Electronic Supplementary Information

Rhodium(III)-Catalyzed Chemodivergent Annulations between

N-Methoxybenzamides and Sulfoxonium Ylides via C-H Activation

Youwei Xu,^{†,‡} Guangfan Zheng,[†] Xifa Yang,^{†,‡} and Xingwei Li^{*,†}

[†]Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China [‡]University of Chinese Academy of Sciences, Beijing 100049, China Email: <u>xwli@dicp.ac.cn</u>

Table of Contents

I. General Information	S2
II. Synthesis of Substrates	S2
(a) General Procedure for Preparation of Sulfoxonium Ylides	S2
(b) General Procedure for Preparation of N-methoxybenzamides	S2
III. Rhodium(III)-Catalyzed Coupling of N-methoxybenzamides with Sulfoxonium Ylides	S3
(a) Synthesis of Isocoumarins	S3
(b) Synthesis of Isoquinolones	S3
IV. Characterization Data	S3
V. Larger-Scale Preparation and Transformations	S14
(a) Larger-Scale Preparation of 3a	S14
(b) Larger-Scale Preparation of 4a	S15
(c) Transformations of 3a	S15
(d) Transformations of 4a	S17
VI. Mechanism Study	S18
(a) Deuterium Labeling Experiments	S18
(b) Kinetic Isotope Effect Experiments	S22
(c) Synthesis of intermediate 7	S23
(d) Transformation of 7 to 3a or 4a	S24
VII. Reference	S25
VIII. NMR Spectra of Products	S26

I. General Information

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. All reactions were carried out using Schlenk techniques or in a nitrogen-filled glove box in absolute ethanol. NMR Spectra were recorded on a 400 MHz NMR spectrometer in the solvent indicated. The chemical shift is given in dimensionless δ values and is frequency referenced relative to TMS in ¹H and ¹³C NMR spectroscopy. The following abbreviations were used to describe peak splitting patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = double of doublet, dt = double of triplet, td = triple of doublet. HRMS data were obtained via ESI mode with TOF mass analyzer. Column chromatography was performed on silica gel (300-400 mesh) using ethyl acetate (EA)/petroleum ether (PE) or dichloromethane (DCM)/ petroleum ether (PE).

II. Synthesis of Substrates

(a) General Procedure for Preparation of Sulfoxonium Ylides

Sulfoxonium ylides were prepared according to reported procedures.¹ To a stirred solution of potassium *tert*-butoxide (3.0 g, 27.2 mmol) in THF (30 mL) was added trimethylsulfoxonium iodide (5.0 g, 20.6 mmol) at room temperature. The resulting mixture is refluxed for 2 h. Then reaction mixture was cooled to 0 °C, followed by addition of acyl chlorides (7 mmol) in THF (5 mL). The reaction was allowed to room temperature and stirred for 3 h. Next, the solvent was evaporated and water (15 mL) and ethyl acetate (20 mL) were added to the resulting slurry. The layers were separated and the aqueous layer was washed with ethyl acetate (2 x 30 mL) and the organic layers were combined. The organic solution was dried over anhydrous sodium sulfate (Na₂SO₄), filtered over a sintered funnel, and evaporated to dryness. The crude product was purified by flash chromatography over silica gel using EtOAc/MeOH (95:5) to afford the corresponding sulfoxonium ylide.

(b) General Procedure for Preparation of N-methoxybenzamides

N-Methoxybenzamides were prepared according to reported procedures.² In a reaction flask, a mixture of MeONH₂·HCl (1.5 equiv) and K₂CO₃ (2 equiv) in a 2:1 mixture of EtOAc:H₂O (0.3 M) was stirred at 0 °C, followed by dropwise addition of the benzoyl chloride. The reaction was stirred at room temperature overnight. Afterwards, the reaction was quenched with aqueous NaHCO₃ solution and extracted with EtOAc. The organic phase was dried over Na₂SO₄ and evaporated under reduced pressure. The crude product was purified by recrystallization from EtOAc/Pentane.

III. Rhodium(III)-Catalyzed Coupling of *N*-methoxybenzamides with Sulfoxonium Ylides

(a) Synthesis of Isocoumarins

A pressure tube was charged with $[RhCp*Cl_2]_2$ (4.9 mg, 4 mol %), CsOAc (11.6 mg, 30 mol %), HOPiv (40.8 mg, 0.4 mmol), *N*-methoxybenzamides (0.2 mmol), sulfoxonium ylides (0.4 mmol), and DCE (4 mL). The reaction mixture was stirred under N₂ condition at 100 °C for 18 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA or PE/DCM to afford the product.

(b) Synthesis of Isoquinolones

A pressure tube was charged with $[Cp*Rh(MeCN)_3](SbF_6)_2$ (8.3 mg, 5 mol %), $Zn(OTf)_2$ (36.4 mg, 50 mol %), *N*-methoxybenzamides (0.2 mmol), sulfoxonium ylides (0.4 mmol) and DCE (4 mL). The reaction mixture was stirred under N₂ condition at 100 °C for 15 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA to afford the product.

IV. Characterization Data

White solid, 40.0 mg, yield: 90% (purified by silica gel chromatography using PE/EA 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 8.2 Hz, 1H), 7.87 (dd, J = 8.0, 1.4 Hz, 2H), 7.72 – 7.68 (m, 1H), 7.50 – 7.40 (m, 5H), 6.94 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.3, 153.5, 137.4, 134.8, 131.9, 129.9, 129.6, 128.8, 128.1, 125.9, 125.2, 120.5, 101.8.

