Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Nickel-Catalyzed Amination of Aryl Fluorides with Primary Amines

Tomoya Harada, Yusuke Ueda, Tomohiro Iwai* and Masaya Sawamura* Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

Table of Contents

1. Instrumentation and Chemicals	S1
2. Synthesis of DCYPBz	S2
3. Preparation of Substrates	S2–S3
4. Parameters in Ni-catalyzed Amination of 1a with 2a	S4–S6
5. Experimental Procedures	S 6
6. Characterization of Products	S7–S18
7. References	S18
8. NMR Spectra	S19–S87

1. Instrumentation and Chemicals

¹H (400 MHz), ¹³C (100.5 MHz) and ³¹P (161.8 MHz) NMR spectra were recorded on a JEOL JNM-ECXII spectrometer. Chemical shift values for ¹H, ¹³C and ³¹P NMR spectra are referenced to Me₄Si (0 ppm), the residual solvent resonances (77.0 ppm for CHCl₃) and H₃PO₄ (0 ppm), respectively. High-resolution mass spectra were recorded at the Instrumental Analysis Division, Global Facility Center, Creative Research Institution, Hokkaido University (JEOL JMS-T100GCv mass spectrometer for EI-MS) and the GC–MS & NMR Laboratory, Research Faculty of Agriculture, Hokkaido University (JEOL JMS-T100GCv mass spectrometer for FD-MS). IR spectra were measured with a PerkinElmer Frontier instrument. Optical rotations were measured on a JASCO P-2200. Melting points were measured with a Yanaco MP-500D instrument on a micro melting point apparatus using micro cover glass. Silica gel (Kanto Chemical Co., Silica gel 60 N, spherical, neutral) was used for column chromatography. TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel 60F₂₅₄.

All reactions were carried out under argon or nitrogen atmosphere. Materials were obtained from commercial suppliers or prepared according to standard procedures unless otherwise noted. [Ni(cod)₂] was purchased from Kanto Chemical (if needed, recrystallization from toluene/1,5-cyclooctadiene was carried out before use). DCYPBz,¹ DIPPBz,² DETPBz³ and were known compounds. PS-DPPBz was prepared according to the literature.⁴ IPr·HCl, PCy₃, DPPBz, DCYPT, DCYPM, DCYPE, DCYPP·2HBF₄, DCYPB and L1 were commercially available and used as received. NaO*t*Bu was purchased from TCI. Toluene (anhydrous grade) was purchased from Kanto Chemical, and dried and deoxidized by passage through packed columns of neutral alumina and copper(II) oxide under positive argon pressure.

2. Synthesis of DCYPBz

Although DCYPBz was a known compound,¹ its spectroscopic data have not been described: Mg turnings (519 mg, 21.4 mmol, 14.5 equiv) and Et₂O (18 mL) were placed in a 50-mL Schlenk flask equipped with a magnetic stirring bar. Bromocyclohexane (2.2 mL, 18.0 mmol, 12.0 equiv) was added dropwise to the flask at rt, and then the mixture was stirred for further 0.5 h. Next, *o*-bis(dichlorophosphino)benzene (270 μ L, 1.47 mmol) was added to the flask at 0 °C. After stirring at rt for 3 h, the reaction was quenched with degassed H₂O (~5 mL) and 1N HCl aq (~5 mL). The organic layer was extracted with hexane under Ar atmosphere, dried over Na₂SO₄, filtered through a cannula equipped with a small filter paper, and evaporated under reduced pressure. The crude product was purified by reprecipitation with Et₂O (~4 mL) and MeOH (~40 mL) to give 1,2-bis(dicyclohexylphosphino)benzene (DCYPBz) as white solids (373.8 mg, 54% yield). The analytically pure compound was obtained by recrystallization from hot degassed *i*PrOH.

