Visible-light-induced installation of oxyfluoroalkyl groups

Gwi-Rim Park, Jisu Moon and Eun Jin Cho*

Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea

E-mail: ejcho@cau.ac.kr

Supplementary Information

General Considerations	S-2
Experimental Details	S-2
Optimization Studies of Alkenes (<i>Table S1 & Table S2</i>)	S-4
Analytic Data for Aryloxytetrafluoroethyl Reagents	S-6
Analytic Data for Aryloxytetrafluoroethylated Compounds	S-7
NMR Spectra (¹ H NMR and ¹³ C NMR)	S-16

General Considerations

General Reagent Information

Anhydrous Solvents were purchased from Sigma-Aldrich, Alfa Aesar chemical company in Sure-Seal bottles and degassed by repeated sonication under light vacuum and replenishing the atmosphere with argon. Commercially available reagents including [Ru(Phen)₃]Cl₂ were purchased from Sigma-Aldrich, Alfa Aesar, Acros Organics, TCI companies, Junsei or Combi-blocks. Flash column chromatography was performed using Merck silica gel 60 (70–230 mesh).

General Analytical Information

The (hetero)aryloxytetrafluoroethylated products were characterized by ¹H, ¹³C, and ¹⁹F NMR, and FT-IR spectroscopy. NMR spectra were recorded on a Varian 600 MHz instrument (600 MHz for ¹H NMR, 151 MHz for ¹³C NMR, and 564 MHz for ¹⁹F NMR) and Varian 300 MHz instrument (300 MHz for ¹H NMR). Copies of ¹H NMR and ¹³C NMR spectra can be found at the end of the Supporting Information. ¹H NMR experiments are reported in units, parts per million (ppm), and were measured relative to residual chloroform (7.26 ppm) and in the deuterated solvent. ¹³C NMR spectra are reported in ppm relative to deuterochloroform (77.23 ppm), and all were obtained with ¹H decoupling. ¹⁹F NMR spectra are reported in ppm, and all were taken composite pulse decoupling (CPD) mode. Coupling constants were reported in Hz. FT-IR spectra were recorded on a Tensor 27 Bruker FT-IR spectrometer. Reactions were monitored by GC-MS using the Agilent GC 7890B/5977A inert MSD with Triple-Axis Detector. Mass spectral data of all unknown compounds were obtained from the Korea Basic Science Institute (Daegu) on a Jeol JMS 700 high resolution mass spectrometer.

Experimental Details

Preparation of (hetero)aryloxytetrafluoroethyl reagents

heteroaromatics

The aryloxyfluoroalkylation reagents were synthesized on 10 mmol scale following a reported procedure.^{S1}

Ref. S1: J. Li, J. X. Qiao, D. Smith, B. -C. Chen, M. E. Salvati, J. Y. Roberge and B. N. Balasubramanian, *Tetrahedron Lett.*, 2007, **48**, 7516.

Aryloxytetrafluoroethylation of heteroaromatic alkenes

A flame-dried tube equipped with a magnetic stirring bar was charged with argon. The substrate (1: 0.3 mmol), [Ru(Phen)₃]Cl₂ (0.003 mmol), TMEDA (0.6 mmol), and DMSO (1.0 mL) were added to the tube. Argon was bubbled through the reaction mixture for 5 min. Then, Br(CF₂)₂OAr (**2**: 0.9 mmol) was added. The mixture was stirred at room temperature and irradiated with visible light using a 23 W CFL. The reaction progress was monitored by thin layer chromatography and gas chromatography. Upon completion of the reaction, the mixture was diluted with diethyl ether and washed with brine. The layers were separated, and the organic layer was dried with MgSO₄, filtered, and concentrated in vacuo to give a crude residue that was purified by silica gel column chromatography to give the corresponding aryloxytetrafluoroethylated product.

Aryloxytetrafluoroethylation of alkenes

$$R \longrightarrow + Br(CF_{2})_{2}OAr \longrightarrow Fac-Ir(ppy)_{3} (1 mol\%)$$

$$TMEDA (2 eq) \longrightarrow R \longrightarrow (CF_{2})_{2}OAr$$

$$DMF (0.1 M), rt$$

$$CFL (23 W), 12-24 h$$

$$5$$

A flame-dried tube equipped with a magnetic stirring bar was charged with argon. The substrate (4: 0.3 mmol), *fac*-Ir(ppy)₃ (0.003 mmol), TMEDA (0.6 mmol) and DMF (3.0 mL) were added to the tube. Argon was bubbled through the reaction mixture for 5 min. Then, Br(CF₂)₂OAr (2: 0.36-0.6 mmol) was added. The mixture was stirred at room temperature and irradiated with visible light using a 23 W CFL. The reaction progress was monitored by thin layer chromatography and gas chromatography. Upon completion of the reaction, the mixture was diluted with diethyl ether and washed with brine. The layers were separated, and the organic layer was dried with MgSO₄, filtered, and concentrated in vacuo to give a crude residue that was purified by silica gel column chromatography to give the corresponding aryloxytetrafluoroethylated product.

