C (2) CH_2N_2 , Et_2O , -78 °C to rt


2.1.1 Preparation of alcohol S-1b

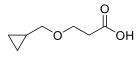
Solid LiAlH₄ (0.31 g, 8.2 mmol) was added to dry THF (25 mL) and the suspension was cooled down to 0 °C. A solution of cyclopropyl phenyl ketone (0.95 mL, 6.8 mmol) in dry THF (5.0 mL) was added dropwise. The reaction was allowed to stir at 0 °C, with gradual warming to room temperature over 2h. The reaction mixture was cooled down again to 0 °C after completion and was quenched with a very slow addition of the saturated NH₄Cl to avoid severe gas evolution. The reaction mixture was filtered over Celite to separate the insoluble white precipitate and the filtrate was retained. The aqueous layer was extracted with Et_2O (3 × 5.0 mL). The organic layers were combined and dried over MgSO₄, filtered and concentrated under reduced pressure. No further purification was required and alcohol **S-1b** was obtained as a pale yellow oil (1.0 g, 98%); R_f 0.40 (30:70 EtOAc: hexane); IR (cast film) 3366, 3082, 3005, 1493, 1452, 1025 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.41 (m, 2H), 7.38-7.34 (m, 2H), 7.29 (ddd, *J* = 6.5, 1.4, 1.4 Hz, 1H), 4.01 (d, *J* = 8.3 Hz, 1H), 2.06 (br s, 1H), 1.22 (ddddd, *J* = 8.2, 8.2, 8.2, 5.0, 5.0 Hz, 1H), 0.64 (dddd, *J* = 8.8, 8.0, 5.6, 4.2 Hz, 1H), 0.56 (dddd, *J* = 10.0, 8.3, 5.6, 4.4 Hz, 1H), 0.50-0.45 (m, 1H), 0.40-0.35 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 143.8, 128.3, 127.5, 126.0, 78.5, 19.2, 3.59, 2.83; HRMS (EI) calcd for C₁₀H₁₂O [M]⁺ 148.0888; found 148.0884.

2.1.2 General Procedure for Preparation of Esters S-2


Ethyl acrylate (1.0 equiv.) was added to a flask containing corresponding alcohols **S-1** (3.5 equiv.) followed by the slow addition of DBU (1.0 equiv.) to the reaction mixture. The reaction was heated up to 65 °C overnight. The crude mixture was cooled to room temperature and was then directly loaded on a silica gel column and chromatographed eluting with mixture of EtOAc: hexane to isolate the desired product.

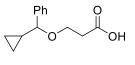
column chromatography (30:70 EtOAc: hexane) was used to isolate inseparable esters **S-2a** and **S-2a'** in a 1:7 ratio. Pale yellow (0.57 mg, 57%), R_f 0.50 (30:70 EtOAc: hexane); IR (cast film) 3083, 3006, 2869, 1737, 1384, 1187, 1109 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.86 (d, *J* = 7.5 Hz, 2H), 3.66 (t, *J* = 6.5 Hz, 2H), 3.22 (d,

J = 6.9 Hz, 2H), 2.54 (t, J = 6.5 Hz, 2H), 1.24-1.15 (m, 2H), 0.50-0.43 (m, 4H), 0.22-0.19 (m, 2H), 0.14-0.11 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 171.6, 75.6, 69.1, 65.8, 35.1, 10.4, 9.7, 3.1, 2.9; HRMS (ESI) calcd for $C_{11}H_{19}O_3$ [M+H]⁺ 198.1256; found 198.1254.


S-2a: observed peaks: ¹H NMR (500 MHz, CDCl₃) δ 4.17 (q, *J* = 7.3 Hz, 2H), 3.73-3.70 (m, 2H), 3.22 (d, *J* = 7.0 Hz, 2H), 2.61-2.58 (m, 2H), 1.29 (t, *J* = 7.2 Hz, 3H), 1.08-0.94 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 171.5, 66.2, 65.7, 60.3, 15.0, 14.1.

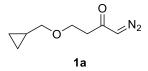
S-2b: Following the general procedure employing alcohol **S-1b**, generated ester **S-2b** as the single isolated product. column chromatography (30:70 EtOAc: hexane) was used to isolate esters **S-2b** as a pale yellow oil (0.85 mg, 35%); R_f 0.60 (30:70 EtOAc: hexane); IR (cast film) 3083, 3004, 2981, 2906, 2873, 1736, 1603, 1492, 1453, 1372, 1346, 1262, 1185, 1137, 1095, 1068 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.30 (m, 5H), 4.18 (q, *J* = 7.2 Hz, 2H), 3.73 (d, *J* = 8.0 Hz, 1H), 3.66-3.62 (m, 2H), 2.63-2.59 (m, 2H), 1.29 (t, *J* = 7.2 Hz, 3H), 1.24-1.15 (m, 1H), 0.68-0.54 (m, 1H), 0.53-0.42 (m, 2H), 0.33-0.26 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 171.6, 142.0, 128.3, 127.5, 126.6, 86.1, 64.2, 60.4, 35.4, 17.7, 14.2, 4.1, 2.1; HRMS (EI) calcd for C₁₅H₂₀NaO₃ [M+Na]⁺ 271.1305; found 271.1302.

2.1.3 General Procedure for the Synthesis of Carboxylic Acids S-3


The corresponding ester **S-2** was dissolved in MeOH: THF (1:1, 0.25 M) and an aqueous solution of LiOH (2.0 M, 2.0 equiv.) was added dropwise. The reaction mixture was stirred overnight at 40 °C until the consumption of starting materials was confirmed by TLC. An equal volume of water was added to the reaction and the organic layer was separated. The aqueous layer was acidified with 1.0 M HCl to pH = 1 followed by extraction with Et_2O (3 x 5.0 mL). Combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Acids **S-3** were obtained pure and were used for the next step without further purification.

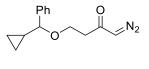
S-3a

S-3a: light yellow oil (95%); IR (cast film) 3082, 3006, 2873, 1712, 1399, 1239, 1189, 1098, 1069 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.20-8.40 (br s, 1H), 3.72 (t, *J* = 6.2 Hz, 2H), 3.30 (d, *J* = 7.0 Hz, 2H), 2.64 (t, *J* = 6.2


Hz, 2H), 1.11-1.02 (m, 1H), 0.55-0.47 (m, 2H), 0.23-0.17 (m, 2H); 13 C NMR (125 MHz, CDCl₃) δ 177.1, 75.7, 65.3, 34.8, 10.3, 2.9; HRMS (ESI) calcd for C₇H₁₁O₃ [M-H]⁻ 143.0714; found 143.0713.

S-3b

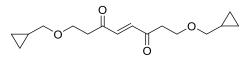
S-3b: yellow oil (82%); IR (cast film) 3083, 3028, 3007, 2918, 2876, 1713, 1453, 1137 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.43-7.29 (m, 5H), 3.73 (d, *J* = 7.9 Hz, 1H), 3.67 (dt, *J*_{AB} = 16.2 Hz, *J*_{AX} = 6.5 Hz, 1H), 3.65 (dt, *J*_{AB} = 16.2 Hz, *J*_{AX} = 6.5 Hz, 1H), 2.68 (dt, *J*_{AB} = 16.7 Hz, *J*_{AX} = 6.4 Hz, 1H), 2.68 (dt, *J*_{AB} = 16.7 Hz, *J*_{AX} = 6.4 Hz, 1H), 1.20 (ddddd, *J* = 8.0, 8.0, 8.0, 5.2, 5.2, 1H), 0.69-0.63 (m, 1H), 0.53-0.46 (m, 2H), 0.34-0.29 (m, 1H), (the peak corresponding to the carboxylic acid proton did not observed); ¹³C NMR (125 MHz, CDCl₃) δ 177.2, 141.6, 128.4, 127.7, 126.7, 86.5, 63.8, 35.0, 17.6, 4.2, 2.2; HRMS (EI) calcd for C₁₃H₁₆O₃ [M]⁺ 220.1099; found 220.1097.


2.1.4 Preparation of Diazo Ketone 1a

Oxalyl chloride (0.16 mL, 1.9 mmol) and catalytic amount of DMF (2 drops) was added to a solution of carboxylic acid **S-3a** (0.25 g, 1.6 mmol) in dichloromethane (11 mL) at -25 °C and the reaction was stirred for 1h then warmed to room temperature and stirred overnight. CH_2Cl_2 was removed under reduced pressure and the residue was immediately dissolved in Et_2O (10 mL). The acid chloride solution was added to a fresh solution of CH_2N_2 (~5 equivalents, prepared from Diazald^{*}) in Et_2O via cannulae at -78 °C. The reaction was warmed gradually to room temperature overnight. Excess amount of diazomethane was quenched by dropwise addition of glacial acetic acid (1.0 mL) and the reaction mixture was washed with water. Combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography, using a 50:50 mixture of hexane: EtOAc, afforeded diazo ketone **1a** in 55 % yield as a yellow oil (0.15 mg, 55%); R_f 0.40 (50:50 EtOAc: hexane); IR (cast film) 3082, 3005, 2866, 2104, 1639, 1359, 1096 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.38 (br s, 1H), 3.71 (t, *J* = 6.5 Hz, 2H), 3.26 (d, *J* = 6.8 Hz, 2H), 2.58 (br s, 2H), 1.03 (ddddd, *J* = 6.8, 6.8, 6.0, 5.0, 5.0, 1H), 0.54-0.50 (m, 2H),

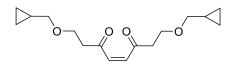
0.20-0.17 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 193.1, 75.9, 66.0, 55.0, 41.4, 10.5, 3.0; HRMS (ESI) calcd for C₈H₁₃N₂O₂ [M+H]⁺ 169.0972; found 169.0969.

2.1.5 Preparation of Diazo Ketone 1b

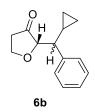


1b

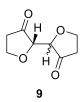
To a solution of carboxylic acid S-3b (0.52 mg, 2.4 mmol) in dry THF (12 mL) was added Et₃N (0.36 mL, 2.6 mmol) followed by the addition of ethylchloroformate solution (0.25 mL, 2.6 mmol) in THF (2 mL) at -15 °C. The reaction was stirred for 1 h at -15 °C and an additional 3h of stirring at -5 °C. After the formation of white solid the reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was immediately dissolved in Et₂O and transferred to an ethereal solution of CH₂N₂ (~5 equivalents, prepared from Diazald[®]) at -78 °C. The reaction mixture was stirred overnight with gradual warming to room temperature. The excess CH₂N₂ was quenched with glacial acetic acid (2.0 mL) and the reaction mixture was washed with water. The organic layer was separated and the aqueous phase was washed with Et₂O (2×5.0 mL). The organic layers were combined and dried over MgSO₄. The crude mixture was obtained after filtration and solvent removal by reduced pressure and was purified by column chromatography (30:70 EtOAc: hexane) to isolate diazo ketone 1b as a yellow solid (0.31 mg, 53%); mp 38-40 °C R_f 0.20 (30:70 EtOAc: hexane); IR (cast film) 3085, 3005, 2869, 2103, 1639, 1453, 1360, 1088 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.30 (m, 5H), 5.39 (br s, 1H), 3.72 (d, *J* = 7.7 Hz, 1H), 3.68-3.60 (m, 2H), 2.59 (br s, 2H), 1.18 (ddddd, J = 8.0, 8.0, 8.0, 5.2, 5.2, 1H), 0.68-0.63 (m, 1H), 0.52-0.45 (m, 2H), 0.33-0.28 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 193.1, 141.8, 128.4, 127.6, 126.7, 68.4, 64.5, 54.9, 41.6, 17.6, 4.2, 2.1; HRMS (ESI) calcd for C₁₄H₁₆N₂NaO₂ [M+ Na]⁺ 267.1104; found 267.1096.


2.2 General Procedure for the Reaction of Diazo Ketones 1a and 1b with Cu(hfacac)₂:

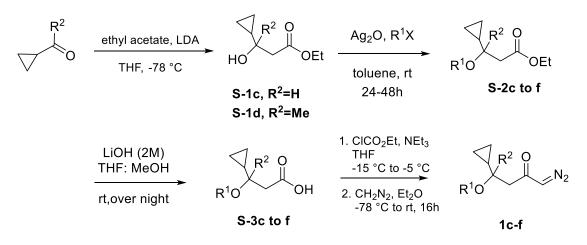
To a refluxing solution of Cu(hfacac)₂ (10 mol%) in dichlrorethane (0.010 M) was added a solution of diazo ketone **1a/1b** (1.0 equiv.) in the same solvent (0.10 M) via syringe pump over 4h. Consumption of diazo ketone **1a/1b** was monitored by TLC and the reaction mixture was quenched by 10% aqueous solution of K₂CO₃. The organic layer was separated and the aqueous layer was washed with DCM (3x). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure and the products were purified by flash chromatography.


8a-isomer E

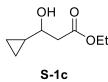
8a-isomer E: column chromatography (30:70 EtOAc: hexane) was used to isolate alkene **8a-isomer E** as a white solid (33 mg, 40%); mp 50-52 °C; R_f 0.37 (30:70 EtOAc: hexane); IR (cast film) 3081, 3004, 2899, 2820, 1675, 1407, 1388, 1351, 1110, 1059 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.94 (s, 2H), 3.79 (t, *J* = 6.5 Hz, 4H), 3.30 (d, *J* = 7.0 Hz, 4H), 2.95 (t, *J* = 6.5 Hz, 4H), 1.07-1.02 (m, 2H), 0.56-0.52 (m, 4H), 0.22-0.19 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 198.8, 136.7, 75.9, 65.1, 41.8, 10.5, 3.0; HRMS (ESI) calcd for C₁₆H₂₄NaO₄ [M+ Na]⁺ 303.1567; found 303.1561.


8a-isomer Z

8a-isomer Z: column chromatography (30:70 EtOAc: hexane) was used to isolate alkene **8a-isomer Z** as a colorless oil (11 mg, 13%); R_f 0.26 (40:60 EtOAc: hexane); IR (cast film) 3005, 2867, 1696, 1608, 1393, 1255, 1143, 1097 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.38 (s, 2H), 3.76 (t, *J* = 6.4 Hz, 4H), 3.28 (d, *J* = 6.8 Hz, 4H), 2.85 (t, *J* = 6.5 Hz, 4H), 1.06 -1.03 (m, 2H), 0.56 - 0.52 (m, 4H), 0.22-0.19 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 201.5, 135.7, 76.8, 65.3, 42.8, 10.5, 3.0; HRMS (ESI) calcd for C₁₆H₂₄NaO₄ [M+ Na]⁺ 303.1567; found 303.1566.

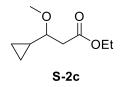

6b: column chromatography (30:70 EtOAc: hexane) was used to isolate an inseparable mixture of diastereomers as a colorless oil (54 mg, 60%); R_f 0.51 (30:70 EtOAc: hexane); IR (cast film) 3079, 3063, 3028, 3001, 2925, 2888, 1755, 1602, 1495, 1453, 1430, 1402, 1360, 1155, 1142, 1093, 1042, 1019 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.35 (m, 2H), 7.32-7.29 (m, 2H), 7.29-7.18 (m, 6H), 4.37-4.31 (m, 1H), 4.13 (d, J = 2.7 Hz, 1H), 4.05 (dd, J = 9.2, 7.4 Hz, 1H), 4.01-3.98 (m, 3H), 2.52-2.40 (m, 2H), 2.32 (dd, J = 10.6, 2.4 Hz, 1H), 2.26 (dddd, J = 18.0, 6.1, 6.1, 0.7 Hz, 1H), 2.17 (dd, J = 10.6, 2.6 Hz, 1H), 1.82 (dddd, J = 18.0, 9.3, 9.3, 0.4 Hz, 1H), 1.53-1.40 (m, 2H), 0.66 (dddd, J = 9.1, 8.0, 5.7, 4.6 Hz, 1H), 0.59-0.45 (m, 3H), 0.33 (dddd,

J = 9.4, 5.6, 4.6, 4.6 Hz, 1H), 0.28-0.24 (m, 1H), 0.15-0.08 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 216.2, 215.9, 142.6, 140.0, 129.3, 128.3, 128.1, 128.0, 126.8, 126.6, 83.7, 83.2, 65.1, 64.9, 52.8, 52.4, 37.7, 37.1, 14.2, 11.4, 6.1, 5.4, 5.2, 4.2; HRMS (EI) calcd for C₁₄H₁₆O₂ [M]⁺ 216.1150; found 216.1149.

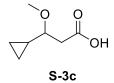


9: was isolated as two inseparable diastereomers; colorless oil (1.5 mg, 4.3%); R_f 0.20 (30:70 EtOAc: hexane); IR (cast film) 3200, 2967, 2918, 1743, 1402, 1365, 1178, 1070, 1026 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) 4.39-4.32 (m, 4H), 4.20-4.12 (m, 8H), 2.62-2.54 (m, 8H); ¹³C NMR (125 MHz, CDCl₃) δ 213.2, 212.5, 80.3, 79.3, 66.0, 65.7, 37.0, 36.8; HRMS (EI) calcd for C₈H₁₀O₄ [M]⁺ 170.0579; found 170.0580.

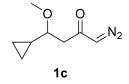
2.3 General Procedure for Construction of Diazo Ketones 1c-f


2.3.1 Preparation of alcohol 1c

A flame dried round bottom flask was charged with diisopropylamine (3.3 mL, 24 mmol) in THF (80 mL) and was cooled to -78 °C. A solution of *n*-BuLi in hexane (2.5 M, 9.4 mL, 24 mmol) was added dropwise and the reaction was stirred for 15 min at -78 °C. Ethyl acetate (1.9 mL, 21 mmol) was added dropwise with an additional 45 min stirring at -78 °C. Then a solution of cyclopropanecarboxaldehyde (1.6 mL, 21

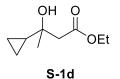

mmol) in THF (10 mL) was added to the reaction mixture. The reaction temperature was maintained at -78 °C over 2 h and the reaction completion was monitored with TLC. Then the reaction was warmed to room temperature followed by the addition of saturated ammonium chloride and the organic layer was separated. The aqueous layer was extracted with Et₂O (3×10 mL). The combined organic layers were dried over MgSO₄ and filtered. The crude product was purified by flash chromatography (30:70 EtOAc: hexane) after concertation under reduced pressure and alcohol **S-1c** was isolated as a yellow oil.