White solids. **M.p.** 142.7–145.6 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 1.00–1.35 (m, 20H), 1.46– 1.82 (m, 16H), 1.82–2.00 (m, 8H), 7.29–7.32 (m, 2H), 7.48–7.52 (m, 2H). ¹³**C NMR** (400 MHz, CDCl₃): δ 26.47 (4C), 27.20–27.32 (m, 8C), 29.11 (t, $J_{C-P} = 4.7$ Hz, 4C), 30.39 (t, $J_{C-P} = 8.6$ Hz, 4C), 34.89 (t, $J_{C-P} = 5.7$ Hz, 4C), 127.44 (2C), 132.64 (2C), 144.37 (t, $J_{C-P} = 6.6$ Hz, 2C). ³¹**P NMR** (161.8 MHz, CDCl₃): δ –13.96. **IR** (ATR): 2921, 2847, 1444, 1262, 1177, 1095, 1000, 850, 742 cm⁻¹. **HRMS–FD** (*m/z*): [M]⁺ Calcd for C₃₀H₄₆P₂, 470.32312; found, 470.32227.

3. Preparation of Substrates

Figure S1. List of Substrates for Catalytic Reactions.

Aryl fluorides **1a–1e**, **1i**, **1l–1p** and **1r** were commercially available. **1f**,⁵ **1g**,⁶ **1h**,⁷ **1j**⁶ and **1k**⁸ were known compounds. Primary amines **2a–2m** are commercially available.

N-PMB-protected Paroxetine (1q)

The title compound was synthesized from Paroxetine hydrochloride hemihydrate and *p*-methoxybenzyl chloride (1.2 equiv) with *i*Pr₂EtN (3.0 equiv) in CH₂Cl₂ [>99% yield, isolated by silica gel column chromatography with hexane/EtOAc 60:40]

White solids. **M.p.** 94.6–95.5 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 1.78–1.86 (m, 2H), 2.00–2.09 (m, 2H), 2.18–2.22 (m, 1H), 2.46 (td, J = 11.2, 4.8 Hz, 1H), 2.97 (br d, J = 10.8 Hz, 1H), 3.23 (br d, J = 10.4 Hz, 1H), 3.40–3.60 (m, 4H), 3.81 (s, 3H), 5.88 (s, 2H), 6.11 (dd, J = 8.0, 2.4 Hz, 1H), 6.32 (d, J = 2.8 Hz, 1H), 6.62 (d, J = 8.8 Hz, 1H), 6.87 (d, J = 8.4 Hz, 2H), 6.96 (t, J = 8.4 Hz, 2H), 7.14–7.17 (m, 2H), 7.25–7.27 (m, 2H). ¹³**C NMR** (400 MHz, CDCl₃): δ 34.31, 42.12, 44.07, 53.64, 55.23, 57.43, 62.74, 69.55, 97.93, 101.03, 105.47, 107.78, 113.53 (2C), 115.31 ($J_{C-F} = 21.1$ Hz, 2C), 128.80 ($J_{C-F} = 7.7$ Hz, 2C), 130.09, 130.42 (2C), 139.80, 141.44, 148.06, 154.36, 158.65, 161.42 ($J_{C-F} = 244.4$ Hz). **IR** (ATR): 2931, 2762, 1610, 1511, 1488, 1463, 1251, 1220, 1184, 1097, 1030, 934, 850, 812, 784 cm⁻¹. **HRMS–FD** (m/z): [M]⁺ Calcd for C₂₇H₂₈FNO₄, 449.20024; found, 449.20030. [α] $_{D}^{26}$ –39.74 (c = 1.03, CHCl₃).

4. Parameters in Ni-catalyzed Amination of 1a with 2a

Table S1. Effects of Ligands

	$MeO \xrightarrow{F} + \frac{H_2N}{nC_8H_{17}} \xrightarrow{nC_8H_{17}} \frac{Lig_3}{Na0}$	cod) ₂] (5 mol%) and (7.5 mol%) DtBu (1.5 equiv) ene (1 mL) Grad (1 mL) And (1 mL) And (1 mL) And (1 mL) And (1 mL)	1 ₁₇
Entry	Ligand		$\frac{3}{3a}$ [%, ¹ H NMR]
1		DCYPBz	95
2		DIPPBz	79
3		DETPBz	3
4	Ph ₂ P PPh ₂	DPPBz	0
5		SciOPP	0
6	(PS) (PS) (PS) (PS) (PS) (PS) (PS) (PS)	PS-DPPBz	0
7	PPh ₂ PPh ₂	BINAP	0
8		DCYPT	68
9		DCYPM	0
10		DCYPE	48
11		DCYPP·2HBF ₄	6

