Supporting Information

For the article entitled

Ruthenium-catalyzed olefinic C–H alkenylation of enol-carbamates: highly stereo-selective synthesis of (*Z*,*Z*) and (*Z*,*E*)-butadienes

Tingyan Li, Jian Zhang,* Chunbing Yu, Xiunan Lu, Liqing Xu and Guofu Zhong*

College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China

zhangjian@hznu.edu.cn; zgf@hznu.edu.cn

Supporting Information

Table of Contents

General Procedure for the Preparation of N,N-dimethyl Enol-CarbamatesSI-2General Procedure for Ru-Catalyzed Cross-Coupling of Enol-Carbamates with AlkynesSI-3General Procedure for Ru-Catalyzed Cross-Coupling of Enol-Carbamates with AlkenesSI-3Characterization of ProductsSI-4Competitive Reaction of Different Enol-CarbamatesSI-16Synthetic ApplicationsSI-17Ru-Catalyzed H/D Exchange and KIE studySI-18ReferencesSI-24NMR SpectraSI-25	General Methods	SI-2
General Procedure for Ru-Catalyzed Cross-Coupling of Enol-Carbamates with AlkynesSI-3General Procedure for Ru-Catalyzed Cross-Coupling of Enol-Carbamates with AlkenesSI-3Characterization of ProductsSI-4Competitive Reaction of Different Enol-CarbamatesSI-16Synthetic ApplicationsSI-17Ru-Catalyzed H/D Exchange and KIE studySI-18ReferencesSI-24NMR SpectraSI-25	General Procedure for the Preparation of N,N-dimethyl Enol-Carbamates	SI-2
General Procedure for Ru-Catalyzed Cross-Coupling of Enol-Carbamates with AlkenesSI-3Characterization of ProductsSI-4Competitive Reaction of Different Enol-CarbamatesSI-16Synthetic ApplicationsSI-17Ru-Catalyzed H/D Exchange and KIE studySI-18ReferencesSI-24NMR SpectraSI-25	General Procedure for Ru-Catalyzed Cross-Coupling of Enol-Carbamates with Alkynes	SI-3
Characterization of ProductsSI-4Competitive Reaction of Different Enol-CarbamatesSI-16Synthetic ApplicationsSI-17Ru-Catalyzed H/D Exchange and KIE studySI-18ReferencesSI-24NMR SpectraSI-25	General Procedure for Ru-Catalyzed Cross-Coupling of Enol-Carbamates with Alkenes	SI-3
Competitive Reaction of Different Enol-CarbamatesSI-16Synthetic ApplicationsSI-17Ru-Catalyzed H/D Exchange and KIE studySI-18ReferencesSI-24NMR SpectraSI-25	Characterization of Products	SI-4
Synthetic ApplicationsSI-17Ru-Catalyzed H/D Exchange and KIE studySI-18ReferencesSI-24NMR SpectraSI-25	Competitive Reaction of Different Enol-Carbamates	SI-16
Ru-Catalyzed H/D Exchange and KIE studySI-18ReferencesSI-24NMR SpectraSI-25	Synthetic Applications	SI-17
ReferencesSI-24NMR SpectraSI-25	Ru-Catalyzed H/D Exchange and KIE study	SI-18
NMR Spectra SI-25	References	SI-24
	NMR Spectra	SI-25

General methods

Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm. Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate. Flash column chromatography was performed using Merck aluminium oxide 90 active neutral with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use. Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on Bruker AMX 400 and 500 spectrophotometer (CDCl₃ as solvent). Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 7.26, singlet). Multiplicities were given as: s (singlet), d (doublet), t (triplet), dd (doublets of doublet) or m (multiplets). The number of protons (n) for a given resonance is indicated by nH. Coupling constants are reported as a J value in Hz. Carbon nuclear magnetic resonance spectra (^{13}C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 77.0, triplet). Mass spectrometry was performed by Waters Q-Tof Premier Micromass instrument, using Electro Spray Ionization (ESI) mode. IR spectra were recorded as thin films on KBr plates on a Bio-Rad FTS 165 FTIR spectrometer and are reported in frequency of absorption (cm⁻¹). [Ru(p-cymene)Cl₂]₂, AgSbF₆ and acetic anhydride were purchased from TCI and used directly. Other reagents, unless otherwise noted below, are commercially available from Alfa Aesar (China) Chemical Co., Ltd. and used without further purification.

General Procedure for the Preparation of N,N-dimethyl Enol-Carbamates

Typical procedure: Sodium hydride (264 mg, 10.0 mmol, 1.1 equiv, 60 % suspension in oil) was added in portions to dry DMSO (20 mL). After stirring for 2 h at 50°C the mixture was cooled to room temperature. A grey solution acetophenone (1.2 g, 10.0 mmol, 1.0 equiv) in 1 mL dry DMSO was added in dropwise in 15 minutes, the reaction was slightly exothermic and the color of the solution changed to yellow. This solution was allowed to stir for an additional 15 min. , then dimethylcarbamoyl chloride (1.8 mL, 11.0 mmol, 1.1 equiv) in 1 mL DMSO was added in dropwise in 15 min. After stirring for overnight, the reaction was quenched by water (30 mL), and the mixture was extracted with Et_2O (3 × 30 mL) and the combined extracts were washed with brine and dried over magnesium sulfate. Purification by flash chromatography (pentane/ethyl acetate mixtures) afforded the desired enol carbamate 1.

General Procedure for Ru-Catalyzed Cross-Coupling of Enol Carbamates with Alkynes

An oven-dried screw-cap vial was charged with $[Ru(p-cymene)Cl_2]_2$ (5.0 mol%, 0.01 mmol), AgSbF₆ (20.0 mol%, 0.04 mmol) and DME (1.0 mL). Then, enol carbamate **1** (1.0 eq, 0.20 mmol), alkyne **2** (2.0 eq, 0.4 mmol) and acetic anhydride (0.05 eq, 0.01mmol) were added into the solution in sequence. The vial was sealed under nitrogen and heated to 100 °C with stirring for 16 hours. After cooling down, the mixture was concentrated to give the crude product which was directly applied to a flash column chromatography (EtOAc/Petroleum ether mixtures) for separation.

General Procedure for Ru-Catalyzed Cross-Coupling of Enol Carbamates with Alkenes

An oven-dried screw-cap vial was charged with $[Ru(p-cymene)Cl_2]_2$ (10.0 mol%, 0.02 mmol), AgSbF₆ (40.0 mol%, 0.08 mmol) and DME (1.0 mL). Then, enol carbamate (1.0 eq, 0.20 mmol), alkene **3** (2.0 eq, 0.4 mmol) and copper acetate (2.0 eq, 0.4 mmol) were added into the solution in sequence. The vial was sealed under nitrogen and heated to 100 °C with stirring for 16 hours. After cooling down, the mixture was concentrated to give the crude product which was directly applied to a flash column chromatography (EtOAc/Petroleum ether mixtures) for purification.