S-1c: (3.3 g, 97%); $R_f 0.27$ (30:70 EtOAc: hexane); IR (cast film) 3447, 3003, 2983, 1735, 1412, 1372, 1343, 1280, 1249, 1186, 1139, 1025 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.16 (q, *J* = 7.2 Hz, 2H), 3.32 (ddd, *J* = 8.4, 8.4, 3.1 Hz, 1H), 2.63 (dd, *J* = 16.0, 3.8 Hz, 1H), 2.57 (dd, *J* = 16.0, 8.4 Hz, 1H), 1.26 (t, *J* = 7.2 Hz, 3H), 0.94 (ddddd, *J* = 8.1, 8.1, 8.1, 4.9, 4.9, Hz, 1H), 0.57-0.47 (m, 2H), 0.40 (dddd, *J* = 4.5, 4.5, 4.5, 4.5 Hz, 1H), 0.22 (dddd, *J* = 4.5, 4.5, 4.5, 4.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 172.7, 72.7, 60.7, 41.4, 16.8, 14.2, 3.2, 2.2; HRMS (ESI) calcd for C₈H₁₄NaO₃ [M+ Na]⁺ 181.0835; found 181.0836.

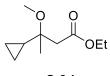

To a stirred solution of alcohol **1-1c** (1.5 g, 9.5 mmol) in dry toluene (20 mL) was added anhydrous CaSO₄ (2.6 g, 19 mmol) and freshly prepared Ag_2O^2 (4.4 g, 19 mmol). The reaction mixture was cooled down to 0 °C and iodomethane (1.2 mL, 19 mmol) was added dropwise. The ice bath was removed and the flask was covered in aluminum foil. The reaction mixture was stirred for 3 h at room temperature. An additional aliquots of Ag_2O , CaSO₄ and MeI (the same amount as before) were added and the reaction progress was monitored by TLC. (Addition of excess Ag_2O , CaSO₄ and MeI may be required if the starting alcohol has not been consumed completely.) The reaction mixture was stirred overnight and was filtered through a Celite plug. The Celite was washed with ethyl acetate and the reaction mixture was concentrated under reduced pressure. The crude mixture was used in the next step without further purifications.

S-2c: yellow oil (1.7 g, quant.); R_f 0.29 (20:80 EtOAc: hexane); IR (cast film) 3082, 2982, 2937, 2824, 1738, 1394, 1279, 1250, 1138, 1111, 1027 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.18-4.08 (m, 2H), 3.39 (s, 3H), 2.98 (ddd, J = 8.2, 8.2, 4.9 Hz, 1H), 2.61 (dd, J = 14.9, 8.1 Hz, 1H), 2.52 (dd, J = 14.9, 4.9 Hz, 1H), 1.24 (t, J = 7.1 Hz, 3H), 0.88-0.81 (m, 1H), 0.66-0.59 (m, 1H), 0.47-0.40 (m, 2H), 0.12-0.06 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 171.5, 81.9, 60.3, 57.0, 40.9, 14.4, 14.2, 4.7, 0.6; HRMS (ESI) calcd for C₉H₁₇O₃ [M+ H]⁺ 173.1172; found 173.1173.

Ester S-2c (1.6 g, 9.5 mmol) was dissolved in MeOH:THF (1:1, 72 mL) and the aqueous solution of LiOH (2.0 M, 9.5 mL, 19 mmol) was added dropwise. The reaction mixture was stirred overnight at room temperature until complete consumption of starting materials. An equal volume of water was added to the reaction and the organic layer was separated. The aqueous layer was acidified with 1.0 M HCl to pH = 1 followed by extraction with Et_2O (3×10 mL). Combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Acid S-3c was obtained as a pure mixture and was used for the next step without further purification.

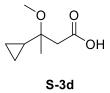

S-3c: yellow oil (1.36 g, quant.); IR (cast film) 3083, 3006, 2983, 2828, 1711, 1408, 1286, 1218, 1190, 1107, 1069 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.48 (s, 3H), 3.00 (ddd, J = 8.8, 7.9, 5.0 Hz, 1H), 2.69 (dd, J = 15.2, 7.7 Hz, 1H), 2.66 (dd, J = 15.2, 4.7 Hz, 1H), 0.93-0.87 (m, 1H), 0.74-0.69 (m, 1H), 0.55-0.47 (m, 2H), 0.17-0.14 (m, 1H), (the peak corresponding to the carboxylic acid proton was not observed); ¹³C NMR (125 MHz, CDCl₃) δ 176.5, 81.8, 57.0, 40.5, 14.2, 5.2, 0.6; HRMS (ESI) calcd for C₇H₁₁O₃ [M-H]⁻ 143.0714; found 143.0714.

To a solution of carboxylic acid **S-3c** (0.70 g, 4.9 mmol) in dry THF (25 mL) was added Et₃N (0.74 mL, 5.3 mmol) followed by the addition of a solution of ethylchloroformate (0.51 mL, 5.3 mmol) in THF (4.0 mL) at -15 °C. The reaction was stirred for 1 h at -15 °C and an additional 3h at -5 °C. After the formation of the white salt the reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was immediately dissolved in Et₂O and transferred to an ethereal solution of CH₂N₂ (~5 equivalents, prepared from Diazald^{*}) at -78 °C. The reaction mixture was stirred overnight by gradual warming to the room temperature. The excess CH_2N_2 was quenched with glacial acetic acid (1 mL) and the reaction mixture was washed with water. The organic layer was separated, combined and dried over MgSO₄ followed by filtration. The crude mixture was obtained after solvent removal and was purified by column chromatography (40:60 EtOAc: hexane) to isolate diazo ketone **1c.**

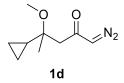

1c: yellow oil (0.53 g, 65%); $R_f 0.27$ (50:50 EtOAc: hexane); IR (cast film) 3082, 3004, 2981, 2932, 2824, 2104, 1637, 1367, 1105, 1023 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.35 (br s, 1H), 3.41 (s, 3H), 2.99 (ddd, J = 8.5, 8.5, 4.5 Hz, 1H), 2.55 (m, 2H), 0.89 (dddd, J = 13.5, 10.0, 7.9, 5.5 Hz, 1H), 0.70-0.64 (m, 1H), 0.49-0.43 (m, 2H), 0.14-0.10 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 193.1, 82.2, 57.1, 55.4, 47.0, 14.6, 5.2, 0.6; HRMS (EI) calcd for C₇H₉ON₂ [M-OCH₃]⁺ 137.0714; found 137.0715.

2.3.2 Preparation of Diazo Ketone 1d

Alcohol **S-1d** was synthesized according to the procedure provided for **S-1c** using cyclopropylmethylketone as the starting material.

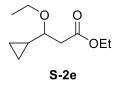

S-1d: yellow oil, (1.1 g, 68%); R_f 0.35 (20:80 EtOAc: hexane); IR (cast film) 3512, 3087, 3004, 2980, 2935, 2907, 1713, 1464, 1395, 1372, 1330, 1218, 1200, 1140, 1096 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.21 (q, *J* = 7.1 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 1H), 3.34 (br s, 1H), 2.59 (d, *J* = 14.9 Hz, 1H), 2.53 (d, *J* = 14.9 Hz, 1H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.21 (s, 3H), 0.94-0.88 (m, 1H), 0.47-0.35 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 69.1, 60.6, 46.1, 27.0, 20.8, 14.2, 0.7, 0.0; HRMS (ESI) calcd for C₉H₁₆NaO₃ [M+ Na]⁺ 195.0992; found 195.0990.

S-2d

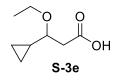

Compound S-2d was synthesized according to the procedure provided for S-2c.

S-2d: Yellow oil (0.14g, 30%); R_f 0.50 (20:80 EtOAc: hexane); IR (cast film) 3086, 2981, 2942, 2829, 1735, 1465, 1368, 1313, 1238, 1199, 1144, 1096 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.13 (q, *J* = 7.2 Hz, 2H), 3.28 (s, 3H), 2.55 (d, *J* = 13.2 Hz, 1H), 2.49 (d, *J* = 13.2 Hz, 1H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.09 (s, 3H), 1.07-1.03 (m, 1H), 0.48-0.39 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 75.2, 60.2, 46.7, 44.4, 16.5, 18.5, 14.2, 1.3, 1.2; HRMS (ESI) calcd for C₁₀H₁₈NaO₃ [M+ Na]⁺ 208.1148; found 209.1147.

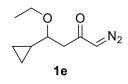
Carboxylic acid S-3d was prepared according to the procedure provided for S-3c.


S-3d: Colorless oil (62 mg, 52%); IR (cast film) 3086, 3010, 2984, 2944, 2831, 1732, 1709, 1465, 1436, 1409, 1386, 1314, 1239, 1201, 1150, 1095 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.41 (s, 3H), 2.61 (d, *J* = 15.2 Hz, 1H), 2.52 (d, *J* = 15.2 Hz, 1H), 1.04 (s, 3H), 1.02-0.97 (m, 1H), 0.65-0.47 (m, 3H), 0.20-0.13 (m, 1H), (the peak corresponding to the carboxylic acid proton was not observed); ¹³C NMR (125 MHz, CDCl₃) δ 172.5, 76.7, 50.0, 45.5, 17.7, 17.4, 2.4, 0.7; HRMS (ESI) calcd for C₈H₁₃O₃ [M-H]⁻ 157.0943; found 157.0870.

Diazo ketone **1d** was prepared according to the procedure provided for **1c**.

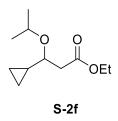

1d: yellow oil, (21 mg, 34%); R_f 0.49 (30:70 EtOAc: hexane); IR (cast film) 3271, 3086, 2979, 2944, 2829, 2102, 1634, 1465, 1429, 1356, 1163, 1093 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.49 (br s, 1H), 3.30 (s, 3H), 2.55-2.44 (br m, 2H), 1.03 (s, 3H), 1.00-0.95 (m, 1H), 0.55-0.42 (m, 3H), 0.22-0.14 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 193.2, 76.0, 55.9, 51.4, 49.7, 18.5, 18.4, 2.0, 0.9; HRMS (ESI) calcd for C₉H₁₅N₂O₂ [M+H]⁺ 183.1128; found 183.1130.

2.3.3 Preparation of Diazo Ketone 1e

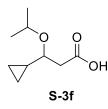

Compound **S-2e** was synthesized according to the procedure provided for compound **S-2c** using iodoethane as an alkyl halide. The reaction was stirred for 40 h and 60% of the starting alcohol was recovered.

S-2e: yellow oil (230 mg, 39%); R_f 0.47 (20:80 EtOAc: hexane); IR (cast film) 3082, 2978, 2932, 2873, 1738, 1463, 1445, 1430, 1390, 1372, 1317, 1279, 1189, 1139, 1096, 1028 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.18 (q, *J* = 7.1 Hz, 2H), 3.75 (dq, *J* = 9.2, 7.0 Hz, 1H), 3.50 (dq, *J* = 9.2, 7.0 Hz, 1H), 3.12 (ddd, *J* = 8.2, 8.2, 5.0 Hz, 1H), 2.66 (dd, *J* = 14.7, 8.1 Hz, 1H), 2.57 (dd, *J* = 14.7, 5.0 Hz, 1H), 1.29 (t, *J* = 7.0 Hz, 3H), 1.19 (t, *J* = 7.0 Hz, 3H), 0.95-0.88 (m, 1H), 0.66-0.61 (m, 1H), 0.51-0.43 (m, 2H), 0.18-0.14 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 171.7, 80.3, 64.7, 60.3, 41.3, 15.5, 15.1, 14.2, 4.5, 1.0; HRMS (ESI) calcd for C₁₀H₁₉O₃ [M+ H]⁺ 187.1329; found 187.1328.

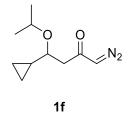
Compound S-3e was prepared according to the procedure provided for compound S-3c.


S-3e: yellow oil (180 mg, 92%); IR (cast film) 3082, 3006, 2977, 2931, 2897, 1712, 1429, 1406, 1293, 1206, 1140, 1122, 1096 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.85 (dq, *J* = 9.2, 7.0 Hz, 1H), 3.54 (dq, *J* = 9.2, 7.0 Hz, 1H), 3.10 (ddd, *J* = 8.4, 8.4, 4.9 Hz, 1H), 2.71 (dd, *J* = 15.4, 7.0 Hz, 1H), 2.67 (dd, *J* = 15.2, 4.8 Hz, 1H), 1.24 (t, *J* = 7.0 Hz, 3H), 0.92 (ddddd, *J* = 8.4, 8.4, 8.4, 5.2, 5.2 Hz 1H), 0.70 (dddd, , *J* = 8.9, 7.9, 5.7, 4.5, 1H), 0.56-0.51 (m, 1H), 0.50-0.45 (m, 1H), 0.17 (dddd, *J* = 9.5, 5.9, 4.8, 4.8, 1H), (the peak corresponding to the carboxylic acid proton was not observed); ¹³C NMR (125 MHz, CDCl₃) δ 175.8, 80.1, 64.8, 40.7, 15.4, 14.7, 5.0, 0.9; HRMS (ESI) calcd for C₈H₁₃O₃ [M-H]⁻ 157.0870; found 157.0871.

Compound 1e was prepared according to the procedure provided for compound 1c.


1e: yellow oil (99 mg, 47%); R_f 0.42 (40:60 EtOAc: hexane); IR (cast film) 3081, 3005, 2975, 2929, 2894, 2871, 21.03, 1638, 1361, 1092, 1053 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.40 (br s, 1H), 3.77 (dq, *J* = 6.9, 9.1 Hz, 1H), 3.45 (dq, *J* = 6.9, 9.1 Hz, 1H), 3.12 (ddd, *J* = 8.5, 8.5, 4.2 Hz, 1H), 2.69-2.55 (br s, 2H), 1.21 (t, *J* = 6.8 Hz, 3H), 0.87 (ddddd, *J* = 8.2, 8.2, 8.2, 5.0, 5.0 Hz 1H), 0.67-0.62 (m, 1H), 0.52-0.43 (m, 2H), 0.18-014 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 193.4, 80.5, 64.8, 55.3, 47.4, 15.6, 15.4, 4.9, 1.0; HRMS (EI) calcd for $C_9H_{15}N_2O_2$ [M+H]⁺ 183.1128; found 183.1129.

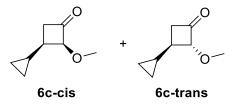
2.3.4 Preparation of Diazo Ketone 1f


Ester **S-2f** was as synthesized according to the procedure provided for compound **S-2c** using isopropyl bromide as an alkyl halide.

S-2f: yellow oil (1.9 g, 75%); R_f 0.63 (30:70 EtOAc: hexane); IR (cast film) 2974, 2934, 2902, 1738, 1466, 1369, 1340, 1311, 1278, 1188, 1140, 1063 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.16 (q, *J* = 7.1 Hz, 2H), 3.79 (sep, *J* = 6.0 Hz, 1H), 3.79 (ddd, *J* = 5.3, 7.9, 7.9 Hz, 1H), 2.61 (dd, *J* = 14.5, 7.8 Hz, 1H), 2.54 (dd, *J* = 14.5, 5.5 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.17 (d, *J* = 6.3 Hz, 3H), 1.11 (d, *J* = 6.3 Hz, 3H), 0.94-0.81 (m, 1H), 0.63-0.57 (m, 1H), 0.51-0.45 (m, 1H), 0.43-0.38 (m, 1H), 0.20-0.16 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 171.7, 77.8, 69.7, 60.3, 41.7, 23.1, 22.3, 15.8, 14.2, 4.3, 1.5; HRMS (ESI) calcd for C₁₁H₂₀NaO₃ [M+ Na]⁺ 223.1305; found 223.1304.

Compound **S-3f** was prepared according to the procedure provided for compound **S-3c**.

S-3f: light yellow oil (1.6 g, 98%); IR (cast film) 3083, 3006, 2974, 2934, 1711, 1466, 1408, 1311, 1208, 1122, 1061, 1048 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ ¹H NMR (500 MHz, CDCl₃) δ 3.89 (sep, *J* = 6.3 Hz, 1H), 3.21 (ddd, *J* = 7.1, 7.1, 5.5 Hz, 1H), 2.67 (dd, *J* = 15.1, 7.0 Hz, 1H), 2.64 (dd, *J* = 15.1, 5.2 Hz, 1H), 1.21 (d, *J* = 6.3 Hz, 3H), 1.15 (d, *J* = 6.3 Hz, 3H), 0.94 (ddddd, *J* = 4.9, 4.9, 8.2, 8.2, 8.2 Hz, 1H), 0.65 (dddd, *J* = 9.0, 8.9, 5.8, 4.5 Hz, 1H), 0.52 (dddd, *J* = 8.6, 8.6, 5.7, 4.6 Hz, 1H), 0.44 (ddd, *J* = 9.6, 9.6, 5.1 Hz, 1H), 0.19 (dddd, *J* = 9.7, 4.9, 4.9, 4.9 Hz, 1H), (the peak corresponding to the carboxylic acid proton was not observed); ¹³C NMR (125 MHz, CDCl₃) δ 176.6, 77.5, 69.9, 41.2, 23.2, 22.0, 15.5, 4.6, 1.4; HRMS (ESI) calcd for C₉H₁₅O₃ [M-H]⁻ 171.1027; found 171.1029.

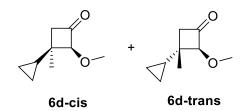


Compound **1f** was prepared according to the procedure provided for compound **1c**.

1f: yellow oil (0.22 mg, 32%); R_f 0.24 (30:70 EtOAc: hexane); IR (cast film) 3081, 3005, 2972, 2913, 2102, 1637, 1366, 1328, 1170, 1122, 1065 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ ¹H NMR (500 MHz, CDCl₃) δ 5.39 (br s, 1H), 3.80 (sep, *J* = 6.1 Hz, 1H), 3.24 (ddd, *J* = 8.1, 8.1, 4.8 Hz, 1H), 2.67-2.52 (m, 2H), 1.17 (d, *J* = 6.1 Hz, 3H), 1.11 (d, *J* = 6.1 Hz, 3H), 0.88 (ddddd, *J* = 5.1, 5.1, 8.2, 8.2, 8.2 Hz, 1H), 0.61 (dddd, *J* = 9.0, 8.1, 5.6, 4.4 Hz, 1H), 0.48 (dddd, *J* = 8.6, 8.6, 5.5, 4.6 Hz, 1H), 0.41 (ddd, *J* = 9.5, 9.5, 5.1 Hz, 1H), 0.19 (dddd, *J* = 9.7, 5.0, 5.0, 5.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 193.5, 77.9, 69.8, 55.4, 47.8, 23.2, 22.2, 16.0, 4.5, 1.5; HRMS (ESI) calcd for C₁₀H₁₆ N₂NaO₂ [M+ Na]⁺ 219.1104; found 219.1098.

2.4 General procedure for Decomposition of Diazo Ketone 1c-f with Cu(hfacac)₂ to Generate Cyclobutanones 6c-f

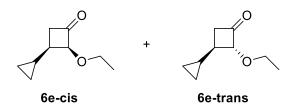
To a refluxing solution of Cu catalyst (10 mol%) in CH_2Cl_2 (0.01M) was added the solution of diazo ketone **1c-f** (1 equiv.) in CH_2Cl_2 (0.1M) via syringe pump over 1 h. Consumption of staring diazo ketone was monitored by TLC and the reaction mixture was quenched by 10% solution of K_2CO_3 . The organic layer was separated and the aqueous layer was washed with DCM (3×). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure and purified by flash chromatography.