12		DCYPB	0
13	P Fe P	DCYPPF	0
14	Me Fe Fe	L1	73
15		IPr·HC1	0
16		IPr·HCl (15 mol%)	0
17		SIPr·HCl	0
18		IMes·HCl	0
19		ICy·HCl	0
20		I(2-Ad)·HCl	0
21	P()	PCy ₃ (15 mol%)	0

Table S2. Effects of Bases

	$\begin{array}{c} F \\ H_2N \\ nC_8H_{17} \\ 1a \ (0.25 \ mmol) \end{array} \begin{array}{c} 4a \ (1.5 \ equiv) \end{array}$	[Ni(cod) ₂] (5 mol%) DCYPBz (7.5 mol%) Base (1.5 equiv) toluene (1 mL) 120 °C, 20 h	3a (¹ H NMR yield)	
Entry	Ba	ase	3a [%, ¹ H NMR]	
1	NaC) <i>t</i> Bu	95	
2	LiO <i>t</i> Bu		20	
3	KOtBu		17	
4	K ₂	CO_3	0	
5	NaH	MDS	22	

Table S3. Effects of Solvents

	MeO + H ₂ N, r 1a (0.25 mmol) 2a (1.5	C ₈ H ₁₇ [Ni(cod) ₂] (5 mol%) DCYPBz (7.5 mol%) NaO <i>t</i> Bu (1.5 equiv) solvent (1 mL) 120 °C, 20 h	MeO 3a (¹ H NMR yield)
Entry		Solvent	3a [%, ¹ H NMR]
1	toluene		95
2	CPME		82
3	octane		75
4	1,4-dioxane		16
5	tAmOH		5
6	DMA		0

Table S4. Effects of Reaction Temperature

	MeO + H ₂ N nC ₈ H 1a (0.25 mmol) 2a (1.5 equi	[Ni(cod) ₂] (5 mol%) DCYPBz (7.5 mol%) NaO <i>t</i> Bu (1.5 equiv) toluene (1 mL) V) temp ., 20 h	3a (¹ H NMR yield)
Entry	Ter	np (°C)	3a [%, ¹ H NMR]
1		120	95
2		110	62
3		100	15
4		90	4
5		80	1

5. Experimental Procedures

A Typical Procedure for Ni-Catalyzed Amination of Aryl Fluorides with Primary Amines: In a nitrogen-filled glove box, $[Ni(cod)_2]$ (3.4 mg, 0.0124 mmol, 5 mol%), DCYPBz (8.8 mg, 0.0187 mmol, 7.5 mol%) and toluene (0.5 mL) were placed in a 10-mL glass tube containing a magnetic stirring bar. After stirring at rt for ca. 5 min, 4-fluoroanisole (1a, 31.5 mg, 0.25 mmol), octylamine (2a, 48.4 mg, 0.374 mmol), NaOtBu (36.0 mg, 0.375 mmol) and toluene (0.5 mL) were added successively. The tube was sealed with a screw cap and was removed from the glove box. The mixture was stirred at 120 °C for 20 h. After being cooled to rt, the mixture was diluted with Et₂O and filtered through a silica gel pad (eluting with Et₂O). The volatiles were removed under reduced pressure, and then an internal standard (1,2-diphenylethane) was added to determine the yield of 4-methoxy-*N*-octylaniline (3a, 95% yield). The crude product was purified by silica gel column chromatography (hexane/EtOAc 100:0 to 95:5) to give 3a as pale yellow oil (55.3 mg, 0.235 mmol, 94% yield).

6. Characterization of Products

4-Methoxy-*N*-octylaniline (3a)⁴

[Scheme 2: **1a** (0.25 mmol), **2a** (0.374 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] **3a** (55.3 mg, 0.235 mmol, 94% yield) was isolated by silica gel column chromatography with hexane/EtOAc 100:0 to 95:5.

Pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃): δ 0.88 (t, J = 6.8 Hz, 3H), 1.24–1.44 (m, 10H), 1.57 (quint, J = 6.8 Hz, 2H), 3.05 (t, J = 6.8 Hz, 2H), 3.32 (br s, 1H), 3.74 (s, 3H), 6.56–6.63 (m, 2H), 6.75–6.80 (m, 2H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 14.10, 22.65, 27.19, 29.25, 29.42, 29.65, 31.81, 44.99, 55.79, 113.96 (2C), 114.82 (2C), 142.84, 151.87.

N-Octylaniline (3b)⁹

[Scheme 4: **1b** (0.25 mmol), **2a** (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] **3b** (42.4 mg, 0.206 mmol, 83% yield) was isolated by silica gel column chromatography with hexane/EtOAc 100:0 to 95:5.

Yellow oil. ¹**H NMR** (400 MHz, CDCl₃): δ 0.87 (t, J = 7.6 Hz, 3H), 1.22–1.44 (m, 10H), 1.61 (quint, J = 6.8 Hz, 2H), 3.10 (t, J = 7.2 Hz, 2H), 3.59 (br s, 1H), 6.60 (dd, J = 8.0, 0.8 Hz, 2H), 6.68 (td, J = 7.2, 0.8 Hz, 1H), 7.15–7.20 (m, 2H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 14.09, 22.64, 27.16, 29.25, 29.40, 29.54, 31.81, 43.94, 112.62 (2C), 117.00, 129.17 (2C), 148.50.

4-Methyl-*N*-octylaniline (3c)⁴

[Scheme 4: 1c (0.25 mmol), 2a (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] 3c (49.7 mg, 0.227 mmol, 91% yield) was isolated by silica gel column chromatography with hexane/EtOAc 100:0 to 95:5.

Yellow oil. ¹**H NMR** (400 MHz, CDCl₃): δ 0.88 (t, J = 6.8 Hz, 3H), 1.20–1.42 (m, 10H), 1.60 (quint, J = 7.2 Hz, 2H), 2.23 (s, 3H), 3.07 (t, J = 7.2 Hz, 2H), 3.45 (br s, 1H), 6.53 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.0 Hz, 2H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 14.09, 20.34, 22.64, 27.17, 29.25, 29.41, 29.59, 31.81, 44.34, 112.83 (2C), 126.20, 129.65 (2C), 146.27.

N-Octyl-[1,1'-biphenyl]-4-amine (3d)¹⁰

[Scheme 4: 1d (0.25 mmol), 2a (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%),

NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] **3d** (60.6 mg, 0.215 mmol, 86% yield) was isolated by silica gel column chromatography with hexane/EtOAc 99:1 to 90:10.

Yellow solids. ¹H NMR (400 MHz, CDCl₃): δ 0.89 (t, J = 6.8 Hz, 3H), 1.22–1.46 (m, 10H), 1.62 (quint, J = 8.0 Hz, 2H), 3.14 (t, J = 7.2 Hz, 2H), 3.70 (br s, 1H), 6.67 (d, J = 8.8 Hz, 2H), 7.22–7.26 (m, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.49 (d, J = 8.8 Hz, 2H), 7.54 (dd, J = 8.0, 0.8 Hz, 2H). ¹³C NMR (100.5 MHz, CDCl₃): δ 14.10, 22.65, 27.15, 29.26, 29.39, 29.52, 31.81, 43.93, 112.82 (2C), 125.90, 126.18 (2C), 127.85 (2C), 128.58 (2C), 129.81, 141.26, 147.90.

 N^1 , N^1 -Dimethyl- N^4 -octylbenzene-1, 4-diamine (3e)⁴

[Scheme 4: 1e (0.252 mmol), 2a (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.375 mmol), *m*-xylene (1 mL), 140 °C, 20 h] 3e (57.9 mg, 0.233 mmol, 92% yield) was isolated by silica gel column chromatography with hexane/EtOAc 95:5 to 80:20.

