Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2017

Modification of Ga₂O₃ by Ag-Cr Core-shell Cocatalyst Enhances Photocatalytic CO Evolution for the Conversion of CO₂ by H₂O

Rui Pang,^a Kentaro Teramura,^{*a, b} Hiroyuki Tatsumi,^a Hiroyuki Asakura,^{a, b} Saburo Hosokawa,^{a, b} and Tsunehiro Tanaka^{*a, b}

^a Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615–8510, Japan

^b Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1–30 Goryo–Ohara, Nishikyo–ku, Kyoto 615–8245, Japan

Experimental Section

Preparation of Ag-Cr/Ga₂O₃

Ag-Cr/Ga₂O₃ was prepared by a facile simultaneously photodeposition method.^{1, 2} Generally, 1.0 g of Ga₂O₃ (Kojundo, 99.99%) powder was dispersed in 1.0 L of ultra-pure water containing a required amount of AgNO₃ and Cr(NO₃)₃, and the dissolved air in the solution was completely degassed by a flow of Ar gas. The suspension was irradiated under a 400 W high-pressure Hg lamp with Ar gas flowing for 1.0 h, followed by filtration and drying at room temperature. The amount of Ag and Cr was the molar ratio of Ag/Ga and Cr/Ga.

- 1. K. Maeda, D. Lu, K. Teramura and K. Domen, *J. Mater. Chem.*, 2008, **18**, 3539–3542.
- 2. K. Maeda, D. Lu, K. Teramura and K. Domen, *Energ. Environ. Sci.*, 2010, **3**, 470–477.

Characterization

The as-prepared Ag-Cr/Ga₂O₃ was studied by X-ray diffractometry (XRD, Rigaku Multiflex) with Cu K α radiation (λ = 0.154 nm), field-emission scanning electron microscopy (FE-SEM, SU-8220, Hitachi High Technologies), transmission electron microscopy (TEM, JEM-2100F), X-ray photoelectron spectroscopy (XPS, Shimadzu, ESCA 3400, Mg K α), and X-ray absorption fine structure (XAFS) at the Ag K-edge and Cr K-edge (beam line BL01B1 of SPring-8).

Photocatalytic reaction

The photocatalytic reduction of CO₂ was carried out using a flow system with an inner-irradiation-type reaction vessel at ambient pressure. First, the synthesized photocatalyst (0.5 g) was dispersed in ultrapure water (1.0 L) containing 0.1 M NaHCO₃. Second, CO₂ was bubbled into the solution at a flow rate of 30 mL min⁻¹. Third, the suspension was illuminated using a 400 W high-pressure mercury lamp with a quartz filter connected to a water cooling system. The amounts of evolved H₂ and O₂ were detected using a thermal conductivity detectorgas chromatography system (TCD-GC, Shimadzu Corp; MS-5A column, Ar carrier). The amount of evolved CO was analyzed by a flame ionization detector-GC with a methanizer (FID-GC, ShinCarbon ST column, N₂ carrier), the reactor set-up is shown in Figure S1.

In the backward reaction, the processes were almost the same as those of the photocatalytic reduction of CO₂, except that the CO, O₂ and diluent gas Ar were bubbled into the ultrapure water solution with a total flow rate of 30 mL min⁻¹, and the amount of evolved CO₂ was analyzed by a FID–GC.