6c-cis and **6c-trans** were isolated by flash chromatography (40:60 EtOAc: hexane) in 6:1 ratio (20 mg, 80%).

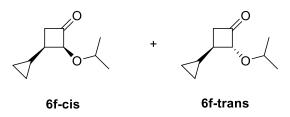
6c-cis: yellow oil; R_f 0.60 (40:60 EtOAc: hexane); IR (cast film) 3081, 3003, 2952, 2834, 1787, 1436, 1268, 1214, 1344, 1214, 1165, 1145, 1020 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.46 (ddd, *J* = 8.8, 2.9, 2.9 Hz, 1H), 3.41 (s, 3H), 2.82 (ddd, *J* = 17.0, 2.9, 9.5 Hz, 1H), 2.31 (ddd, *J* = 17.0, 3.5, 2.7 Hz, 1H), 2.01 (dddd, *J* = 9.5, 9.5, 3.5 Hz, 1H), 0.73 (ddddd, *J* = 8.3, 8.3, 8.3, 5.0, 5.0 Hz, 1H), 0.58-0.53 (m, 1H), 0.42-0.36 (m, 1H), 0.13

(ddd, *J* = 9.5, 5.0, 5.0 Hz, 1H), 0.08 (ddd, *J* = 9.5, 5.0, 5.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 206.0, 89.6, 58.8, 44.6, 35.2, 9.7, 4.8, 2.1; HRMS (EI) calcd for C₈H₁₂O₂ [M]⁺ 140.0837; found 140.0835.


6c-trans: yellow oil; R_f 0.65 (40:60 EtOAc: hexane); IR (cast film) 3082, 3004, 2953, 1786, 1437, 1267, 1267, 1192, 1166, 1087 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.23 (ddd, *J* = 7.5, 2.6, 2.6 Hz, 1H), 3.46 (s, 3H), 2.69 (ddd, *J* = 16.8, 9.5, 2.6 Hz, 1H), 2.42 (ddd, *J* = 16.8, 9.5, 2.6 Hz, 1H), 2.01 (dddd, *J* = 9.5, 9.5, 7.5, 7.5 Hz, 1H), 1.03 (ddddd, *J* = 7.8, 7.8, 7.8, 5.0, 5.0, 5.0 Hz, 1H), 0.60-0.54 (m, 2H), 0.28-0.21 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 204.9, 92.8, 58.0, 42.9, 36.6, 14.1, 3.6, 3.2; HRMS (EI) calcd for C₈H₁₂O₂ [M]⁺ 140.0837; found 140.0835.

Cyclobutanones **6d-cis** and **6d-trans** were isolated by flash chromatography (20:80 EtOAc: hexane) in 1.4:1 ratio (8.0 mg, 50%).

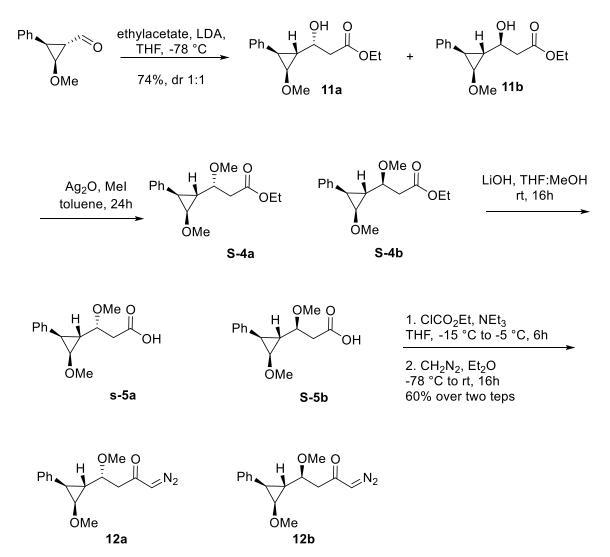
6d-cis: colorless oil; R_f 0.47 (20:80 EtOAc: hexane); IR (cast film) 3083, 3002, 2931, 1788, 1461, 1412, 1347, 1194, 1144, 1112, 1020 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.22 (dd, *J* = 2.6, 2.6 Hz, 1H), 3.55 (s, 3H), 2.45 (dd, *J* = 16.8, 2.9 Hz, 1H), 2.31 (dd, *J* = 16.8, 2.4 Hz, 1H), 1.43 (s, 3H), 0.97 (dddd, *J* = 8.4, 8.4, 5.5, 5.5 Hz, 1H), 0.50-0.43 (m, 1H), 0.49-0.43 (m, 1H), 0.29-0.21 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 204.9, 95.0, 59.2, 48.1, 35.9, 26.0, 13.6, 0.7, 0.6; HRMS (EI) calcd for C₉H₁₃O₂ [M-H]⁺ 14.0915; found 151.0916.


6d-trans: colorless oil; R_f 0.33 (20:80 EtOAc: hexane); IR (cast film) 3088, 3006, 2952, 2849, 1788, 1463, 1434, 1293, 1196 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.12 (dd, *J* = 2.6, 2.6 Hz, 1H), 3.52 (s, 3H), 2.42 (dd, *J* = 16.3, 2.6 Hz, 1H), 2.14 (dd, *J* = 16.3, 2.6 Hz, 1H), 1.20 (dddd, *J* = 8.4, 8.4, 5.4, 5.4 Hz, 1H), 1.15 (s, 3H), 0.59-0.55 (m, 2H), 0.38-0.33 (m, 1H), 0.25-0.21 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 205.0, 92.9, 59.0, 48.2, 36.1, 16.5, 19.0, 2.3, 1.7; HRMS (EI) calcd for C₉H₁₃O₂ [M-H]⁺ 14.0915; found 151.0916.

6e-cis and **6e-trans** were isolated by flash chromatography (20:80 EtOAc: hexane) in 6:1 ratio (56 mg, 70%).

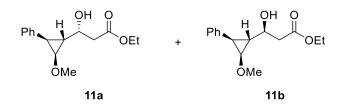
6e-cis: yellow oil; $R_f 0.41$ (20:80 EtOAc: hexane); IR (cast film) 3080, 3001, 2979, 2933, 2875, 1788, 1431, 1337, 1182, 1064 cm⁻¹; 1H NMR (500 MHz, CDCl₃) δ 4.64 (ddd, J = 8.8, 2.7, 2.7 Hz, 1H), 3.69 (q, J = 7.0 Hz, 1H), 3.68 (q, J = 7.0 Hz, 1H), 2.90 (ddd, J = 17.1, 2.8, 9.7 Hz, 1H), 2.42 (ddd, J = 17.1, 3.1, 3.1, 1H), 2.10 (ddddd, J = 9.2, 9.2, 9.2, 3.6 Hz, 1H), 1.26 (t, J = 7.1, 3H), 0.86 (ddddd, J = 8.2, 8.2, 8.2, 5.2, 5.2 Hz, 1H), 0.69-0.54 (m, 1H), 0.53-0.47 (m, 1H), 0.25-0.16 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 206.3, 88.3, 66.8, 44.5, 35.5, 15.1, 10.0, 4.9, 2.2; HRMS (EI) calcd for C₉H₁₄O₂ [M]+ 154.0994; found 154.0989.

6e-trans: yellow oil; R_f 0.50 (20:80 EtOAc: hexane); IR (cast film) 3080, 2979, 2929, 2874, 1786, 1444, 1398, 1334, 1212, 1177, 1122, 1052, 1019 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.33 (ddd, *J* = 7.7, 2.9, 2.9 Hz, 1H), 3.77 (dq, *J* = 9.3, 7.1 Hz, 1H), 3.69 (dq, *J* = 9.3, 6.8 Hz, 1H), 2.73 (ddd, *J* = 17.0, 9.6, 2.7 Hz, 1H), 2.42 (ddd, *J* = 17.0, 9.5, 2.9 Hz, 1H), 2.08 (dddd, *J* = 9.7, 9.7, 7.2, 7.2 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.10 (ddddd, *J* = 8.2, 8.2, 7.3, 5.0, 5.0 Hz, 1H), 0.63-0.58 (m, 2H), 0.34-0.27 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 205.4, 91.7, 66.2, 42.7, 36.9, 15.3, 14.1, 3.6, 3.1; HRMS (EI) calcd for C₉H₁₄O₂ [M]⁺ 154.0994; found 154.1002.

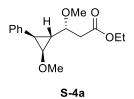


6f-cis and **6f-trans** were isolated by flash chromatography (20:80 EtOAc: hexane) in 4.8:1 ration (0.12 g, 78%)

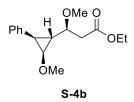
6f-cis: colorless oil; $R_f 0.42$ (20:80 E_2O : Pentane); IR (cast film) 3080, 2974, 2933, 2875, 1788, 1731, 1382, 1182, 1139, 1119 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.71 (ddd, *J* = 8.9, 2.7, 2.7 Hz, 1H), 3.77 (sep, *J* = 6.2 Hz, 1H), 2.90 (ddd, *J* = 17.1, 9.7, 2.9 Hz, 1H), 2.41 (ddd, *J* = 17.1, 3.5, 2.4 Hz, 1H), 2.10 (dddd, *J* = 8.9, 8.9, 8.9, 3.4 Hz, 1H), 1.26 (d, *J* = 6.2 Hz, 6H), 0.92-0.84 (m, 1H), 0.70-0.65 (m, 1H), 0.52-0.48 (m, 1H), 0.26-0.18 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 206.9, 86.6, 72.6, 44.2, 35.8, 22.6, 21.8 10.2, 5.0, 2.2; HRMS (EI) calcd for C₁₀H₁₆NaO₂ [M+Na]⁺ 191.1043; found 191.1038.


6f-trans: colorless oil; $R_f 0.31$ (20:80 E_2O : Pentane); IR (cast film) 3347, 3080, 2973, 2926, 2850, 1787, 1465, 1431, 1382, 1323, 1142, 1120, 1083 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.35 (ddd, *J* = 7.7, 2.6, 2.6 Hz, 1H), 3.84 (sep, *J* = 6.2 Hz, 1H), 2.90 (ddd, *J* = 17.0, 9.5, 2.5 Hz, 1H), 2.43 (ddd, *J* = 17.0, 9.7, 2.6 Hz, 1H), 2.05 (ddddd, *J* = 9.8, 9.8, 9.8, 7.3, 7.3 Hz, 1H), 1.26 (d, *J* = 6.2 Hz, 3H), 1.24 (d, *J* = 6.2 Hz, 3H), 1.13-1.07 (m, 1H), 0.62-0.57 (m, 2H), 0.35-0.26 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 206.0, 90.1, 72.7, 42.4, 37.3, 22.5, 22.4, 13.9, 3.4, 2.9; HRMS (EI) calcd for C₁₀H₁₆NaO₂ [M+Na]⁺ 191.1043; found 191.1038.

2.5 Procedure for the Formation of Esters 12a and 12b

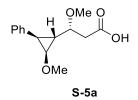

A flame dried flask was charged with diisopropylamine (1.9 mL, 14 mmol) in THF (50 mL) and was cooled down to -78 °C. A solution of *n*-BuLi in hexane (2.5 M, 5.5 mL, 14 mmol) was added dropwise and the

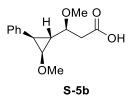
reaction was stirred for 15 min at – 78 °C. Ethyl acetate (1.2 mL, 13 mmol) was added dropwise with an additional 45 min stirring at -78 °C. Then a solution of 2-methoxy-3-phenyl carlopropanecarboxaldehyde³ (2.2 g, 13 mmol) in THF (2.5 mL) was added to the reaction mixture. The reaction temperature was kept at -78 °C over 2 h and the reaction completion was monitored with TLC. Then the reaction was warmed to room temperature followed by the addition of saturated ammonium chloride (30 mL) and the organic layer was separated. The aqueous layer was extracted with Et₂O (3×10 mL). The combined organic layers was dried over MgSO₄, filtered and concentrated under reduced pressure. The alcohols **11a** and **11b** were separated by flash chromatography (40:60 EtOAc: hexane) as two diastereomers in a 1:1 ratio (2.4 g, 74%).



11a: colorless oil; R_f 0.29 (40:60 EtOAc: hexane); IR (cast film) 3447, 3086, 3060, 3026, 2983, 2936, 2904, 2826, 1731, 1603, 1498, 1462, 1399, 1372, 1294, 1251, 1178, 1116, 1087 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.20 (m, 5H), 4.19 (dq, $J_{AB} = 11.0$ Hz, $J_{AX} = 7.3$ Hz, 1H), 4.15 (dq, $J_{AB} = 11.0$ Hz, $J_{AX} = 7.3$ Hz, 1H), 3.76 (dddd, J = 7.4, 7.4, 3.6, 3.6 Hz, 1H), 3.54 (dd, J = 6.8, 3.3 Hz, 1H), 3.21 (s, 3H), 3.14 (b, 1H), 2.68 (dd, J = 16.0, 3.9 Hz, 1H), 2.64 (dd, J = 16.0, 8.2 Hz, 1H), 2.06 (dd, J = 6.7, 6.7 Hz, 1H), 1.64 (ddd, J = 7.1, 7.1, 3.3 Hz, 1H), 1.27 (t, J = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 136.7, 128.0 (2C), 125.9, 68.7, 63.6, 60.8, 58.2, 40.9, 31.4, 27.3, 14.1; HRMS (ESI) calcd for C₁₅H₂₀NaO₄ [M+ Na]⁺ 287.1254; found 287.1255. **11b**: light yellow oil; R_f 0.38 (40:60 EtOAc: hexane); IR (cast film) 3457, 3060, 2983, 2936, 2904, 2825, 1732, 1603, 1498, 1462, 1447, 1424, 1400, 1372, 1348, 1296, 1250, 1219, 1177, 1086 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.26 (m, 4H), 7.23-7.20 (m, 1H), 4.23-4.13 (m, 2H), 3.93 (ddd, J = 10.3, 7.8, 3.9 Hz, 1H), 3.46 (dd, J = 6.8, 3.3 Hz, 1H), 3.16 (s, 3H), 2.97 (d, J = 4.1 Hz, 1H), 2.72 (dd, J = 16.3, 3.9 Hz, 1H), 2.64 (dd, J = 16.3, 8.6 Hz, 1H), 2.20 (dd, J = 7.1, 7.1 Hz, 1H), 1.64 (ddd, J = 6.5, 6.5, 3.2 Hz, 1H), 1.28 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 137.0, 128.0, 127.9, 125.8, 68.1, 63.1, 60.9, 58.1, 41.0, 31.4, 27.1, 14.1; HRMS (ESI) calcd for C₁₅H₂₀NaO₄ [M+ Na]⁺ 287.1255.

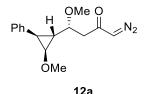
To a stirred solution of the corresponding alcohol **11** (1 equiv.) in dry toluene (0.50 M) was added anhydrous $CaSO_4$ (2 equiv.) and freshly prepared Ag_2O^2 (2 equiv.). The reaction mixture was cooled down to 0 °C and iodomethane (3 equiv.) was added dropwise. The ice bath was removed and the flask was covered in aluminum foil. The reaction mixture was stirred for 3 h at room temperature. Additional aliquots of Ag₂O, CaSO₄ and MeI (the same amount as before) were added and the reaction progress was monitored by TLC (Addition of excess Ag₂O, CaSO₄ and MeI may be required if the starting alcohol has not been consumed completely). The reaction mixture was stirred overnight and was filtered through Celite. The Celite was washed with ethyl acetate (2×) and the filtrate was concentrated under reduced pressure. The crude mixture was used in the next step without further purifications.

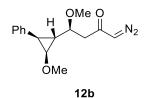

S-4a: Colorless oil (0.70 g, 92%); R_f 0.45 (50:50 EtOAc: hexane); IR (cast film) 3059, 2983, 2937, 2902, 2825, 1734, 1603, 1498, 1461, 1447, 1372, 1302, 1273, 1244, 1209, 1112, 1030 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.22 (m, 5H), 4.13 (dq, J_{AB} = 10.5 Hz, J_{AX} = 7.1 Hz, 1H), 4.09 (dq, J_{AB} = 10.5 Hz, J_{AX} = 7.1 Hz, 1H), 3.52 (dd, J = 6.7, 3.2 Hz, 1H), 3.51 (s, 3H), 3.39 (ddd, J = 7.9, 7.9, 5.3 Hz, 1H), 3.20 (s, 3H), 2.68 (dd, J = 14.9, 7.8 Hz, 1H), 2.56 (dd, J = 14.9, 5.4 Hz, 1H), 1.93 (dd, J = 6.6, 6.6 Hz, 1H), 1.63 (ddd, J = 6.7, 6.7, 3.4 Hz, 1H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 136.6, 128.0, 127.9, 125.9, 78.4, 64.7, 60.6, 58.1, 57.4, 39.9, 29.8, 26.5, 14.1; HRMS (ESI) calcd for C₁₆H₂₂NaO₄ [M+ Na]⁺ 301.1410; found 301.1407.


S-4b: Yellow oil (1.1 g, quant.); R_f 0.55 (40:60 EtOAc: hexane); IR (cast film) 3060, 2989, 2936, 2906, 2825, 1734, 1603, 1498, 1461, 1447, 1374, 1350, 1222, 1208, 1192, 1173, 1115, 1093 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.27 (m, 4H), 7.25-7.20 (m, 1H), 4.21 (dq, J_{AB} = 10.8 Hz, J_{AX} = 7.2 Hz, 1H), 4.17 (dq, J_{AB} = 10.8 Hz, J_{AX} = 7.3 Hz, 1H), 3.51 (ddd, J = 7.7, 7.7, 5.0 Hz, 1H), 3.40 (s, 3H), 3.38 (dd, J = 6.7, 3.4 Hz, 1H), 3.17 (s, 3H), 2.73 (dd, J = 15.2, 7.7 Hz, 1H), 2.64 (dd, J = 15.2, 5.3 Hz, 1H), 2.17 (dd, J = 6.9, 6.9 Hz, 1H), 1.62 (ddd, J = 7.7, 6.8, 3.3 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 136.7, 128.0, 127.9, 125.9, 78.1, 62.5, 60.6, 58.2, 57.3, 40.2, 29.8, 29.3, 14.2; HRMS (ESI) calcd for C₁₆H₂₂NaO₄ [M+ Na]⁺ 301.1410; found 301.1412.