Characterization of Products

^{COOMe} Methyl (2*Z*,4*Z*)-5-(dimethylcarbamoyl)oxy)-3,5-diphenylpenta-2,4-dienoate (**4aa**) White solid, m.p.: 143.9 °C, yield = 86%. ¹H NMR (CDCl₃): δ = 7.44 (d, 2H, *J* = 7.0 Hz), 7.36-7.28 (m, 8H), 6.79 (s, 1H), 6.39 (s, 1H), 3.75 (s, 3H), 3.13 (s, 3H), 2.96 (s, 3H). ¹³C NMR (CDCl₃): δ = 169.39, 153.27, 147.31, 135.51, 135.30, 134.56, 129.94, 128.81, 128.66, 128.51, 128.41, 128.21, 124.82, 115.83, 51.83, 36.74, 36.50. HRMS (ESI): m/z calculated for C₂₁ H₂₁ NO₄ [M+H]⁺: 352.1543, found: 352.1546. FTIR (KBr, cm⁻¹): 3794.42, 3345.69, 3251.45, 3207.74, 3160.44, 2357.33, 1667.57, 1505.11, 1470.67, 1020.66.

COOEt Ethyl (2E, 4Z)-5-((dimethylcarbamoyl)oxy)-3-methyl-5-phenylpenta-2,4-dienoate(**4ab**)

Yellow oil, yield = 47%. ¹H NMR (CDCl₃): δ = 7.41 (d, 2H, *J* = 3.8 Hz), 7.34-7.31 (m, 3H), 6.27 (s, 1H), 6.15 (q, 1H, *J* = 7.0 Hz), 4.22 (q, 2H, *J* = 7.0 Hz), 3.11 (s, 3H), 2.95 (s, 3H), 1.93 (d, 3H, *J* = 7.0 Hz), 1.33 (t, 3H, *J* = 7.5 Hz). ¹³C NMR (CDCl₃): δ = 167.96, 153.53, 145.93, 135.81, 135.47, 130.42, 128.53, 128.41, 124.70, 114.68, 60.63, 36.70, 36.42, 15.45, 14.21. HRMS (ESI): m/z calculated for C₁₇H₂₁NO₄ [M+H]⁺: 304.1543, found: 304.1544. FTIR (KBr, cm⁻¹): 3897.52, 3542.56, 3417.76, 3332.02, 3226.01, 1732.20, 1633.87, 1515.16, 1455.31, 1012.27.

(1Z, 3E)-3-methyl-1-phenylpenta-1, 3-dien-1-yl dimethylcarbamate (4ac)

Brown oil, yield = 55%. ¹H NMR (CDCl3): δ =7.42 (d, 2H, *J* = 7.0 Hz), 7.32-7.29 (m, 3H), 6.25 (s, 1H), 5.73 (q, 1H, *J* = 7.0 Hz), 3.16 (s, 3H), 2.98 (s, 3H), 1.91 (s, 3H), 1.74 (d, 3H, *J* = 7.0 Hz). ¹³C NMR (CDCl₃): δ = 154.45, 143.20, 136.96, 132.11, 128.98, 128.46, 127.74, 124.46, 121.49, 36.78, 26.43, 14.42, 13.87. HRMS (ESI): m/z calculated for C₁₅H₁₉NO₂ [M+H]⁺: 246.1489, found: 246.1482. FTIR (KBr, cm-1): 3355.18, 3299.42, 3251.21, 2354.54, 1732.22, 1667.57, 1621.55, 1360.57, 1246.90.

Methyl (2Z, 4Z)-5-((dimethylcarbamoyl)oxy)-5-(4-methoxyphenyl)-3-phenylpenta-2,4-dienoate (4ca)

Yellow solid, m.p.: 125.1 °C, yield = 71%. ¹H NMR (CDCl₃): δ = 7.38 (d, 2H, *J* = 9.0 Hz), 7.30-7.26 (m, 5H), 6.88 (s, 1H), 6.87 (s, 1H), 6.11 (s, 1H), 6.75 (s, 1H), 6.29 (s, 1H), 3.81 (s, 3H), 3.74 (s, 3H), 3.12 (s, 3H), 2.96 (s, 3H). ¹³C NMR (CDCl₃): δ = 169.52, 160.14, 153.32, 147.21, 135.44, 133.68, 130.10, 128.48, 128.23, 128.14, 126.27, 114.19, 114.15, 55.33, 51.80, 36.73, 36.48. HRMS (ESI): m/z calculated for C₂₂H₂₃NO₅ [M+H]⁺: 382.1649, found: 382.1644. FTIR (KBr, cm⁻¹): 3819.03, 3445.14, 3332.19, 3262.67, 1614.70, 1574.30, 1455.27, 1434.73, 1416.86, 1293.01.

COOMe Methyl (2Z, 4Z)-5-((dimethylcarbamoyl)oxy)-5-(4-fluorophenyl)-3-phenylpenta-2,4-

dienoate (4da)

Yellow solid, m.p.: 204.1 °C, yield = 67%. ¹H NMR (CDCl₃): δ = 7.44-7.41 (m, 2H), 7.34-7.28 (m, 5H), 7.06-7.02 (m, 2H), 6.79 (s, 1H), 6.31 (s, 1H), 3.75 (s, 3H), 3.12 (s, 3H), 2.96 (s, 3H). ¹³C NMR (CDCl₃): δ = 169.29, 161.00 (J_{C-F} = 252.5 Hz), 153.17, 146.39, 135.22, 134.72, 131.83 (J_{C-F} = 3.4 Hz), 129.74, 128.52, 128.47, 128.20, 126.76 (J_{C-F} = 8.3 Hz), 126.70 (J_{C-F} = 21.3 Hz), 115.74 (J_{C-F} = 1.4 Hz), 51.85, 36.76, 36.49. HRMS (ESI): m/z calculated for C₂₁H₂₀FNO₄ [M+H]⁺: 370.1449, found: 370.1458. FTIR (KBr, cm⁻¹): 3262.26, 3285.95, 1732.15, 1651.55, 1505.17, 1428.03, 1372.40, 1337.26, 1025.71.

Methyl (2Z, 4Z)-5-((dimethylcarbamoyl)oxy)-5-(naphthalen-2-yl)-3-phenylpenta-2,4-dienoate (4ba)

White oil, yield = 63%. ¹H NMR (CDCl₃): δ = 7.79-7.72 (m, 4H), 7.52-7.59 (m, 1H), 7.42-7.38 (m, 2H), 7.27-7.26 (s, 2H), 7.19 (s, 3H), 6.77 (s, 1H), 6.46 (s, 1H), 3.71 (s, 3H), 3.13 (s, 3H), 2.91 (s, 3H). ¹³C NMR (CDCl₃): δ = 168.39, 152.32, 146.33, 134.29, 133.68, 132.43, 132.18, 131.90, 128.96, 127.50, 127.45, 127.44, 127.41, 127.21, 126.63, 125.49, 125.43, 123.13, 121.54, 115.35, 50.84, 35.76, 35.55. HRMS (ESI): m/z calculated for C₂₅H₂₃NO₄ [M+H]⁺: 402.1701, found: 402.1698. FTIR (KBr, cm⁻¹): 3542.47, 3331.87, 1866.36, 1790.05, 1694.20, 1557.25, 1416.79, 1385.11, 1360.27, 1027.45.

