Supporting Information

Asymmetric formal synthesis of (+)-cycloclavine

Jin-Quan Chen, Le-Le Song, Feng-Xing Li, Zi-Fa Shi and Xiao-Ping Cao*
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China caoxplzu@163.com

Contents:

1. General procedures S2
2. Experimental and spectral data S3
3. Comparison ${ }^{1} \mathrm{H}$ NMR data of the racemic Szántay's amine (reported in 2008) and the enantiomerically pure Szántay's amine (+)-2 (this work)
4. Comparison ${ }^{13} \mathrm{C}$ NMR data of the racemic Szántay's amine (reported in 2008) and the enantiomerically pure Szántay's amine (+)-2 (this work)
5. Tabulated summary of synthesis of Szántay's amine $\mathbf{2}$ and cycloclavine (1) S17
6. X-ray structure of compounds (-)-13b and (-)-3a S18
7. NMR spectra of compounds: 10a, 7a, (+)-6a, (+)-12a, (+)-4a, (-)-13a, (+)-6b, $(-) \mathbf{- 1 2 b},(-)-\mathbf{4 b},(-) \mathbf{- 1 3 b},(-) \mathbf{- 1 4 b},(-) \mathbf{- 1 4 a},(-)-\mathbf{3 a}$ and Szántay’s amine (+)-2 S19
8. HPLC of compounds: $(\pm)-\mathbf{6 a}$ and $(+)-\mathbf{6 a},(\pm)-\mathbf{4 a}$ and $(+)-\mathbf{4 a},(\pm) \mathbf{- 1 3 a}$ and $(-) \mathbf{- 1 3 a}$, (\pm)-14a and $(-) \mathbf{- 1 4 a},(\pm)-\mathbf{3 a}$ and $(-)-\mathbf{3 a}$, Szántay's amine $(\pm)-\mathbf{2}$ and $(+)-\mathbf{2} \quad$ S34

1. General procedures

All reagents and commercially available starting materials were used without further purification unless otherwise noted. All the solvents used were dried and dealed with according to the standard methods. Petroleum ether (PE) used had a boiling range of $60-90^{\circ} \mathrm{C}$. Air- or moisture-sensitive reagents or intermediates were carried out under an inert atmosphere of argon in glassware. Elevated temperatures were maintained using thermostat-controlled silicone oil baths. All reactions were monitored by thinlayer chromatography analysis (TLC). Flash chromatography was conducted on silica gel (200-300 mesh) with relevant solvents. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 400 or 600 MHz and 100 or 150 MHz , respectively. Chemical shifts (δ) are reported in parts per million, coupling constants (J) are reported in Hz. The splitting abbreviations were used: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, $\mathrm{dd}=$ doublet of doublets, $\mathrm{q}=$ quartet. High-resolution mass spectrometry (HRMS) were performed by an FTMS mass spectrometer (ESI). Infrared spectra (IR) were recorded as FT-IR spectra and reported in terms of frequency of absorption $\left(v, \mathrm{~cm}^{-1}\right)$. Optical rotations were measured using a 0.1 mL cell with a 1 cm path length on automatic polarimeter and concentrations (c) were reported in $\mathrm{mg} / \mathrm{mL}$. The X-ray single-crystal determination was performed with a diffractometer working with graphite monochromated Mo $\mathrm{K} \alpha$ radiation. Melting points were determined by using of a microscope apparatus and are uncorrected. Compounds $\mathbf{9}^{10,11}$ and $7 \mathbf{b}^{5 e}$ were synthesized as previously reported, and 7 a was afforded by a modified protocol. Compounds $(\pm)-\mathbf{6 a},(\pm)-\mathbf{4 a},(\pm)-\mathbf{1 3 a},(\pm) \mathbf{- 1 4 a},(\pm)-\mathbf{3 a}$ and Szántay’s amine $(\pm)-\mathbf{2}$ were prepared as the similar procedure of $(+)-\mathbf{6 a},(+)-\mathbf{4 a},(-)-\mathbf{1 3 a},(-)-\mathbf{1 4 a},(-) \mathbf{- 3 a}$ and Szántay's amine (+)-2 respectively.
2. Experimental and spectral data

tert-Butyl 3-allyl-4-bromo-1H-indole-1-carboxylate (10a). To a solution of 3-allyl indole 9 ($5.8 \mathrm{~g}, 24.7 \mathrm{mmol}, 1.0$ equiv) in dry acetonitrile (100 mL) was added DMAP $(6.0 \mathrm{~g}, 49.4 \mathrm{mmol}, 2.0$ equiv) at room temperature. The mixture was stirred for 5 min and $(\mathrm{Boc})_{2} \mathrm{O}(8.1 \mathrm{~g}, 37.0 \mathrm{mmol}, 1.5$ equiv) was added. Until the starting material was consumed completely for about 6 hours, the reaction mixture was added into a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic solvent was separated and the aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with water and brine respectively, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=20 / 1$) to give the N-Boc indole 10a as a colurless liquid ($7.4 \mathrm{~g}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19$ (d, $J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.21-6.11(\mathrm{~m}, 1 \mathrm{H}), 5.18-$ 5.12 ($\mathrm{m}, 2 \mathrm{H}$), 3.78 (dd, $J=6.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.69 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 149.2,137.1,136.6,128.4,127.1,125.1,124.7,119.8,116.2,114.4,114.2$, 84.0, 30.9, 28.2; IR $v_{\max }: 3448,2979,2930,1737,1421,1370,1255,1158,1090$, 1054, 917, 850, 773; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrNO}_{2}$ 336.0594, found 336.0589.