6-methyl-3-phenyl-1*H*-isochromen-1-one³

White solid, 37.3 mg, yield: 79% (purified by silica gel chromatography using PE/EA 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 8.0 Hz, 1H), 7.86 – 7.83 (m, 2H), 7.46 – 7.38 (m, 3H), 7.29 – 7.25 (m, 2H), 6.86 (s, 1H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.3, 153.5, 145.9, 137.5, 132.0, 129.8, 129.5, 128.7, 125.9, 125.1, 118.0, 101.7, 21.9.

6-methoxy-3-phenyl-1*H*-isochromen-1-one³

White solid, 47.9 mg, yield: 95% (purified by silica gel chromatography using PE/EA 10:1). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.8 Hz, 1H), 7.85 – 7.81 (m, 2H), 7.45 – 7.39 (m, 3H), 6.98 (dd, J = 8.8, 2.4 Hz, 1H), 6.84 – 6.83 (m, 2H), 3.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.6, 162.0, 154.0, 139.7, 131.9, 131.7, 129.9, 128.7, 125.2, 116.5, 113.6, 107.8, 101.8, 55.6.

3,6-diphenyl-1*H*-isochromen-1-one³

White solid, 49.1 mg, yield: 82% (purified by silica gel chromatography using PE/EA 10:1). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 8.2 Hz, 1H), 7.89 (dd, J = 8.0, 1.4 Hz, 2H), 7.71 – 7.65 (m, 4H), 7.52 – 7.41 (m, 6H), 6.99 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 153.9, 147.6, 139.4, 137.9, 131.9, 130.2, 130.0, 129.0, 128.8, 128.7, 127.4, 127.1, 125.2, 124.1, 119.2, 101.9.

6-fluoro-3-phenyl-1*H*-isochromen-1-one³

White solid, 43.1 mg, yield: 90% (purified by silica gel chromatography using PE/EA 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.31 (dd, J = 8.7, 5.6 Hz, 1H), 7.87 – 7.84 (m, 2H), 7.48 – 7.32 (m, 3H), 7.19 – 7.11 (m, 2H), 6.89 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7 (d, J_{C-F} = 256.5 Hz), 161.3, 154.8, 140.2 (d, J_{C-F} = 10.8 Hz), 132.9 (d, J_{C-F} = 10.4 Hz), 131.5, 130.3, 128.8, 125.4, 116.9 (d, J_{C-F} = 2.1 Hz), 116.4 (d, J_{C-F} = 23.4 Hz), 111.5 (d, J_{C-F} = 22.6 Hz), 101.1 (d, J_{C-F} = 2.9 Hz).

6-chloro-3-phenyl-1*H*-isochromen-1-one³

White solid, 47.6 mg, yield: 93% (purified by silica gel chromatography using PE/DCM 2:1). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 8.4 Hz, 1H), 7.87 – 7.85 (m, 2H), 7.47 – 7.42 (m, 5H), 6.86 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.5, 154.9, 141.5, 138.9, 131.5, 131.3, 130.4, 128.9, 128.6, 125.4, 125.4, 118.8, 100.7.

3-phenyl-6-(trifluoromethyl)-1H-isochromen-1-one³

White solid, 47.6 mg, yield: 82% (purified by silica gel chromatography using PE/DCM 2:1). ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 8.3 Hz, 1H), 7.87 – 7.84 (M, 2H), 7.75 (s, 1H), 7.68 (d, J = 8.3 Hz, 1H), 7.49 – 7.42 (m, 3H), 6.98 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.0, 155.0, 137.8, 136.3 (q, J_{C-F} = 32.9 Hz), 131.3, 130.6, 130.5, 128.9, 125.4, 124.2 (q, J_{C-F} = 3.4 Hz), 123.2 (q, J_{C-F} = 273.3 Hz), 123.1 (q, J_{C-F} = 4.0 Hz), 122.7, 101.0.

8-fluoro-3-phenyl-1H-isochromen-1-one

White solid, 43.5 mg, yield: 91% (purified by silica gel chromatography using PE/EA 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.83 (m, 2H), 7.67 – 7.62 (m, 1H), 7.46 – 7.43 (m, 3H), 7.26 (d, *J* = 7.7 Hz, 1H), 7.11 (dd, *J* = 10.2, 8.6 Hz, 1H), 6.90 (d, *J* = 2.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.8 (d, *J*_{C-F} = 266.7 Hz), 157.7 (d, *J*_{C-F} = 5.4 Hz), 154.4, 140.0, 136.1 (d, *J*_{C-F} = 10.2 Hz), 131.3, 130.3, 128.8, 125.3, 121.8 (d, *J*_{C-F} = 4.3 Hz), 115.1 (d, *J*_{C-F} = 21.3 Hz), 109.2 (d, *J*_{C-F} = 7.3 Hz), 101.0 (d, *J*_{C-F} = 3.1 Hz). HRMS (ESI): calculated for C₁₅H₁₀FO₂⁺ 241.0657, found 241.0659.

8-chloro-3-phenyl-1*H*-isochromen-1-one

White solid, 50.7 mg, yield: 99% (purified by silica gel chromatography using PE/DCM 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.83 (dd, J = 7.4, 1.8 Hz, 2H), 7.55 (t, J = 7.8 Hz, 1H), 7.48 – 7.43 (m, 4H), 7.36 (d, J = 7.7 Hz, 1H), 6.87 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 154.1, 140.5, 137.1, 134.5, 131.3, 130.8, 130.3, 128.8, 125.2, 124.9, 117.4, 101.4. HRMS (ESI): calculated for $C_{15}H_{10}ClO_2^+$ 257.0357, found 257.0364.