COOMe Methyl (2Z, 4Z)-5-((dimethylcarbamoyl)oxy)-5-(3-fluorophenyl)-3-phenylpenta-2,4-

dienoate (4la)

Brown oil, yield = 64%, ¹H NMR (CDCl₃): δ = 7.25 – 7.20 (m, 6H), 7.18 – 7.15 (m, 1H), 7.05 – 7.02 (m, 1H), 6.94 – 6.90 (m, 1H), 6.74 (s, 1H), 6.32 (d, 1H, *J* = 1.0 Hz), 3.68 (s, 3H), 3.05 (s, 3H), 2.89 (s, 3H). ¹³C NMR (CDCl₃): δ = 169.19, 163.94, 161.98, 153.13, 145.94, 137.91 (d, *J*_{C-F} = 7.8 Hz), 135.40, 135.10, 130.26 (d, *J*_{C-F} = 8.4 Hz), 129.57, 128.58 (d, *J*_{C-F} = 7.3 Hz), 128.26, 120.53 (d, *J*_{C-F} = 2.6 Hz), 116.86, 115.65 (d, *J*_{C-F} = 21.3 Hz), 111.79 (d, *J*_{C-F} = 23.3 Hz), 51.89, 36.77, 36.50. HRMS (ESI): m/z calculated for C₂₁H₂₀FNO₄ [M+H]⁺: 370.1449, found: 370.1439. FTIR (KBr, cm⁻¹): 3261.39, 3238.83, 1732.14, 1644.86, 1574.34, 1515.16, 1494.94, 1360.49, 1157.49, 1047.28.

Ethyl-4-((1Z,3Z)-1-((dimethylcarbamoyl)oxy)-5-methoxy-5-oxo-3-phenylpenta-1,3-dien-yl)benzoate(4ja)

Brown solid, yield = 18%, m.p.: 114.0 °C, ¹H NMR (CDCl₃): δ = 7.96 (d, 2H, *J* = 8.5 Hz), 7.43 (d, 2H, *J* = 8.5 Hz), 7.27 – 7.25 (m, 5H), 6.77 (s, 1H), 6.41 (s, 1H), 4.32 (q, 2H, J = 7.5 Hz), 3.69 (s, 3H), 3.07 (s, 3H), 2.89 (s, 3H), 1.33 (t, 3H, J = 7.0 Hz). ¹³C NMR (CDCl₃): δ = 168.14, 165.07, 152.08, 145.23, 138.72, 134.76, 134.04, 129.38, 128.94, 128.59, 127.66, 127.54, 127.27, 123.58, 116.63, 60.01, 50.88, 35.76, 35.50, 13.31. HRMS (ESI): m/z calculated for C₂₄H₂₅NO₆ [M+H]⁺: 424.1755, found: 424.1750. FTIR (KBr, cm⁻¹): 3851.07, 3742.89, 3646.42, 3626.79, 2340.55, 1651.68, 1557.49, 1538.62, 1505.40, 668.10.

Brown oil, yield = 63%. ¹H NMR (CDCl₃): δ = 7.50 (dd, 1H, *J* = 11.5, 15.0 Hz), 7.44-7.42 (m, 2H), 7.30-7.28 (m, 3H), 6.46 (d, 1H, *J* = 11.5 Hz), 5.95 (d, 1H, *J* = 15.0 Hz, 4.10 (t, 2H, *J* = 7.0 Hz), 3.15 (s, 3H), 2.93 (s, 3H), 1.62-1.56 (m, 2H), 1.37-1.32 (m, 2H), 0.88 (t, 3H, *J* = 7.5 Hz). ¹³C NMR (CDCl₃): δ = 166.06, 152.61, 151.65, 136.55, 133.51, 128.59, 127.72, 124.12, 120.99, 113.82, 63.28, 35.84, 35.57, 29.73, 18.17, 12.73. HRMS (ESI): m/z calculated for C₁₈H₂₃NO₄ [M+H]⁺: 318.1730, found: 318.1738. FTIR (KBr, cm⁻¹): 3654.39, 3317.35, 3286.21, 3225.41, 2358.00, 2338.67, 1651.65, 1621.58, 1403.29, 1029.50.

Methyl (2E, 4Z)-5-((dimethylcarbamoyl)oxy)-5-phenylpenta-2,4-dienoate (5ae)

White solid, m.p.: 111.1 °C, yield = 69%. ¹H NMR (CDCl₃): δ = 7.52 (dd, 1H, *J* = 11.5, 15.5 Hz), 7.44-7.42 (m, 2H), 7.30-7.29 (m, 3H), 6.46 (d, 1H, *J* = 11.5 Hz), 5.97 (d, 1H, *J* = 15.5 Hz), 3.70 (s, 3H), 3.15 (s, 3H), 2.93 (s, 3H). ¹³C NMR (CDCl₃): δ = 167.42, 153.60, 152.80, 137.86, 134.51, 129.66, 128.76, 125.16, 121.51, 114.87, 51.61, 36.88, 36.64. HRMS (ESI): m/z calculated for C₁₅H₁₇NO₄ [M+H]⁺: 276.1243, found: 276.1252. FTIR (KBr, cm⁻¹): 3550.55, 3260.30, 3240.09, 1714.37, 1667.49, 1574.35, 1434.77, 1392.99, 1246.76, 1011.28.

White solid, m.p.: 63.2 °C, yield = 69%. ¹H NMR (CDCl₃) : δ = 7.52 (dd, 1H, *J* = 15.5, 11.5 Hz), 7.44-7.42 (m, 2H), 7.33 – 7.26 (m, 3H), 6.46 (d, 1H, *J* = 11.5 Hz), 5.96 (d, 1H, *J* = 15.5 Hz), 4.15 (q, 2H, *J* = 7.5 Hz), 3.15 (s, 3H), 2.93 (s, 3H), 1.24 (t, 3H, *J* = 7.0 Hz,). ¹³C NMR (CDCl₃): δ = 165.98, 152.60, 151.66, 136.58, 133.52, 128.59, 127.73, 124.12, 120.98, 113.85, 59.37, 35.85, 35.60, 13.29. HRMS (ESI): m/z calculated for C₁₆H₁₉NO₄ [M+H]⁺:

290.1389, found: 290.1398. FTIR (KBr, cm⁻¹): 3331.91, 3299.11, 2352.40, 1841.88, 1660.54, 1567.65, 1422.83, 1360.18, 1336.71, 1029.36.

Benzyl (2E, 4Z)-5-((1-(dimethylamino)vinyl)oxy)-5-phenylpenta-2,4-dienoate (5ag)

Yellow solid, m.p.: 95.7 °C, yield = 49%. ¹H NMR (CDCl₃): δ = 7.56 (dd, 1H, *J* = 11.5, 15.5 Hz), 7.44-7.42 (m, 2H), 7.34-7.27 (m, 8H), 6.46 (d, 1H, *J* = 11.5 Hz), 6.01 (d, 1H, *J* = 15.5 Hz), 5.14 (s, 2H), 3.12 (s, 3H), 2.91 (s, 3H). ¹³C NMR (CDCl₃): δ = 165.77, 152.56, 151.96, 137.21, 135.12, 133.44, 128.67, 127.73, 127.52, 127.15, 127.13, 124.16, 120.45, 113.74, 65.19, 35.83, 35.57. HRMS (ESI): m/z calculated for C₂₂H₂₃NO₃ [M+H]⁺: 350.1751, found: 350.1760. FTIR (KBr, cm⁻¹): 3896.79, 3538.64, 3451.86, 1738.08, 1660.00, 1574.16, 1494.81, 1360.32, 1030.14, 666.25.