Yellow oil. ¹**H NMR** (400 MHz, CDCl₃): δ 0.88 (t, J = 6.4 Hz, 3H), 1.20–1.45 (m, 10H), 1.57 (quint, J = 8.0 Hz, 2H), 2.81 (s, 6H), 3.05 (br, 2H+1H), 6.59 (d, J = 8.8 Hz, 2H), 6.74 (d, J = 8.4 Hz, 2H). ¹³C NMR (100.5 MHz, CDCl₃): δ 14.07, 22.62, 27.18, 29.23, 29.40, 29.72, 31.79, 42.31 (2C), 45.08, 114.19 (2C), 115.96 (2C), 141.19, 143.90.

N-Octyl-4-((triisopropylsilyl)oxy)aniline (3f)

[Scheme 4: **1f** (0.25 mmol), **2a** (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.375 mmol), *m*-xylene (1 mL), 140 °C, 20 h] **3f** (76.7 mg, 0.203 mmol, 81% yield) was isolated by silica gel column chromatography with hexane/EtOAc 99:1 to 95:5.

Pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃): δ 0.88 (t, J = 6.8 Hz, 3H), 1.08 (d, J = 7.2 Hz, 18H), 1.15–1.45 (m, 13H), 1.59 (quint, J = 6.8 Hz, 2H), 3.04 (t, J = 7.6 Hz, 2H), 3.29 (br s, 1H), 6.48–6.52 (m, 2H), 6.69–6.75 (m, 2H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 12.57 (3C), 14.09, 17.91 (6C), 22.65, 27.21, 29.25, 29.44, 29.72, 31.82, 44.96, 113.78 (2C), 120.35 (2C), 142.85, 147.69. **IR** (ATR): 2926, 2866, 1509, 1464, 1234, 919, 907, 883, 820, 758, 734, 679 cm⁻¹. **EI-HRMS** (*m/z*): [M]⁺ calcd for C₂₃H₄₃NOSi 377.31139; found, 377.31043.

1-Methyl-N-octyl-1H-indol-5-amine (3g)

[Scheme 4: 1g (0.25 mmol), 2a (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] 3g (60.3 mg, 0.233 mmol, 93% yield) was isolated by silica gel column chromatography with hexane/EtOAc 99:1 to 90:10.

Yellow solids. **M.p.** 40.4–41.4 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 0.89 (t, J = 6.8 Hz, 3H), 1.26–1.46 (m, 10H), 1.65 (quint, J = 6.8 Hz, 2H), 3.14 (t, J = 7.6 Hz, 2H), 3.38 (br s, 1H), 3.73 (s, 3H), 6.31 (dd, J = 2.8, 1.2 Hz, 1H), 6.65 (dd, J = 8.8, 2.4 Hz, 1H), 6.83 (d, J = 2.0 Hz, 1H), 6.95 (d, J = 3.2 Hz, 1H), 7.13 (d, J = 8.4 Hz, 1H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 14.09, 22.63, 27.27, 29.26, 29.45, 29.71, 31.81, 32.77, 45.51, 99.59, 102.41, 109.69, 111.79, 128.70, 129.27, 131.18, 142.37. **IR** (ATR): 2953, 2921, 2849, 1625, 1508, 1475, 1422, 1247, 1169, 868, 788, 727, 709 cm⁻¹. **EI-HRMS** (m/z): [M]⁺ calcd for C₁₇H₂₆N₂ 258.20960; found, 258.20959.

4-Fluoro-*N*-octyl-[1,1'-biphenyl]-4-amine (3h)

[Scheme 4: **1h** (0.25 mmol, contaminated with ~4% of 4,4'-dichlorobiphenyl), **2a** (0.25 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaO*t*Bu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] **3h** (61.9 mg, 0.206 mmol, 83% yield), contaminated with *N*-octyl-[1,1'-biphenyl]-4-amine (2.9 mg, 4%), was isolated by silica gel column chromatography with hexane/EtOAc 100:0 to 99:1.