7-methyl-3-phenyl-1*H*-isochromen-1-one³

White solid, 42.5 mg, yield: 90% (purified by silica gel chromatography using PE/EA 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.85 – 7.83 (m, 2H), 7.50 (d, J = 8.0 Hz, 1H), 7.45 – 7.36 (m, 4H), 6.89 (s, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 152.7, 138.4, 136.1, 134.9, 132.0, 129.6, 129.2, 128.7, 125.8, 125.0, 120.3, 101.7, 21.3.

(3aS)-5-phenyl-3aH-thieno[2,3-c]pyran-7(7aH)-one

White solid, 32.1 mg, yield: 70% (purified by silica gel chromatography using PE/EA 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.83 (m, 3H), 7.48 – 7.42 (m, 3H), 7.23 (d, *J* = 5.1 Hz, 1H), 7.11 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 156.4, 147.5, 136.8, 131.8, 130.1, 128.9, 125.3, 124.7, 122.9, 99.0. HRMS (ESI): calculated for C₁₃H₉O₂S⁺ 229.0318, found 229.0317.

White solid, 53.6 mg, yield: 89% (purified by silica gel chromatography using PE/EA 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 7.9 Hz, 1H), 7.71 – 7.67 (m, 3H), 7.53 (d, J = 8.6 Hz, 2H), 7.49 – 7.44 (m, 2H), 6.89 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.0, 152.5, 137.2, 135.0, 132.0, 130.8, 129.7, 128.4, 126.6, 126.1, 124.3, 120.5, 102.1.

White solid, 52.2 mg, yield: 90% (purified by silica gel chromatography using PE/DCM 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 7.8 Hz, 1H), 7.99 (d, *J* = 8.3 Hz, 2H), 7.77 - 7.70 (m, 3H), 7.56

-7.52 (m, 2H), 7.04 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.8, 152.0, 136.9, 135.3, 135.1, 131.6 (q, $J_{C-F} = 33.0$ Hz), 129.8, 128.9, 126.3, 125.9 (q, $J_{C-F} = 3.7$ Hz), 125.5, 123.8 (q, $J_{C-F} = 272.5$ Hz), 120.9, 103.4.

3-(m-tolyl)-1H-isochromen-1-one³

White solid, 42.1 mg, yield: 85% (purified by silica gel chromatography using PE/EA 20:1).¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 8.1 Hz, 1H), 7.72 – 7.66 (m, 3H), 7.50 – 7.47 (m, 2H), 7.34 (t, J = 7.7 Hz, 1H), 7.23 (d, J = 7.5 Hz, 1H), 6.93 (s, 1H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 153.8, 138.6, 137.6, 134.8, 131.8, 130.8, 129.6, 128.7, 128.0, 125.9, 125.8, 122.4, 120.5, 101.7, 21.4.

3-(o-tolyl)-1H-isochromen-1-one³

Colorless oil, 40.2 mg, yield: 85% (purified by silica gel chromatography using PE/EA 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 8.0 Hz, 1H), 7.72 (td, *J* = 7.8, 1.3 Hz, 1H), 7.54 – 7.45 (m, 3H), 7.36 – 7.32 (m, 1H), 7.28 – 7.24 (m, 2H), 6.60 (s, 1H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 155.5, 137.4, 136.7, 134.8, 132.7, 131.0, 129.7, 129.5, 129.1, 128.2, 125.9, 125.8, 120.3, 105.9, 20.7.

3-(naphthalen-2-yl)-1*H*-isochromen-1-one³

Yellow solid, 49.3 mg, yield: 90% (purified by silica gel chromatography using PE/EA 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 8.27 (d, J = 7.9 Hz, 1H), 7.89 – 7.78 (m, 4H), 7.69 – 7.65 (m, 1H), 7.50 – 7.43 (m, 4H), 6.98 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 153.3, 137.4, 134.8, 133.7, 133.0, 129.5, 128.8, 128.7, 128.5, 128.1, 127.6, 127.1, 126.7, 125.9, 125.1, 121.8, 120.4, 102.1.

Colorless oil, 32.5 mg, yield: 80% (purified by silica gel chromatography using PE/EA 30:1). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.0 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.37 (d, J = 7.9 Hz, 1H), 6.30 (s, 1H), 1.32 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 163.0, 137.6, 134.6, 129.3, 127.5, 125.4, 120.1, 99.6, 35.6, 27.9.

3-((3r,5r,7r)-adamantan-1-yl)-1H-isochromen-1-one

White solid, 51.6 mg, yield: 92% (purified by silica gel chromatography using PE/EA 15:1). ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 7.9 Hz, 1H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.36 (d, *J* = 7.9 Hz, 1H), 6.20 (s, 1H), 2.08 (apparent s, 3H), 1.95-1.94 (m, 6H), 1.79-1.71 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 163.1, 137.8, 134.5, 129.3, 127.4, 125.4, 120.2, 99.6, 39.6, 37.2, 36.5, 28.0. HRMS (ESI): calculated for C₁₉H₂₁O₂⁺ 281.1536, found 281.1541.