Phenyl (2E, 4Z)-5-((dimethylcarbamoyl)oxy)-5-phenylpenta-2,4-dienoate (5ah)

Yellow solid, m.p.: 149.7 °C, yield = 60%. ¹H NMR (CDCl₃) : δ = 7.67 (dd, 1H, *J* = 15.5, 11.5 Hz), 7.48 – 7.44(m, 2H), 7.34 – 7.30 (m, 5H), 7.17 (d, 1H, *J* = 8.0 Hz), 7.07 (d, 2H, *J* = 8.0 Hz), 6.54 (d, 1H, *J* = 11.5 Hz), 6.15 (d, 1H, *J* = 15.5 Hz), 3.14 (s, 3H), 2.92 (s, 3H). ¹³C NMR (CDCl₃): δ = 164.38, 152.55, 149.81, 138.51, 133.36, 128.86, 128.38, 127.80, 127.62, 124.70, 124.26, 120.65, 119.85, 113.71, 35.87, 35.61. HRMS (ESI): m/z calculated for C₂₀H₁₉NO₄ [M+H]⁺ : 338.1387, found: 338.1388. FTIR (KBr, m⁻¹): 3417.70, 3299.37, 2357.91, 1694.29, 1667.59, 1574.42, 1434.81, 1372.54, 1030.37, 667.89.

2-Methoxyethyl (2E, 4Z)-5-((dimethylcarbamoyl)oxy)-5-phenylpenta-2,4-dienoate (5ai)

Brown oil, yield = 43%. ¹H NMR (CDCl₃): δ = 7.55 (dd, 1H, *J* = 11.5, 15.5 Hz), 7.44-7.42 (m, 2H), 7.30-7.29 (m, 3H), 6.46 (d, 1H, *J* = 11.5 Hz), 6.01 (d, 1H, *J* = 15.0 Hz), 4.26 (t, 2H, *J* = 4.5 Hz), 4.57 (t, 2H, *J* = 5.0 Hz), 3.34 (s, 3H), 3.15 (s, 3H), 2.92 (s, 3H). ¹³C NMR (CDCl₃): δ = 165.94, 152.58, 151.91, 137.16, 133.47, 128.66, 127.14, 124.16, 120.46, 113.81, 69.56, 62.48, 58.02, 35.84, 35.60. HRMS (ESI): m/z calculated for C₁₇H₂₁NO₅ [M+H]⁺: 320.1492, found: 320.1500. FTIR (KBr, cm⁻¹): 3417.44, 3331.89, 1746.89, 1667.39, 1644.75, 1557.11, 1494.84, 1392.89, 1336.93, 1030.67.

2, 2, 2-Trifluoroethyl (2E, 4Z)-5-((dimethylcarbamoyl)oxy)-5-phenylpenta-2,4-dienoate (5aj)

Yellow solid, m.p.: 74.9 °C, yield = 60%. ¹H NMR (CDCl₃): δ = 7.61 (dd, 1H, *J* = 11.5, 15.5 Hz), 7.46-7.44 (m, 2H), 7.32-7.30 (m, 3H), 6.48 (d, 1H, *J* = 11.5 Hz), 6.00 (d, 1H, *J* = 15.5 Hz), 4.50 (q, 2H, *J* = 8.5 Hz), 3.15 (s, 3H), 2.93 (s, 3H). ¹³C NMR (CDCl₃): δ = 165.15, 154.05, 153.51, 140.13, 134.27, 130.00, 128.83, 125.33, 121.10 (q, *J*_{C-F} = 275.0 Hz), 119.30, 114.41, 60.32 (q, *J*_{C-F} = 36.3 Hz), 36.88, 36.60. HRMS (ESI): m/z calculated for C₁₆H₁₆F₃NO₄ [M+H]⁺: 344.1104, found: 344.1110. FTIR (KBr, cm⁻¹): 3896.81, 3353.99, 1731.97, 1660.53, 1557.06, 1470.61, 1403.07, 1360.31, 1336.87, 1027.40.

(2E, 4Z)-Ethyl-5-(dimethylcarbamoyloxy)-5-(4-methoxyphenyl)penta-2,4-dienoate (5cf)

Yellow solid, m.p.: 101.3 °C, yield = 68%. ¹H NMR (CDCl₃) δ = 7.48 (dd, 1H, *J* = 15.5, 11.5 Hz), 7.37 (d, 2H, *J* = 9.0 Hz), 6.81 (d, 2H, *J* = 9.0 Hz), 6.36 (d, 1H, *J* = 11.5 Hz), 5.91 (d, 1H, *J* = 15.4 Hz), 4.14 (q, 2H, *J* = 7.1 Hz), 3.74 (s, 3H), 3.14 (s, 3H), 2.93 (s, 3H), 1.23 (t, 3H, *J* = 7.5 Hz). ¹³C NMR (CDCl₃): δ = 166.16, 159.79, 152.70, 151.6, 136.90, 126.07, 125.70, 119.92, 113.22, 112.12, 59.28, 54.35, 35.84, 35.58, 13.30. HRMS (ESI): m/z calculated for C₁₇H₂₁NO₅ [M+H]⁺: 320.1492, found: 320.1496. FTIR (KBr, cm⁻¹): 3417.57, 3332.17, 1682.25, 1557.15, 1515.04, 1455.93, 1403.12, 1372.74, 1336.82, 1030.07.

(2E, 4Z)-Ethyl-5-(4-fluorophenyl)-5-(dimethylcarbamoyloxy)penta-2,4-dienoate (5df)

Yellow solid, m.p.: 67.3 °C, yield = 70%. ¹H NMR (CDCl₃): δ = 7.47 (dd, 1H, *J* = 15.5, 11.5 Hz), 7.44-7.40 (m, 2H), 7.00-6.97 (m, 2H), 6.38 (d, 1H, *J* = 11.5 Hz), 5.95 (d, 1H, *J* = 15.5 Hz), 4.15 (q, 2H, *J* = 7.0 Hz), 3.14 (s, 3H), 2.92 (s, 3H), 1.24 (t, 3H, *J* = 7.0 Hz). ¹³C NMR (CDCl₃): δ = 165.94, 162.01 (d, *J*_{C-F} = 249.0 Hz), 152.51, 150.70, 136.38, 129.86 (d, *J*_{C-F} = 3.8 Hz), 125.13 (d, *J*_{C-F} = 8.3 Hz), 121.09, 114.85 (d, *J*_{C-F} = 21.9 Hz), 113.70 (d, *J*_{C-F} = 1.3 Hz), 59.41, 35.86, 35.59, 13.28. HRMS (ESI): m/z calculated for C₁₆H₁₈FNO₄ [M+H]⁺: 308.1293, found: 308.1297. FTIR (KBr, cm⁻¹): 3860.59, 3144.84, 2935.90, 2351.47, 1789.78, 1651.36, 1427.82, 1385.05, 1311.22, 1027.80.