tert-Butyl 4-bromo-3-(2-oxoethyl)-1H-indole-1-carboxylate (7a). To a stirred mixture of $\mathbf{1 0 a}(7.3 \mathrm{~g}, 21.7 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{NMO}(4.6 \mathrm{~g}, 39.1 \mathrm{mmol}, 1.8$ equiv) in THF/ $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL}, 3: 1)$ was added $\mathrm{OsO}_{4}(2.5 \mathrm{wt} \% t-\mathrm{BuOH}, 11.0 \mathrm{~mL}, 1.1 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for overnight at room temperature and quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$. After stirring for 30 min , the reaction mixture was extracted with
ethyl acetate. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtrate was concentrated under reduced pressure to give a crude diol, which was used next step without further purification. To a stirred solution of the above crude product diol in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL}, 3 / 1)$ was added $\mathrm{NaIO}_{4}(18.6 \mathrm{~g} 86.8$ mmol, 4.0 equiv,) at room temperature. After stirring for 4 h at this temperature, the mixture was diluted with ethyl acetate. The organic phase was separated, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=5 / 1$) to give the N-Boc aldehyde 7a as a colorless oil ($5.5 \mathrm{~g}, 75 \%$ yield, two steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.92(\mathrm{t}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (s, 1H), 7.37 (dd, $J=7.6,0.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.15 (t, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.06 (s, 2H), 1.68 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.3, 148.9, 137.0, 128.0, 127.1, 126.9, 125.5, 114.7, 113.8, 111.9, 84.4, 40.9, 28.1; IR $v_{\text {max }}: 3435,2979,2933,1734,1423,1371,1281,1256,1156,1097,1054,848,774$, 744; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrNO}_{3}$ 338.0386, found 338.0383.

7a

$\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}$, THF rt, 87\% yield > 99\% ee

(+)-6a
tert-Butyl
(S)-4-bromo-3-(2-((tert-butylsulfinyl)imino)ethyl)-1H-indole-1carboxylate [(+)-6a]. To a solution of N-Boc aldehyde $7 \mathbf{7 a}(1.5 \mathrm{~g}, 4.4 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF (50 mL) was added $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(2.5 \mathrm{~g}, 8.8 \mathrm{mmol}, 2.0$ equiv) at room temperature. The mixture was stirred for 5 min and (S)-2-methylpropane-2sulfinamide $[(-)-11(0.75 \mathrm{~g}, 6.2 \mathrm{mmol}, 1.4$ equiv $)]$ was added. After completion of the reaction monitored by TLC, water and ethyl acetate were added, and the white solid was filtered by Celite. The filtrate was extracted by ethyl acetate. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then purified by silica gel column chromatography (petroleum ether/ethyl acetate $=30 / 1$) to give the (S) - N -tertbutanesulfinyl imine (+)-6a as a foamy white solid ($1.7 \mathrm{~g}, 87 \%$ yield). The enantiomeric excess was determined using a chiral HPLC (AD-H column, n-hexane $/ i$ $\operatorname{PrOH}=95 / 5,1 \mathrm{~mL} / \mathrm{min}$) to be more than 99% ee, $\mathrm{t}_{\mathrm{R}}($ major $)=6.945 \mathrm{~min} ; \mathrm{m} . \mathrm{p} .=75-$
$77{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{29}=+55.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{t}, J=4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.4(\mathrm{CH}), 148.9(\mathrm{C}), 136.9(\mathrm{C}), 127.9(\mathrm{C}), 127.2(\mathrm{CH}), 125.9(\mathrm{CH}), 125.5$ $(\mathrm{CH}), 114.7(\mathrm{C}), 114.6(\mathrm{CH}), 114.0(\mathrm{C}), 84.4(\mathrm{C}), 57.0(\mathrm{C}), 33.2\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right)$, $22.5\left(\mathrm{CH}_{3}\right)$; IR $v_{\text {max }}: 3340,2977,2928,1738,1422,1369,1295,1256,1156,1097$, 849, 778; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}$ 441.0842, found 441.0844.

tert-Butyl (\boldsymbol{R})-4-bromo-3-((4-methylene-5-oxopyrrolidin-2-yl)methyl)-1H-indole-1-carboxylate [(+)-4a]. To a solution of (S)-N-tert-butanesulfinyl imine $\mathbf{6 a}$ ($1.8 \mathrm{~g}, 4.1$ mmol, 1.0 equiv) in anhydrous DMF (100 mL) at room temperature was added actived zinc power ($0.8 \mathrm{~g}, 12.3 \mathrm{mmol}, 3.0$ equiv), anhydrous $\mathrm{LiCl}(0.86 \mathrm{~g}, 20.5 \mathrm{mmol}$, 5.0 equiv), successively. The mixture was stirred for 10 min and methyl 2-(bromomethyl)but-2-enoate (5) ($2.2 \mathrm{~g}, 12.3 \mathrm{mmol}, 3.0$ equiv) was added. After completion of the reaction monitored by TLC, the reaction was quenched with water, and extracted with ethyl acetate, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the residue $(+)-\mathbf{1 2 a}$ was used next step without further purification or purified by flash column chromatography to characterize by NMR and HRMS. The above crude product (+)-12a was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which was added $4 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}(4 \mathrm{~mL})$ and stirred for 30 min at $0{ }^{\circ} \mathrm{C}$. Saturated NaHCO_{3} was added, and extracted by ethyl acetate. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was dissolved in anhydrous methanol and $\mathrm{NaOH}(0.65 \mathrm{~g}, 16.4 \mathrm{mmol}, 4.0$ equiv) was added and stirred for another 1 h . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. The crude product was purified by flash column
chromatography (petroleum ether/ethyl acetate $=1 / 1$) to afford the lactam $(+)-4 \mathbf{a}$ as a foamy white solid ($1.32 \mathrm{~g}, 80 \%$ yield, over two steps).
$(+)-12 a:$ Foamy white solid; m.p. $=135-141{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{29}=+78.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.37$ (dd, $J=8.0$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 3.96-$ 3.91 (m, 1H), 3.68 (s, 3H), $3.53-3.48$ (m, 2H), 3.21 (dd, $J=14.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ - $2.52(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5(\mathrm{C})$, 149.0 (C), 137.4 (C), 137.1 (C), $128.4\left(\mathrm{CH}_{2}\right), 128.3$ (C), $127.4(\mathrm{CH}), 126.5(\mathrm{CH})$, $125.2(\mathrm{CH}), 116.8(\mathrm{C}), 114.5(\mathrm{CH}), 114.1(\mathrm{C}), 84.2(\mathrm{C}), 56.1(\mathrm{C}), 56.0\left(\mathrm{CH}_{3}\right), 51.9$ $(\mathrm{CH}), 38.0\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{3}\right)$; IR $v_{\max }: 3427,3281,2953$, 2927, 1736, 1422, 1370, 1282, 1256, 1157, 1097, 1055, 849, 816, 780; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S} 541.1366$, found 541.1369 .
(+)-4a: The enantiomeric excess was determined using a chiral HPLC (AD-H column, n-hexane $/ i-\mathrm{PrOH}=95 / 5,1 \mathrm{~mL} / \mathrm{min}$) to be more than 99% ee, t_{R} (major) $=11.261 \mathrm{~min}$; m.p. $=95-97{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{18}=+33.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=7.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 4.19-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{dd}$, $J=14.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.91$ (dd, $J=14.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68$ $2.62(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0$ (C), 148.9 (C), 139.0 (C), $137.3(\mathrm{C}), 127.8(\mathrm{C}), 127.4(\mathrm{CH}), 125.7(\mathrm{CH}), 125.5(\mathrm{CH}), 116.6\left(\mathrm{CH}_{2}\right), 116.5$ (C), $114.8(\mathrm{CH}), 114.0(\mathrm{C}), 84.6(\mathrm{C}), 51.6(\mathrm{CH}), 34.2\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{3}\right)$; IR $v_{\text {max }}: 3363,2975,2926,1735,1700,1659,1421,1370,1294,1281,1256,1156$, 1097, 848, 777, 744; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{3} 405.0808$, found 405.0808 .