3-(4,7,7-trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptan-1-yl)-1*H*-isochromen-1-one White solid, 23.9 mg, yield: 40% (purified by silica gel chromatography using PE/EA 10:1). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.0 Hz, 1H), 7.74 (td, *J* = 7.7, 1.2 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.46 (d, *J* = 7.8 Hz, 1H), 6.76 (s, 1H), 2.75 – 2.68 (m, 1H), 2.04 – 1.94 (m, 2H), 1.82 – 1.75 (m, 1H), 1.17 – 1.16 (m, 6H), 0.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.5, 161.5, 151.4, 136.5, 135.1, 129.7, 128.7, 126.1, 120.5, 104.1, 90.7, 55.1, 54.0, 30.7, 29.0, 17.1, 16.7, 9.9. HRMS (ESI): calculated for C₁₉H₂₁O₂⁺ 299.1278, found 299.1279.

2-methoxy-3-phenylisoquinolin-1(2H)-one⁶

White solid, yield: 95% (purified by silica gel chromatography using PE/EA/Et₃N 80:6:1).¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 8.1 Hz, 1H), 7.68 – 7.61 (m, 3H), 7.55 – 7.50 (m, 2H), 7.48 – 7.46 (m, 3H), 6.48 (s, 1H), 3.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 142.1, 135.8, 132.5, 132.5, 129.3, 129.2, 128.2, 127.8, 126.6, 126.3, 126.2, 106.7, 63.4.

2-methoxy-6-methyl-3-phenylisoquinolin-1(2H)-one

White solid, yield: 97% (purified by silica gel chromatography using PE/EA/Et₃N 80:6:1). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 8.6 Hz, 1H), 7.64 – 7.61 (m, 2H), 7.47 – 7.46 (m, 3H), 7.33 – 7.32 (m, 2H), 6.41 (s, 1H), 3.69 (s, 3H), 2.48 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 143.0, 142.1, 135.9, 132.7, 129.2, 129.1, 128.3, 128.1, 127.7, 125.9, 124.0, 106.5, 63.3, 21.7. HRMS (ESI): calculated for C₁₇H₁₆NO₂⁺ 266.1176, found 266.1179.

2,6-dimethoxy-3-phenylisoquinolin-1(2H)-one⁶

White solid, 49.0 mg, yield: 87% (purified by silica gel chromatography using PE/EA/Et₃N 40:6:1). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 8.9 Hz, 1H), 7.63 – 7.60 (m, 2H), 7.48 – 7.45 (m, 3H), 7.06 (dd, J = 8.9, 2.5 Hz, 1H), 6.87 (d, J = 2.4 Hz, 1H), 6.39 (s, 1H), 3.90 (s, 3H), 3.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.9, 158.4, 142.6, 137.8, 132.6, 129.8, 129.2, 129.2, 128.2, 120.1, 116.2, 106.9, 106.3, 63.4, 55.5.

6-fluoro-2-methoxy-3-phenylisoquinolin-1(2H)-one⁶

White solid, yield: 97% (purified by silica gel chromatography using PE/EA/Et₃N 80:6:1). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (dd, J = 8.9, 5.7 Hz, 1H), 7.63 – 7.61 (m, 2H), 7.49 – 7.46 (m, 3H), 7.22 – 7.14 (m, 2H), 6.41 (s, 1H), 3.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3 (d, $J_{C-F} = 253.0$ Hz), 158.2, 143.5, 138.0 (d, $J_{C-F} = 10.5$ Hz), 132.2, 131.1 (d, $J_{C-F} = 10.1$ Hz), 129.5, 129.3, 128.3, 122.9 (d, $J_{C-F} = 1.5$ Hz), 115.5 (d, $J_{C-F} = 23.6$ Hz), 111.0 (d, $J_{C-F} = 22.0$ Hz), 105.9 (d, $J_{C-F} = 3.3$ Hz), 63.6.

6-chloro-2-methoxy-3-phenylisoquinolin-1(2H)-one⁶

White solid, yield: 96% (purified by silica gel chromatography using PE/EA/Et₃N 80:6:1). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 8.6 Hz, 1H), 7.62 – 7.60 (m, 2H), 7.51 (d, *J* = 1.7 Hz, 1H), 7.48

-7.46 (m, 3H), 7.42 (dd, J = 8.6, 1.9 Hz, 1H), 6.38 (s, 1H), 3.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.2, 143.5, 138.9, 136.9, 132.1, 129.6, 129.5, 129.2, 128.3, 127.1, 125.4, 124.6, 105.5, 63.5.

⁴¹ 2-methoxy-3-phenyl-6-(trifluoromethyl)isoquinolin-1(2*H*)-one White solid, yield: 88% (purified by silica gel chromatography using PE/EA/Et₃N 80:6:1). ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, J = 8.4 Hz, 1H), 7.82 (s, 1H), 7.68 (dd, J = 8.5, 1.2 Hz, 1H), 7.64 – 7.62 (m, 2H), 7.50 – 7.47 (m, 3H), 6.53 (s, 1H), 3.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.0, 143.8, 135.7, 134.2 (q, J_{C-F} = 32.5 Hz), 132.0, 129.6, 129.2, 129.0, 128.3, 123.6 (q, J_{C-F} = 273.0 Hz), 123.6 (q, J_{C-F} = 4.1 Hz), 122.5 (q, J_{C-F} = 3.3 Hz), 106.2, 63.6 (one signal missing due to overlap). HRMS (ESI): calculated for C₁₇H₁₃F₃NO₂⁺ 320.0893, found 320.0894.