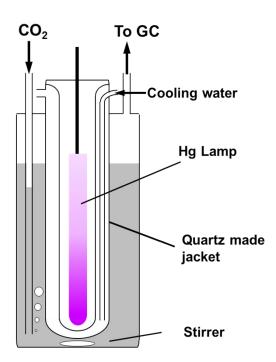
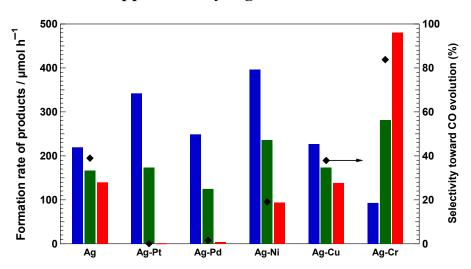
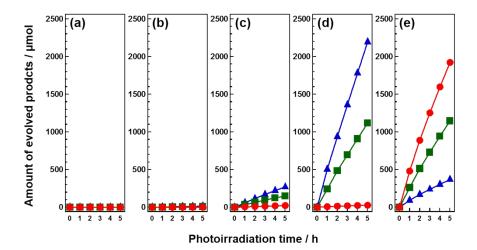
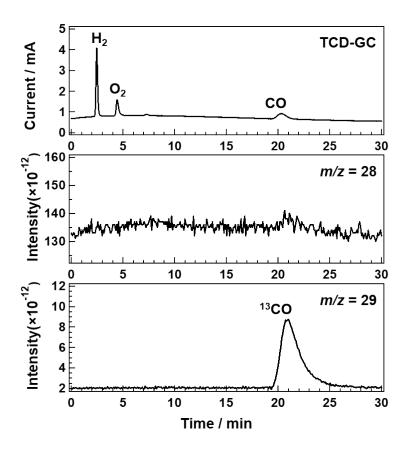
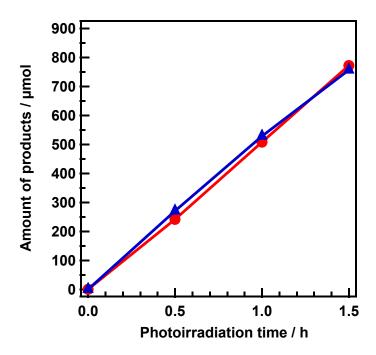




Fig. S1 Reactor set—up for the photocatalytic reduction of CO₂ under UV light irradiation


Supplementary Figures and Table


Fig. S2 Formation rate of H₂ (blue), O₂ (green), CO (red), and selectivity toward CO (black diamond) evolution for the photocatalytic conversion of CO₂ in water over Ag/Ga₂O₃ and Ag-metals/Ga₂O₃ photocatalysts. Photocatalyst powder: 0.5 g, reaction solution volume: 1.0 L, additive: 0.1 M NaHCO₃, Ag loading amount: 1.0 mol% (Ag/Ga), metals loading amount: 1.0 mol% (metals/Ga), modification method: simultaneously photodeposition (SPD) method, CO₂ flow rate: 30 mL min⁻¹, light source: 400 W high-pressure Hg lamp.

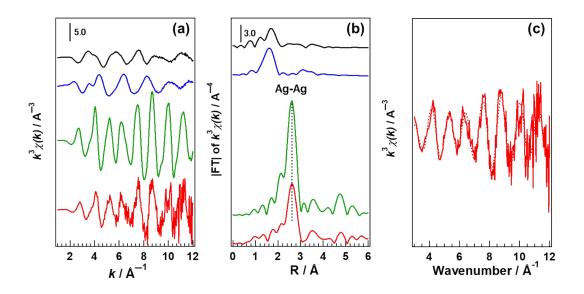
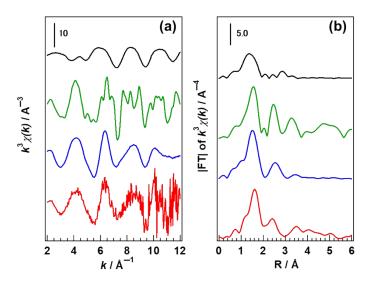

Fig. S3 Amounts of H₂ (blue triangle), O₂ (green square), and CO (red circle) from controlled experiments for the photocatalytic conversion of CO₂ in water using the Ag–Cr/Ga₂O₃ photocatalyst. (a) dark condition; (b) no photocatalyst; (c) no additive; (d) with Ar gas flow; (e) typical condition. Photocatalyst powder: 0.5 g, reaction solution volume: 1.0 L, additive: 0.1 M NaHCO₃, Ag loading amount: 1.0 mol%, Cr loading amount: 1.0 mol%, CO₂ flow rate: 30 mL min⁻¹, light source: 400 W high–pressure Hg lamp.

Fig S4. Gas chromatograms and mass spectra (*m/z* 28, 29) for the photocatalytic conversion of ¹³CO₂ by H₂O over Ag–Cr/Ga₂O₃. Photocatalyst powder: 0.5 g, reaction solution volume: 1.0 L, additive: 0.1 M NaHCO₃, Ag loading amount: 1.0 mol%, Cr loading amount: 1.0 mol%, CO₂ flow rate: 30 mL min⁻¹, light source: 400 W high–pressure Hg lamp.