(+)-4a
$\mathrm{NaH}, \mathrm{HMPA}$ $\mathrm{CH}_{3} \mathrm{I}$, THF
rt, 97\% yield 99\% ee
tert-Butyl (R)-4-bromo-3-((1-methyl-4-methylene-5-oxopyrrolidin-2-yl)methyl)-
$\mathbf{1 H}$-indole-1-carboxylate [(-)-13a]. To a solution of lactam (+)-4a (20.0 mg, 0.05
mmol, 1.0 equiv) in anhydrous THF (10 mL) was added $60 \% \mathrm{NaH}(10.0 \mathrm{mg}, 0.25$ mmol, 5.0 equiv) at ice water. The mixture was stirred for 10 min at this temperature and an excess of iodomethane ($35.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 5.0$ equiv) was added. Warmed to room temperature and the starting material was consumed after stirring for 30 min . After completion of the reaction monitored by TLC, the reaction mixture was quenched with water at ice water and added ethyl acetate. The organic solvent was separated and the aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with water and brine respectively, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/ethyl acetate $=5 / 1$) to afford N-Boc lactam (-)-13a as a foamy white solid ($20.0 \mathrm{mg}, 97 \%$ yield). The enantiomeric excess was determined using a chiral HPLC (AD-H column, n-hexane $/ i-\mathrm{PrOH}=95 / 5,1$ $\mathrm{mL} / \mathrm{min})$ to be 99% ee, $\mathrm{t}_{\mathrm{R}}($ minor $)=11.465 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=13.414 \mathrm{~min} ; \mathrm{m} . \mathrm{p} .=119-$ $121{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{18}=-25.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{t}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 4.09-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=14.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}$, $3 \mathrm{H}), 2.80-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 168.2(\mathrm{C}), 149.0(\mathrm{C}), 138.9(\mathrm{C}), 137.1(\mathrm{C}), 128.1(\mathrm{CH}), 127.4(\mathrm{CH}), 125.9$ $(\mathrm{CH}), 125.4(\mathrm{C}), 116.0\left(\mathrm{CH}_{2}\right), 115.5(\mathrm{CH}), 114.7(\mathrm{C}), 113.9(\mathrm{C}), 84.6(\mathrm{C}), 57.1(\mathrm{CH})$, $30.6\left(\mathrm{CH}_{2}\right)$, $30.4\left(\mathrm{CH}_{2}\right)$, $28.7\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right)$; IR $v_{\text {max }}: 3384,2922,2373,1735$, 1595, 1421, 1382, 1262, 1116, 780, 738; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{3} 419.0965$, found 419.0961.

(S)- \mathbf{N}-(2-(4-Bromo-1-tosyl-1 H -indol-3-yl)ethylidene)-2-methylpropane-2-
sulfinamide $[(+) \mathbf{- 6 b}]$. To a solution of N-Ts aldehyde $7 \mathbf{7 b}$ ($3.0 \mathrm{~g}, 7.6 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF $(100 \mathrm{~mL})$ was added $\mathrm{Ti}(\mathrm{O} i-\operatorname{Pr})_{4}(4.3 \mathrm{~g}, 15.3 \mathrm{mmol}, 2.0$ equiv) at room temperature. The mixture was stirred for 5 min and (S)-2-methylpropane-2sulfinamide $[(-)-\mathbf{1 1}(1.3 \mathrm{~g}, 10.6 \mathrm{mmol}, 1.4$ equiv $)]$ was added. After completion of the
reaction monitored by TLC, water and ethyl acetate were added, and the white solid was filtered by Celite. The filtrate was extracted by ethyl acetate. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then purified by silica gel column chromatography (petroleum ether/ethyl acetate $=30 / 1$) to give the (S) - N-tertbutanesulfinyl imine (+)-6b as a foamy pale yellow solid ($3.0 \mathrm{~g}, 79 \%$ yield). m.p. $=$ $71-74{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{29}=+232.5\left(c 0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25(\mathrm{t}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=8.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H})$, 7.35 (dd, $J=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20$ (d, $J=4.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8$, 145.4, 136.3, 134.8, 130.1, 128.3, 127.8, 126.8, 126.1, 125.8, 116.7, 114.3, 112.9, 57.0, 33.1, 22.4, 21.6; IR $v_{\text {max }}: 3423,2960,2924,1622,1597,1413,1373,1190,1174$, 1088, 983, 668, 574; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ 495.0406, found 495.0401.