8-fluoro-2-methoxy-3-phenylisoquinolin-1(2H)-one

White solid, 30.2 mg, yield: 56% (purified by silica gel chromatography using PE/EA/Et₃N 80:6:1). ¹H NMR (400 MHz, CDCl₃) δ 7.617.59 (m, 2H), 7.57 – 7.53 (m, 1H), 7.47 – 7.45 (m, 3H), 7.28 (d, *J* = 7.9 Hz, 1H), 7.09 (dd, *J* = 11.3, 8.2 Hz, 1H), 6.41 (d, *J* = 1.5 Hz, 1H), 3.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (d, *J* = 264.3 Hz), 155.9 (d, *J* = 4.9 Hz), 143.3 (d, *J* = 1.2 Hz), 138.4, 133.3 (d, *J* = 9.9 Hz), 132.1, 129.4, 129.1, 128.2, 122.1 (d, *J* = 4.6 Hz), 115.2 (d, *J* = 5.9 Hz), 113.3 (d, *J* = 21.4 Hz), 105.7 (d, *J* = 2.5 Hz), 63.3. HRMS (ESI): calculated for C₁₆H₁₃FNO₂⁺ 270.0925, found 270.0926.

8-chloro-2-methoxy-3-phenylisoquinolin-1(2H)-one

White solid, 40.5 mg, yield: 71% (purified by silica gel chromatography using PE/EA/Et₃N 80:6:1). ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.59 (m, 2H), 7.48 – 7.45 (m, 5H), 7.39 (dd, *J* = 6.6, 2.6 Hz, 1H), 6.39 (s, 1H), 3.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.1, 143.1, 138.7, 135.5, 132.1, 132.1, 129.7, 129.4, 129.1, 128.2, 125.5, 122.5, 105.8, 63.3. HRMS (ESI): calculated for C₁₆H₁₃ClNO₂⁺ 286.0629, found 286.0631.

2-methoxy-7-methyl-3-phenylisoquinolin-1(2H)-one⁷

White solid, 41.3 mg, yield: 78% (purified by silica gel chromatography using PE/EA/Et₃N 80:6:1). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.63 – 7.61 (m, 2H), 7.49 – 7.42 (m, 5H), 6.45 (s, 1H), 3.68 (s, 3H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 141.1, 136.8, 134.0, 133.4, 132.7, 129.3, 129.0, 128.1, 127.3, 126.2, 126.2, 106.7, 63.3, 21.4.

2-ethoxy-3-phenylisoquinolin-1(2H)-one

White solid, 40.1 mg, yield: 90% (purified by silica gel chromatography using PE/EA/Et₃N 80:6:1). ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 8.1 Hz, 1H), 7.67 – 7.62 (m, 3H), 7.54 (d, J = 7.9 Hz, 1H), 7.51 – 7.45 (m, 4H), 6.48 (s, 1H), 3.95 (d, J = 7.0 Hz, 2H), 1.03 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 142.6, 135.8, 132.8, 132.4, 129.4, 129.1, 128.0, 127.8, 126.6, 126.3, 126.2, 106.5, 71.8, 13.0. HRMS (ESI): calculated for C₁₇H₁₆NO₂⁺ 266.1176, found 266.1175.

(3aS)-6-methoxy-5-phenyl-6,7a-dihydrothieno[2,3-c]pyridin-7(3aH)-one

White solid, 36.0 mg, yield: 89% (purified by silica gel chromatography using PE/EA/Et₃N 60:6:1). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 5.1 Hz, 1H), 7.62 – 7.60 (m, 2H), 7.49 – 7.45 (m, 3H), 7.22 (d, J = 5.2 Hz, 1H), 6.61 (s, 1H), 3.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.1, 143.7, 143.5, 133.9, 132.6, 129.9, 129.3, 129.3, 128.2, 124.3, 103.3, 63.8. HRMS (ESI): calculated for C₁₄H₁₂NO₂S⁺ 258.0583, found 258.0584.

2-methoxy-3-(4-methoxyphenyl)isoquinolin-1(2H)-one⁶

White solid, 41.3 mg, yield: 73% (purified by silica gel chromatography using PE/EA/Et₃N 40:6:1). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 8.1 Hz, 1H), 7.66 – 7.62 (m, 1H), 7.59 – 7.55 (m, 2H), 7.51 (d, J = 7.9 Hz, 1H), 7.49 – 7.45 (m, 1H), 6.99 – 6.97 (m, 2H), 6.44 (s, 1H), 3.87 (s, 3H), 3.69

(s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 158.8, 141.9, 135.9, 132.4, 130.7, 127.7, 126.4, 126.1, 124.8, 113.6, 106.2, 63.2, 55.3.

3-(4-(tert-butyl)phenyl)-2-methoxyisoquinolin-1(2H)-one

White solid, 51.5 mg, yield: 84% (purified by silica gel chromatography using PE/EA/Et₃N 80:6:1). ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 8.1 Hz, 1H), 7.66 – 7.62 (m, 1H), 7.57 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 7.9 Hz, 1H), 7.49 – 7.46 (m, 3H), 6.47 (s, 1H), 3.71 (s, 3H), 1.37 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 152.4, 142.1, 135.8, 132.4, 129.6, 128.9, 127.7, 126.4, 126.2, 126.1, 125.1, 106.5, 63.4, 34.7, 31.2. HRMS (ESI): calculated for C₂₀H₂₂NO₂⁺ 308.1645, found 308.1643.