Corresponding ester **S-4** (1 equiv.) was dissolved in MeOH: THF (1:1, 0.26 M) and an aqueous solution of LiOH (2.0 M, 2.0 equiv.) was added dropwise. The reaction mixture was stirred overnight at room

temperature until the consumption of starting materials. An equal volume of water was added to the reaction and the organic layer was separated. The aqueous layer was acidified with 1.0 M HCl to pH = 1 followed by extraction with Et₂O (3×). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The pure acid **S-5** was obtained and used in the next step without further purification


S-5a: yellow solid (0.63 g, quant.); mp: 68 - 70 °C; IR (cast film) 3087, 3060, 3026, 2987, 2937, 2826, 1730, 1710, 1603, 1498, 1447, 1424, 1348, 1224, 1178, 1111, 1091 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.21 (m, 5H), 3.54 (s, 3H), 3.41-3.37 (m, 1H), 3.40 (ddd, *J* = 4.9, 8.0, 8.0 Hz, 1H), 3.21 (s, 3H), 2.70 (dd, *J* = 15.5, 8.6 Hz, 1H), 2.63 (dd, *J* = 15.5, 4.3 Hz, 1H), 1.93 (dd, *J* = 6.6, 6.6 Hz, 1H), 1.64 (ddd, *J* = 8.0, 8.0, 3.3 Hz, 1H), (the peak corresponding to the carboxylic acid proton did not observed); ¹³C NMR (125 MHz, CDCl₃) δ 176.1, 136.3, 128.1, 128.0, 126.0, 78.1, 68.8, 58.2, 57.4, 39.5, 29.5, 26.4; HRMS (ESI) calcd for C₁₄H₁₇O₄ [M-H]⁻ 249.1132; found 249.1137.


S-5b: white solid (0.50 mg, 54%); mp: 70-72 °C; IR (cast film) 3086, 3061, 3027, 2987, 2936, 2826, 1734, 1710, 1603, 1498, 1447, 1424, 1351, 1300, 1225, 1196, 1178, 1113, 1090 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.28 (m, 4H), 7.25-7.22 (m, 1H), 3.49-3.45 (m, 1H), 3.39 (s, 3H), 3.39 (dd, J = 6.7, 3.0 Hz, 1H), 3.19 (s, 3H), 2.81-2.72 (m, 2H), 2.19 (dd, J = 7.4, 7.4 Hz, 1H), 1.64 (ddd, J = 7.5, 3.1 Hz, 1H), (the peak corresponding to the carboxylic acid proton did not observed); ¹³C NMR (125 MHz, CDCl₃) δ 176.3, 136.4, 128.1, 128.0, 126.0, 78.0, 62.4, 58.2, 57.3, 39.9, 29.7, 29.6; HRMS (ESI) calcd for C₁₄H₁₇O₄ [M-H]⁻ 249.1132; found 249.1129.

To a solution of carboxylic acid **S-5** (1 equiv.) in dry THF (0.20 M) was added Et_3N (1.1 equiv.) followed by the addition of ethyl chloroformate solution (1.1 equiv.) in THF (1.2 M) at -15 °C. The reaction was stirred

for 1 h at -15 °C and an additional 3 h stirring at -5 °C. After the formation of a white salt the reaction mixture, it was filtered and the filtrate was concentrated under reduced pressure. The residue was immediately dissolved in Et_2O and transferred to an ethereal solution of CH_2N_2 (~5 equivalents, prepared from Diazald^{*}) at -78 °C. The reaction mixture was stirred overnight with gradual warming to the room temperature. The CH_2N_2 was quenched with excess glacial acetic acid and the reaction mixture was washed with water. The organic layer was separated and dried over MgSO₄ and filtered. The crude mixture was obtained after solvent removal and was purified by column chromatography to isolate diazo ketones **12** as a yellow oil.

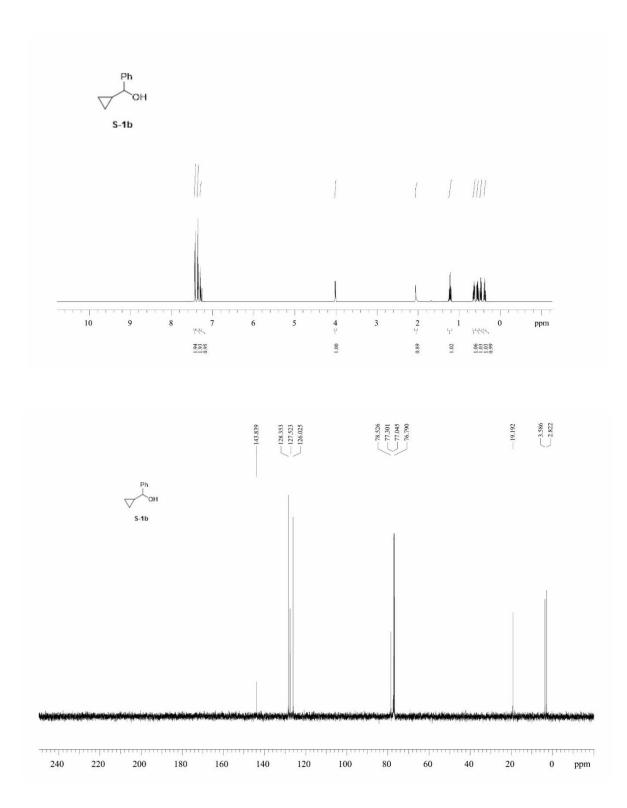
12a: yellow oil (0.19, 58%); R_f 0.17 (30:70 EtOAc: hexane); IR (cast film) 3088, 3026, 2984, 2936, 2825, 2102, 1635, 1603, 1498, 1424, 1447, 1353, 1228, 1179, 1151, 1105, 1032, 1008 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.11 (m, 5H), 5.28 (br s, 1H), 3.53 (ddd, *J* = 6.8, 6.8, 3.3 Hz, 1H), 3.51 (s, 3H), 3.41 (ddd, *J* = 8.2, 8.2, 4.9 Hz, 1H), 3.19 (s, 3H), 2.67-2.49 (br m, 2H), 1.89 (dd, *J* = 7.2, 7.2 Hz, 1H), 1.57 (ddd, *J* = 6.7, 6.7, 3.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 192.5, 136.7, 128.0, 127.8, 125.9, 78.7, 65.2, 58.2, 57.5, 55.8, 45.9, 30.4, 26.5; HRMS (ESI) calcd for C₁₅H₁₉N₂O₃ [M+ H]⁺ 275.1390; found 275.1385.

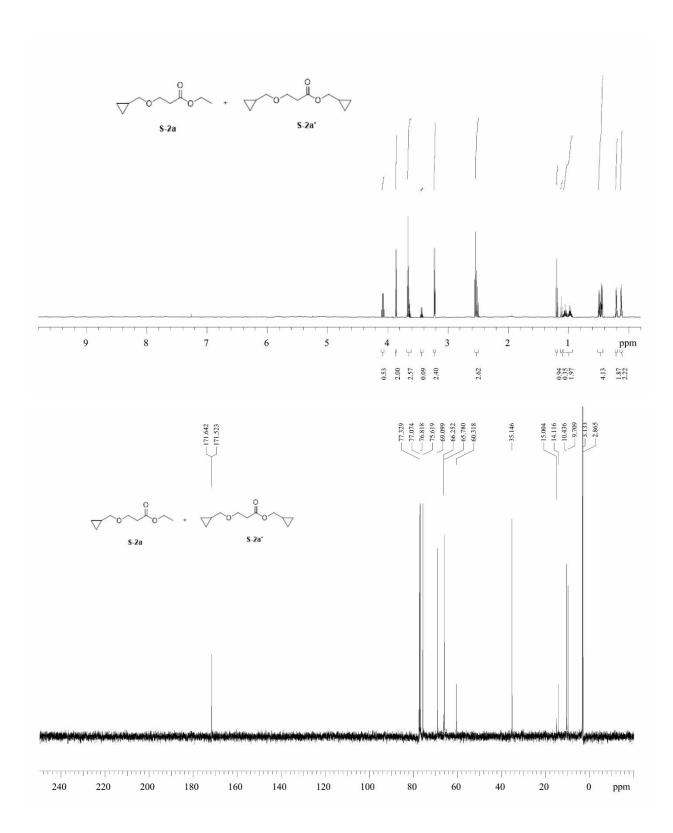
12b: yellow oil (80 mg, 73%); R_f 0.28 (40:60 EtOAc:hexane); IR (cast film) 3088, 2984, 2935, 2825, 2104, 1637, 1603, 1498, 1447, 1422, 1371, 1338, 1150, 1110, 1089 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.26 (m, 4H), 7.24-7.21 (m, 1H), 5.36 (br s, 1H), 3.50 (ddd, *J* = 7.6, 7.6, 4.4 Hz, 1H), 3.38 (s, 3H), 3.36 (ddd, *J* = 6.8, 6.8, 3.3 Hz, 1H), 3.16 (s, 3H), 2.70- 2.60 (br m, 2H), 2.16 (dd, *J* = 7.0, 7.0 Hz, 1H), 1.57 (ddd, *J* = 7.4, 7.4, 3.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 192.5, 136.7, 128.1, 127.9, 126.0, 78.4, 62.5, 58.2, 57.4, 55.7, 46.2, 30.1, 29.7; HRMS (ESI) calcd for C₁₅H₁₈N₂NaO₃ [M+Na]⁺ 297.1210; found 297.1204.

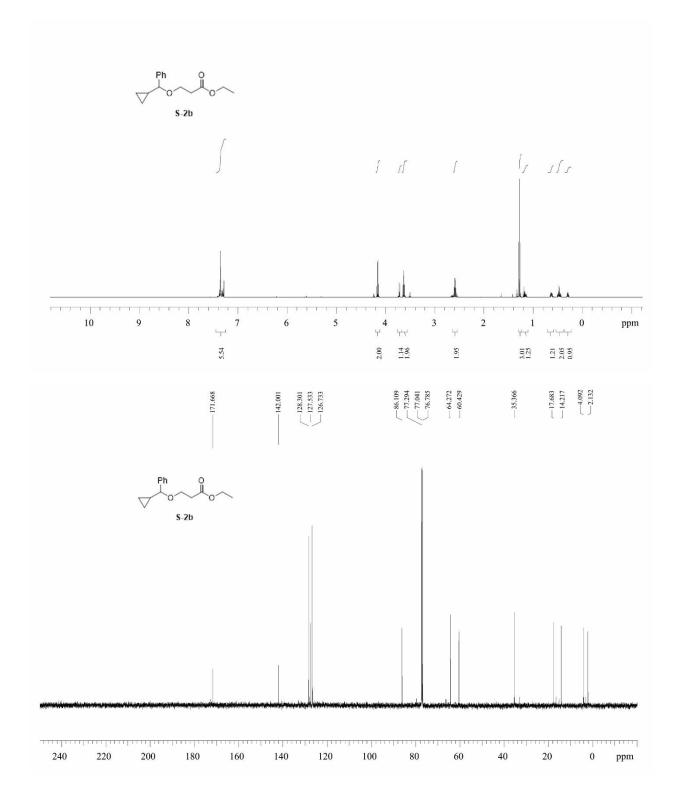
2.6 Procedure for the Treatment of Diazo Ketone 12a with Cu(hfacac)₂ to Generate Compounds 15a and 16a

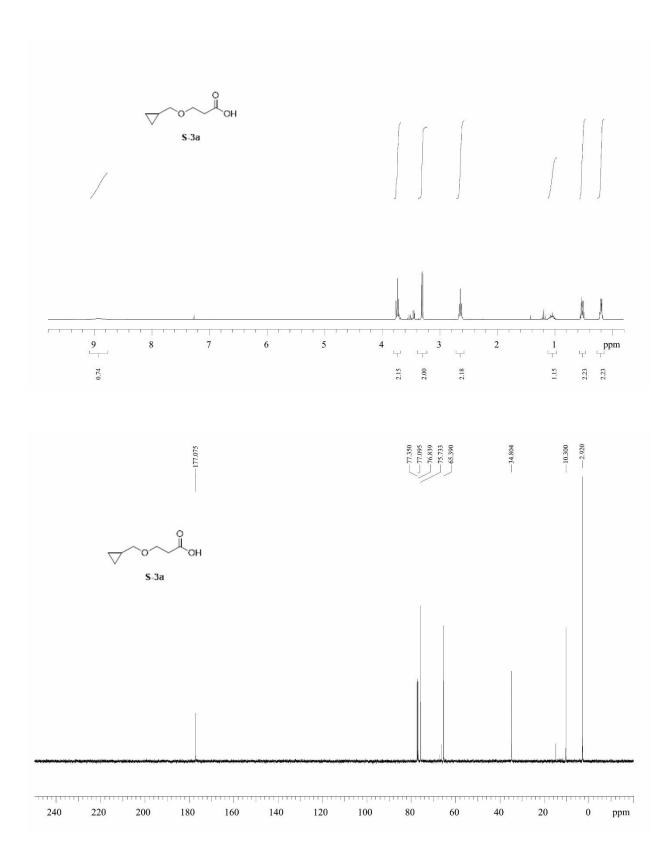
To a solution of Cu(hfacac)₂ (18 mg, 0.036 mmol) in CH₂Cl₂ (3.6 mL, 0.010 M) at reflux was added a solution of diazo ketone **12a** (0.10 g, 0.36 mmol) in CH₂Cl₂ (3.6 mL, 0.10 M) via syringe pump over 2 h. Consumption of diazo ketone **12a** was monitored by TLC and the reaction mixture was quenched by 10% solution of aqueous K₂CO₃. The organic layer was separated and the aqueous layer was washed with DCM (3×5 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure and purified by flash chromatography. The obtained oxepines **15a** and **16a** were isolated in 1:1 ratio. (13 mg, 26%)

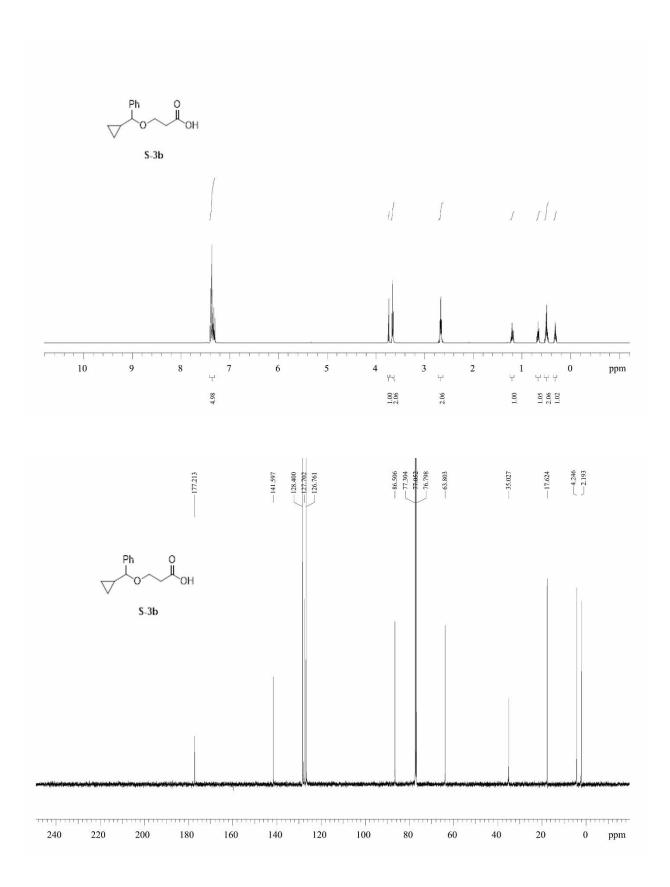
15a: colorless oil; R_f 0.59 (20:80 EtOAc: hexane); IR (cast film) 3060, 3026, 2993, 2931, 2898, 2833, 1689, 1655, 1602, 1492, 1543, 1417, 1361, 1349, 1246, 1221, 1154, 3311, 1110, 1072, 1036, 1003 cm⁻¹; ¹H NMR (500 MHz, CD₂Cl₂) δ 7.31-7.28 (m, 4H), 7.25-7.22 (m, 1H), 6.06 (dd, J = 0.7, 0.7 Hz, 1H), 5.80 (dddd, J = 11.0, 5.4, 4.8, 2.4 Hz, 1H), 5.54 (dddd, J = 11.0, 4.0, 1.7, 0.6, 0.6 Hz, 1H), 4.84 (dd, J = 1.9, 0.6 Hz, 1H), 3.93 (dddd, J = 4.1, 4.1, 1.9, 1.9 Hz, 1H), 3.53 (s, 3H), 3.39 (s, 3H), 3.28 (ddddd, J = 17.5, 5.4, 1.8, 1.8, 0.7 Hz, 1H), 3.12 (ddddd, J = 17.5, 4.7, 2.2, 1.9, 1.0 Hz, 1H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 140.8, 138.3, 135.4, 129.7, 129.3, 128.0, 126.8, 126.7, 106.2, 59.8, 55.9, 50.7, 27.3; HRMS (ESI) calcd for C₁₅H₁₈NaO₃ [M+ Na]⁺ 269.1148; found 269.1145.

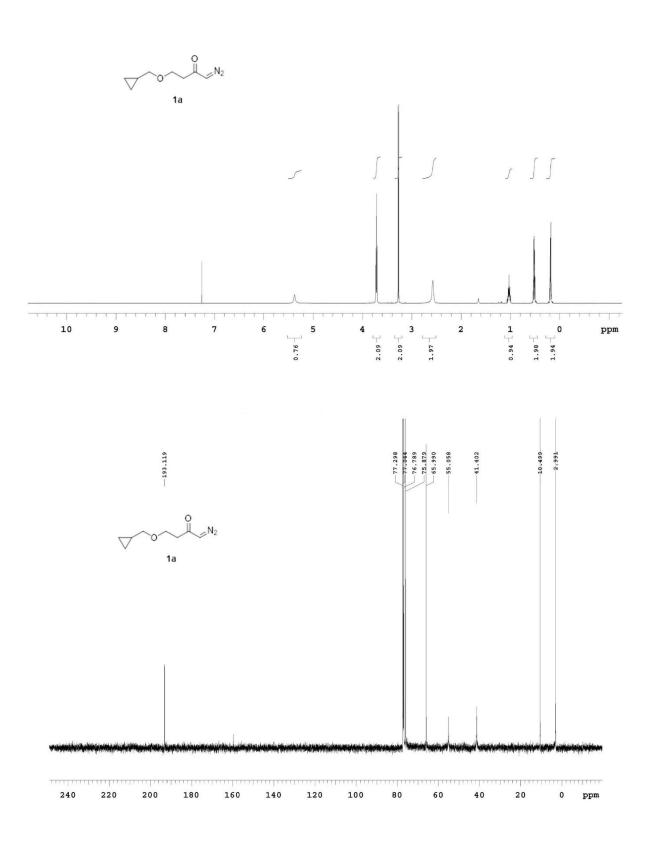

16a: colorless oil; R_f 0.55 (20:80 EtOAc: hexane); IR (cast film) 3085, 3061, 3028, 3001, 2931, 2834, 1696, 1654, 1599, 1494, 1453, 1357, 1251, 1211, 1170, 1130, 1035, 1009 cm⁻¹; ¹H NMR (500 MHz, CD₂Cl₂) δ 7.32-7.29 (m, 2H), 7.25-7.22 (m, 3H), 6.05 (ddd, J = 2.1, 1.0, 0.5 Hz, 1H), 5.67 (ddddd, J = 11.1, 5.6, 3.7, 2.3, 0.5 Hz, 1H), 5.51 (dddd, J = 11.1, 4.5, 2.4, 1.6 Hz, 1H), 4.81 (d, J = 8.2 Hz, 1H), 3.92-3.88 (m, 1H), 3.57, (s, 3H), 3.34-3.29 (m, 1H), 3.31 (s, 3H), 3.07- 3.01 (m, 1H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 141.5, 137.6, 136.2, 129.9, 128.5, 128.3, 126.6, 126.5, 108.3, 59.8, 55.5, 50.1, 27.9; HRMS (ESI) calcd for C₁₅H₁₈NaO₃ [M+Na]⁺ 269.1148; found 269.1145.