(\boldsymbol{R})-5-((4-Bromo-1-tosyl-1H-indol-3-yl)methyl)-3-methylenepyrrolidin-2-one [(-)4b]. To a solution of (S)-N-tert-butanesulfinyl imine (+)-6b ($1.8 \mathrm{~g}, 3.6 \mathrm{mmol}, 1.0$ equiv) in anhydrous DMF (100 mL) at room temperature was added actived zinc power ($0.7 \mathrm{~g}, 10.8 \mathrm{mmol}, 3.0$ equiv), anhydrous $\mathrm{LiCl}(0.8 \mathrm{~g}, 18.0 \mathrm{mmol}, 5.0$ equiv), successively. The mixture was stirred for 10 min and methyl 2-(bromomethyl)but-2enoate (5) ($1.9 \mathrm{~g}, 10.8 \mathrm{mmol}, 3.0$ equiv) was added. After completion of the reaction monitored by TLC, the reaction was quenched with water, and extracted with ethyl acetate, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the residue was used next step without further purification or purified by flash column chromatography to characterize the structure of $(-) \mathbf{- 1 2 b}$ by NMR and HRMS. The above crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which was added $4 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}(3 \mathrm{~mL})$ and stirred for 30 min at $0{ }^{\circ} \mathrm{C}$. Saturated NaHCO_{3} was added, and extracted by ethyl acetate. Concentrated and the crude product was dissolved in anhydrous methanol. Then
$\mathrm{NaOH}(1.4 \mathrm{~g}, 36.0 \mathrm{mmol}, 10.0$ equiv) was added and stirred for another 2 h . The reaction mixture was quenched with water and extracted with ethyl acetate. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/ethyl acetate $=1 / 1)$ to afford the lactam $(-)-\mathbf{4 b}(1.22 \mathrm{~g}, 73 \%$ yield, two steps).
(-)-12b: Foamy white solid; m.p. $=75-78{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{18}=-54.0\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{dd}, J=8.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.64(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 3.94-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.50$ (dd, $J=15.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=14.9,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.65-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.4$ (C), $145.2(\mathrm{C}), 137.3(\mathrm{C}), 136.5(\mathrm{C}), 134.9(\mathrm{C}), 129.9(\mathrm{CH}), 128.7(\mathrm{C}), 128.5\left(\mathrm{CH}_{2}\right)$, $128.0(\mathrm{CH}), 127.0(\mathrm{CH}), 126.7(\mathrm{CH}), 125.5(\mathrm{CH}), 118.7(\mathrm{C}), 114.4(\mathrm{C}), 112.9(\mathrm{CH})$, $56.2(\mathrm{C}), 56.1(\mathrm{CH}), 51.9\left(\mathrm{CH}_{3}\right), 38.0\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right) ;$ IR $v_{\text {max }}: 3423,2951,2925,1720,1630,1596,1412,1373,1307,1192,1174,1059,983$, 672, 573; HRMS (ESI) $m / z:[M+H]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ 595.0931, found 595.0931.
(-)-4b: Foamy white solid; m.p. $=100-102{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{18}=-93.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.53$ (s, $1 \mathrm{H}), 7.39$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.01(\mathrm{~s}$, $1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{dd}, J=17.0,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.59(\mathrm{dd}, J=17.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 170.4 (C), 145.4 (C), 139.1 (C), 136.6 (C), 134.7 (C), 130.1 (CH), 128.4 (C), 128.0 $(\mathrm{CH}), 126.9(\mathrm{CH}), 126.1(\mathrm{CH}), 125.7(\mathrm{CH}), 118.4(\mathrm{C}), 116.4\left(\mathrm{CH}_{2}\right), 114.4(\mathrm{C}), 113.1$ $(\mathrm{CH}), 51.4(\mathrm{CH}), 33.6\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right)$; IR $v_{\max }: 3394,2920,2852$, 2372, 1686, 1657, 1602, 1458, 1420, 1274, 1124, 1080, 772, 737, 667; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S} 458.0373$, found 459.0384.

(R)-5-((4-Bromo-1-tosyl-1H-indol-3-yl)methyl)-1-methyl-3-methylenepyrrolidin-
2-one [(-)-13b]. To a solution of lactam (-)-4b $(0.68 \mathrm{~g}, 1.5 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF (50 mL) was treated with $60 \% \mathrm{NaH}(0.3 \mathrm{~g}, 7.5 \mathrm{mmol}, 5.0$ equiv) at ice water. The mixture was stirred for 10 min at this temperature and an excess of iodomethane ($1.1 \mathrm{~g}, 7.5 \mathrm{mmol}, 5.0$ equiv) was added. Warmed to room temperature and the starting material was consumed after stirring for 30 min . After completion of the reaction monitored by TLC, the reaction mixture was quenched with water at ice water and added ethyl acetate. The organic solvent was separated and the aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with water and brine respectively, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/ethyl acetate $=5 / 1$) to afford $N-T s$ lactam $(-)-\mathbf{1 3 b}$ as a foamy white solid ($0.63 \mathrm{~g}, 90 \%$ yield). m.p. $=183-185{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{18}=-44.0\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45$ (s, $1 \mathrm{H}), 7.42$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 (t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ $(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 4.00-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=14.2,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.04(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.49(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.1$ (C), 145.5 (C), 138.6 (C), 136.5 (C), 134.7 (C), $130.1(\mathrm{CH}), 128.4(\mathrm{C}), 128.1(\mathrm{CH})$, $126.9(\mathrm{CH}), 126.1(\mathrm{CH}), 125.8(\mathrm{CH}), 118.0(\mathrm{C}), 115.6\left(\mathrm{CH}_{2}\right), 114.2(\mathrm{C}), 113.1(\mathrm{CH})$, $56.9(\mathrm{CH}), 30.3\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right)$; IR $v_{\text {max }}: 3371,2924,1689$, 1663, 1596, 1373, 1301, 1174, 1099, 981, 774, 740, 672, 616; HRMS (ESI) $m / z:[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S} 473.0529$, found 473.0529.

(\boldsymbol{R})-5-((4-bromo-1-tosyl-1 H -indol-3-yl)methyl)-1,3-dimethyl-1,5-dihydro-2H-
pyrrol-2-one [(-)-14b]. To a solution of N-Ts lactam (-)-13b $(0.1 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in dioxane (10 mL) was added $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(12.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(31 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0$ equiv) at room temperature. The mixture was allowed to warm to stir at $100{ }^{\circ} \mathrm{C}$ for 2 h . Concentrated the organic solvent under reduced pressure and the crude product was detected by NMR. The starting material was consumed completely, and the exocyclic double bond of lactam (-)-13b was isomerized to intra-annular. The crude product was purified by flash column chromatography (petroleum ether/ethyl acetate $=1 / 2$) to afford lactam $(-) \mathbf{- 1 4 b}$ as a colorless liquid at a quantitative yield. m.p. $=146-149{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{29}=-410.0(c 0.3$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), 7.44 (s, 1H), 7.42 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 4.26-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=14.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~s}$, $3 \mathrm{H}), 2.62$ (dd, $J=14.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (s, 3H), 1.85 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.9(\mathrm{C}), 145.5(\mathrm{C}), 139.3(\mathrm{CH}), 136.4(\mathrm{C}), 135.6$ (C), 134.6 (C), 130.1 $(\mathrm{CH}), 128.3(\mathrm{C}), 128.1(\mathrm{CH}), 126.8(\mathrm{CH}), 126.4(\mathrm{CH}), 125.8(\mathrm{CH}), 117.8(\mathrm{C}), 114.1$ (C), 113.2 (CH), $62.1(\mathrm{CH}), 28.0\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 11.3\left(\mathrm{CH}_{3}\right)$; IR $v_{\text {max }}$: 3368, 2924, 2855, 1686, 1596, 1412, 1375, 1294, 1248, 1174, 983, 815, 775, 670; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S} 473.0529$, found 473.0531.