Ethyl (2E, 4Z)-5-((dimethylcarbamoyl)oxy)-5-(naphthalen-2-yl)penta-2,4-dienoate (5bf)

Brown solid, m.p.: 118.5 °C, yield = 60%. ¹H NMR (CDCl₃): δ = 7.86 (s, 1H), 7.78 – 7.72 (m, 3H), 7.55 (ddd, 2H, *J* = 11.4, 10.1, 8.2 Hz), 7.42 (dd, 2H, *J* = 6.2, 3.2 Hz), 6.60 (d, 1H, *J* = 11.5 Hz), 6.00 (d, 1H, *J* = 15.5 Hz), 4.17 (q, 2H, *J* = 7.0 Hz), 3.22(s, 3H), 2.95 (s, 3H), 1.25 (t, 3H, *J* = 7.0 Hz). ¹³C NMR (CDCl₃): δ = 166.01, 152.70, 151.72, 136.60, 132.78, 132.08, 130.87, 127.62, 127.57, 126.66, 125.95, 125.60, 123.89, 121.44, 121.05, 114.34, 59.40, 35.91, 35.68, 13.30. HRMS (ESI): m/z calculated for C₂₀H₂₁NO₄ [M+H]⁺ : 340.1543, found: 340.1538. FTIR (KBr, cm⁻¹): 3286.15, 3262.62, 1732.18, 1698.66, 1557.36, 1486.99, 1403.26, 1360.55, 1253.93, 1030.37.

(2E, 4Z)-ethyl-5-(4-chlorophenyl)-5-(dimethylcarbamoyloxy)penta-2,4-dienoate (5ef)

Yellow solid, m.p.: 101.8 °C, yield = 60%. ¹H NMR (CDCl₃): δ = 7.47 (dd, 1H, *J* = 15.5, 11.5 Hz), 7.35 (d, 2H, *J* = 8.5 Hz), 7.26 (d, 2H, *J* = 8.5 Hz), 6.42 (d, 1H, *J* = 11.5 Hz), 5.96 (d, 1H, *J* = 15.5 Hz), 4.15 (q, 2H, *J* = 7.0 Hz), 3.13 (s, 3H), 2.92 (s, 3H), 1.23 (t, 3H, *J* = 7.5 Hz). ¹³C NMR (CDCl₃): δ = 165.87, 152.46, 150.55, 136.18, 134.51, 132.14, 127.99, 125.40, 121.47, 114.24, 59.45, 35.87, 35.60, 13.28. HRMS (ESI): m/z calculated for C₁₆H₁₈ClNO₄ [M+H]⁺: 324.0997, found: 324.0996. FTIR (KBr, cm⁻¹): 3741.89, 3509.10, 1714.38, 1667.39, 1633.74, 1557.13, 1434.67, 1422.84, 1337.02, 1029.62.

(2E, 4Z)-ethyl-5-(4-bromophenyl)-5-(dimethylcarbamoyloxy)penta-2,4-dienoate (5ff)

Yellow solid, m.p.: 105.5 °C, yield = 41%. ¹H NMR (CDCl₃): δ = 7.47 (dd, 1H, *J* = 15.5, 11.5 Hz), 7.44 – 7.39 (m, 2H), 7.31 – 7.26 (m, 2H), 6.43 (d, 1H, *J* = 11.5 Hz), 5.96(d, 1H, *J* = 15.5 Hz), 4.15 (q, 2H, *J* = 7.0 Hz), 3.13 (s, 3H), 2.92 (s, 3H), 1.24 (t, 3H, *J* = 7.0 Hz). ¹³C NMR (CDCl₃): δ = 165.86, 152.44, 150.62, 136.20, 132.61, 130.93, 125.63, 122.81, 121.53, 114.30, 59.45, 35.87, 35.60, 13.28. HRMS (ESI): m/z calculated for C₁₆H₁₈NO₄Br [M+H]⁺: 368.0492, found: 368.0487. FTIR (KBr, cm⁻¹): 3741.71, 3591.87, 1713.99, 1651.29, 1621.27, 1557.01, 1403.06, 1360.17, 1336.17, 1030.52.

Brown solid, m.p.: 116.9 °C, yield = 37%. ¹H NMR (CDCl₃): δ = 7.63 (d, 2H, *J* = 8.5 Hz), 7.47 (dd, 1H, *J* = 15.5, 11.5 Hz), 7.19 – 7.14 (m, 2H), 6.43 (d, 1H, *J* = 11.5 Hz), 5.97 (d, 1H, *J* = 15.5 Hz), 4.15 (q, 2H, *J* = 7.0 Hz), 3.13 (s, 3H), 2.92 (s, 3H), 1.24 (t, 3H, *J* = 7.0 Hz). ¹³C NMR (CDCl₃): δ = 165.86, 152.44, 150.75, 136.88, 136.17, 133.20, 125.69, 121.58, 114.33, 94.67, 59.45, 35.87, 35.60, 13.28. HRMS (ESI): m/z calculated for C₁₆H₁₈NO₄I [M+H]⁺: 416.0353, found: 416.0343. FTIR (KBr, cm⁻¹): 3500.16, 3262.64, 1789.88, 1667.41, 1633.74, 1567.72, 1434.67, 1360.37, 1336.89, 1026.91.

Ethyl (2E, 4E)-5-(benzo[b]thiophen-2-yl)-5-((dimethylcarbamoyl)oxy)penta-2,4-dienoate (5mf)

Brown solid, m.p.: 111.3 °C, yield = 44%. ¹H NMR (CDCl₃): δ = 7.71 – 7.64 (m, 2H), 7.43 (dd, 1H, *J* = 15.5, 11.5 Hz), 7.31 (s, 1H), 7.26 (dd, 2H, *J* = 6.0, 3.0 Hz), 6.47 (d, 1H, *J* = 11.5 Hz), 5.99 (d, 1H, *J* = 15.5 Hz), 4.16 (q, 2H, *J* = 7.1 Hz), 3.17 (s, 3H), 2.98 (s, 3H), 1.23 (t, 3H, *J* = 7.0 Hz). ¹³C NMR (CDCl₃): δ = 165.83, 152.35, 146.39, 138.79, 138.63, 137.27, 135.75, 124.66, 123.81, 123.27, 121.73, 121.61, 121.19, 115.40, 59.46, 36.02, 35.69, 13.28. HRMS (ESI): m/z calculated for C₁₈H₁₉NO₄S [M+H]⁺: 346.1108, found: 346.1101. FTIR (KBr, cm⁻¹): 3382.59, 3286.25, 1746.88, 1660.60, 1574.23, 1505.06, 1403.16, 1385.21, 1337.05, 1028.49.