3-(4-chlorophenyl)-2-methoxyisoquinolin-1(2H)-one⁶

White solid, 37.0 mg, yield: 65% (purified by silica gel chromatography using PE/EA/Et₃N 80:6:1). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 8.1 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.59 – 7.57 (m, 2H), 7.55 – 7.49 (m, 2H), 7.46 – 7.44 (m, 2H), 6.47 (s, 1H), 3.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158. 6, 140.9, 135.5, 135.4, 132.6, 130.9, 130.6, 128.5, 127.8, 126.9, 126.4, 126.3, 106.8, 63.4.

3-(4-bromophenyl)-2-methoxyisoquinolin-1(2H)-one⁶

White solid, yield: 75% (purified by silica gel chromatography using PE/EA/Et₃N 80:6:1). ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 8.0 Hz, 1H), 7.66 (t, J = 7.5 Hz, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.54 – 7.50 (m, 4H), 6.46 (s, 1H), 3.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 140.9, 135.5, 132.6, 131.5, 131.4, 130.8, 127.8, 126.9, 126.4, 126.3, 123.7, 106.8, 63.5.

4p 2-methoxy-3-(4-(trifluoromethyl)phenyl)isoquinolin-1(2*H*)-one White solid, yield: 75% (purified by silica gel chromatography using PE/EA/Et₃N 40:3:0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 8.1 Hz, 1H), 7.78 – 7.72 (m, 4H), 7.70 – 7.66 (m, 1H), 7.56 – 7.50 (m, 2H), 6.50 (s, 1H), 3.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.5, 140.5, 136.0, 135.4, 132.7, 131.2 (q, J_{C-F} = 32.8 Hz), 129.6, 127.8, 127.2, 126.6, 126.4, 125.2 (q, J_{C-F} = 3.7 Hz), 123.8 (q, J_{C-F} = 273.3 Hz) 107.4, 63.5. HRMS (ESI): calculated for C₁₇H₁₃F₃NO₂⁺ 320.0893, found 320.0890.

2-methoxy-3-(m-tolyl)isoquinolin-1(2H)-one

White solid, yield: 88% (purified by silica gel chromatography using PE/EA/Et₃N 40:3:0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 8.1 Hz, 1H), 7.67 – 7.63 (m, 1H), 7.53 – 7.46 (m, 2H), 7.43 – 7.42 (m, 2H), 7.35 (t, J = 7.9 Hz, 1H), 7.28 (d, J = 7.7 Hz, 1H), 6.46 (s, 1H), 3.71 (s, 3H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 142.3, 137.9, 135.8, 132.5, 132.4, 129.9, 129.9, 128.0, 127.7, 126.5, 126.4, 126.2, 126.2, 106.6, 63.4, 21.4. HRMS (ESI): calculated for C₁₇H₁₆NO₂⁺ 266.1176, found 266.1178.

2-methoxy-3-(o-tolyl)isoquinolin-1(2H)-one

White solid, yield: 65% (purified by silica gel chromatography using PE/EA/Et₃N 40:3:0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 8.0 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.54 – 7.49 (m, 2H), 7.41 – 7.37 (m, 2H), 7.31 – 7.26 (m, 2H), 6.38 (s, 1H), 3.70 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 142.2, 138.1, 135.8, 132.6, 132.4, 129.9, 129.5, 129.4, 127.8, 126.6, 126.5, 126.1, 125.4, 106.2, 63.7, 19.9. HRMS (ESI): calculated for C₁₇H₁₆NO₂⁺ 266.1176, found 266.1177.

4s

2-methoxy-3-methylisoquinolin-1(2H)-one⁶

White solid, 34.1 mg, yield: 90% (purified by silica gel chromatography using PE/EA/Et₃N 60:6:1). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 7.9 Hz, 1H), 7.61 – 7.57 (m, 1H), 7.43 – 7.39 (m, 2H), 6.26 (s, 1H), 4.08 (s, 3H), 2.44 (d, J = 0.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 139.1, 135.9, 132.2, 127.5, 125.8, 125.7, 125.2, 104.2, 63.5, 17.1.

3-ethyl-2-methoxyisoquinolin-1(2H)-one

White solid, 36.0 mg, yield: 89% (purified by silica gel chromatography using PE/EA/Et₃N 60:6:1). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 8.1, 1H), 7.60 – 7.56 (m, 1H), 7.44 (d, *J* = 7.9 Hz, 1H), 7.42 – 7.38 (m, 1H), 6.24 (s, 1H), 4.07 (s, 3H), 2.76 (q, *J* = 7.4 Hz, 2H), 1.32 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 144.4, 136.0, 132.2, 127.4, 125.8, 125.7, 125.5, 102.4, 63.7, 23.5, 12.3. HRMS (ESI): calculated for C₁₂H₁₄NO₂⁺ 204.1019, found 204.1027.

2-methoxy-3-propylisoquinolin-1(2H)-one

White solid, 29.6 mg, yield: 68% (purified by silica gel chromatography using PE/EA/Et₃N 60:6:1). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 8.1 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.44 – 7.37 (m, 2H), 6.24 (s, 1H), 4.07 (s, 3H), 2.71 – 2.64 (t, J = 7.3 Hz, 2H), 1.79 – 1.70 (m, 2H), 1.02 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 142.8, 135.9, 132.2, 127.4, 125.8, 125.7, 125.4, 103.5, 63.7, 32.52, 21.4, 13.7. HRMS (ESI): calculated for C₁₃H₁₆NO₂⁺ 218.1176, found 266.1183.