tert-Butyl (R)-7,9-dimethyl-8-oxo-6,6a,7,8-tetrahydro-4H-indolo[6,5,4-cd]indole-4-carboxylate [(-)-3b]. To a suspension of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.0 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv), PPh_{3} ($19.0 \mathrm{mg}, 0.07 \mathrm{mmol}, 0.6$ equiv), and $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($66.0 \mathrm{mg}, 0.24 \mathrm{mmol}, 2.0$ equiv) in dry toluene $(10 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$ at room temperature was added a solution of lactam (-)-14b ($15.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0$ equiv) in dry toluene $(10 \mathrm{~mL})$ and dry $\mathrm{Et}_{3} \mathrm{~N}$ $(10 \mathrm{~mL})$. The reaction mixture was degassed (three freeze-pump-thaw cycles) and then heated to $110{ }^{\circ} \mathrm{C}$ for 13 h . After cooling to room temperature, the reaction mixture was concentrated under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/ethyl acetate $=5 / 1$) to obtain both lactam (-)-3b and triphenylphosphine oxide as a mixture which was difficult to separate.

tert-Butyl (R)-4-bromo-3-((1,4-dimethyl-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)methyl)-1H-indole-1-carboxylate [(-)-14a]. To a solution of N-Boc lactam 13a $\left(0.25 \mathrm{~g}, 0.6 \mathrm{mmol}, 1.0\right.$ equiv) in dioxane $(15 \mathrm{~mL})$ was added $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(38.4 \mathrm{mg}$, $0.06 \mathrm{mmol}, 0.1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(86 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 1.0$ equiv) at room temperature. The mixture was allowed to warm to stir at $100^{\circ} \mathrm{C}$ for 2 h . Concentrated the organic solvent under reduced pressure and the crude product was purified by flash column chromatography (petroleum ether/ethyl acetate $=1 / 2$) to afford lactam $(-) \mathbf{- 1 4 a}$ as a colorless liquid at a quantitative yield. The enantiomeric excess was determined using a chiral HPLC (AD-H column, n-hexane $/ i-\mathrm{PrOH}=95 / 5,1 \mathrm{~mL} / \mathrm{min}$) to be 97% ee, t_{R} $($ minor $)=10.009 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=10.746 \mathrm{~min} ; \mathrm{m} . \mathrm{p} .=58-60{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{18}=-53.0(c$ $1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H})$, $7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.78$ (dd, $J=13.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{dd}, J=13.8,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.9$ (C), 149.0 (C), 139.7 (CH), 137.0 (C), 135.3 (C), 128.0 (C), $127.4(\mathrm{CH}), 126.3(\mathrm{CH}), 125.4(\mathrm{CH}), 116.0(\mathrm{C})$,
$114.7(\mathrm{CH}), 113.8(\mathrm{C}), 84.6(\mathrm{C}), 62.4(\mathrm{CH}), 28.3\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{3}\right), 27.7\left(\mathrm{CH}_{3}\right), 11.3$ $\left(\mathrm{CH}_{3}\right)$; IR $v_{\max }: 3373,2924,1736,1688,1421,1280,1257,1149,1095,847,776$; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{3} 419.0965$, found 419.0966.

tert-Butyl (R)-7,9-dimethyl-8-oxo-6,6a,7,8-tetrahydro-4H-indolo[6,5,4-cd]indole-4-carboxylate [(-)-3a]. To a suspension of $\operatorname{Pd}(\mathrm{OAc})_{2}(15.0 \mathrm{mg}, 0.07 \mathrm{mmol}, 0.1$ equiv), PPh_{3} ($0.1 \mathrm{~g}, 0.38 \mathrm{mmol}, 0.6$ equiv), and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(0.37 \mathrm{~g}, 1.34 \mathrm{mmol}, 2.0$ equiv) in dry toluene $(10 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$ at room temperature was added a solution of lactam (-)-14a ($0.28 \mathrm{~g}, 0.38 \mathrm{mmol}, 1.0$ equiv) in dry toluene (10 mL) and dry $\mathrm{Et}_{3} \mathrm{~N}$ $(10 \mathrm{~mL})$. The reaction mixture was degassed (three freeze-pump-thaw cycles) and then heated to $110{ }^{\circ} \mathrm{C}$ for 13 h . After cooling to room temperature, the reaction mixture was concentrated under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/ethyl acetate $=5 / 1$) to obtain the lactam (-)-3a as a light yellow solid ($0.165 \mathrm{~g}, 73 \%$ yield). The enantiomeric excess was determined using a chiral HPLC (AD-H column, n-hexane $/ i-\mathrm{PrOH}=95 / 5,1$ $\mathrm{mL} / \mathrm{min})$ to be 99% ee, $\mathrm{t}_{\mathrm{R}}($ minor $)=22.083 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=23.878 \mathrm{~min} ; \mathrm{m} . \mathrm{p} .=192-$ $194{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{18}=-20.0\left(c 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~s}, 1 \mathrm{H})$, $7.45-7.37(\mathrm{~m}, 3 \mathrm{H}), 4.16(\mathrm{dd}, J=12.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=14.6,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.12(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 172.5$ (C), 149.8 (C), 144.9 (C), 133.5 (C), 129.7 (C), 128.1 (C), 125.6 (CH), 124.3 (C), 121.3 (CH), 119.1 (CH), 115.7 (CH), 114.2 (C), 84.0 (C), $60.8(\mathrm{CH}), 28.2$ $\left(\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{2}\right), 10.1\left(\mathrm{CH}_{3}\right)$; IR (KBr) $v_{\text {max }}: 3428,2969,2925,1681$, 1630, 1383, 1260, 1097, 1021, 953, 799, 587; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} 339.1702$, found 339.1703.