Optimization Studies of Alkenes

Me N.	e		photocatalyst (1 mol ^ı base (2 eq)	%) Me	(CF₂)₂OPh	
1a 2a (1		2 eq)	solvent , rt CFL (23 W), 24 h		3aa	
Entry	Photocatalyst (PC)	Base	Solvent (Conc.)	Variations	Yield (%) ^b	
1	[Ru(Phen) ₃]Cl ₂	TMEDA	MeCN (0.2 M)		46	
2	[Ru(bpy) ₃]Cl ₂	TMEDA	MeCN (0.2 M)		43	
3	<i>fac</i> -Ir(ppy) ₃	TMEDA	MeCN (0.2 M)		31	
4	<i>fac</i> -Ir(dFppy)₃	TMEDA	MeCN (0.2 M)		28	
5	Nile red	TMEDA	MeCN (0.2 M)		-	
6	[Ru(Phen) ₃]Cl ₂	TMEDA	DMF (0.2 M)		67	
7	[Ru(Phen) ₃]Cl ₂	TMEDA	DMSO (0.2 M)		71	
8	[Ru(Phen) ₃]Cl ₂	TMEDA	DCM (0.2 M)		18	
9	[Ru(Phen) ₃]Cl ₂	TMEDA	MeOH (0.2 M)		trace	
10	[Ru(Phen) ₃]Cl ₂	TMEDA	THF (0.2 M)		-	
11	[Ru(Phen) ₃]Cl ₂	TMEDA	1,4-dioxane (0.2 M)		-	
12	[Ru(Phen) ₃]Cl ₂	TMEDA	pyridine (0.2 M)		trace	
13	[Ru(Phen) ₃]Cl ₂	TEA	DMSO (0.2 M)		58	
14	[Ru(Phen) ₃]Cl ₂	DBU	DMSO (0.2 M)		24	
15	[Ru(Phen) ₃]Cl ₂	DIPEA	DMSO (0.2 M)		65	
16	[Ru(Phen) ₃]Cl ₂	2,6-lutidine	DMSO (0.2 M)		-	
17	[Ru(Phen) ₃]Cl ₂	K ₂ CO ₃	DMSO (0.2 M)		trace	
18	[Ru(Phen) ₃]Cl ₂	Cs ₂ CO ₃	DMSO (0.2 M)		trace	
19	[Ru(Phen) ₃]Cl ₂	TMEDA	DMSO (0.2 M)	no hv	trace	
20	-	TMEDA	DMSO (0.2 M)		trace	
21	[Ru(Phen) ₃]Cl ₂	TMEDA	DMSO (0.2 M)	blue LEDs (21 W) 64	
22	[Ru(Phen) ₃]Cl ₂	TMEDA	DMSO (0.1 M)		70	
23	[Ru(Phen) ₃]Cl ₂	TMEDA	DMSO (0.3 M)		76	
24	[Ru(Phen) ₃]Cl ₂	TMEDA	DMSO (0.5 M)		58	
25	[Ru(Phen) ₃]Cl ₂	TMEDA	DMSO (0.3 M)	2 mol % PC	75	
26	[Ru(Phen) ₃]Cl ₂	TMEDA	DMSO (0.3 M)	0.5 mol % PC	60	
27	[Ru(Phen) ₃]Cl ₂	TMEDA	DMSO (0.3 M)	1 equiv TMEDA	62	
28	[Ru(Phen) ₃]Cl ₂	TMEDA	DMSO (0.3 M)	3 equiv TMEDA	76	
29	[Ru(Phen) ₃]Cl ₂	TMEDA	DMSO (0.3 M)	2 equiv 2a	82	
30	[Ru(Phen) ₃]Cl ₂	TMEDA	DMSO (0.3 M)	3 equiv 2a	87	

Table S1. Optimization Studies of Heteroaromatics^a

^{*a*}Reaction scale: **1a** (0.1 mmol); ^{*b*}yield (%) was determined by GC spectroscopy using dodecane as internal standard.

~	× ~ / +	Br(CE ₂)2OPh	photocatalyst (1 base (2 eq	mol%) 7	5aa 7 (CF ₂) ₂ OPh 5aa 7 (CF ₂) ₂ OPh		
	$M_7 \sim$	(2)2	Solvent, rt CFL (23 W), 1	2 h			
	4a	2a (1.2 eq)	, <i>,</i> ,		5aa`		
Entry	Photocatalyst	Base	Solvent (Conc.)	Variations	Yield (%) ^b		
	. notocularjet	2400			5aa	5aa`	
1	[Ru(Phen) ₃]Cl ₂	TMEDA	DCM (0.2 M)		trace	-	
2	[Ru(bpy) ₃]Cl ₂	TMEDA	DCM (0.2 M)		trace	-	
3	<i>fac</i> -Ir(ppy) ₃	TMEDA	DCM (0.2 M)		55	9	
4	<i>fac</i> -Ir(dFppy) ₃	TMEDA	DCM (0.2 M)		52	8	
5	Nile red	TMEDA	DCM (0.2 M)		-	-	
6	<i>fac</i> -Ir(ppy) ₃	TMEDA	DMF (0.2 M)		75	8	
7	<i>fac</i> -lr(ppy) ₃	TMEDA	DMSO (0.2 M)		26	9	
8	<i>fac</i> -Ir(ppy) ₃	TMEDA	MeCN (0.2 M)		46	14	
9	<i>fac</i> -Ir(ppy) ₃	TMEDA	MeOH (0.2 M)		14	3	
10	<i>fac</i> -Ir(ppy) ₃	TMEDA	THF (0.2 M)		66	7	
11	<i>fac</i> -Ir(ppy) ₃	TMEDA	1,4-dioxane (0.2 M))	51	14	
12	fac-lr(ppy) ₃	TMEDA	pyridine (0.2 M)		19	13	
13	<i>fac</i> -Ir(ppy) ₃	TEA	DMF (0.2 M)		58	5	
14	<i>fac</i> -lr(ppy) ₃	DBU	DMF (0.2 M)		70	15	
15	<i>fac</i> -lr(ppy)₃	DIPEA	DMF (0.2 M)		34	15	
16	<i>fac</i> -lr(ppy)₃	2,6-Lutidine	DMF (0.2 M)		-	-	
17	<i>fac</i> -lr(ppy)₃	K ₂ CO ₃	DMF (0.2 M)		66	15	
18	<i>fac</i> -lr(ppy)₃	Cs ₂ CO ₃	DMF (0.2 M)		74	20	
19	<i>fac</i> -lr(ppy) ₃	TMEDA	DMF (0.2 M)	no hv	-	-	
20	-	TMEDA	DMF (0.2 M)		-	-	
21	<i>fac</i> -Ir(ppy) ₃	TMEDA	DMF (0.2 M)	blue LEDs (21 W)	69	11	
22	fac-lr(ppy) ₃	TMEDA	DMF (0.02 M)		88	4	
23	<i>fac</i> -Ir(ppy) ₃	TMEDA	DMF (0.05 M)		89	6	
24	fac-lr(ppy) ₃	TMEDA	DMF (0.1 M)		89	5	
25	fac-lr(ppy) ₃	TMEDA	DMF (0.3 M)		63	12	
26	fac-lr(ppy) ₃	TMEDA	DMF (0.1 M)	0.5 mol% fac-lr(ppy)	3 86	6	
27	fac-lr(ppy) ₃	TMEDA	DMF (0.1 M)	2 mol% <i>fac</i> -Ir(ppy) ₃	75	9	
28	fac-lr(ppy) ₃	TMEDA	DMF (0.1 M)	2 equiv 2a	89	5	

Table S2. Optimization Studies of Alkenes^a

^{*a*}Reaction scale: **4a** (0.1 mmol); ^{*b*}The yield was determined by GC-Chromatography with dodecane as internal standard.