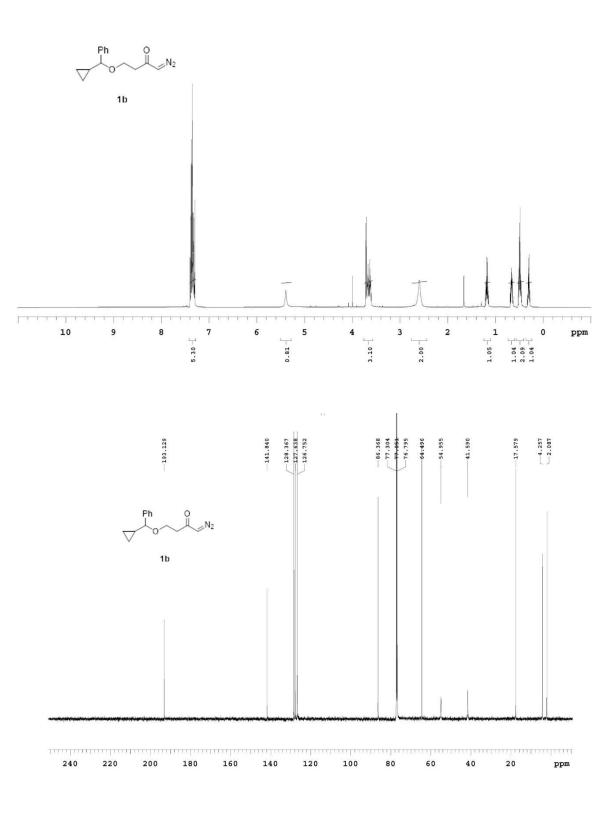

S25

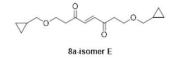

3. References

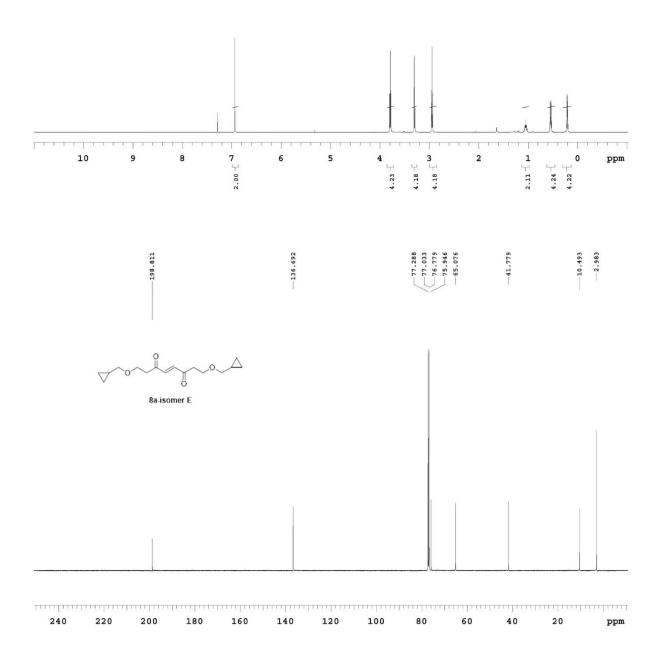

- 1. Diazald[®] and Diazomethane Generators, http://www.sigmaaldrich.com/content/dam/sigmaaldrich/docs/Aldrich/Bulletin/al_techbull_al180.pdf (accessed Sep 25, 2017).
- 2. A. Bouzide and G. Sauvé, *Tetrahedron Lett*. 1997, **38**, 5945–5948.
- 3. M. -H. Le Tadic-Biadatti and M. Newcomb, J. Chem. Soc. Perkin Trans. 2, 1996, 7, 1467.