Pale yellow solids (viscous). **M.p.** 78.3–82.5 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 0.89 (t, J = 6.4 Hz, 3H), 1.20–1.50 (m. 10H), 1.62 (quint, J = 7.2 Hz, 2H), 3.12 (t, J = 6.8 Hz, 2H), 3.68 (br s, 1H), 6.64 (d, J = 8.4 Hz, 2H), 7.06 (t, J = 8.0 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 7.42–7.48 (m, 2H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 14.10, 22.65, 27.15, 29.26, 29.40, 29.51, 31.82, 43.94, 112.86 (2C), 115.35 (d, $J_{C-F} = 21.1 \text{ Hz}$, 2C), 127.60 (d, $J_{C-F} = 7.6 \text{ Hz}$, 2C), 127.73 (2C), 128.91, 137.43 (d, $J_{C-F} = 2.9 \text{ Hz}$), 147.87, 161.65 (d, $J_{C-F} = 245.2 \text{ Hz}$). **IR** (ATR): 2925, 2855, 1611, 1499, 1478, 1328, 1299, 1223, 1158, 813 cm⁻¹. **FD-HRMS** (*m*/*z*): [M]⁺ calcd for C₂₀H₂₆FN 299.20493; found, 299.20487.

N^4 , N^4 '-Dioctyl-[1,1'-biphenyl]-4,4'-diamine (3h')

[Scheme 4: **1h** (0.25 mmol, contaminated with ~4% of 4,4'-dichlorobiphenyl), **2a** (0.75 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaO*t*Bu (0.75 mmol), toluene (1 mL), 120 °C, 20 h] **3h** (46.5 mg, 0.155 mmol, 62%) and **3h'** (31.3 mg, 0.077 mmol, 31% yield) was isolated by silica gel column chromatography with hexane/EtOAc 100:0 to 95:5.

Yellow solids. **M.p.** 89.5–91.5 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 0.89 (t, J = 6.4 Hz, 6H), 1.20–1.40 (m. 20H), 1.63 (quint, J = 7.2 Hz, 4H), 3.12 (t, J = 7.2 Hz, 4H), 3.60 (br s, 2H), 6.64 (d, J = 8.8 Hz, 4H), 7.36 (d, J = 8.4 Hz, 4H). ¹³C **NMR** (100.5 MHz, CDCl₃): δ 14.11 (2C), 22.65 (2C), 27.18 (2C), 29.27 (2C), 29.41 (2C), 29.59 (2C), 31.82 (2C), 44.14 (2C), 112.96 (4C), 127.09 (4C),

130.47 (2C), 147.00 (2C). **IR** (ATR): 3390, 2954, 2919, 2852, 1614, 1505, 1470, 1328, 1287, 1182, 812, 797 cm⁻¹. **FD-HRMS** (*m/z*): $[M]^+$ calcd for C₂₈H₄₄N₂ 408.35045; found, 408.35226.

N-Octyl-4-(trifluoromethyl)aniline (3i)⁴

[Scheme 4: **1i** (0.25 mmol), **2a** (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPBz or DCYPE (7.5 mol%), NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] Only trace amounts of **3i** was observed in the crude mixture (based on ¹H NMR analysis).

N,*N*-Diethyl-4-(octylamino)benzamide (3j)

[Scheme 4: 1j (0.25 mmol), 2a (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPE (7.5 mol%), NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] 3j (50.6 mg, 0.166 mmol, 66% yield) was isolated by silica gel column chromatography with hexane/EtOAc 90:10 to 60:40.

Pale pink solids. **M.p.** 42.5–44.1 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 0.89 (t, J = 6.4 Hz, 3H), 1.18 (t, J = 6.8 Hz, 6H), 1.26–1.46 (m, 10H), 1.61 (quint, J = 7.6 Hz, 2H), 3.11 (t, J = 6.8 Hz, 2H), 3.43 (br m, 4H), 3.86 (br, 1H), 6.55 (d, J = 8.8 Hz, 2H), 7.25 (d, J = 8.8 Hz, 2H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 13.53 (br, 2C), 14.05, 22.60, 27.06, 29.18, 29.33, 29.35, 31.75, 40.99 (br m, 2C), 43.62, 111.60 (2C), 125.05, 128.32, 128.41, 149.36, 171.80. **IR** (ATR): 3337, 2927, 2854, 1598, 1425, 1285, 1172, 1096, 833, 762, 730 cm⁻¹. **EI-HRMS** (*m/z*): [M]⁺ calcd for C₁₉H₃₂N₂O 304.25146; found, 304.25046.

tert-Butyl 4-(octylamino)benzoate (3k)⁹

[Scheme 4: 1k (0.25 mmol), 2a (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPE (7.5 mol%), NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] 3k (52.3 mg, 0.171 mmol, 68% yield) was isolated by silica gel column chromatography with hexane/EtOAc 99:1 to 98:2.