Analytic Data for Aryloxytetrafluoroethyl Reagents

2a ((2-bromo-1,1,2,2-tetrafluoroethoxy)benzene): colorless liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.40 (dd, J = 8.1, 7.4 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 7.23 (d, J =8.1 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 148.8, 129.7, 126.7, 121.6 (carbon peaks of $-C_2F_4$ are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -68.03, -85.89; **IR (neat)**: $v_{\text{max}} = 2361$, 1492, 1194, 904, 725 cm⁻¹; $R_f = 0.70$ (hex:EtOAc = 4:1).

2b (4-(2-bromo-1,1,2,2-tetrafluoroethoxy)-1,1'-biphenyl): white solid; ¹H NMR (600 MHz, CDCl₃) δ 7.61 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 8.1 Hz, 2H), 7.46 (dd, J = 8.1, 7.4 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H), 7.30 (d, J = 8.8 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 148.1, 139.8, 128.9, 128.8, 128.4, 127.6, 127.1, 121.8 (carbon peaks of – C_2F_4 - are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -67.99, -85.87; IR (neat): $v_{max} = 2973$, 2361, 1488, 1328, 1200 cm⁻¹; $R_f = 0.75$ (hex:EtOAc = 4:1).

2c (1-(2-bromo-1,1,2,2-tetrafluoroethoxy)-4-methylbenzene): colorless liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.19 (d, J = 8.6 Hz, 2H), 7.11 (d, J = 8.6 Hz, 2H), 2.36 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 146.5, 136.6, 130.2, 121.4,

20.8 (carbon peaks of -C₂F₄- are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) $\delta - 67.96$, -85.96; **IR (neat)**: $v_{max} = 2360$, 1508, 1327, 1193, 929 cm⁻¹; $R_f = 0.72$ (hex:EtOAc = 4:1).

2d (1-(2-bromo-1,1,2,2-tetrafluoroethoxy)-4-methoxybenzene): colorless liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.15 (d, J = 8.9 Hz, 2H), 6.89 (d, J = 8.9 Hz, 2H), 3.81 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 158.1, 142.0,

122.8, 114.6, 55.6 (carbon peaks of $-C_2F_4$ - are omitted due to complicated C-F splitting); ¹⁹F NMR (564 **MHz, CDCl₃**) δ -67.93, -86.19; **IR (neat)**: v_{max} = 2957, 2341, 1506, 1465, 1327, 1177, 929, cm⁻¹; R_f = 0.60 (hex:EtOAc = 4:1).

2e (4-(2-bromo-1,1,2,2-tetrafluoroethoxy)benzonitrile): colorless liquid; ¹H **NMR (600 MHz, CDCl₃)** δ 7.73 (d, *J* = 8.8 Hz, 2H), 7.35 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 151.9, 134.1, 122.0, 117.6, 110.9 (carbon peaks of $-C_2F_4$ - are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -68.39, -86.19; IR (neat): $v_{max} = 2973$, 2235, 1604, 1328, 1250, 1202, 1093, 931 cm⁻¹; $R_f = 0.50$ (hex:EtOAc = 4:1).

Analytic Data for Aryloxytetrafluoroethylated Compounds

3aa (1-methyl-2-(1,1,2,2-tetrafluoro-2-phenoxyethyl)-1*H*-pyrrole): yellow liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.38 (dd, *J* = 7.9, 6.9 Hz, 2H), 7.27 (t, *J* = 6.9 Hz, 1H), 7.21 (d, *J* = 7.9 Hz, 2H), 6.74(d, *J* = 2.7 Hz, 1H), 6.64 (d, *J* = 2.9 Hz, 1H), 6.16 (dd, *J* = 2.9, 2.7 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ

149.2, 132.7, 129.6, 127.1, 126.3, 121.6, 113.4, 107.4, 35.8 (carbon peaks of $-C_2F_4-$ are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -85.62, -105.98; IR (neat): $v_{max} = 2962$, 1544, 1490, 1309, 1182, 1081, 1019, 951, 728 cm⁻¹; HRMS m/z (EI) calc. for $C_{13}H_{11}F_4NO$ [M+] 273.0777, found 273.0775; $R_f = 0.55$ (hex:EtOAc = 8:1).

3ab (2-(2-([1,1'-biphenyl]-4-yloxy)-1,1,2,2-tetrafluoroethyl)-1-methyl-1*H*-pyrrole): white solid; ¹**H NMR (600 MHz, CDCl₃)** δ 7.59–7.55 (m, 4H), 7.45 (dd, *J* = 7.6, 7.3 Hz, 2H), 7.36 (t, *J* = 7.3 Hz, 1H), 7.26 (d, *J* = 7.9 Hz, 2H), 6.74 (d, *J* = 2.7 Hz, 1H), 6.65 (d, *J* = 3.0 Hz, 1H), 6.16 (dd, *J* = 3.0, 2.7 Hz, 1H), 3.82 (s, 3H); ¹³C **NMR (151 MHz, CDCl₃)** δ

148.6, 140.0, 139.5, 131.4, 128.8, 128.2, 127.5, 127.1, 127.0, 121.8, 113.5, 107.4, 35.8 (carbon peaks of – C_2F_4 – are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ –85.61, –105.94; IR (neat): $v_{max} = 2927$, 1725, 1487, 1310, 1186, 1118, 952, 904, 759 cm⁻¹; HRMS m/z (EI) calc. for $C_{19}H_{15}F_4NO$ [M+] 349.1090, found 349.1091; $R_f = 0.74$ (hex:EtOAc = 4:1).