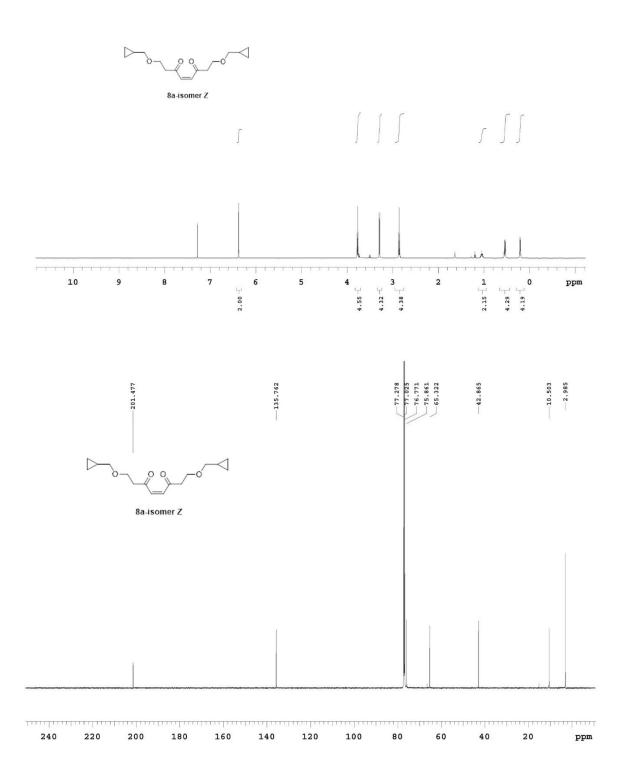

4. NMR Spectra

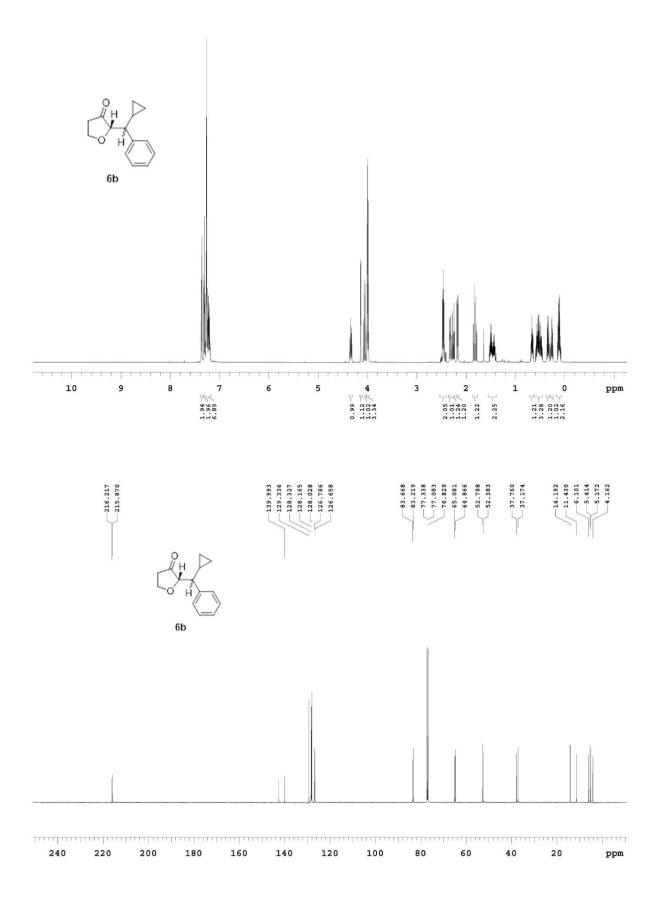


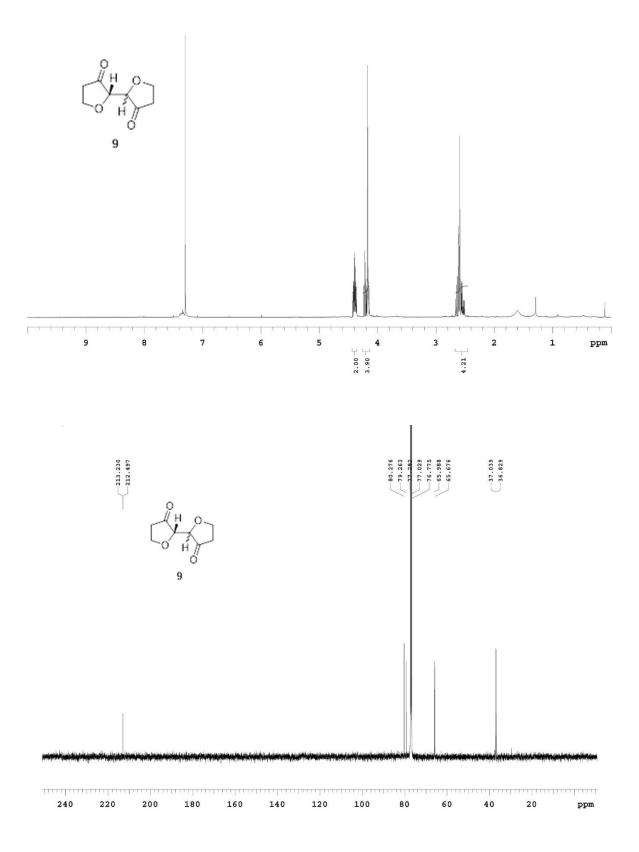


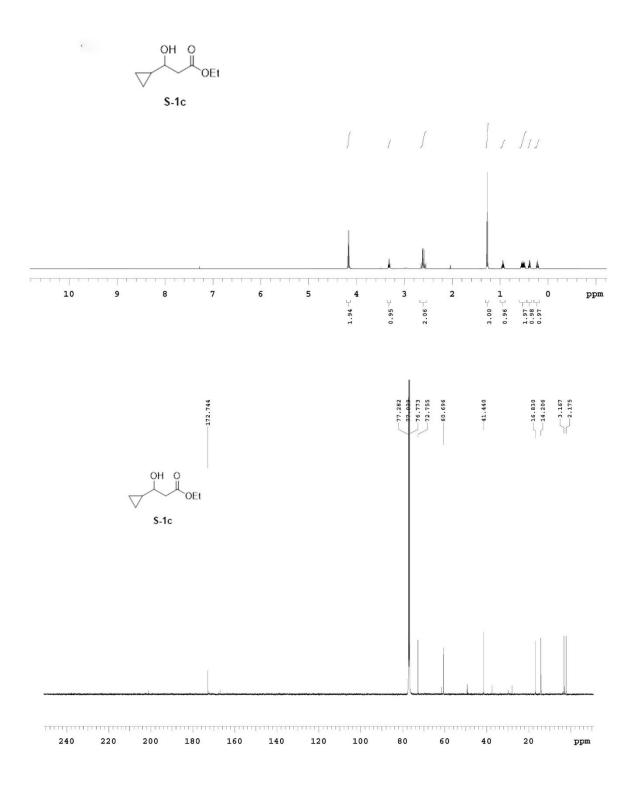


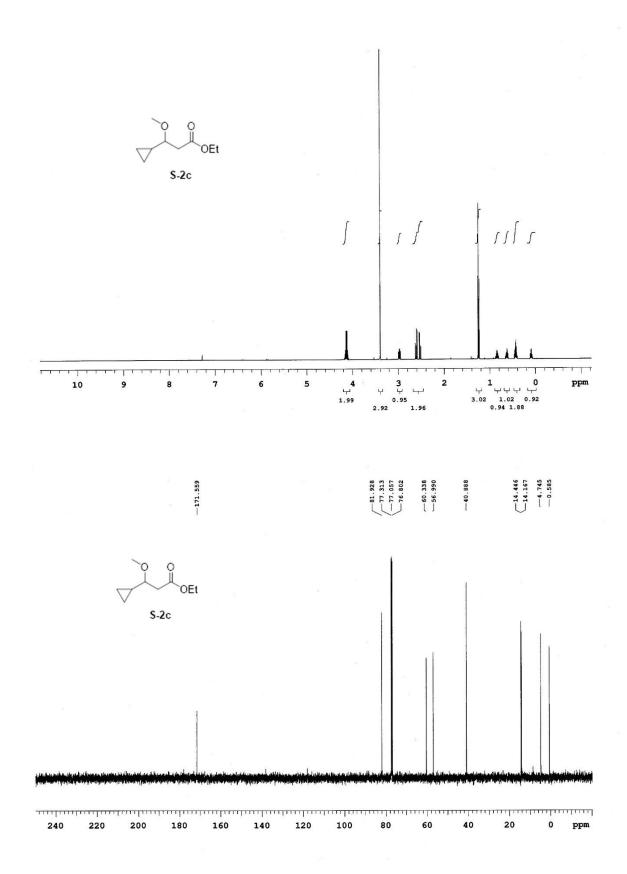


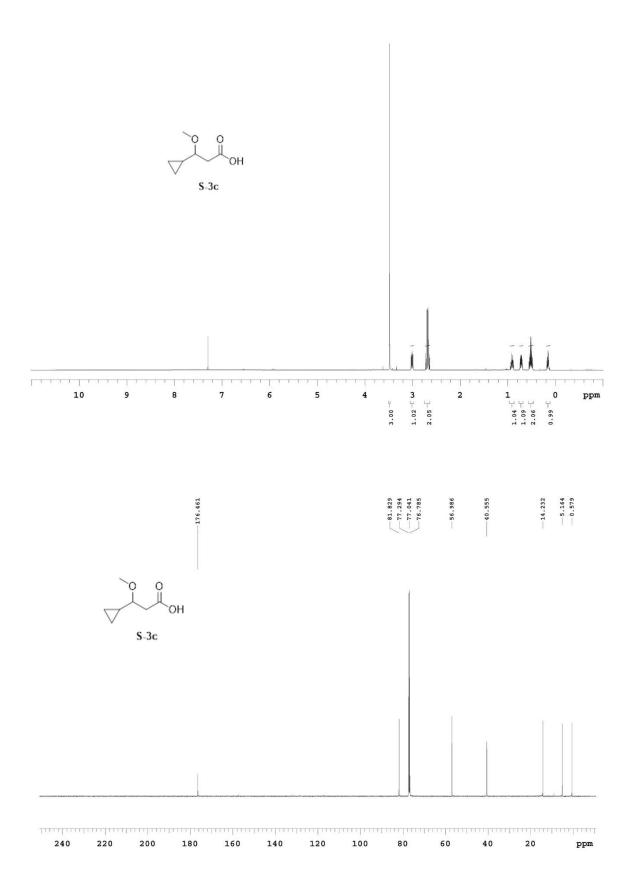

S32

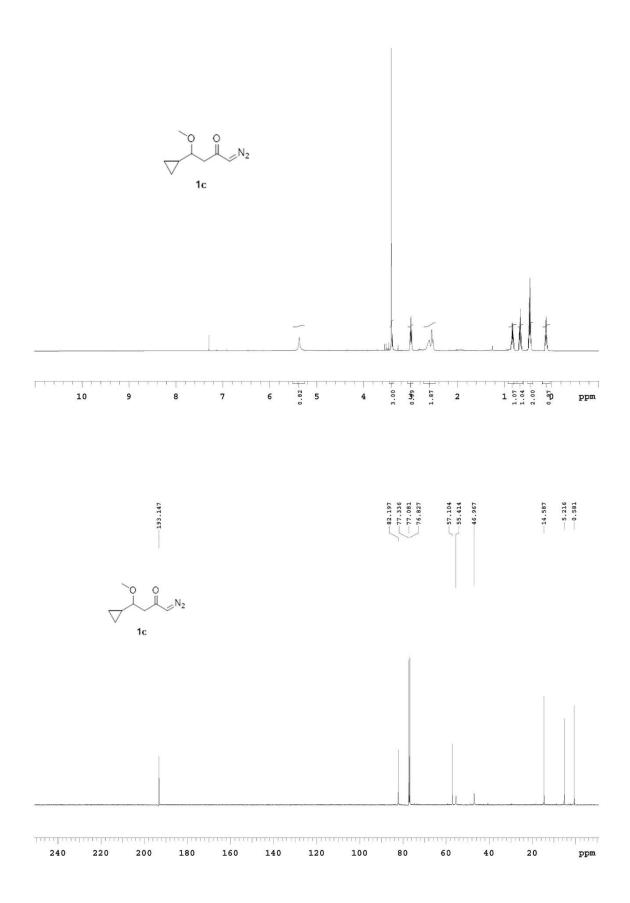


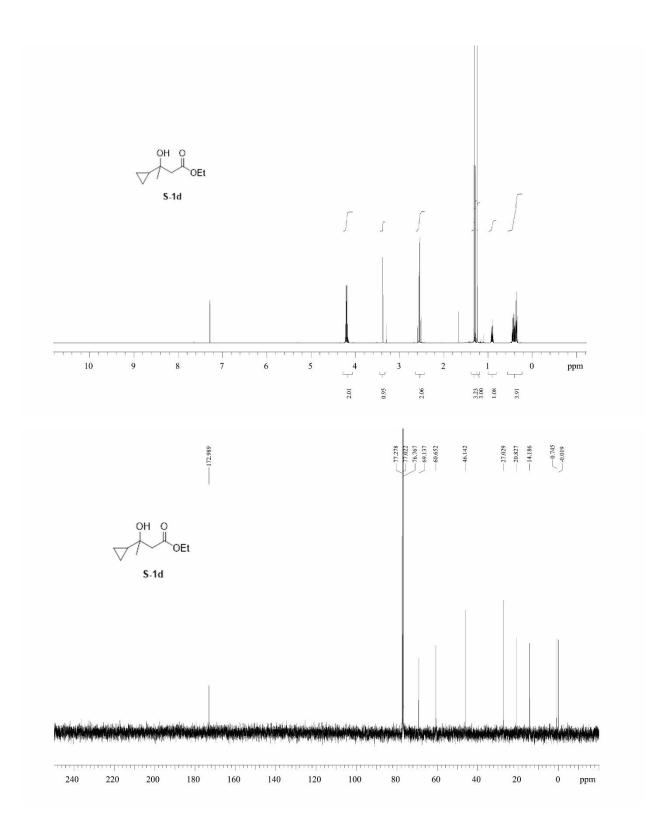

S33

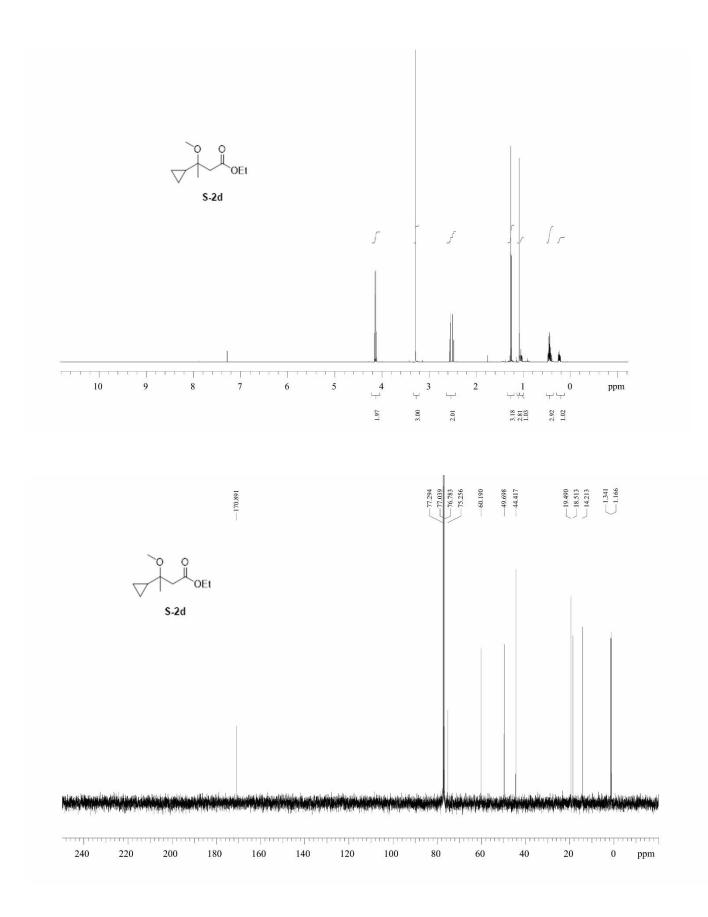


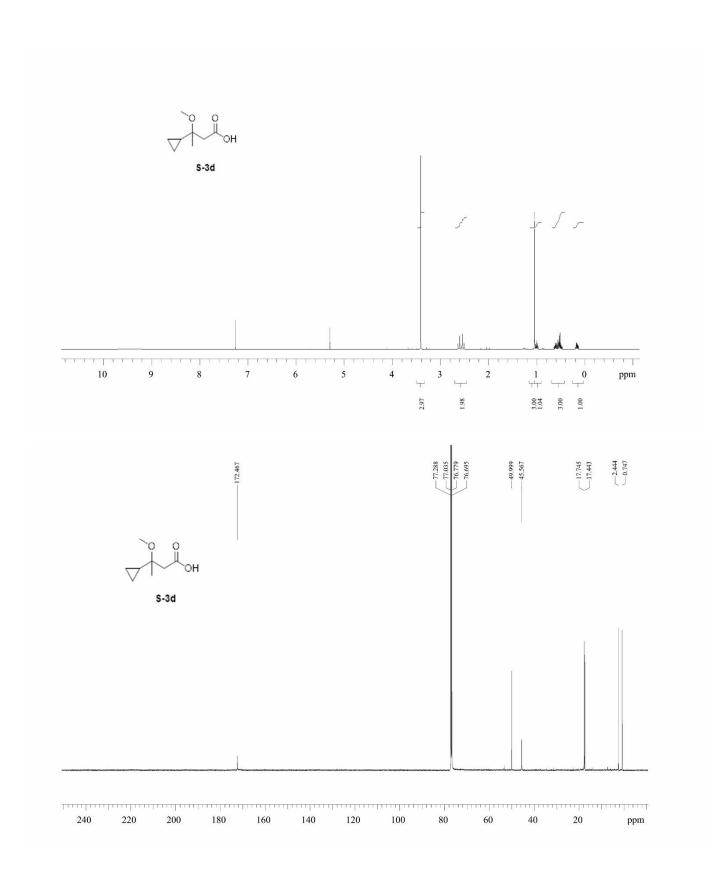


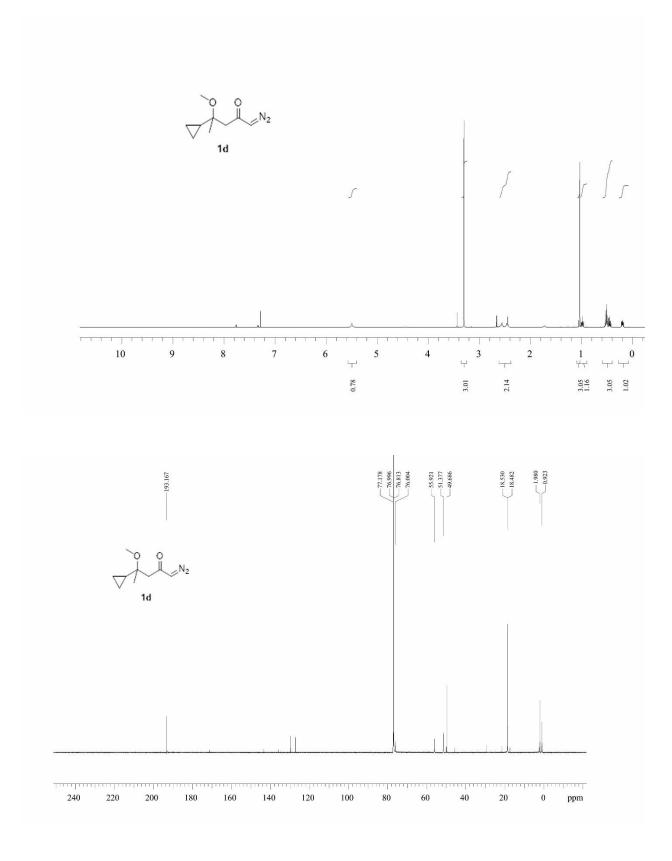


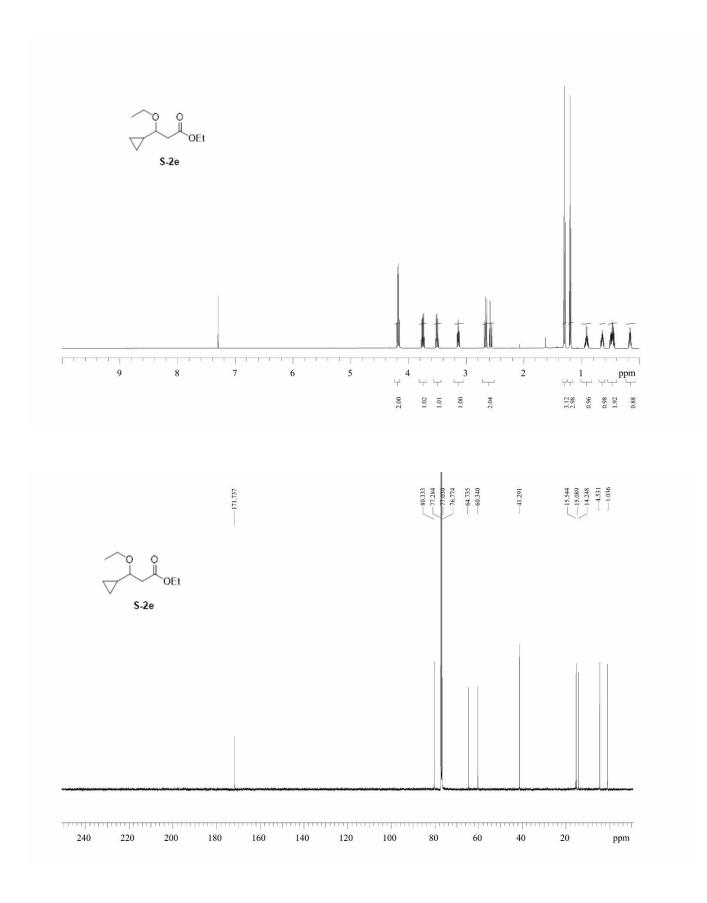


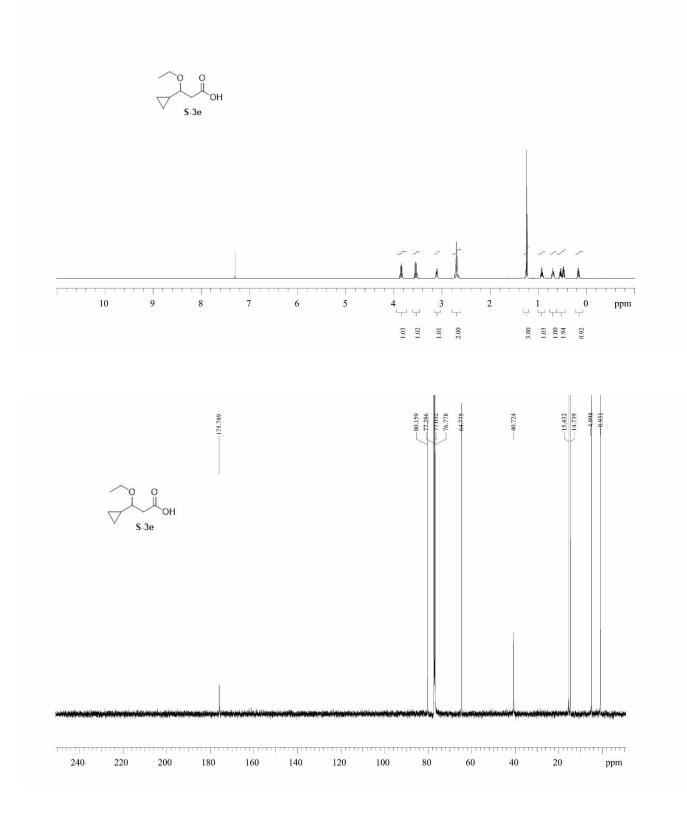


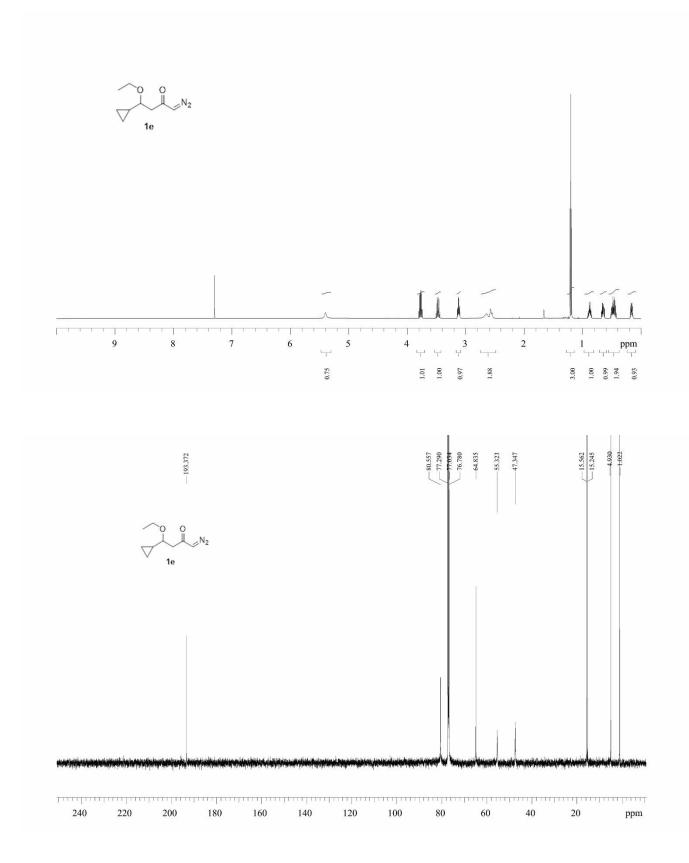


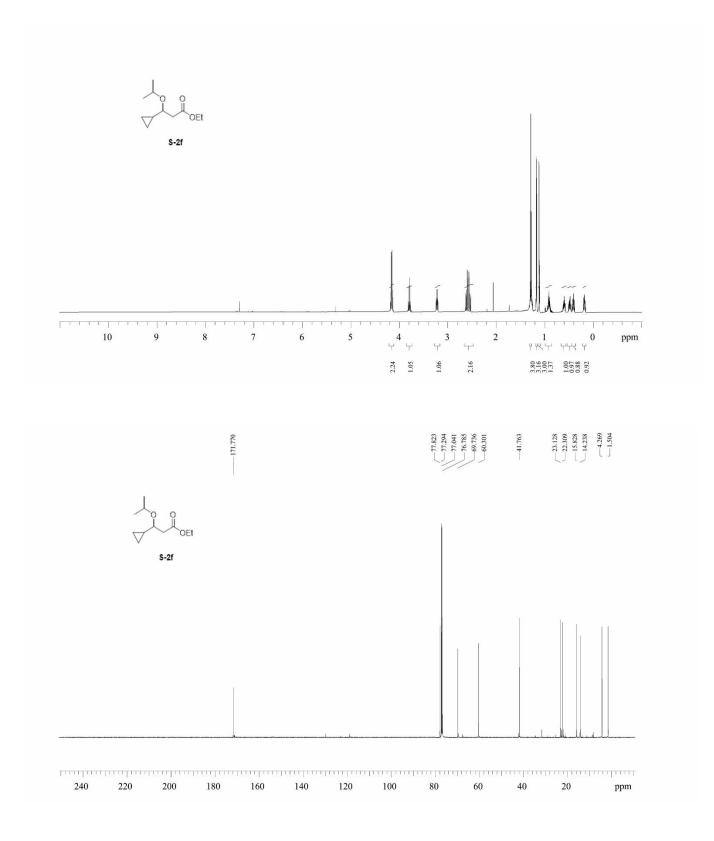

S39

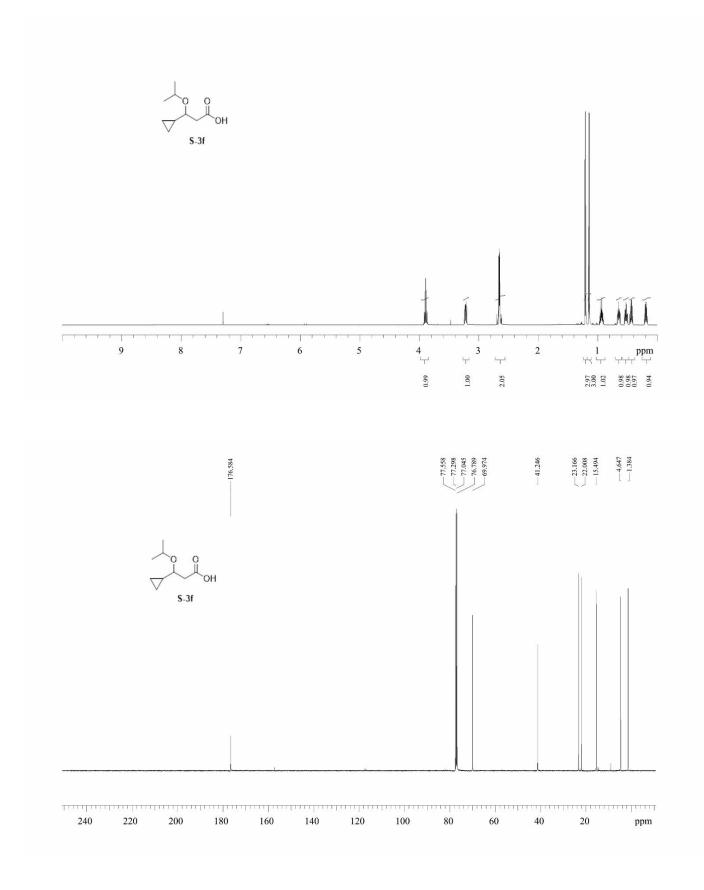