(R)-7,9-dimethyl-6,6a,7,8-tetrahydro-4H-indolo[6,5,4-cd]indole [(+)-2]. The Lactam (-)-3a ($60.0 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.0$ equiv) was dissolved in anhydrous THF (10 $\mathrm{mL})$ and the solution was added dropwise to $\mathrm{LiAlH}_{4}(2.5 \mathrm{M}$ solution in THF, 1.4 mL , $3.6 \mathrm{mmol})$ in THF (10 mL). The mixture was heated under reflux overnight, and then cooled. Water, sodium hydroxide solution (10%) and water ($\mathrm{v} / \mathrm{v} / \mathrm{v}=1 / 2 / 3$) were slowly added dropwise with vigorous stirring, respectively. The mixture was filtered with celite, washed with ethyl acetate, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=10 / 1\right)$ to give the chiral Szántay's amine (+)-2 as a offwhite solid ($27.0 \mathrm{mg}, 68 \%$ yield). The enantiomeric excess was determined using a chiral HPLC (AD-H column, n-hexane $/ i$ - $\mathrm{PrOH}=97: 3,1 \mathrm{~mL} / \mathrm{min}$) to be 72% after purification by flash column chromatography, t_{R} (major) $=41.788$ $\mathrm{min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=50.203 \mathrm{~min}$; Interestingly, when this reduction reaction was proceeded at reflux for only 2 hours, the enantiomeric excess of Szántay's amine (+)2 was determined using a chiral HPLC (AD-H column, n-hexane $/ i$ - $\mathrm{PrOH}=92 / 8,1$ $\mathrm{mL} / \mathrm{min}$) to be more than 99% and without loss yield after purification by flash column chromatography, $\mathrm{t}_{\mathrm{R}}($ major $)=11.371 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{29}=+14.0\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p. $=71-74{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{br}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{t}$, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=13.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.51(\mathrm{~m}$, $1 \mathrm{H}), 3.34(\mathrm{dd}, J=14.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.14$ (s, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.1$ (C), 130.4 (C), 130.1 (C), 127.3 (C), 125.8 (C), $123.0(\mathrm{CH}), 118.3(\mathrm{CH}), 114.8(\mathrm{CH}), 112.1(\mathrm{C}), 109.3(\mathrm{CH}), 72.4(\mathrm{CH}), 68.2$ $\left(\mathrm{CH}_{2}\right), 40.5\left(\mathrm{CH}_{3}\right), 29.2\left(\mathrm{CH}_{2}\right), 13.6\left(\mathrm{CH}_{3}\right)$; IR (KBr) $v_{\max }: 3434,2922,2853,1629$, 1462, 1384, 1249, 1122, 1050, 590; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2}$ 225.1386 , found 225.1385 .
3. Comparison ${ }^{1} \mathrm{H}$ NMR data of the racemic Szántay's amine (reported in 2008) and the enantiomerically pure Szántay's amine (+)-2 (this work):

Szántay's amine (rac, 2008)	Szántay's amine (+)-2 (this work)
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta(\mathrm{ppm})$	$\delta(\mathrm{ppm})$
$8.0(\mathrm{~s}, 1 \mathrm{H})$	$8.00(\mathrm{br}, 1 \mathrm{H})$
$7.25(\mathrm{dd}, J=7.6,7.2 \mathrm{~Hz}, 1 \mathrm{H})$	
$7.18-7.21(\mathrm{~m}, 2 \mathrm{H})$	$7.26-7.19(\mathrm{~m}, 3 \mathrm{H})$
$6.91(\mathrm{~s}, 1 \mathrm{H})$	$6.90(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$
$3.94(\mathrm{dd}, J=14,3.8 \mathrm{~Hz}, 1 \mathrm{H})$	$3.93(\mathrm{dd}, J=13.2,3.0 \mathrm{~Hz}, 1 \mathrm{H})$
$3.71(\mathrm{~m}, 1 \mathrm{H})$	$3.72-3.68(\mathrm{~m}, 1 \mathrm{H})$
$3.52(\mathrm{dd}, J=14,4.1 \mathrm{~Hz}, 1 \mathrm{H})$	$3.54-3.51(\mathrm{~m}, 1 \mathrm{H})$
$3.34(\mathrm{dd}, J=14.5,6.0 \mathrm{~Hz}, 1 \mathrm{H})$	$3.34(\mathrm{dd}, J=14.4,6.0 \mathrm{~Hz}, 1 \mathrm{H})$
$2.72(\mathrm{dd}, J=15,14.5 \mathrm{~Hz}, 1 \mathrm{H})$	$2.72(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$
$2.60(\mathrm{~s}, 3 \mathrm{H})$	$2.60(\mathrm{~s}, 3 \mathrm{H})$
$2.14 \quad(\mathrm{~s}, 3 \mathrm{H})$	$2.14 \quad(\mathrm{~s}, 3 \mathrm{H})$

4. Comparison ${ }^{13} \mathrm{C}$ NMR data of the racemic Szántay's amine (reported in 2008) and the enantiomerically pure Szántay's amine (+)-2 (this work):

Szántay's amine (rac, 2018)	Szántay's amine $(+)-2$ (this work)	$\Delta \delta(\mathrm{ppm})$
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	
$\delta(\mathrm{ppm})$	$\delta(\mathrm{ppm})$	
$134.1(\mathrm{C})$	$134.1(\mathrm{C})$	0.0
$130.6(\mathrm{C})$	$130.4(\mathrm{C})$	0.2
$130.2(\mathrm{C})$	$130.1(\mathrm{C})$	0.1
$127.4(\mathrm{C})$	$127.3(\mathrm{C})$	0.1
$125.9(\mathrm{C})$	$125.8(\mathrm{C})$	0.1
$123.1(\mathrm{CH})$	$123.0(\mathrm{CH})$	0.1
$118.3(\mathrm{CH})$	$118.3(\mathrm{CH})$	0.0
$114.8(\mathrm{CH})$	$114.8(\mathrm{CH})$	0.0
$112.2(\mathrm{C})$	$112.1(\mathrm{C})$	0.1
$109.3(\mathrm{CH})$	$109.3(\mathrm{CH})$	0.0
$72.5(\mathrm{CH})$	$72.4\left(\mathrm{CH}^{2}\right)$	0.1
$68.3\left(\mathrm{CH}_{2}\right)$	$68.2\left(\mathrm{CH}_{2}\right)$	0.1
$40.6\left(\mathrm{CH}_{3}\right)$	$40.5\left(\mathrm{CH}_{3}\right)$	0.1
$29.3\left(\mathrm{CH}_{2}\right)$	$29.2\left(\mathrm{CH}_{2}\right)$	0.1
$13.6\left(\mathrm{CH}_{3}\right)$	$13.6\left(\mathrm{CH}_{3}\right)$	0.0