3ac (1-methyl-2-(1,1,2,2-tetrafluoro-2-(p-tolyloxy)ethyl)-1*H*-pyrrole): colorless oil; ¹**H** NMR (600 MHz, CDCl₃) δ 7.16 (d, J = 8.5 Hz, 2H), 7.07 (d, J = 8.5 Hz, 2H), 6.72 (d, J = 3.0 Hz, 1H), 6.62 (d, J = 3.7 Hz, 1H), 6.14

(dd, J = 3.7, 3.0 Hz, 1H), 3.79 (s, 3H), 2.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 146.9, 136.0, 134.1, 130.0, 127.1, 121.4, 113.4, 107.4, 35.8, 29.7 (carbon peaks of $-C_2F_4-$ are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -85.68, -106.00; IR (neat): $v_{max} = 2921$, 1596, 1507, 1310, 1250, 1177, 1098, 953, 730 cm⁻¹; HRMS m/z (EI) calc. for $C_{14}H_{13}F_4NO$ [M+] 287.0933, found 287.0935; $R_f = 0.55$ (hex:EtOAc = 4:1)

3ad (1-methyl-2-(1,1,2,2-tetrafluoro-2-(4-methoxyphenoxy)ethyl)-1*H*pyrrole): colorless liquid; ¹**H NMR (600 MHz, CDCl₃)** δ 7.11 (d, *J* = 9.1 Hz, 2H), 6.86 (d, *J* = 9.1 Hz, 2H), 6.72 (d, *J* = 3.0 Hz, 1H), 6.61 (d, *J* = 3.5 Hz, 1H), 6.14 (dd, *J* = 3.5, 3.0 Hz, 1H), 3.80 (s, 3H), 3.79 (s, 3H); ¹³**C**

NMR (151 MHz, CDCl₃) δ = 157.7, 142.5, 140.7, 127.1, 122.9, 114.5, 113.4, 107.4, 55.6, 29.7 (carbon peaks of $-C_2F_4-$ are omitted due to complicated C-F splitting); ¹⁹F **NMR (564 MHz, CDCl₃)** δ -85.85, -105.95; **IR (neat)**: v_{max} = 2926, 1509, 1310, 1187, 1119, 904, 728, 650 cm⁻¹; **HRMS** m/z (EI) calc. for C₁₄H₁₃F₄NO₂ [M+] 303.0882, found 303.0879; **R**_f = 0.56 (hex:EtOAc = 6:1).

3ae(4-(1,1,2,2-tetrafluoro-2-(1-methyl-1*H*-pyrrol-2-yl)ethoxy)benzonitrile): colorless liquid; ¹**H NMR (600 MHz, CDCl₃)** δ 7.69 (d, *J* = 8.5 Hz, 2H), 7.31 (d, *J* = 8.5 Hz, 2H), 6.74(d, *J* = 2.9 Hz, 1H), 6.59 (d, *J* = 3.1 Hz, 1H), 6.15 (d, *J* = 3.1, 2.9 Hz, 1H), 3.79 (s, 3H); ¹³**C NMR (151 MHz, CDCl₃)** δ

152.5, 133.9, 127.4, 121.9, 119.6, 117.8, 113.6, 110.2, 107.6, 35.8 (carbon peaks of $-C_2F_4-$ are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -85.88, -105.86; IR (neat): $v_{max} =$ 2233, 1605, 1504, 1309, 1173, 1123, 952, 903, 730 cm⁻¹; HRMS m/z (EI) calc. for C₁₄H₁₀F₄N₂O [M+] 298.0729, found 298.0730; $R_f = 0.52$ (hex:EtOAc = 4:1).

3ba (2-(1,1,2,2-tetrafluoro-2-phenoxyethyl)-1*H*-indole): yellow solid; ¹**H NMR (600 MHz, CDCl₃)** δ 8.51 (s, 1H), 7.71 (d, *J* = 8.1 Hz, 1H), 7.46 (d, *J* = 8.3 Hz, 1H), 7.38–7.31 (m, 3H), 7.27 (t, *J* = 7.5 Hz, 1H), 7.21–7.17 (m, 3H), 7.02 (s, 1H); ¹³**C NMR (151 MHz, CDCl₃)** δ 136.4, 129.6, 129.6,

126.9, 126.6, 125.9, 124.3, 121.9, 121.8, 120.8, 111.6, 105.4 (carbon peaks of $-C_2F_4-$ are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -86.77, -117.06; IR (neat): $v_{max} = 3477$, 2927, 2340, 1590, 1491, 1298, 1188, 1022, 739 cm⁻¹; HRMS m/z (EI) calc. for $C_{16}H_{11}F_4NO$ [M+] 309.0777, found 309.0778; $R_f = 0.67$ (hex:EtOAc = 4:1).

3ca (3-methyl-2-(1,1,2,2-tetrafluoro-2-phenoxyethyl)-1*H*-indole): yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.24 (s, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 8.2 Hz, 1H), 7.35–7.27 (m, 3H), 7.25–7.14 (m, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 2.47 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.0,

135.6, 129.6, 128.5, 126.4, 124.3, 121.7, 120.0, 119.8, 117.9, 115.3, 111.4, 8.7 (carbon peaks of $-C_2F_4-$ are omitted due to complicated C-F splitting); ¹⁹F NMR (564 Hz, CDCl₃) δ –86.86, –111.55; IR (neat):

 $v_{\text{max}} = 3479, 3063, 1590, 1491, 1304, 1186, 1025, 958, 737 \text{ cm}^{-1}$; **HRMS** m/z (EI) calc. for C₁₇H₁₃F₄NO [M+] 323.0933, found 323.0934; *R*_f = 0.52 (hex:EtOAc = 2:1).