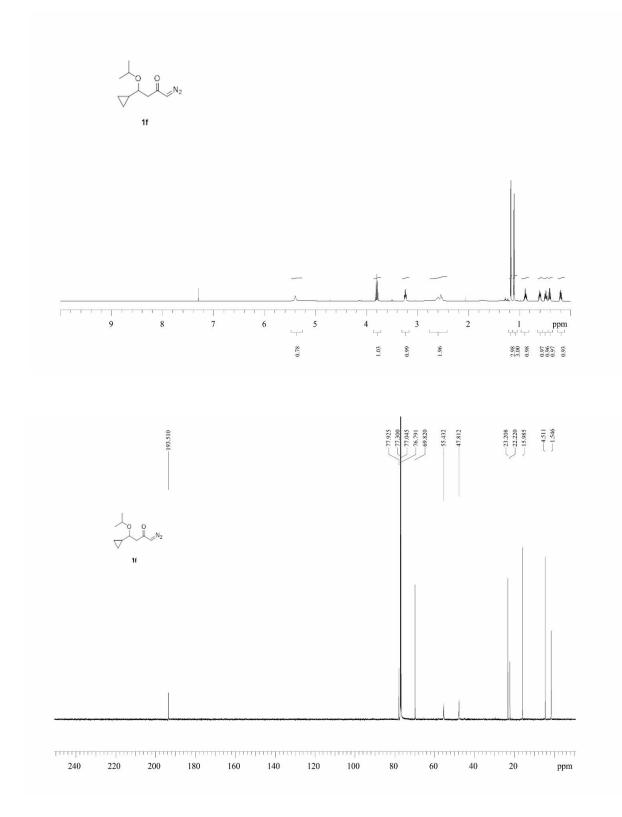


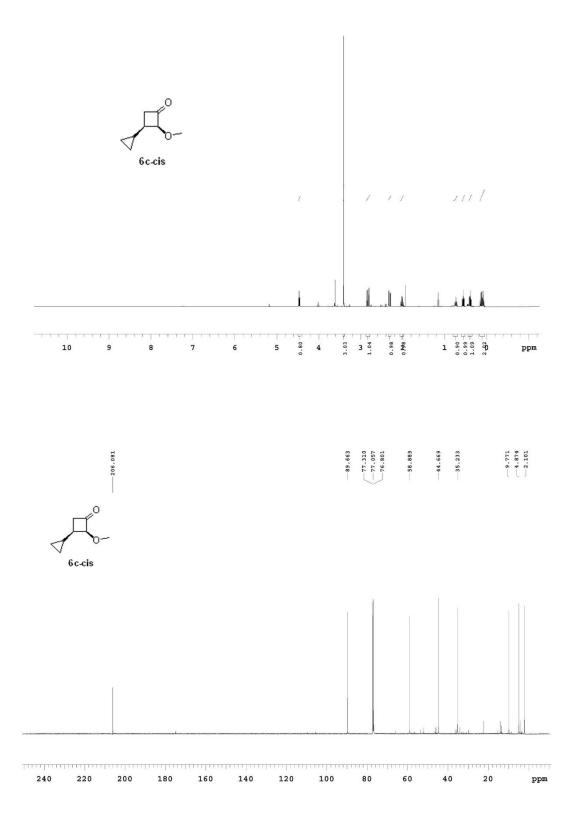


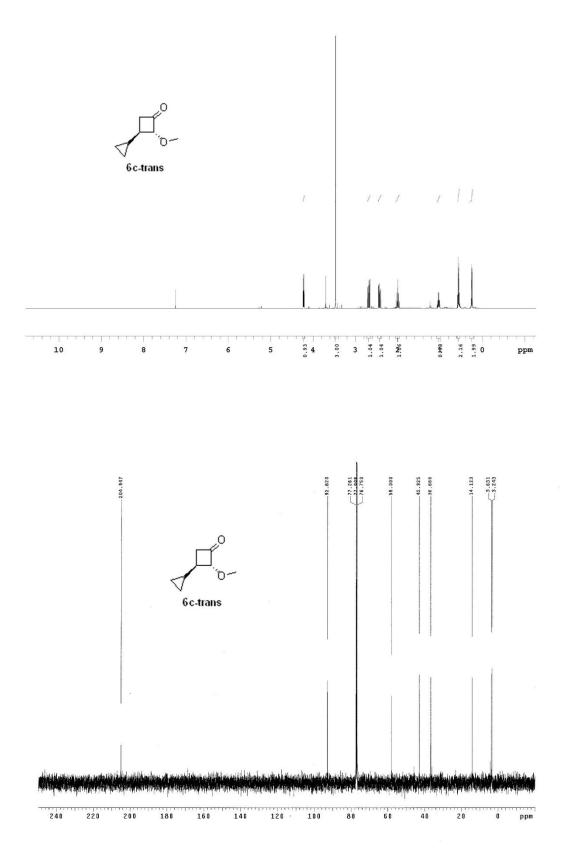


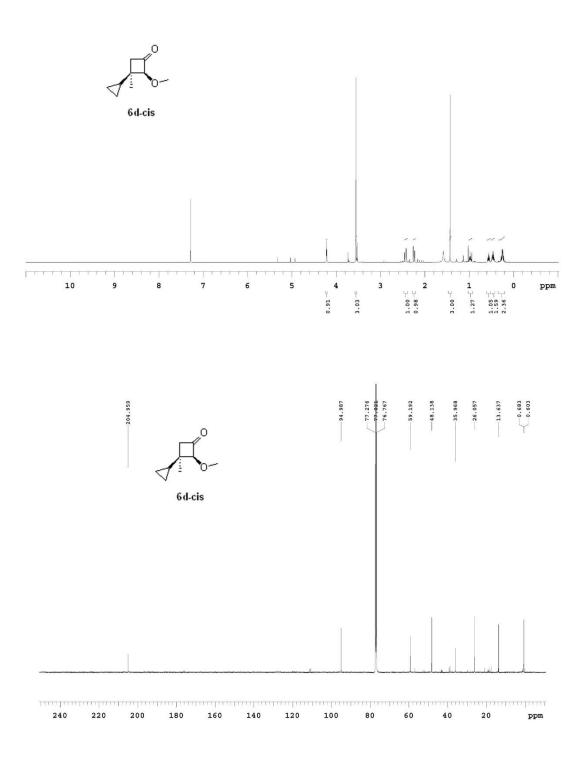


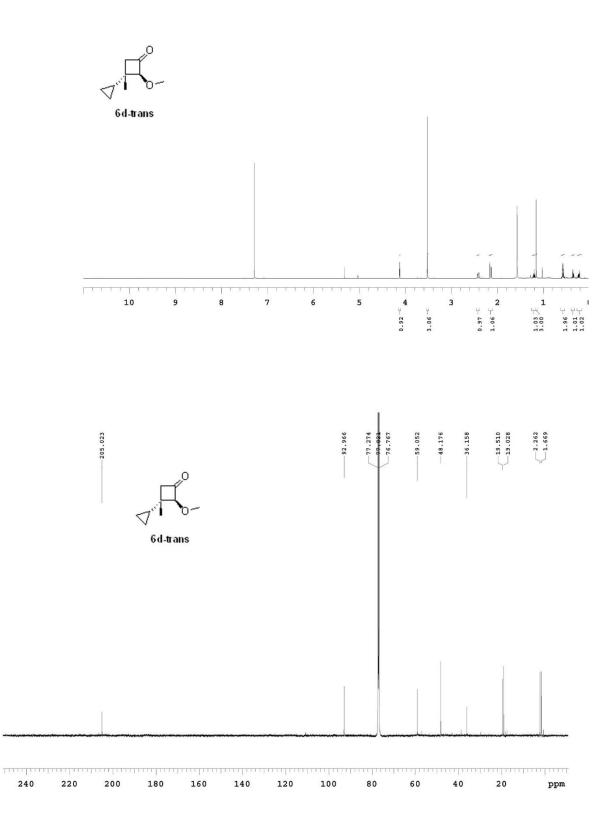


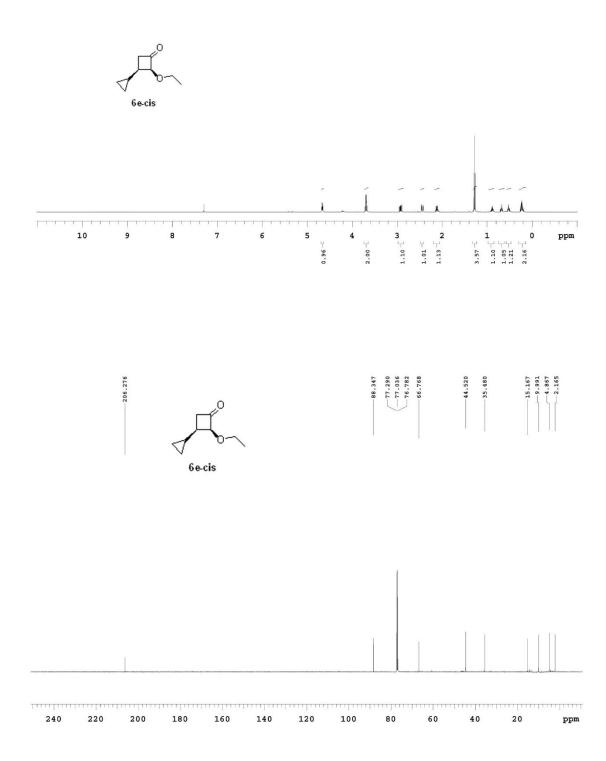


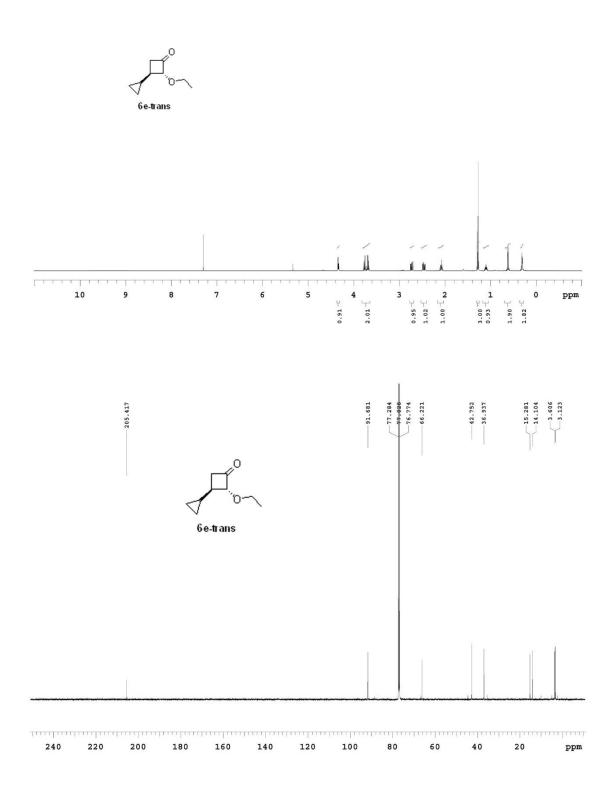


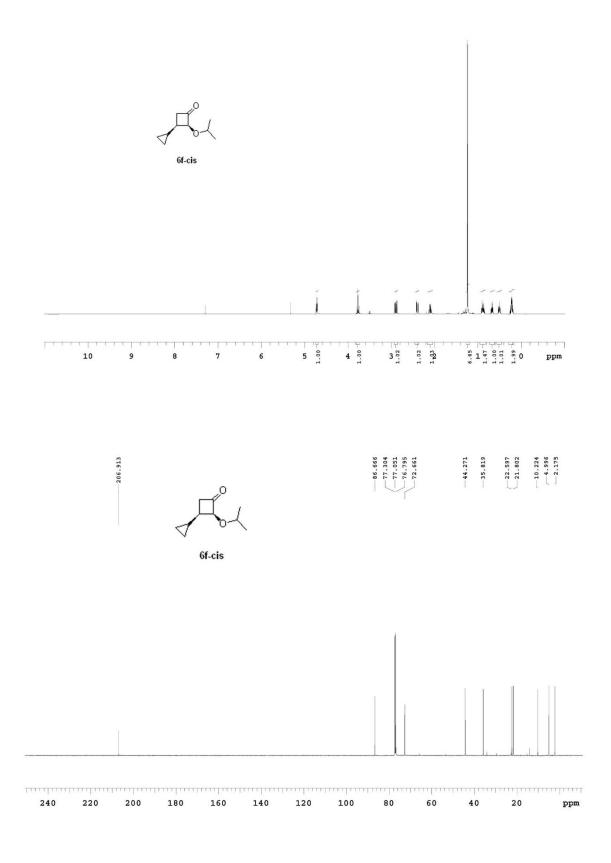


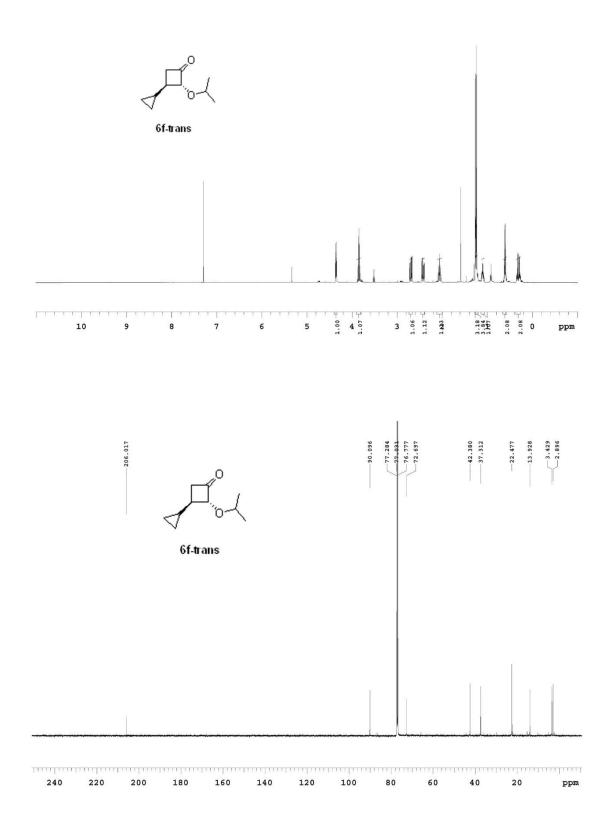


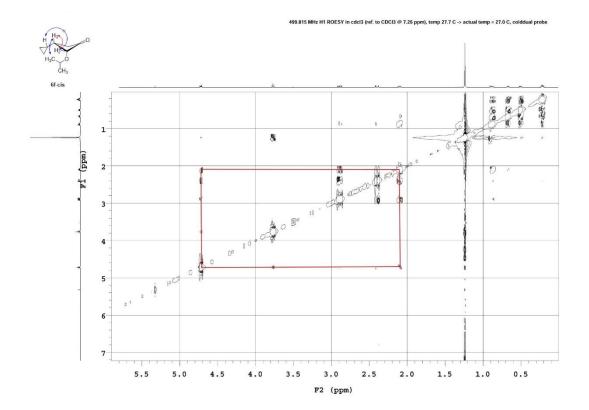


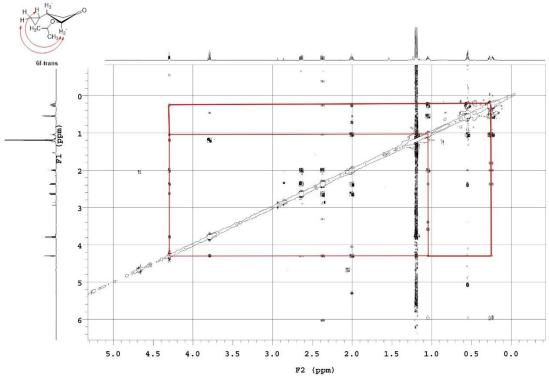


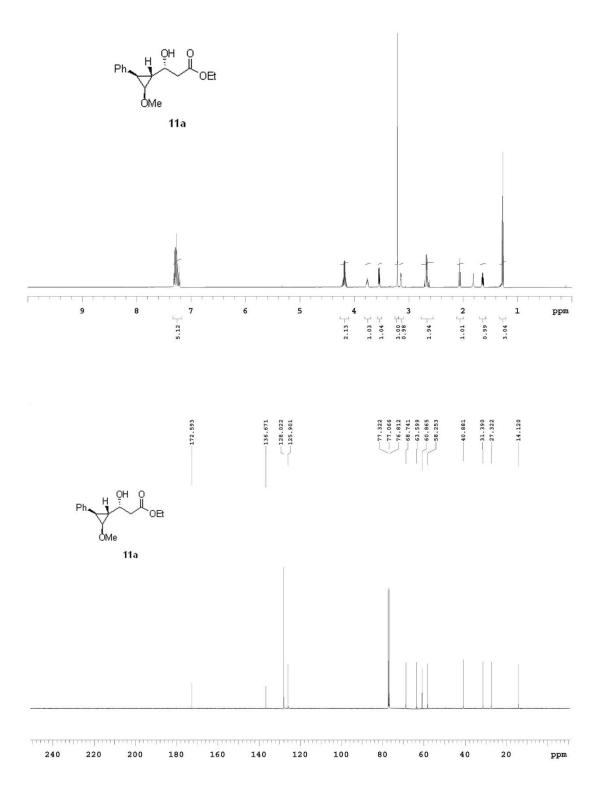


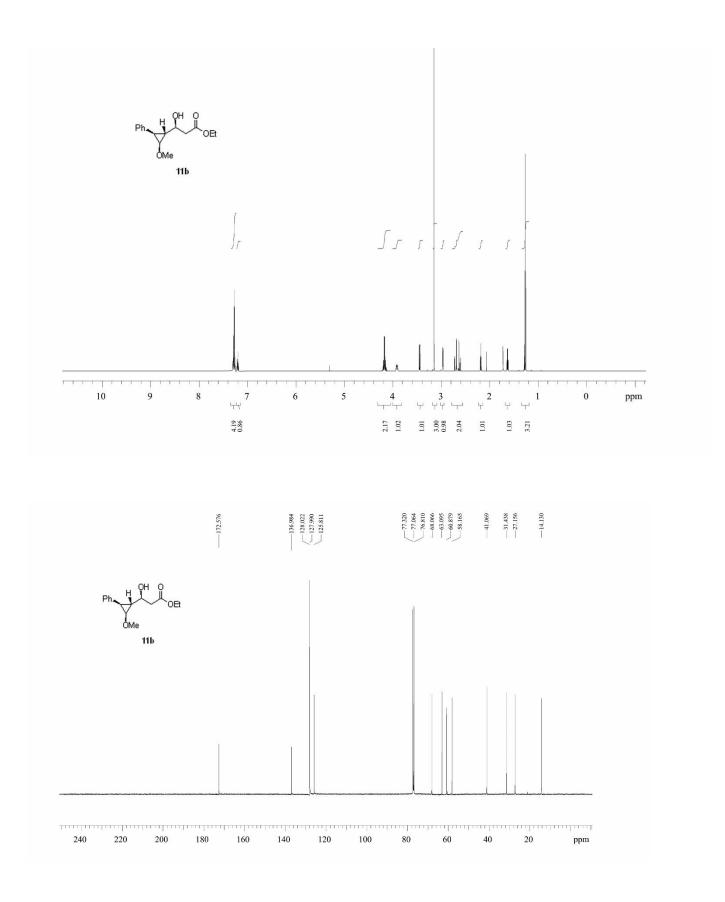


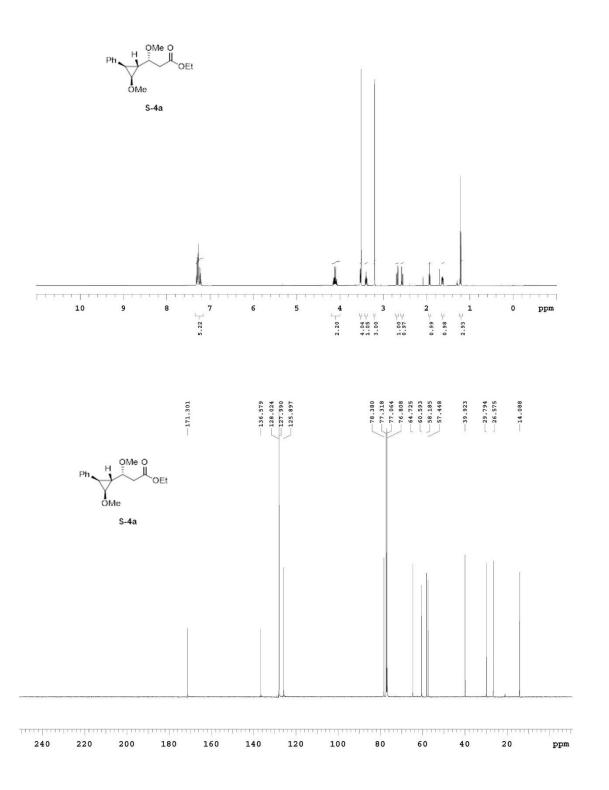


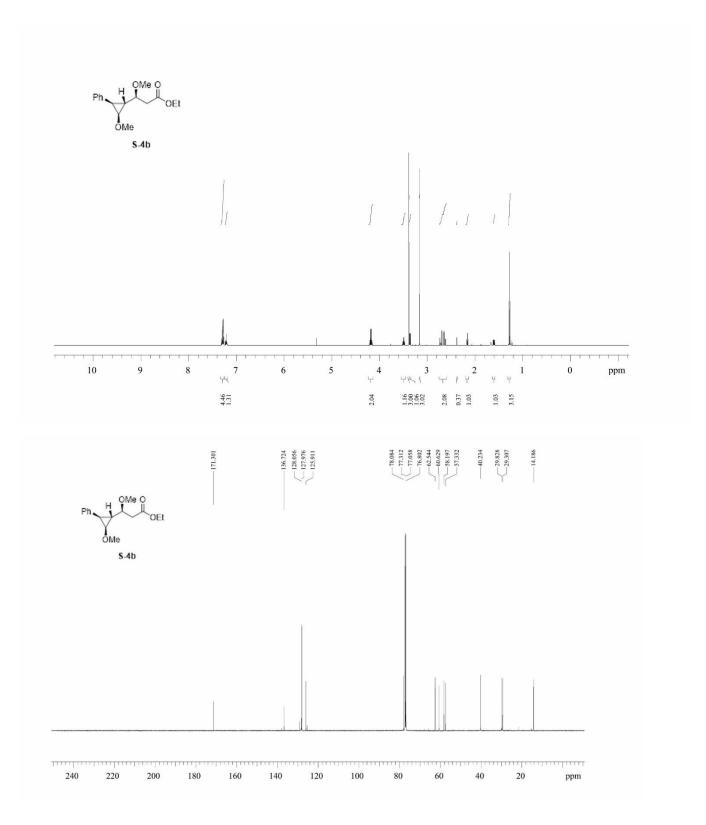


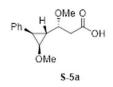

S56

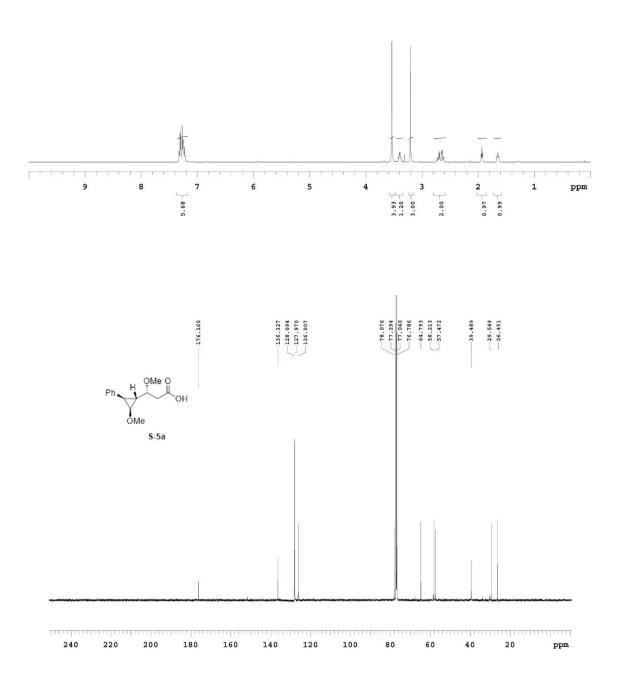