(1Z, 3E)-1-(4-Fluorophenyl)-5-oxodeca-1, 3-dien-1-yl dimethylcarbamate (5dk)

Brown oil, yield = 67%. ¹H NMR (CDCl₃): δ = 7.44 – 7.39 (m, 2H), 7.35 (dd, 1H, *J* = 15.5, 11.5 Hz), 6.99 (t, 2H, *J* = 8.5 Hz), 6.38 (d, 1H, *J* = 11.5 Hz), 6.26 (d, 1H, *J* = 15.5 Hz), 3.14 (s, 3H), 2.93 (s, 3H), 2.48 (t, 2H, *J* = 7.5 Hz), 1.58 (dd, 2H, *J* = 14.8, 7.5 Hz), 1.24 (dt, 4H, *J* = 8.1, 3.4 Hz), 0.83 (t, 3H, *J* = 7.0 Hz). ¹³C NMR (CDCl₃): δ = 199.52, 170.06, 162.00 (d, *J*_{*C*-*F*} = 248.8 Hz), 152.49, 151.46, 133.87, 128.81, 126.12 (d, *J*_{*C*-*F*} = 8.3 Hz), 114.89 (d, *J*_{*C*-*F*} = 22.0 Hz), 114.17 (d, *J*_{*C*-*F*} = 1.6 Hz), 40.47, 35.87, 35.61, 30.47, 23.04, 21.47, 12.92. HRMS (ESI): m/z calculated for C₁₉H₂₄NO₃FI [M+H]⁺: 334.1863, found: 334.1873. FTIR (KBr, cm⁻¹): 3793.69, 3686.00, 1789.75, 1738.06, 1651.33, 1606.39, 1557.09, 1494.76, 1360.21, 1029.41.

Ethyl-(2E, 4Z)-5-((dimethylcarbamoyl)oxy)-5-(2-fluorophenyl)penta-2,4-dienoate (5kf)

Yellow oil, yield = 54%, ¹H NMR (CDCl₃): δ = 7.54 (dd, 1H, *J* = 11.0, 15.0 Hz), 7.35 –7.32 (m, 1H), 7.25 – 7.19 (m, 1H), 7.09 –6.99 (m, 2H), 6.52 (d, 1H, *J* = 11.0 Hz), 5.97 (d, 1H, *J* = 15.0 Hz), 4.17 (q, 2H, *J* = 7.0 Hz), 3.11 (s, 3H), 2.91 (s, 3H), 1.25 (t, 3H, *J* = 7.0 Hz). ¹³C NMR (CDCl₃): δ = 165.92, 158.86 (d, *J*_{C-F} = 251.3 Hz), 152.48, 146.68 (d, *J*_{C-F} = 4.0 Hz), 136.36, 129.77 (d, *J*_{C-F} = 8.8 Hz), 127.10, 123.34, 121.91 (d, *J*_{C-F} = 10.8 Hz), 121.71, 118.19 (d, *J*_{C-F} = 9.9 Hz), 115.48 (d, *J*_{C-F} = 22.6 Hz), 59.41, 35.81, 35.55, 13.28. HRMS (ESI): m/z calculated for C₁₆H₁₈FNO₄ [M+H]⁺: 308.1293, found: 308.1285. FTIR (KBr, cm⁻¹): 3332.58, 3286.74, 1732.11, 1714.42, 1644.85, 1519.36, 1470.68, 1360.38, 1336.95, 1048.86.

Ethyl-(2E, 4Z)-5-((dimethylcarbamoyl)oxy)-5-(3-fluorophenyl)penta-2,4-dienoate (5lf)

Yellow solid, yield = 54%, m.p.: 79.0 °C, ¹H NMR (CDCl₃): δ = 7.49 (dd, 1H, *J* = 11.5, 15.5 Hz), 7.27 – 7.22 (m, 2H), 7.11–7.08 (m, 1H), 6.98 – 6.97 (m, 1H), 6.45 (d, 1H, *J* = 11.5 Hz), 5.98 (d, 1H, *J* = 15.5 Hz), 4.18 (q, 2H, *J* = 7.5 Hz), 3.15 (s, 3H), 2.93 (s, 3H), 1.25 (t, 3H, *J* = 7.5 Hz). ¹³C NMR (CDCl₃): δ = 165.82, 161.94 (d, *J*_{C-F} = 244.9 Hz), 152.43, 150.26 (d, *J*_{C-F} = 2.9 Hz), 136.09, 135.91 (d, *J*_{C-F} = 7.8 Hz), 129.34 (d, *J*_{C-F} = 8.3 Hz), 121.84, 119.84, 115.44 (d, *J*_{C-F} = 21.3 Hz), 114.85, 111.12 (d, *J*_{C-F} = 23.4 Hz), 59.47, 35.88, 35.61, 13.27. HRMS (ESI): m/z calculated for C₁₆H₁₈FNO₄ [M+H]⁺: 308.1293, found: 308.1291. FTIR (KBr, cm⁻¹): 3500.27, 3417.27, 1738.19, 1633.78, 1538.29, 1455.22, 1403.13, 1360.43, 1336.57, 1047.22.

Ethyl-(2E, 4Z)-5-(4-cyanophenyl)-5-((dimethylcarbamoyl)oxy)penta-2,4-dienoate (5hf)

Brown solid, yield = 40%, m.p.: 135.0 °C, ¹H NMR (CDCl₃): 7.60 – 7.58 (m, 2H), 7.52 – 7.51(m, 2H), 7.49 (dd, 1H, J = 11.5, 15.5 Hz), 6.53 (d, 1H, J = 11.5 Hz), 6.03 (d, 1H, J = 15.5Hz), 4.18 (q, 2H, J = 7.5 Hz), 3.15 (s, 3H), 2.93 (s, 3H), 1.26 (t, 3H, J = 7.5 Hz). ¹³C NMR (CDCl₃): $\delta = 165.58$, 152.25, 149.48, 137.97, 135.54, 131.50, 124.58, 123.08, 117.40, 116.60, 111.69, 59.63, 35.92, 35.64, 13.26. HRMS (ESI): m/z calculated for C₁₇H₁₈N₂O₄[M+H]⁺: 315.1339, found: 315.1338. FTIR (KBr, cm⁻¹): 3914.73, 1747.01, 1694.29, 1651.66, 1567.92, 1470.80, 1403.00, 1360.56, 1336.95, 983.83.

Ethyl-(2E,4Z)-5-((dimethylcarbamoyl)oxy)-5-(4-(trifluoromethyl)phenyl)penta-2,4-dienoate (5if)

Yellow solid, yield = 51%, m.p.: 98.6 °C, ¹H NMR (CDCl₃): 7.56 – 7.52 (m, 4H), 7.51 (dd, 1H, J = 11.5, 15.5 Hz), 6.50 (d, 1H, J = 11.5 Hz), 6.01 (d, 1H, J = 15.5 Hz), 4.18 (q, 2H, J = 7.0 Hz), 3.15 (s, 3H), 2.92 (s, 3H),1.25 (t, 3H, J = 7.0 Hz). ¹³C NMR (CDCl₃): δ = 165.72, 152.37, 150.08, 137.10, 135.86, 130.18 (q, J_{C-F} = 23.8 Hz), 124.78 (q, J_{C-F} = 3.8 Hz), 124.37, 122.83 (q, J_{C-F} = 272.5 Hz), 122.41, 115.70, 59.54, 35.88, 35.62, 13.26. HRMS (ESI): m/z calculated for C₁₇H₁₈F₃NO₄ [M+H]⁺:358.1261, found: 358.1256. FTIR (KBr, cm⁻¹): 3813.85, 3418.03, 1714.84, 1694.33, 1557.39, 1446.02, 1360.43, 1239.20, 1090.63, 992.54.