3da (1-(2-(1,1,2,2-tetrafluoro-2-phenoxyethyl)-1*H*-indol-3-yl)ethan-1-one): white solid; ¹**H NMR (600 MHz, CDCl₃)** δ 9.08 (s, 1H), 8.13 (d, *J* = 8.2 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.38–7.30(m, 4H), 7.26 (t, *J* = 6.9 Hz, 1H), 7.12 (d, *J* = 8.2 Hz, 2H), 2.71 (s, 3H); ¹³**C NMR (151 MHz, CDCl₃)** δ 196.1, 148.7, 134.7, 129.7, 126.7, 125.3, 125.1, 122.8, 122.5, 121.6, 119.9,

111.6, 31.5 (carbon peaks of $-C_2F_4$ - are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -85.81, -107.93; **IR (neat)**: v_{max} = 3250, 2928, 1660, 1591, 1492, 1436, 1316, 1188, 1071, 740 cm⁻¹; **HRMS** m/z (EI) calc. for C₁₈H₁₃F₄NO₂ [M+] 351.0882, found 351.0880; **R**_f = 0.30 (hex:EtOAc = 4:1).

3ea (ethyl 3-(1,1,2,2-tetrafluoro-2-phenoxyethyl)-1*H*-indole-2-carboxylate): white solid; ¹**H NMR (600 MHz, CDCl₃)** δ 9.41 (s, 1H), 7.98 (d, *J* = 8.3 Hz, 1H), 7.46 (d, *J* = 8.4 Hz, 1H), 7.38 (t, *J* = 7.7 Hz, 1H), 7.31 (dd, *J* = 8.2, 7.7 Hz, 2H), 7.25 (dd, *J* = 8.4, 7.6 Hz, 1H), 7.20 (dd, *J* = 8.3, 7.6 Hz, 1H), 7.11 (d, *J* = 8.2 Hz, 2H), 4.45 (q, *J* = 7.2 Hz, 2H), 1.42 (t, *J* = 7.2 Hz, 3H); ¹³**C**

NMR (151 MHz, CDCl₃) δ 160.5, 149.5, 134.6, 132.5, 129.4, 126.6, 125.9, 125.8, 122.9, 122.2, 121.3, 111.8, 109.3, 61.9, 13.9 (carbon peaks of $-C_2F_4-$ are omitted due to complicated C-F splitting); ¹⁹F **NMR** (564 MHz, CDCl₃) δ -86.71, -104.62; **IR (neat)**: $v_{max} = 3324$, 2990, 1683, 1591, 1492, 1334, 1187, 1064, 742 cm⁻¹; **HRMS** m/z (EI) calc. for C₁₉H₁₅F₄NO₃ [M+] 381.0988, found 381.0990; $R_f = 0.33$ (hex:EtOAc = 4:1).

3fa (5-(1,1,2,2-tetrafluoro-2-phenoxyethyl)thiazol-2-amine): yellow liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.47 (s, 1H), 7.37 (dd, *J* = 7.9, 7.5 Hz, 2H), 7.27 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.9 Hz, 2H), 5.23 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 170.5, 156.6, 149.0, 141.7, 129.6, 126.4, 121.6, 109.9,

94.9; ¹⁹F NMR (564 MHz, CDCl₃) δ –87.33, –103.62; IR (neat): v_{max} = 3156, 1607, 1552, 1492, 1284, 1190, 903, 724 cm⁻¹; HRMS m/z (EI) calc. for C₁₁H₈F₄N₂OS [M+] 292.0293, found 292.0296; R_f = 0.47 (hex:EtOAc = 1:1).

3ga (5-amino-6-(1,1,2,2-tetrafluoro-2-phenoxyethyl)pyrimidine-2,4(1*H*,3*H*)dione): colorless liquid; ¹**H NMR (600 MHz, CDCl₃)** δ 8.70 (s, 1H), 7.61 (s, 1H), 7.39 (dd, J = 8.0, 7.3 Hz, 2H), 7.30 (t, J = 7.3 Hz, 1H), 7.18 (d, J = 8.0 Hz, 2H), 4.34 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 160.1, 148.4, 148.0, 129.8, 126.9, 124.2, 121.4, 110.6 (carbon peaks of – C₂F₄– are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ –86.13, –119.18; IR (neat): $v_{max} = 3368, 3180, 3066, 2924, 1704, 1593, 1438, 1305, 1156, 957, 740 cm⁻¹; HRMS m/z (EI) calc. for C₁₂H₉F₄N₃O₃ [M+] 319.0580, found 319.0578; <math>R_f = 0.44$ (hex:EtOAc = 1:1).

3ha (1,3,7-trimethyl-8-(1,1,2,2-tetrafluoro-2-phenoxyethyl)-3,7dihydro-1*H*-purine-2,6-dione): yellow solid; ¹**H** NMR (600 MHz, **CDCl₃**) δ 7.38 (dd, J = 8.1, 7.4 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 7.18 (d, J = 8.1 Hz, 2H), 4.24 (s, 3H), 3.62 (s, 3H), 3.43 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 155.5, 151.4, 148.6, 146.9, 139.5, 129.7, 126.8,

121.6, 109.8, 33.8, 29.9, 28.1 (carbon peaks of $-C_2F_4-$ are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -85.12, -111.97; IR (neat): $v_{max} = 2926$, 1668, 1609, 1547, 1328, 1291, 1192, 994, 747 cm⁻¹; HRMS m/z (EI) calc. for $C_{16}H_{14}F_4N_4O_3$ [M+] 386.1002, found 386.1004; $R_f = 0.43$ (hex:EtOAc = 1:1).

5aa ((1,1,2,2-tetrafluorotetradecyl)oxy)benzene): colorless liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.38 (dd, J = 8.2, 7.3 Hz, 2H), 7.26 (t, J =7.3 Hz, 1H), 7.21 (d, J = 8.2 Hz, 2H), 2.12 (tt, $J_{\text{H-F}} = 9.8$, J = 8.1 Hz, 2H), 1.64 (tt, J = 8.1, 7.5 Hz, 2H), 1.45–1.21 (m, 18H), 0.89 (t, J = 6.9

Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.2, 129.5, 126.2, 121.7, 31.9, 31.6, 31.1(t, $J_{C-F} = 22.5$ Hz), 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 22.7, 20.5, 14.1 (carbon peaks of $-C_2F_4-$ are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -87.05, -117.71; IR (neat): $v_{max} = 2924$, 2855, 1592, 1492, 1184, 1109, 806, 731 cm⁻¹; HRMS m/z (EI) calc. for $C_{20}H_{30}F_4O$ [M+] 362.2233, found 362.2230; $R_f = 0.68$ (hex:EtOAc = 6:1).