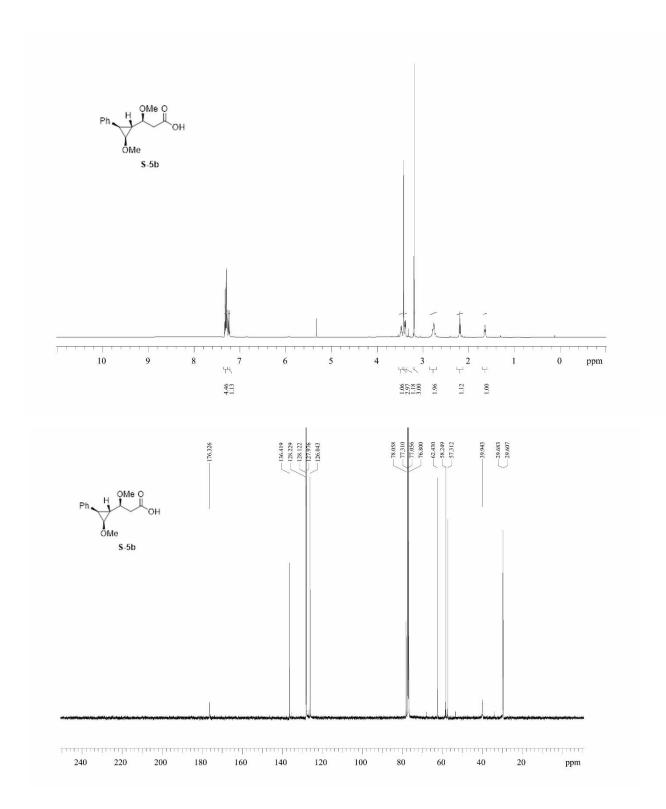


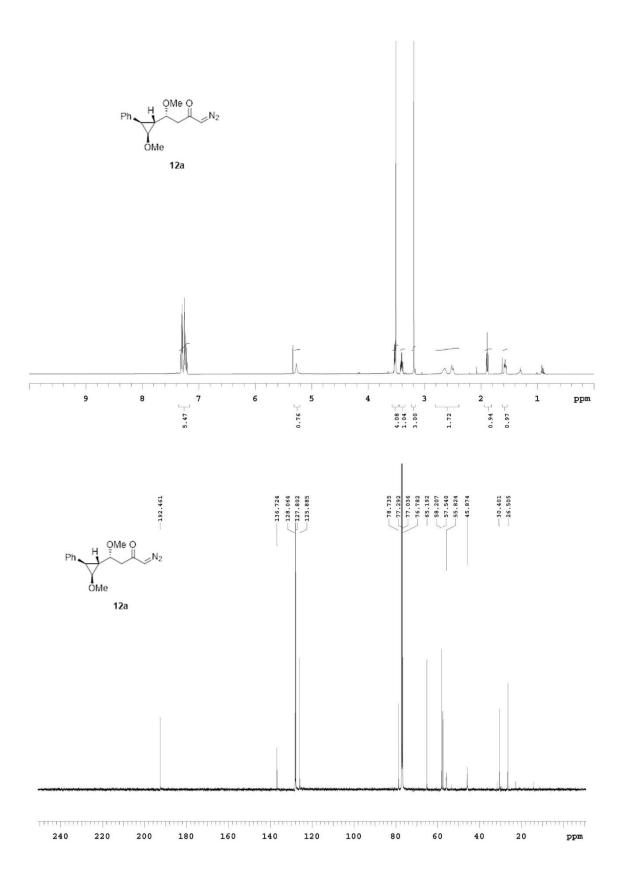


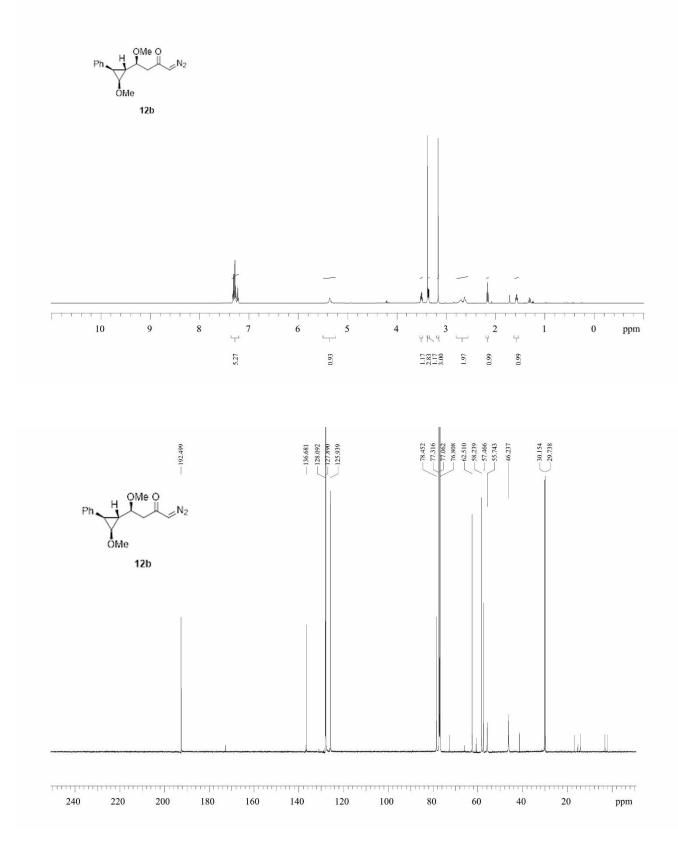

699.769 MHz H1 ROESY in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.5 C -> actual temp = 27.0 C, coldid probe

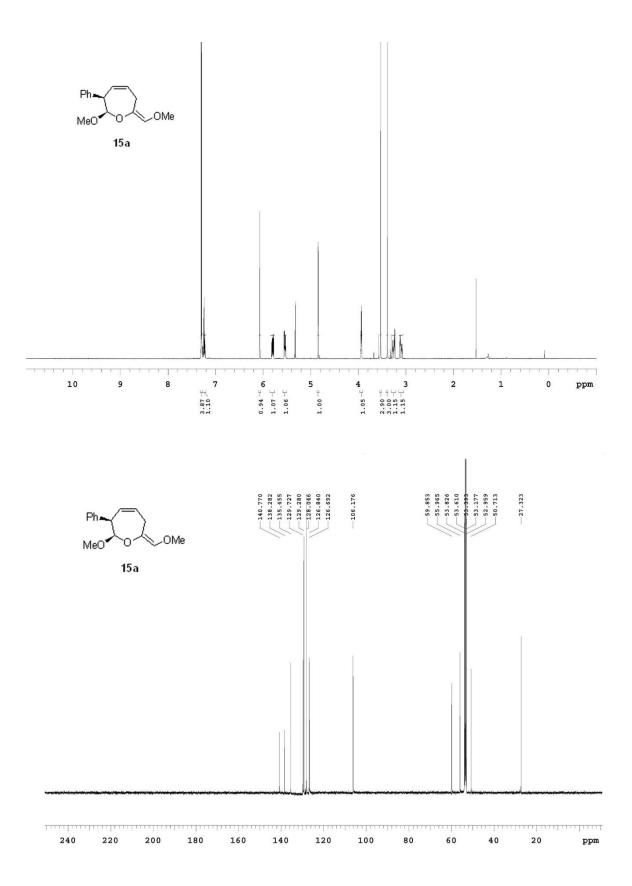

File: /mnt/d600/home13/westnmr/nmrdata/DATA_FROM_NMRSERVICE/Nargess_Hosseini/2015.02/2015.02.5.v7_SNH-03-194-F1-minor_loc37_20.05_H1_ROESY

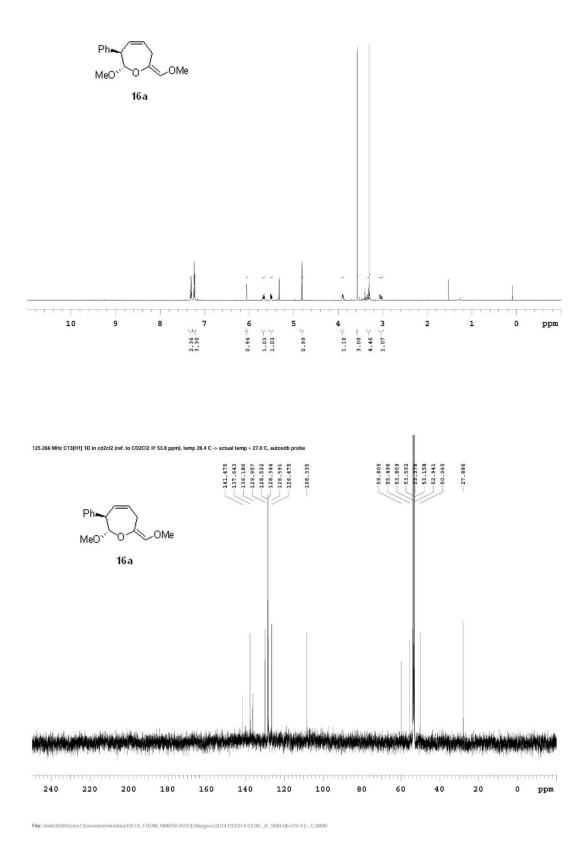


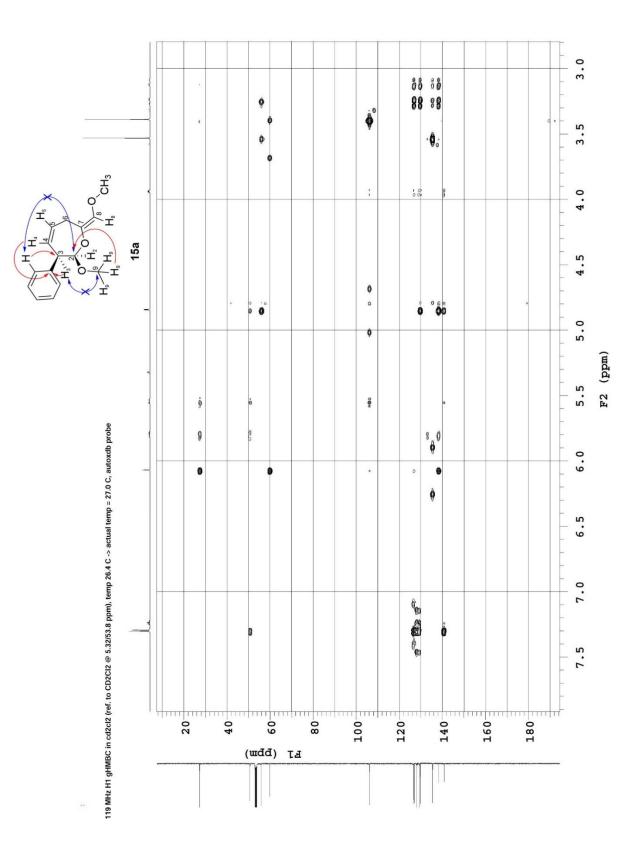


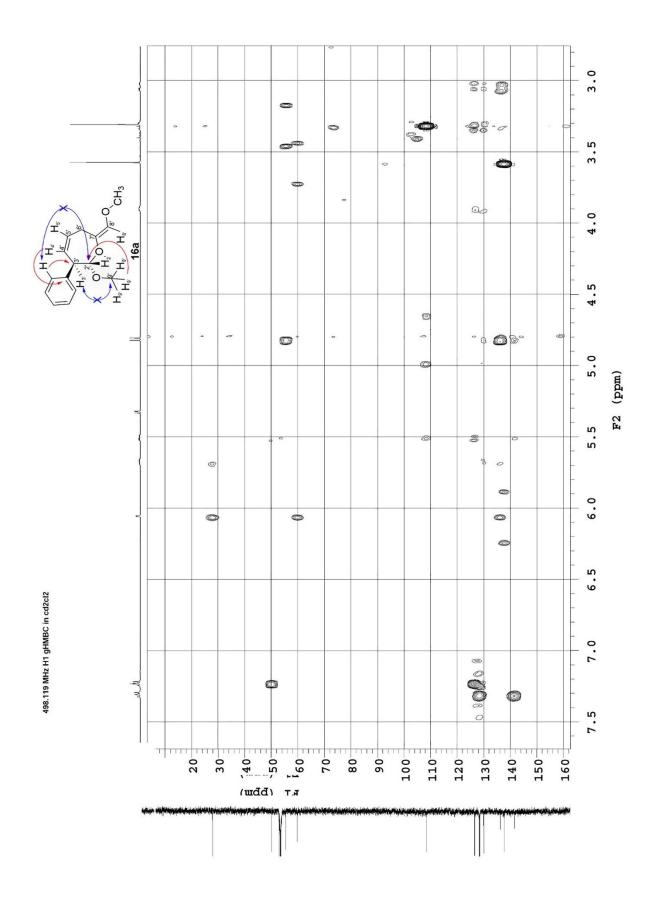


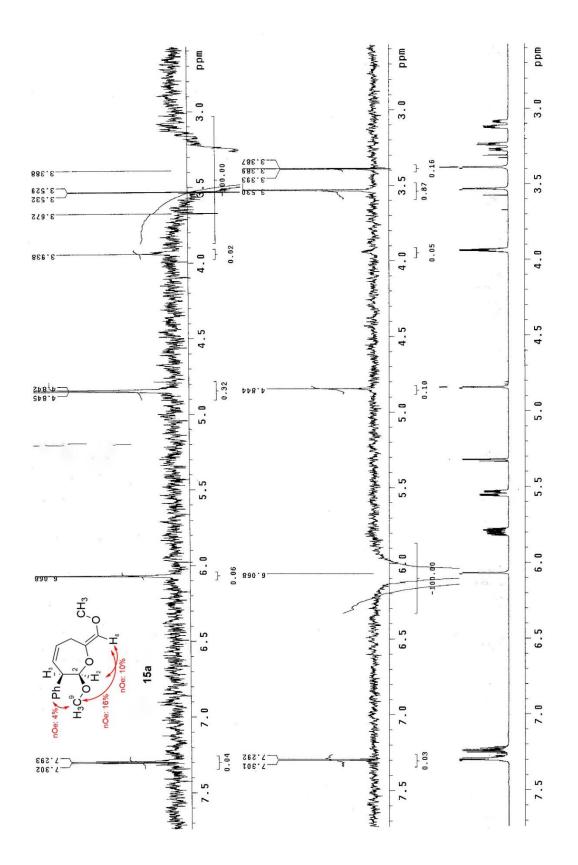


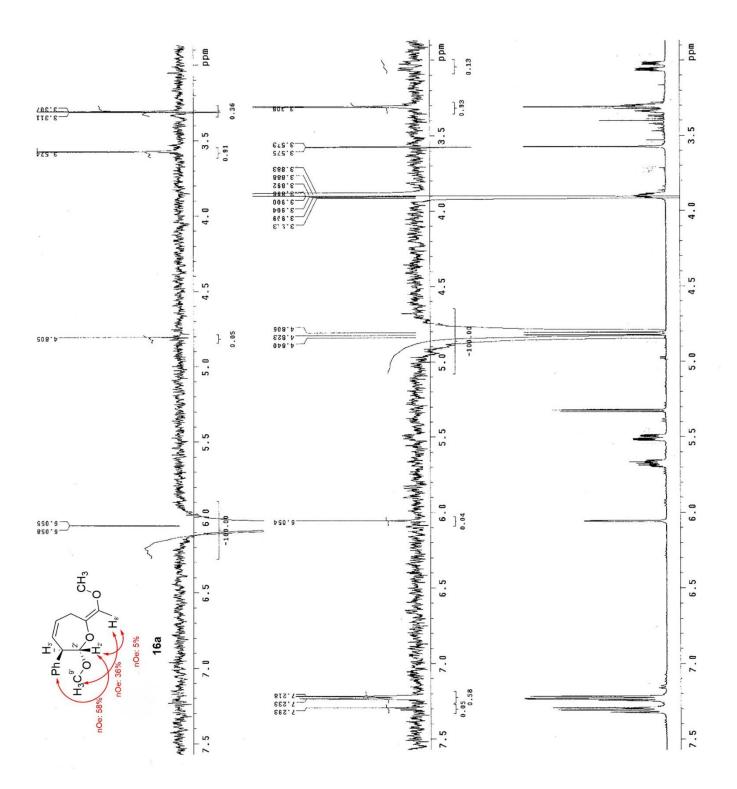




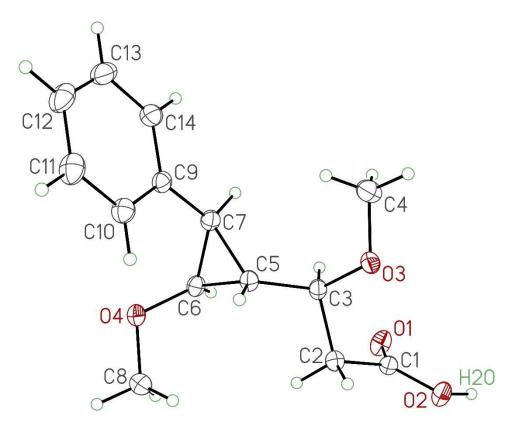








S70



5. X-Ray Structure of S-5b