White solids. ¹**H** NMR (400 MHz, CDCl₃): δ 0.88 (t, J = 7.2 Hz, 3H), 1.22–1.42 (m, 10H), 1.56 (s, 9H), 1.61 (quint, J = 6.8 Hz, 2H), 3.14 (t, J = 7.2 Hz, 2H), 4.06 (br s, 1H), 6.52 (d, J = 6.8 Hz, 2H), 7.80 (d, J = 6.8 Hz, 2H). ¹³**C** NMR (100.5 MHz, CDCl₃): δ 14.06, 22.62, 27.04, 28.29 (3C), 29.19, 29.27, 29.32, 31.76, 43.37, 79.70, 111.14 (2C), 119.87, 131.27 (2C), 151.75, 166.19.

 N^1 , N^3 -Dioctylbenzene-1,3-diamine (31)¹¹

[Scheme 4: **11** (0.25 mmol), **2a** (0.75 mmol), [Ni(cod)₂] (5 mol%), DCYPE (7.5 mol%), NaOtBu (0.75 mmol), toluene (1 mL), 120 °C, 20 h] **3l** (65.8 mg, 0.198 mmol, 79% yield) was isolated by silica gel column chromatography with hexane/CH₂Cl₂ 80:20 followed by GPC.

White solids. ¹**H** NMR (400 MHz, CDCl₃): δ 0.88 (t, J = 6.6 Hz, 6H), 1.20–1.50 (m, 20H), 1.59 (quint, J = 7.6 Hz, 4H), 3.07 (t, J = 7.2 Hz, 4H), 3.50 (br s, 2H), 5.86 (t, J = 2.0 Hz, 1H), 5.99 (dd, J = 8.0, 2.0 Hz, 2H), 6.96 (t, J = 8.0 Hz, 1H). ¹³C NMR (100.5 MHz, CDCl₃): δ 14.11 (2C), 22.65 (2C), 27.20 (2C), 29.27 (2C), 29.42 (2C), 29.64 (2C), 31.83 (2C), 44.00 (2C), 96.83, 102.54 (2C), 129.87, 149.70 (2C).

2-Methyl-*N*-octylaniline (3m)⁴

[Scheme 4: **1m** (0.25 mmol), **2a** (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPE (7.5 mol%), NaO*t*Bu (0.375 mmol), *m*-xylene (1 mL), 140 °C, 20 h] **3m** (28.6 mg, 0.130 mmol, 52% yield) was isolated by silica gel column chromatography with hexane/EtOAc 100:0 to 95:5.

Colorless oil. ¹**H NMR** (400 MHz, CDCl₃): δ 0.89 (t, J = 6.8 Hz, 3H), 1.21–1.43 (m, 10H), 1.66 (quint, J = 7.6 Hz, 2H), 2.13 (s, 3H), 3.14 (t, J = 7.2 Hz, 2H), 3.44 (br s, 1H), 6.60–6.66 (m, 2H), 7.05 (d, J = 6.8 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 14.10, 17.44, 22.66, 27.24, 29.27, 29.42, 29.58, 31.83, 43.93, 109.55, 116.56, 121.62, 127.10, 129.96, 146.35.

N-Octylnaphthalen-1-amine (3n)¹²

[Scheme 4: **1n** (0.25 mmol), **2a** (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPE (7.5 mol%), NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] **3n** (58.4 mg, 0.229 mmol, 92% yield) was isolated by silica gel column chromatography with hexane/CH₂Cl₂ 90:10 to 80:20.

Brown oil. ¹**H NMR** (400 MHz, CDCl₃): δ 0.89 (t, J = 6.8 Hz, 3H), 1.21–1.40 (8H), 1.41–1.51 (m, 2H), 1.74 (quint, J = 7.2 Hz, 2H), 3.23 (t, J = 7.2 Hz, 2H), 4.27 (br s, 1H), 6.58 (d, J = 7.2 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.37–7.44 (m, 2H), 7.77 (d, J = 8.8 Hz, 2H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 14.11, 22.66, 27.34, 29.27, 29.40, 29.45, 31.83, 44.18, 104.10, 116.96, 119.73, 123.24, 124.51, 125.59, 126.64, 128.61, 134.25, 143.59.