5ab (4-((1,1,2,2-tetrafluorotetradecyl)oxy)-1,1'-biphenyl): white solid; ¹H NMR (600 MHz, CDCl₃) δ 7.59–7.55 (m, 4H), 7.45 (dd, *J* =8.6, 7.4 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 1H), 7.27 (d, *J* = 8.6 Hz, 2H), 2.13 (tt, *J*_{H-F} = 18.27, *J* = 7.7 Hz, 2H), 1.65 (tt, *J* = 12.3, 7.7 Hz, 2H), 1.43–1.26 (m, 18H), 0.89 (t, *J* = 7.0 Hz,

3H); ¹³C NMR (151 MHz, CDCl₃) δ 148.6, 140.0, 139.4, 128.8, 128.2, 127.5, 127.1, 121.9, 31.9, 31.1, 29.6, 29.6, 29.4, 29.4, 29.3, 29.2, 29.1, 22.7, 20.5, 14.1; ¹⁹F NMR (564 MHz, CDCl₃) δ -87.93, -117.69;

IR (neat): $v_{max} = 2926$, 1711, 1420, 1220, 1103, 903, 763, 529 cm⁻¹; **HRMS** m/z (EI) calc. for C₂₆H₃₄F₄O [M+] 438.2546, found 438.2548; $\mathbf{R}_f = 0.45$ (hex).

5ac (1-methyl-4-((1,1,2,2-tetrafluorotetradecyl)oxy)benzene): colorless liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.16 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 2.35 (s, 3H), 2.09 (tt, *J*_{H-F} = 18.4, *J* = 8.3 Hz, 2H), 1.63 (tt, *J* = 8.3, 7.7 Hz, 2H), 1.27 (m, 18H), 0.88 (t,

J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 146.9, 135.9, 129.9, 121.5, 31.9, 31.1, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 22.7, 20.8, 20.5, 14.1 (carbon peaks of $-C_2F_4-$ are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -88.01, -117.76; IR (neat): $v_{max} = 2925$, 2855, 1507 1466, 1176, 1099, 1037, 906, 846, 731 cm⁻¹; HRMS m/z (EI) calc. for $C_{21}H_{32}F_4O$ [M+] 376.2389, found 376.2387; $R_f = 0.70$ (hex:EtOAc = 6:1).

5ad (1-methoxy-4-((1,1,2,2-tetrafluorotetradecyl)oxy)benzene): colorless liquid; ¹H NMR (600 MHz, CDCl₃) 7.12 (d, *J* = 8.9 Hz, 2H), 6.87 (d, *J* = 8.9 Hz, 2H), 3.80 (s, 3H), 2.11 (tt, *J*_{H-F} = 18.4, *J*

= 8.4 Hz, 2H), 1.63 (tt, J = 8.4, 8.0 Hz, 2H), 1.41–1.24 (m, 18H), 0.88 (t, J = 6.8 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.4, 157.7, 122.9, 114.4, 55.6, 31.9, 31.1, 30.9, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 22.6, 20.5, 14.1 (carbon peaks of $-C_2F_4-$ are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ –88.19, –117.72; IR (neat): v_{max} = 2924, 2855, 1660, 1508, 1467, 1182, 1020, 904, 726 cm⁻¹; HRMS m/z (EI) calc. for $C_{21}H_{32}F_4O_2$ [M+] 392.2338, found 392.2341; R_f = 0.68 (hex:EtOAc = 8:1).

5ba (7,7,8,8-tetrafluoro-8-phenoxyoctyl benzoate): colorless liquid; ¹**H NMR (600 MHz, CDCl₃)** δ 8.06 (d, *J* = 6.6 Hz, 2H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.44 (dd, *J* = 7.5, 6.6 Hz, 2H), 7.37 (dd, *J* = 8.0, 7.2 Hz, 2H), 7.27 (t, *J* = 7.2 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 4.34 (t, *J* =

6.6 Hz, 2H), 2.15 (tt, $J_{\text{H-F}} = 18.2$, J = 8.3 Hz, 2H), 1.81 (tt, J = 7.2, 6.6 Hz, 2H), 1.69 (tt, J = 8.3, 7.8 Hz, 2H), 1.55–1.47 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 166.6, 138.3, 136.3, 132.8, 130.4, 129.5, 128.3, 126.3, 121.7, 117.8, 117.0, 64.8, 31.0, 28.9, 28.5, 25.8, 20.5; ¹⁹F NMR (564 MHz, CDCl₃) δ –87.93, –117.75; IR (neat): $v_{\text{max}} = 3324$, 2990, 1683, 1591, 1335, 1259, 1187, 1064, 742 cm⁻¹; HRMS m/z (EI) calc. for C₂₁H₂₂F₄O₃ [M+] 398.1505, found 398.1503; $R_f = 0.66$ (hex:EtOAc = 4:1).

5ca (2-(4,4,5,5-tetrafluoro-5-phenoxypentyl)phenol) colorless liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.39 (dd, J = 8.2, 7.7 Hz, 2H), 7.28 (dd, J = 7.4, 7.2 Hz, 1H), 7.21 (d, J = 8.2 Hz, 2H), 7.17 (d, J = 7.4 Hz, 1H), 7.12 (t, J = 7.7 Hz, 1H), 6.92 (dd, J = 7.9, 7.2 Hz, 1H), 6.76 (d, J = 7.9

Hz, 1H), 4.87 (s, 1H), 2.76 (t, J = 7.9 Hz, 2H), 2.28–2.16 (m, 2H), 2.02 (tt, $J_{H-F} = 15.7$, J = 7.9 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 153.4, 149.2, 130.3, 129.6, 127.5, 126.3, 121.7, 120.9, 117.2, 115.3, 30.8(t, $J_{C-F} = 30.8$ Hz), 29.5, 20.8 (carbon peaks of $-C_2F_4$ – are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ –87.78, –117.32; IR (neat): $v_{max} = 3324$, 2990, 1683, 1492, 1335, 1187, 1117, 953, 743 cm⁻¹; HRMS m/z (EI) calc. for C₁₇H₁₆F₄O₂ [M+] 328.1086, found 328.1089; $R_f = 0.50$ (hex:EtOAc = 4:1).