5. Tabulated summary of synthesis of Szántay's amine $\mathbf{2}$ and cycloclavine (1)

main author (year)	starting material and key features	optical rotation	Szántay's amine 2	cycloclavine (1)	ref.
$\begin{aligned} & \text { Szántay } \\ & \text { (2008) } \end{aligned}$	${ }^{a}$ Uhle's ketone derivative ${ }^{b}$ first total synthesis, ${ }^{b}$ cyclopropanation with diazomethane	(\pm)	seven steps, 3.3\% overall yield (eleven steps, 1.2% overall yield from 3-indolepropionic acid)	eight steps, 1.1\% overall yield (twelve steps, 0.4% overall yield from 3-indolepropionic acid)	5a
Wipf (2011)	${ }^{a} \beta$-methallyl alcohol ${ }^{b}$ total synthesis, ${ }^{b}$ intramolecular Diels-Alder furan cycloaddition	(\pm)		fourteen steps, 1.2% overall yield	5b
$\begin{aligned} & \text { Brewer } \\ & (2014) \end{aligned}$	${ }^{a}$ Uhle's ketone ${ }^{b}$ total synthesis, ${ }^{b}$ ring fragmentation, ${ }^{b}$ 1,3-dipolar cycloaddition	(\pm)		fourteen steps, 1.1\% overall yield (seventeen steps, 0.5% overall yield from 3-indolepropionic acid)	5 c
$\begin{aligned} & \mathrm{Cao} \\ & (2014) \end{aligned}$	${ }^{a}$ indole aldehyde ${ }^{b}$ aza-Cope-Mannich cyclization, ${ }^{b}$ intramolecular Heck coupling, ${ }^{b}$ radical-alkene cyclization	(\pm)	seven steps, 27.4% overall yield (eleven steps, 19.7\% overall yield from 4-bromoindole)	(In Szántay method, from 2 to 1, 32% yield, ref 5 a)	5 e
$\begin{aligned} & \text { Opatz } \\ & \text { (2016) } \end{aligned}$	a4-bromoindole $b_{\text {intramolecular Heck }}$ coupling	(\pm)	seven steps, 16.8% overall yield	(In Szántay method, from 2 to 1 , 32% yield, ref 5 a)	5d
Wipf (2017)	${ }^{a}$ unsubstituted allene ${ }^{b}$ total synthesis, ${ }^{b}$ first asymmetric cyclopropanation, $b_{\text {intramolecular [4+2] }}$ cycloaddition	(-)		eight steps, 7.1\% overall yield	4 e
Cao (this work)	${ }^{\text {a }} 4$-bromoindole ${ }^{b}$ first asymmetric formal synthesis, ${ }^{b}$ asymmetric induction by Ellman's sulfinimine, ${ }^{b}$ rhodium-catalyzed isomerization of $\mathrm{C}=\mathrm{C}$ bond	(+)	eleven steps, 19.7\% overall yield	(In Szántay method, from 2 to 1, 32% yield, ref 5 a)	

${ }^{a}$ starting material: known compound or commercially available. ${ }^{b}$ key features.
6. X-ray structure of compound (-)-13b (CCDC 1536641)

X-ray structure of compound (-)-3a (CCDC 1559337)

(-)-3a

7. NMR spectra of compounds: 10a, 7a, (+)-6a, (+)-12a, (+)-4a, (-)-13a, (+)-6b, $(-) \mathbf{- 1 2 b},(-) \mathbf{- 4 b},(-) \mathbf{- 1 3 b},(-) \mathbf{- 1 4 b},(-) \mathbf{- 1 4 a},(-)-\mathbf{3 a}$ and Szántay’s amine (+)-2
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1 0 a}$

10a

ion

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of 7a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of (+)-6a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of (+)-12a

(+)-12a

or

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of (+)-4a

(+)-4a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of (-)-13a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of (+)- $\mathbf{6 b}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of (-)-12b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of (-)-4b

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $(-) \mathbf{- 1 3 b}$

(-)-13b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $(-) \mathbf{- 1 4 b}$

(-)-14b

「

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $(-) \mathbf{- 1 4 a}$

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of (-)-3a

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of Szántay's amine (+)-2

Niponion

$\stackrel{\Gamma}{\Gamma}$

8. HPLC of compounds: $(\pm)-\mathbf{6 a}$ and $(+)-\mathbf{6 a},(\pm)-\mathbf{4 a}$ and $(+)-\mathbf{4 a},(\pm) \mathbf{- 1 3 a}$ and
$(-)-\mathbf{1 3 a},(\pm)-\mathbf{1 4 a}$ and $(-) \mathbf{- 1 4 a},(\pm)$-3a and (-)-3a, Szántay's amine (\pm)-2 and (+)-2 HPLC spectra of $(\pm) \mathbf{- 6 a}$ and $(+)-\mathbf{6 a}$

__ Channel: 2998; Channel Desc.: 2998 (210-400)nm ; Processing Method: cjq928rac

	Channel	Retention time (min)	Area (uv.s)	\% Area	Height (uv)
1	$2998(210-400) \mathrm{nm}$	6.647	3816597	52.26	316422
2	$2998(210-400) \mathrm{nm}$	9.369	3487056	47.74	205229

__Channel: 2998; Channel Desc.: 2998 (210-400) nm ; Processing Method: cjq892chiral

	Channel	Retention time (min)	Area $(\mu \mathrm{v} . \mathrm{s})$	\%Area	Height $(\mu \mathrm{v})$
1	$2998(210-400) \mathrm{nm}$	6.945	12590914	100.00	1159924

Compound $(\pm)-\mathbf{6 a}$ was prepared as the similar procedure of $(+)-\mathbf{6 a}$.