Brown solid, yield = 53%, m.p.: 95.0 °C, ¹H NMR (CDCl₃): 7.96 (d, 2H, J = 8.5 Hz), 7.52 – 7.47 (m, 3H), 6.54 (d, 1H, J = 11.0 Hz), 6.01 (d, 1H, J = 15.5 Hz), 4.32 (q, 2H, J = 7.0 Hz), 4.18 (q, 2H, J = 7.0 Hz), 3.15 (s, 3H), 2.93 (s, 3H), 1.32 (t, 3H, J = 7.0 Hz), 1.25 (t, 3H, J = 7.0 Hz). ¹³C NMR (CDCl₃): δ = 165.77, 164.92, 152.41, 150.55, 137.68, 136.05, 130.08, 128.95, 123.96, 122.19, 115.63, 60.11, 59.50, 35.88, 35.62, 13.28, 13.27. HRMS (ESI): m/z calculated for C₁₉H₂₃NO₆ [M+H]⁺: 362.1598, found: 362.1595. FTIR (KBr, cm⁻¹): 3699.61, 3417.82, 1715.07, 1645.12, 1538.62, 1495.15, 1372.53, 1276.75, 1142.58, 449.95.

Ethyl (E)-3-(2-((dimethylcarbamoyl)oxy)cyclohex-1-en-1-yl)acrylate (5nf)

Yellow oil, yield = 45%. ¹H NMR (CDCl₃): δ = 7.63 (d, 1H, *J* = 16.0 Hz), 5.73 (d, 1H, *J* = 16.0 Hz), 4.13 (q, 2H, *J* = 7.0 Hz), 2.98 (s, 3H), 2.89 (s, 3H), 2.29 (t, 2H, *J* = 5.8 Hz), 2.18 (d, 2H, *J* = 6.2 Hz), 1.71 – 1.62 (m, 4H), 1.22 (t, 3H, *J* = 7.1 Hz). ¹³C NMR (CDCl₃): δ = 166.57, 152.88, 151.97, 138.27, 119.90, 115.21, 59.17, 35.57, 35.44, 27.74, 23.03, 21.37, 20.75, 13.29. HRMS (ESI): m/z calculated for C₁₄H₂₁NO₄ [M+H]⁺: 268.1543, found: 268.1541. FTIR (KBr, cm⁻¹): 3584.83, 3500.39, 1842.06, 1714.61, 1667.52, 1644.84, 1557.24, 1434.77, 1258.16, 1014.40.

Ethyl (2E, 4Z)-5-((dimethylcarbamoyl)oxy)-6,6-dimethylhepta-2,4-dienoate (5of)

Yellow oil, yield = 47%. ¹H NMR (CDCl₃): δ = 7.20 – 7.11 (m, 1H), 5.88 (d, 1H, *J* = 11.3 Hz), 5.80 (d, 1H, *J* = 15.5 Hz), 4.11 (q, 2H, *J* = 7.0 Hz), 3.01 (s, 3H), 2.92 (s, 3H), 1.20 (t, 3H, *J* = 7.0 Hz), 1.07 (s, 9H). ¹³C NMR (CDCl₃): δ = 166.09, 162.38, 152.81, 137.33, 119.68, 111.36, 59.15, 36.06, 35.88, 35.39, 26.87, 13.27. HRMS (ESI): m/z calculated for C₁₄H₂₃NO₄ [M+H]⁺: 270.1700, found: 270.1702. FTIR (KBr, cm⁻¹): 3654.26, 1828.02, 1704.25, 1694.16, 1667.47, 1531.75, 1470.65, 1246.52, 1142.63, 1069.92.

Ph Ph Ph COOMe Methyl (Z)-3, 5, 5-triphenylpenta-2,4-dienoate (6)

Yellow oil, yield = 58%. ¹H NMR (CDCl₃): δ = 7.44 – 7.42 (m, 2H), 7.35 (s, 1H), 7.26 – 7.16 (m, 11H), 7.07 (dd, 2H, *J* = 7.7, 1.8 Hz), 6.63 (d, 1H, *J* = 1.7 Hz), 3.23 (s, 3H). ¹³C NMR (CDCl₃): δ = 167.64, 145.99, 141.13, 139.27, 138.91, 134.62, 129.73, 129.03, 128.75, 127.94, 127.44, 127.30, 127.17, 126.97, 126.92, 126.69, 121.25, 50.65.

HRMS (ESI): m/z calculated for C₂₄H₂₀NO₂ [M+H]⁺: 341.1536, found: 341.1528. FTIR (KBr, cm⁻¹): 3550.18, 1841.93, 1770.12, 1698.43, 1644.70, 1557.10, 1486.49, 1392.79, 1360.27, 1257.81.

Competitive reaction of different enol-carbamates with alkyne 2a

A 10 mL vial was charged with $[Ru(p-cymene)Cl_2]_2$ (6.1 mg, 5.0 mol %), AgSbF₆ (13.7 mg, 20 mol %) and DME (1.0 mL). Then, enol carbamate **1d** (43.8mg, 0.2 mmol), enol carbamate **1c** (46.2 mg, 0.2 mmol), acetic anhydride (1.0 mg, 5.0 mol %) and methyl phenylpropiolate (**2a**) (64.1 mg, 0.4 mmol) were added into the solution in sequence. The vial was sealed under Ar and heated to 100°C with stirring for 5 hours. After cooling down, the mixture was concentrated in vacuo and purified by column chromatography to afford the product **4da** (10.0 mg, 16%) and **4ca** (17.0 mg, 27%).

Competitive reaction of different enol-carbamates with alkene 3f

A 10 mL vial was charged with $[\text{Ru}(p\text{-cymene})\text{Cl}_2]_2$ (12.2 mg, 10.0 mol %), AgSbF₆ (27.5 mg, 40 mol %) and DME (1.0 mL). Then, enol carbamate **1d** (43.8mg, 0.2 mmol), enol carbamate **1c** (46.2 mg, 0.2 mmol), Cu(OAc)₂ (2.0 equiv,0.4 mmol) and alkene **3f** (20.0 mg, 0.4 mmol) were added into the solution in sequence. The vial was sealed under Ar and heated to 100°C with stirring for 5 hours. After cooling down, the mixture was concentrated in vacuo and purified by column chromatography to afford the product **5df** (12.0 mg, 20 %) and **5cf** (yield < 5%).