5da (4-chloro-*N*-(4,4,5,5-tetrafluoro-5-phenoxypentyl) benzamide) white solid; ¹H NMR (600 MHz, CDCl₃) ; δ 7.71 (d, *J* = 8.1 Hz, 2H), 7.39 (d, *J* = 8.1 Hz, 2H), 7.36 (d, *J* = 8.1, 7.7 Hz, 2H), 7.26 (t, *J* = 7.7 Hz, 1H), 7.18 (d, *J* = 8.1

Hz, 2H), 6.40 (t, J = 6.0 Hz, 1H), 3.56 (td, J = 7.4, 6.0 Hz, 2H), 2.23 (tt, $J_{\text{H-F}} = 17.9$, J = 7.7 Hz, 2H), 1.98 (tt, J = 7.7, 7.4 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 166.7, 149.0, 137.8, 129.6, 128.8, 128.3, 126.4, 121.6, 123.4, 39.4, 28.6 (t, $J_{\text{C-F}} = 22.7$ Hz), 21.3 (carbon peaks of $-C_2F_4-$ are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -87.85, -117.37; IR (neat): $v_{\text{max}} = 3324$, 2990, 1683, 1591, 1492, 1335, 1259, 1187, 1117, 1014, 743 cm⁻¹; HRMS m/z (EI) calc. for $C_{18}H_{16}ClF_4NO_2$ [M+] 389.0806, found 389.0805; $R_f = 0.27$ (hex:EtOAc = 4:1).

5ea (*N*-(4,4,5,5-tetrafluoro-5-phenoxypentyl)octanamide) yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.37 (dd, *J* = 8.3, 7.4 Hz, 2H), 7.26 (t, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 8.3 Hz, 2H), 5.53 (s, 1H), 3.37 (t, *J* = 6.8 Hz, 2H), 2.20–2.16 (m, 2H), 1.86

(tt, $J_{\text{H-F}}$ =14.9, J = 7.3 Hz, 2H), 1.61 (tt, J = 7.3, 6.8 Hz, 2H), 1.34–1.23 (m, 10H), 0.87 (t, J = 6.8 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.3, 129.6, 126.3, 121.7, 116.3, 38.6, 36.8, 31.6, 31.5, 29.2, 28.9, 28.5 (t, $J_{\text{C-F}}$ = 22.7 Hz), 25.7, 22.6, 14.0 (carbon peaks of –C₂F₄– are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -87.92, -117.51; IR (neat): v_{max} = 3293, 2927, 1644, 1550, 1492, 1189, 1115, 1004, 744 cm⁻¹; HRMS m/z (EI) calc. for C₁₉H₂₇F₄NO₂ [M+] 377.1978, found 377.1981; R_f = 0.60 (hex:EtOAc = 1:1).

5fa (2-phenyl-*N*-(4,4,5,5-tetrafluoro-5-phenoxypentyl) acetamide): yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.39– 7.33 (m, 4H), 7.29 (t, *J* = 7.2 Hz, 1H), 7.27–7.24 (m, 3H), 7.18

(d, J = 8.3 Hz, 2H), 5.47 (t, J = 6.5, 1H), 3.59 (s, 2H), 3.32 (td, J = 6.9, 6.5 Hz, 2H), 2.09 (tt, $J_{\text{H-F}} = 18.3$, J = 7.6 Hz, 2H), 1.79 (tt, J = 7.6, 6.9 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 171.2, 149.0, 134.7, 129.6, 129.4, 129.1, 127.4, 126.4, 121.6, 43.9, 38.8, 28.4, 21.2 (carbon peaks of $-C_2F_4-$ are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -87.95, -117.56; IR (neat): $v_{\text{max}} = 3324$, 2990, 1683, 1591, 1541, 1492, 1334, 1258, 1187, 1064, 953, 742 cm⁻¹; HRMS m/z (EI) calc. for C₁₉H₁₉F₄NO₂ [M+] 369.1352, found 369.1349; $R_f = 0.40$ (hex:EtOAc = 2:1).

5ga ((*E*)-1-(3,3,4,4-tetrafluoro-4-phenoxybut-1-en-1-yl)azepan-2-one): colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, J = 14.5 Hz, 1H), 7.37 (dd, J = 7.9, 7.4 Hz, 2H), 7.25 (t, J = 7.4 Hz, 1H), 7.20 (d, J = 7.9Hz, 2H), 5.14 (dt, J = 14.5, $J_{H-F} = 11.5$ Hz, 1H), 3.62 (t, J = 4.6 Hz, 2H),

2.69 (t, J = 5.3 Hz, 2H), 1.80–1.71 (m, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 174.6, 149.3, 134.4, 129.5, 126.2, 121.6, 96.3, 45.3, 37.0, 29.2, 27.1, 23.3 (carbon peaks of $-C_2F_4-$ are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ –87.71, –110.79; IR (neat): $v_{max} = 2933$, 1654, 1491, 1330, 1178, 1082, 969, 740 cm⁻¹; HRMS m/z (EI) calc. for $C_{16}H_{17}F_4O_2$ [M+] 331.1195, found 331.1193; $R_f = 0.40$ (hex:EtOAc = 4:1).