HPLC spectra of (\pm)-4a and (+)-4a

_Channel: 2998; Channel Desc.: 2998 (210-400)nm ; Processing Method: cjq965

	Channel	Retention time (min)	Area $(\mu \mathrm{v} . \mathrm{s})$	$\%$ Area	Height $(\mu \mathrm{v})$
1	$2998(210-400) \mathrm{nm}$	11.358	12215224	51.04	873285
2	$2998(210-400) \mathrm{nm}$	16.485	11717677	48.96	439470

Channel: 2998; Channel Desc.: 2998 (210-400)nm ; Processing Method: cjq965

	Channel	Retention time (min)	Area $(\mu \mathrm{v} . \mathrm{s})$	\% Area	Height $(\mu \mathrm{v})$
1	$2998(210-400) \mathrm{nm}$	11.261	67305295	100.00	3429145

Compound (\pm) - $\mathbf{4 a}$ was prepared as the similar procedure of $(+)-\mathbf{4 a}$.

HPLC spectra of (\pm)-13a and (-)-13a

Channel: 2998; Channel Desc.: 2998 (210-400) nm ; Processing Method: 1cjq968a

	Channel	Retention time (min)	Area $(\mu v . \mathrm{s})$	\% Area	Height $(\mu \mathrm{v})$
1	$2998(210-400) \mathrm{nm}$	11.347	14536531	50.13	721865
2	$2998(210-400) \mathrm{nm}$	13.656	14463236	49.87	642811

Channel: 2998; Channel Desc.: 2998 (210-400)nm ; Processing Method: 1cjq964

	Channel	Retention time (min)	Area $(\mu \mathrm{v} . \mathrm{s})$	\% Area	Height $(\mu \mathrm{v})$
1	$2998(210-400)$	11.465	289269	0.68	19253
2	$2998(210-400)$	13.414	42468521	99.32	1792717

Compound (\pm)-13a was prepared as the similar procedure of $(-)$ - $\mathbf{1 3 a}$.

HPLC spectra of (\pm)-14a and (-)-14a

__Channel: 2998; Channel Desc.: 2998 (210-400) nm ; Processing Method: cjq969

	Channel	Retention time (min)	Area $(\mu \mathrm{v.s})$	\% Area	Height $(\mu \mathrm{v})$
1	$2998(210-400) \mathrm{nm}$	9.846	13024860	50.75	810568
2	$2998(210-400) \mathrm{nm}$	10.775	12640637	49.25	683480

	Channel	Retention time (min)	Area $(\mu \mathrm{v} . \mathrm{s})$	\% Area	Height $(\mu \mathrm{v})$
1	$2998(210-400)$	10.009	520064	1.75	34387
2	$2998(210-400)$	10.746	29266191	98.25	1610825

Compound $(\pm) \mathbf{- 1 4 a}$ was prepared as the similar procedure of $(-) \mathbf{- 1 4 a}$.

HPLC spectra of (\pm)-3a and (-)-3a

__ Channel: 2998; Channel Desc.: 2998 (210-400) nm ; Processing Method: cjq970race1

	Channel	Retention time (min)	Area $(\mu \mathrm{v} . \mathrm{s})$	\% Area	Height $(\mu \mathrm{v})$
1	$2998(210-400) \mathrm{nm}$	22.350	9076186	49.93	233673
2	$2998(210-400) \mathrm{nm}$	24.795	9102058	50.07	195288

	Channel	Retention time (min)	Area $(\mu \mathrm{v} . \mathrm{s})$	Area	Height $(\mu \mathrm{v})$
1	$2998(210-400)$	22.083	144614	0.40	5068
2	$2998(210-400)$	23.878	36139714	99.60	722234

Compound (\pm) - $\mathbf{3 a}$ was prepared as the similar procedure of $(-)$ - $\mathbf{3 a}$.

HPLC spectra of Szántay's amine (\pm)-2 and (+)-2

Channel: 2998; Channel Desc.: 2998 (210-400) nm; Processing Method: cjq971race

	Channel	Retention time (min)	Area $(\mu \mathrm{v} . \mathrm{s})$	\% Area	Height $(\mu \mathrm{v})$
1	$2998(210-400) \mathrm{nm}$	38.804	11096163	48.95	168779
2	$2998(210-400) \mathrm{nm}$	48.406	11574312	51.05	156205

__Channel: 2998; Channel Desc.: 2998 (210-400)nm ; Processing Method: cjq971chiral

	Channel	Retention time (min)	Area $(\mu \mathrm{v} . \mathrm{s})$	\%Area	Height $(\mu \mathrm{v})$
1	$2998(210-400) \mathrm{nm}$	41.788	38511573	86.06	607030
2	$2998(210-400) \mathrm{nm}$	50.203	6237336	13.94	85687

Szántay's amine (\pm)-2 was prepared as the similar procedure of Szántay's amine (+)-2. Reduction reaction of (-)-3a was heated under reflux overnight. The enantiomeric excess of Szántay's amine (+)-2 was determined using a chiral HPLC (AD-H column, n-hexane $/ i-\mathrm{PrOH}=97: 3,1 \mathrm{~mL} / \mathrm{min}$) to be 72% after purification by flash column chromatography.

Channel: 2998; Channel Desc.: 2998 (210-400)nm ; Processing Method: cjq971a111

	Channel	Retention time (min)	Area $(\mu \mathrm{v} . \mathrm{s})$	$\%$ Area	Height $(\mu \mathrm{v})$
1	$2998(210-400) \mathrm{nm}$	11.541	1333603	50.93	73364
2	$2998(210-400) \mathrm{nm}$	13.204	1285070	49.07	64929

Channel: 2998; Channel Desc.: 2998 (210-400)nm ; Processing Method: cjq999bh3chiral2

	Channel	Retention time (min)	Area $(\mu \mathrm{v} . \mathrm{s})$	\% Area	Height $(\mu \mathrm{v})$
1	$2998(210-400)$	11.371	447146	100.00	19747

The reduction reaction time of $(-)$-3a was shortened to 2 hours. The enantiomeric excess Szántay's amine (+)-2 was determined using a chiral HPLC (AD-H column, n hexane $/ i-\mathrm{PrOH}=92: 8,1 \mathrm{~mL} / \mathrm{min}$) to be more than 99% after purification by flash column chromatography.