Fig S5. Time course of CO (triangle) and ¹³CO (circle) determined by FID–GC and mass, respectively, for the photocatalytic conversion of CO₂ over Ag–Cr/Ga₂O₃. Photocatalyst powder: 0.5 g, reaction solution volume: 1.0 L, additive: 0.1 M NaHCO₃, Ag loading amount: 1.0 mol%, Cr loading amount: 1.0 mol%, CO₂ flow rate: 30 mL min⁻¹, light source: 400 W high–pressure Hg lamp.

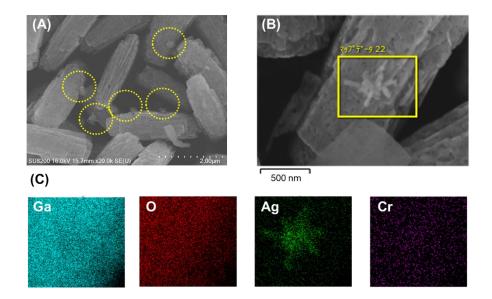
Fig. S6 Ag K-edge (a) EXAFS and (b) Fourier transforms (FT) of the EXAFS spectra of Ag₂CO₃ (black), Ag₂O (blue), Ag foil (green), and Ag-Cr/Ga₂O₃ (red), (c) Fourier-filtered EXAFS function (solid line) and resulting curve fit (dotted line) for the main peak appearing at 2.0–3.0 Å in FT of k³-weighted EXAFS (Ag-Cr/Ga₂O₃ spectrum in Fig. S6b).

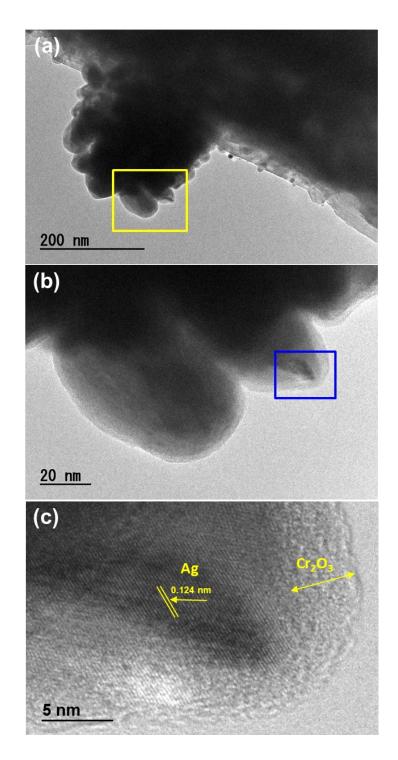

Table S1 Curve-fitting analysis of Fourier-transformed EXAFS of Ag-Cr/Ga₂O₃.

Samples	Scatter atom	Na	$R^b(Å)$	$\Delta(\sigma^2)^c (\mathring{A}^2)$	R_f^d
Ag-Cr/Ga ₂ O ₃	Ag	4.80	2.87	1.08× 10 ⁻²	5.77×10^{-3}
Ag foile	Ag	(12)	2.89		

^a Coordination number, ^b Bond distance, ^c Debye-Waller factor, ^d Residual factor, ^e Data from X-ray crystallography

As shown in Fig. S6b, the peak at 2.6 Å is assigned to the Ag–Ag shell. Inverse Fourier transform of the Ag–Cr/Ga₂O₃ (red) spectrum at 2.6 Å (R = 2.0–3.0 Å) in Fig. S6b gives the EXAFS oscillation of Ag–Ag shell, as shown in Fig. S6c. The dotted line in Fig. S6c shows the result of a curve–fitting analysis using Ag–Ag shell parameters in the k region of 3.0–14.0 Å⁻¹. A simulated spectrum fitted well with the experimental one. As shown in Table 1, the curve–fitting analysis of the peak at 2.6 Å showed that this peak can be assigned to Ag–Ag shell with a coordination number of 4.8 and bond distance 2.87 Å, which is smaller with Ag foil.³ The height of Ag–Ag shell peak of Ag–Cr/Ga₂O₃ was lower than that of Ag foil, which indicates that the particle size of Ag in Ag–Cr/Ga₂O₃ is smaller than Ag foil.


3. H. A. Gasteiger, S. S. Kocha, B. Sompalli and F. T. Wagner, *Appl. Catal. B: Environ.*, 2005, **56**, 9–35.


Fig. S7 Cr K-edge (a) EXAFS and (b) Fourier transforms (FT) EXAFS spectra of CrO_3 (black), Cr_2O_3 (blue), $Cr(OH)_3\Box xH_2O$ (green), and $Ag-Cr/Ga_2O_3$ (red).