Synthetic Applications

An oven-dried screw-cap vial was charged with $[Ru(p-cymene)Cl_2]_2$ (5.0 mol%, 0.26 mmol), AgSbF₆ (20.0 mol%, 1.04 mmol) and DME (1.0 ml). Then, vinyl carbamate **1a** (1.0 g, 1.0 eq, 5.23 mmol), Alkyne **2a** (2.0 eq, 10.46 mmol) and acetic anhydride (0.05 eq, 0.26 mmol) were added into the solution in sequence. The vial was sealed under nitrogen and heated to 100 °C with stirring for 16 hours. After cooling down, the mixture was concentrated to give the crude product which was directly applied to a flash column chromatography (EtOAc/Petroleum ether mixtures) for separation, finally delivering product **3aa** as a white solid (1.23 g, 67%).

A flame-dried Schlenk tube (8 mL) equipped with a magnetic stirring bar was charged with anhydrous K_3PO_4 (1.44 mmol, 30.6 mg, 7.2 equiv). Phenylboronic acid (0.6 mmol, 73.2 mg, 4.0 equiv), NiCl₂(PCy₃)₂ (38.2 mg, 10 mol %), enol carbamate **4aa** (0.2 mmol, 70.2 mg, 1.0 equiv) and toluene (1.4 mL) were then added under a stream of argon. The reaction vessel was sealed with a Teflon-lined screw cap and the heterogeneous mixture was allowed to stir at 23 °C for 1 h before heating up to 120 °C for 24 h. After cooling down, the reaction mixture was transferred to a round bottom flask and rinsed with dichloromethane. Silica was then added and the solvent was removed under vacuo. The obtained powder was dry-loaded onto a silica gel column and purification by column chromatography (EtOAc/petroleum ether mixtures 1:20) afforded the desired arylated product **6** as a yellow oil (39.4 mg, 58%).

Ru-Catalyzed H/D Exchange in 1a and KIE study

An oven-dried vial was charged with $[Ru(p-cymene)Cl_2]_2$ (5.0 mol %, 0.01 mmol), AgSbF₆ (20 mol %, 0.04 mmol), acetic anhydride (5.0 mol%, 0.01 mmol), DME (1.0 mL) and AcOD (10.0 eq, 2.0 mmol). Then, enol carbamate (0.2 mmol) was added into the solution. The vial was sealed under argon and heated to 100°C with stirring for 1 hour. After cooling down, the mixture was directly applied to a flash column chromatography (EtOAc/petroleum ether mixtures) on silica gel (26 mg, 68% recovered). The D % of **1a-d** was estimated by ¹HNMR.

Competitive reactions in 1 vessel

A 10 mL vial was charged with $[Ru(p-cymene)Cl_2]_2$ (3.1 mg, 5.0 mol %), AgSbF₆ (6.9 mg, 20 mol %) and DME (1.0 mL). Then, alkyne **2a** (32.0 mg, 0.2 mmol), enol carbamate **1a** (19.1 mg, 0.1 mmol), acetic anhydride (0.5 mg, 5.0 mol %) and **1a-d**₇ (19.8 mg, 0.1 mmol) were added into the solution in sequence. The vial was sealed under Ar and heated to 100°C with stirring for 6 hours. After cooling down, the mixture was concentrated in vacuo and purified by column chromatography to afford the product (14.0 mg, ~ 20% yield) as a white solid. The ratio of **4aa/4a-d**₇ was determined by ¹H NMR (500 MHz, CDCl₃) to be 1.0.

Parallel reactions in 2 vessels

Four parallel independent reactions of $1a/1a-d_7$ with 2a, were performed to determine the corresponding KIE value. A 10 mL vial was charged with $[Ru(p-cymene)Cl_2]_2$ (3.1 mg, 5.0 mol %), AgSbF₆ (6.9 mg, 20 mol %) and DME (1.0 mL). Then, alkyne 2a (32.0 mg, 0.2 mmol), enol carbamate 1a (19.1 mg, 0.1 mmol) or $1a-d_7$ (19.8 mg, 0.1 mmol) and acetic anhydride (0.5 mg, 5.0 mol %) were added into the solution in sequence. The vial was sealed under Ar and heated to 100°C with stirring for 1-4 hours. After cooling down, the mixture was concentrated in vacuo and purified by column chromatography to afford the product $4aa/4aa-d_7$.

t/h yield	1	2	3	4
4 aa	26%	28%	29%	31%
4aa-d ₇	18.5%	19%	20%	21%

An oven-dried vial was charged with $[Ru(p-cymene)Cl_2]_2$ (10.0 mol %, 0.02 mmol), AgSbF₆ (40 mol %, 0.08 mmol), Cu(OAc)₂ (2.0 equiv,0.4 mmol), DME (1.0 mL) and D₂O (10.0 eq, 2.0 mmol). Then, enol carbamate **1a** (0.2 mmol) was added into the solution. The vial was sealed under argon and heated to 100°C with stirring for 1 hour. After cooling down, the mixture was directly applied to a flash column chromatography (EtOAc/petroleum ether mixtures) on silica gel (29 mg, 76% recovered). The D % of **1a-d** was estimated by ¹HNMR.

Competitive reactions in 1 vessel

A 10 mL vial was charged with $[Ru(p-cymene)Cl_2]_2$ (6.12 mg, 10.0 mol %), AgSbF₆ (13.74 mg, 40 mol %) and DME (1.0 mL). Then, alkene **3f** (20.0 mg, 0.2 mmol), enol carbamate **1a** (19.1 mg, 0.1 mmol), Cu(OAc)₂ (2.0 equiv,0.2 mmol) and **1a-d**₇ (19.8 mg, 0.1 mmol) were added into the solution in sequence. The vial was sealed under Ar and heated to 100°C with stirring for 6 hours. After cooling down, the mixture was concentrated in vacuo and purified by column chromatography to afford the product (15.0 mg, ~ 20% yield) as brown oil. The ratio of **5af/5af-** d_6 was determined by ¹H NMR (500 MHz, CDCl₃) to be 3.0.

Parallel reactions in 2 vessels

Four parallel independent reactions of $1a/1a \cdot d_7$ with 3f were performed to determine the corresponding KIE value. A 10 mL vial was charged with [Ru(*p*-cymene)Cl₂]₂ (6.12 mg, 10.0 mol %), AgSbF₆ (13.74 mg, 40 mol %) and DME (1.0 mL). Then, alkene 3f (20.0 mg, 0.2 mmol), enol carbamate 1a (19.1 mg, 0.1 mmol) or $1a \cdot d_7$ (19.8 mg, 0.1 mmol) and Cu(OAc)₂ (2.0 equiv, 0.2 mmol) were added into the solution in sequence. The vial was sealed under Ar and heated to 100°C with stirring for 1-4 hours. After cooling down, the mixture was concentrated in vacuo and purified by column chromatography to afford the product $5af/5af \cdot d_6$.

t/h yield	1	2	3	4
5af	38.7%	43.7%	48.7%	53.6%
5af-d ₆	31.8%	36.3%	40.8%	45.3%

References:

1. M. Boultadakis-Arapinis, M. N. Hopkinson and F. Glorius, Org. Lett. 2014, 16, 1630-1633.

NMR Spectra

SI-29

SI-38

SI-41

SI-44

SI-45

SI-47

SI-48

SI-55