3-isopropyl-2-methoxyisoquinolin-1(2H)-one

White solid, 37.5 mg, yield: 86% (purified by silica gel chromatography using PE/EA/Et₃N 60:6:1). ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 8.1 Hz, 1H), 7.63 - 7.59 (m, 1H), 7.48 (d, *J* = 7.9 Hz, 1H), 7.44 - 7.40 (m, 1H), 6.30 (s, 1H), 4.09 (s, 3H), 3.21 (hept, *J* = 6.8 Hz, 1H), 1.35 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 148.8, 136.0, 132.1, 127.4, 125.8, 125.7, 125.6, 100.7, 63.9, 28.3, 22.1. HRMS (ESI): calculated for C₁₃H₁₆NO₂⁺ 218.1176, found 266.1189.

V. Larger-Scale Preparation and Transformations

(a) Larger-Scale Preparation of **3a**

A pressure tube was charged with $[RhCp*Cl_2]_2$ (31 mg, 2.5 mol %), CsOAc (115 mg, 30 mol %), HOPiv (408 mg, 0.4 mmol), *N*-methoxybenzamides (**1a**, 2 mmol), sulfoxonium ylides (**2a**, 4 mmol) and DCE (40 mL). The reaction mixture was stirred under N₂ condition at 100 °C for 24 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA to afford product as a white solid (391 mg, yield: 88%).

(b) Larger-Scale Preparation of 4a

A pressure tube was charged with $[Cp*Rh(MeCN)_3](SbF_6)_2$ (83 mg, 5 mol %), $Zn(OTf)_2$ (364 mg, 50 mol %), *N*-methoxybenzamides (**1a**, 2 mmol), sulfoxonium ylides (**2a**, 4 mmol) and DCE (40 mL). The reaction mixture was stirred under N₂ condition at 100 °C for 24 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA to afford the product as a white solid (410 mg, yield: 81%).

(c) Transformations of 3a

To a solution of **3a** (111.1 mg, 0.5 mmol) in THF (2 mL) was added phenyl Grignard reagent (0.7 mL, 1 mol/L in THF) at -30 °C, and the reaction was stirred at room temperature overnight. The reaction was then quenched with aqueous NH₄Cl, extracted between water and DCM. The organic layers were combined, dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by flash chromatography to give the products as a yellow liquid (108 mg, yield: 72%).⁸

2-(2-benzoylphenyl)-1-phenylethanone⁸

¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.93 (m, 2H), 7.84 – 7.80 (m, 2H), 7.56 – 7.48 (m, 3H), 7.44 – 7.38 (m, 5H), 7.36 – 7.31 (m, 2H), 4.61 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 198.4, 197.1, 138.3, 137.9, 136.8, 134.7, 133.0, 132.8, 132.1, 130.9, 130.4, 130.3, 128.5, 128.2, 126.3, 43.1.

(d) Transformations of 4a

NaH (0.6 mmol, 60% in mineral oil) was added into a stirred solution of *N*-methoxyl isoquinolone **4a** (0.2 mmol) in DMF (1 mL), and the resulting mixture was heated at 120 °C for 1 h. After the reaction was completed, the reaction mixture was allowed to cool down to room temperature, and H₂O (8 mL) was added, followed by extraction with DCM (15 mL x 3). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography to give the products as a white solid (40.2 mg, yield: 91%).^{6,9}

3-phenylisoquinolin-1(2H)-one9

¹H NMR (400 MHz, CDCl₃) δ 10.83 (brs, 1H), 8.41 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 7.3 Hz, 2H), 7.69 – 7.65 (m, 1H), 7.60 (d, J = 7.7 Hz, 1H), 7.55 – 7.45 (m, 4H), 6.80 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.2, 139.7, 138.3, 134.3, 132.8, 129.5, 129.1, 127.4, 126.5, 126.5, 126.3, 125.0, 104.3.

VI. Mechanism Study

(a) Deuterium Labeling Experiments

A pressure tube was charged with $[RhCp*Cl_2]_2$ (4.9 mg, 4 mol %), CsOAc (11.6 mg, 30 mol %), HOPiv (40.8 mg, 0.4 mmol), *N*-methoxybenzamide (**1a**, 0.2 mmol), sulfoxonium ylide (**2p**, 0.4 mmol), CD₃OD (144 mg, 4 mmol) and DCE (4 mL). The reaction mixture was stirred under N₂ condition at 100 °C for 30 min. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA to afford the deuterated product (**3p**-*d*_n) and the recovered substrates *N*-methoxybenzamides (**1a**-*d*_n) and **2p**.

A pressure tube was charged with $[Cp*Rh(MeCN)_3](SbF_6)_2$ (8.3 mg, 5 mol %), $Zn(OTf)_2$ (36.4 mg, 50 mol %), *N*-methoxybenzamide (**1a**, 0.2 mmol), sulfoxonium ylide (**2r**, 0.4 mmol), CD₃OD (144 mg, 4 mmol), and DCE (4 mL). The reaction mixture was stirred under N₂ condition at 100 °C for 30 min. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA to afford the deuterated product (**4r**-*d*_n) and the recovered *N*-methoxybenzamide with H/D exchange (**1a**-*d*_n').