As shown in Fig. S7b, the peak with the largest FT moduli at 1.7 Å is assigned to oxygen atoms in the first coordination sphere of Cr (Cr–O). At further radial distance of about 2.6 Å and 3.2 Å with smaller FT moduli are assigned as contributions from distal Cr atoms (Cr–Cr).⁴

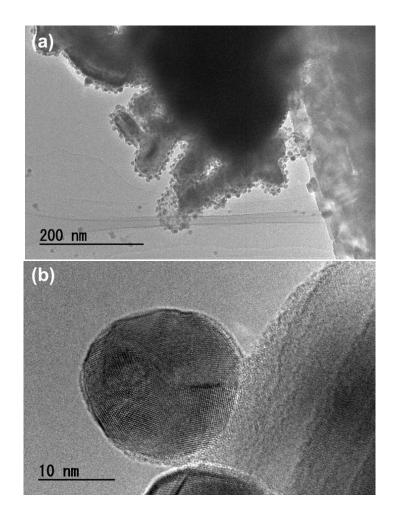

4. D. Rai, D. A. Moore, N. J. Hess, K. M. Rosso, L. Rao and S. M. Heald, *J. Solution Chem.*, 2007, **36**, 1261–1285.

Fig. S8 (A) SEM image of $Ag-Cr(OH)_3\Box xH_2O/Ga_2O_3$; EDS analysis of $Ag-Cr(OH)_3\Box xH_2O/Ga_2O_3$: (B) selected SEM images, (C) Ga, O, Ag, and Cr mapping images. Ag loading amount: 1.0 mol%, Cr loading amount: 1.0 mol%.

Fig. S9 (a), (b) TEM images, and (c) high-resolution TEM (HRTEM) image of $Ag-Cr(OH)_3\Box xH_2O$ cocatalyst ((b) and (c) are the enlarged TEM images of the yellow rectangular in Figure (a) and blue rectangular in Figure (b), respectively).

Fig. S10 (a) TEM image and (b) HRTEM image of the as prepared Ag−Cr(OH)₃□xH₂O/Ga₂O₃.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2017

Catalyst	Flow rates of gases / µmol h ⁻¹		Rates of detected gases $/ \mu mol \ h^{-1}$				Balance 1 R _{CO2} / R _{CO}	Balance 2 $R_{CO2}/2R_{O2}$
	СО	O_2	H_2	O_2	СО	CO ₂	. 602 60	02 02
Ag/Ga ₂ O ₃	487	301	20.8	260	382	103	0.98	1.01
	982	538	56.8	420	670	320	1.03	1.03
	2500	1590	7.45	1200	1750	820	1.09	1.02
Ag-Cr/Ga ₂ O ₃	487	301	226	383	402	84.5	0.99	1.03
	982	538	282	590	782	202	1.01	1.02
	2500	1590	300	1560	2170	320	0.97	0.99

^[b] Photocatalyst powder: 0.5 g, reaction solution: 1.0 L H₂O, Ag loading amount: 1.0 mol%, Cr loading amount: 1.0 mol%, light source: 400 W high–pressure Hg lamp.

Backward reaction: $2CO + O_2 \rightarrow 2CO_2$

Balance 1: Produced CO_2 / Consumed $CO = R_{CO2} / R_{CO}$

Balance 2: $0.5 \times \text{Produced CO}_2 / \text{Consumed O}_2 = R_{\text{CO}2} / 2R_{\text{O}2}$

where R_x is the formation rate of species x

Calculation of the consumed amount of CO and O2 for the backward reaction.

Consumed amount of CO = Flowing amount of CO - Detected amount of CO

Because the water splitting and backward reaction for CO_2 reduction happen simultaneously in the reactor under photoirradiation, as a result, the detected O_2 contains two parts: the residual of flowing O_2 after the backward reaction, and the O_2 produced by water splitting. The detected amount of O_2 can be calculated as follows:

Detected amount of O_2 = Flowing amount of O_2 - Consumed amount of O_2 + Produced amount of O_2

Consumed amount of O_2 = Flowing amount of O_2 - Detected amount of O_2 + Produced amount of O_2 = Flowing amount of O_2 - Detected amount of O_2 + 0.5 × Produced amount of O_2