5ha ((3,3,4,4-tetrafluoro-4-phenoxybut-1-ene-1,1-diyl)dibenzene): colorless liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.40–7.20 (m, 13H), 7.21 (d, J = 8.1 Hz, 2H), 6.24 (t, J = 14.4 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 141.1, 137.9, 129.6, 129.2, 129.1, 128.4, 128.0, 127.9, 127.7, 126.2, 121.6, 114.6; ¹⁹F NMR (564 MHz, CDCl₃) δ -87.57, -107.30; IR

(neat): $v_{max} = 3061$, 2926, 1640, 1591, 1191, 1017, 730, 699 cm⁻¹; HRMS m/z (EI) calc. for C₂₂H₁₆F₄O [M+] 372.1137, found 372.1139; $R_f = 0.61$ (hex:EtOAc = 6:1).

5ha' ((3,3,4,4-tetrafluoro-4-phenoxybutane-1,1-diyl)dibenzene): colorless liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.38–7.33 (m, 2H), 7.32–7.29 (m, 7H), 7.27–7.23 (m, 2H), 7.23–7.18 (m, 2H), 7.16 (d, J = 7.6 Hz, 2H), 4.52 (t, J = 6.4 Hz 1H), 2.98 (td, $J_{\text{H-F}}$ = 18.0, J = 6.4 Hz, 2H); ¹³C NMR (151 MHz, cdcl₃) δ 149.0, 143.6, 129.5, 128.6, 127.6, 126.6, 126.3, 121.7, 44.0,

36.6(t, $J_{C-F} = 22.7 \text{ Hz}$) (carbon peaks of $-C_2F_4$ - are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -88.31, -116.22; IR (neat): $v_{max} = 3030$, 1592, 1492, 1191, 1106, 907, 743, 700 cm⁻¹; HRMS m/z (EI) calc. for $C_{22}H_{18}F_4O$ [M+] 374.1294, found 374.1297; $R_f = 0.58$ (hex:EtOAc = 6:1).

5ia ((E,)-2-methoxy-4-(3,3,4,4-tetrafluoro-2-methyl-4-phenoxybut-1-en-1-yl)phenol) and **5ia'** ((z,)-2-methoxy-4-(3,3,4,4-tetrafluoro-2-methyl-4-phenoxybut-1-en-1-yl)phenol) colorless liquid; ¹**H NMR (600 MHz, CDCl₃) 5ia**: δ 7.37 (dd, J = 8.2, 7.4 Hz, 2H), 7.28–7.24 (m, 1H), 7.21 (d, J = 8.2 Hz, 2H), 6.99 (s, 1H), 6.94 (s, 1H), 6.89–6.85 (m, 2H), 5.69 (s, 1H), 3.92 (s, 3H), 2.11 (s, 3H); **5ia'**: δ 7.37 (dd, J = 8.2, 7.4 Hz, 2H), 7.28–7.24 (m, 1H), 7.28–7.24 (m, 1H), 6.89–6.85 (m, 2H), 5.69 (s, 1H), 3.92 (s, 3H), 2.11 (s, 3H); **5ia'**: δ 7.37 (dd, J = 8.2, 7.4 Hz, 2H), 7.28–7.24 (m, 1H), 7.18 (d, J = 8.2 Hz, 2H), 6.94 (s, 1H), 6.91 (s, 1H), 6.84–6.80 (m, 2H), 5.59 (s, 1H), 3.83 (s, 3H), 2.11 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 145.5, 145.0, 129.6, 129.5, 127.6, 126.3, 126.2, 122.9, 121.6, 121.6, 114.3, 113.6, 111.9, 111.1, 109.9, 109.9, 67.5, 56.5, 55.9, 29.7 (carbon peaks of $-C_2F_4-$ are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) **5ia**: δ -85.62, -115.60; **IR (neat)**: v_{max} = 3542, 2925, 2853, 1594, 1492, 1093, 978, 904, 730 cm⁻¹; **HRMS** m/z (EI) calc.for C18H16F4O₃ [M+] 356.1036, found 356.1036; R_f = 0.42 (hex:EtOAc = 3:1).

5ja (((3-butyl-1,1,2,2-tetrafluorooctyl)oxy)benzene) colorless liquid; ¹H NMR (600 MHz, CDCl₃) ; δ 7.38 (dd, J = 8.1, 7.4 Hz, 2H), 7.26 (t, J =7.4 Hz, 1H), 7.20 (d, J = 8.1 Hz, 2H), 2.25–2.14 (m, 1H), 1.79–1.70 (m, 2H), 1.53–1.27 (m, 12H), 0.92 (t, J = 7.1 Hz, 3H), 0.90 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.2, 129.5, 126.2, 121.7, 67.1,

40.7, 32.0, 29.2, 27.0, 26.8, 26.7, 22.9, 22.5, 14.0 (carbon peaks of $-C_2F_4$ - are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -83.91, -116.79; IR (neat): v_{max} = 2958, 1593, 1492, 1183, 1109, 1027, 741, 689 cm⁻¹; HRMS m/z (EI) calc. for C₁₈H₂₆F₄O [M+] 334.1920, found 334.1924; R_f = 0.66 (hex).

7 (2,4-dimethyl-6-(1,1,2,2-tetrafluoro-2-(1-methyl-1*H*-pyrrol-2-yl)ethoxy) pyrimidine): yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 6.72 (d, 1H), 6.70 (m, *J* = 2.9 Hz, 1H), 6.59 (d, *J* = 3.2 Hz, 1H), 6.12 (dd, *J* = 3.2, 2.9 Hz, 1H), 3.80 (s, 3H), 2.65 (s, 3H), 2.50 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ

170.2, 168.5, 164.1, 127.3, 113.6, 107.5, 105.7, 35.8, 25.8, 24.1 (carbon peaks of $-C_2F_4$ - are omitted due to complicated C-F splitting); ¹⁹F NMR (564 MHz, CDCl₃) δ -87.25, -106.43; IR (neat): $v_{max} = 2929$, 1593, 1566, 1437, 1358, 1154 1092, 956, 802, 733 cm⁻¹; HRMS m/z (EI) calc. for C₁₃H₁₃F₄N₃O [M+] 303.0995, found 303.0993; *R*_f = 0.40 (hex:EtOAc = 2:1)

S-49

S-57