(b) Kinetic Isotope Effect Experiments

Two pressure tubes were charged with [RhCp*Cl₂]₂ (4.9 mg, 4 mol %), CsOAc (11.6 mg, 30 mol %), HOPiv or DOPiv (0.4 mmol), *N*-methoxybenzamide (**1a** or **1a-d**₅, 0.4 mmol), sulfoxonium ylide (**2p**, 0.2 mmol) and DCE (4 mL). The reaction mixture was stirred side by side under N₂ condition at 100 °C for 30 min. After that, the reaction was cooled to 0 °C rapidly and was quenched with pentane. The two mixtures were combined and the solvent was removed under vacuum. The residue was purified by silica gel chromatography using PE/EA to afford a mixture of **3p** and **3p-d**₄. The KIE value was determined to be $k_{\rm H}/k_{\rm D} = 1.1$ on the basis of ¹H NMR analysis.

Two pressure tubes were charged with $[Cp*Rh(MeCN)_3](SbF_6)_2$ (8.3 mg, 5 mol %), $Zn(OTf)_2$ (36.4 mg, 50 mol %), *N*-methoxybenzamide (**1a** or **1a**-*d*₅, 0.2 mmol), sulfoxonium ylide (**2r**, 0.4 mmol), and DCE (4 mL). The reaction mixture was stirred under N₂ condition at 100 °C for 30 min. After that, the

reaction was cooled to 0 °C rapidly and was quenched with pentane. The two mixtures were combined, and the solvent was removed under vacuum. The residue was purified by silica gel chromatography using PE/EA to afford a mixture of **4r** and **4r**-*d*₄. The KIE value was determined to be $k_{\rm H}/k_{\rm D} = 1.1$ on the basis of ¹H NMR analysis.

A pressure tube was charged with $[RhCp*Cl_2]_2$ (4.9 mg, 4 mol %), CsOAc (11.6 mg, 30 mol %), HOPiv (40.8 mg, 0.4 mmol), *N*-methoxybenzamide (**1a**, 0.2 mmol), sulfoxonium ylide (**2a**, 0.4 mmol) and DCE (4 mL). The reaction mixture was stirred under N₂ condition at 60 °C for 4h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA to afford the intermediate **7** and the product **3a**.

7

3-hydroxy-2-methoxy-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one

¹H NMR (400 MHz, CD₃CN) δ 8.05 (dd, J = 7.8, 1.1 Hz, 1H), 7.55 – 7.53 (m, 2H), 7.49 (td, J = 7.5, 1.4 Hz, 1H), 7.40 – 7.30 (m, 4H), 7.19 (d, J = 7.5 Hz, 1H), 4.89 (brs, 1H), 3.76 (s, 3H), 3.66 (d, J =

(d) Transformation of 7 to 3a or 4a

The solution of 7 with CsOAc 30 mol % and PivOH 2 equiv in DCE was stirred at 100 °C for 1 h, full conversion was ovserved.

The solution of 7 with $Zn(OTf)_2$ 50 mol % in DCE was stirred at 100 °C for 1 h, full conversion was ovserved.

VII. Reference

(1) (a) J.Vaitla, A. Bayer and K. H. Hopmann, *Angew. Chem., Int. Ed.* 2017, **56**, 4277; (b) Y. Xu, X. Yang, X. Zhou, L. Kong and X. Li, *Org. Lett.* 2017, **19**, 4307.

(2) (a) Z. Zhou, G. Liu, and X. Lu, Org. Lett. 2015, **17**, 2494; (b) Y. Xu, F. Wang, S. Yu, and X. Li, Chin. J. Catal. 2017, **38**, 1390.

(3) G. Jiang, J. Li, C. Zhu, W. Wu, and H. Jiang, Org. Lett. 2017, 19, 4440.

(4) R. G. Chary, G. R. Reddy, Y. S. S. Ganesh, K. V. Prasad, S. K. P. Chandra, S. Mukherjee, and M. Pal, *RSC Adv.* 2013, **3**, 9641.

(5) Y. S. Kumar, C. Dasaradhan, K. Prabakaran, P. Manivel, F.-R. N. Khan, E. D. Jeong and E. H. Chung, *Tetrahedron Lett.* 2015, **56**, 941.

(6) D.-G. Yu, F. de Azambuja and F. Glorius, Angew. Chem., Int. Ed. 2014, 53, 2754.

(7) D. Ding, T. Mou, J. Xue and X. Jiang, Chem. Commun. 2017, 53, 5279.

(8) S. Perveen, Z. Zhao, G. Zhang, J. Liu, M. Anwar and X. Fang, Org. Lett. 2017, 19, 2470.

(9) H. Zhong, D. Yang, S. Wang and J. Huang, Chem. Commun. 2012, 48, 3236.

VIII. NMR Spectra of Products

ገ (ppm)	
---------	--

$\left[\begin{array}{c} 8.3243\\ 8.3103\\ 8.3103\\ 8.3286\\ 8.2886\\ 8.2886\\ 8.2885\\ 7.4802\\ 7.4802\\ 7.4802\\ 7.4802\\ 7.4802\\ 7.4802\\ 7.4802\\ 7.4802\\ 7.4802\\ 7.4802\\ 7.4802\\ 7.4802\\ 7.4339\\ 7.433$

7.8746 7.8697 7.8648 7.8648 7.8542 7.8505 7.8505 7.8505 7.8505 7.8505 7.4725 7.4452 7.4452 7.4452 7.4452 7.4452 7.4452 7.4452 7.4452 7.4452 7.4452 7.4452 7.4235 7.4235 7.2261 7.1097

S52