[Scheme 4: 10 (0.263 mmol), 2a (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPE (7.5 mol%), NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] 30 (45.6 mg, 0.221 mmol, 84% yield) was isolated by silica gel column chromatography with hexane/EtOAc 90:10 to 50:50.

White solids. ¹**H NMR** (400 MHz, CDCl₃): δ 0.89 (t, J = 6.4 Hz, 3H), 1.20–1.49 (m, 10H), 1.60 (quint, J = 7.2 Hz, 2H), 3.10 (q, J = 6.8 Hz, 2H), 3.71 (br s, 1H), 6.83–6.86 (m, 1H), 7.07 (dd, J = 8.0, 4.4 Hz, 1H), 7.94 (d, J = 4.8 Hz, 1H), 8.02 (d, J = 2.8 Hz, 1H). ¹³C NMR (100.5 MHz, CDCl₃): δ 14.05, 22.60, 27.03, 29.18, 29.33 (1C+1C), 31.74, 43.53, 118.19, 123.62, 135.97, 138.43, 144.35.

N-Octylpyridin-2-amine (3p)⁹

[Scheme 4: 1p (0.25 mmol), 2a (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPE (7.5 mol%), NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] 3p (37.2 mg, 0.180 mmol, 72% yield) was isolated by silica gel column chromatography with hexane/EtOAc 90:10 followed by PTLC with hexane/EtOAc 90:10.

White solids. ¹**H NMR** (400 MHz, CDCl₃): δ 0.88 (t, J = 6.8 Hz, 3H), 1.20–1.44 (m, 10H), 1.60 (quint, J = 7.6 Hz, 2H), 3.23 (q, J = 6.4 Hz, 2H), 4.50 (br s, 1H), 6.36 (d, J = 8.4 Hz, 1H), 6.54 (dd, J = 6.4, 5.2 Hz, 1H), 7.38–7.43 (m, 1H), 8.07 (dd, J = 5.0, 1.0 Hz, 1H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 14.09, 22.62, 27.05, 29.23, 29.34, 29.52, 31.79, 42.27, 106.23, 112.55, 137.34, 148.21, 158.91.

N-Isopentyl-4-methoxyaniline $(3q)^4$

[Scheme 5: 1a (0.25 mmol), 2b (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] 3q (43.4 mg, 0.225 mmol, 90% yield) was isolated by silica gel column chromatography with hexane/EtOAc 95:5 to 85:15.

Yellow oil. ¹**H NMR** (400 MHz, CDCl₃): δ 0.94 (d, J = 6.4 Hz, 6H), 1.50 (q, J = 7.2 Hz, 2H), 1.71 (septet, J = 7.2 Hz, 1H), 3.07 (t, J = 7.6 Hz, 2H), 3.37 (br, 1H), 3.75 (s, 3H), 6.56–6.61 (m, 2H), 6.76–6.80 (m, 2H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 22.60 (2C), 25.96, 38.63, 43.11, 55.75, 113.95 (2C), 114.81 (2C), 142.81, 151.88.

[Scheme 5: **1a** (0.25 mmol), **2c** (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] **3r** (45.2 mg, 0.199 mmol, 80% yield) was isolated by silica gel column chromatography with hexane/EtOAc 90:10.

Brown oil. ¹**H NMR** (400 MHz, CDCl₃): δ 2.92 (t, *J* = 7.2 Hz, 2H), 3.36 (t, *J* = 7.2 Hz, 2H), 3.75 (s + br, 3H+1H), 6.60–6.64 (m, 2H), 6.77–6.81 (m, 2H), 7.21–7.26 (m, 3H), 7.30–7.34 (m, 2H). ¹³C NMR (100.5 MHz, CDCl₃): δ 35.39, 46.18, 55.70, 114.58 (2C), 114.83 (2C), 126.33, 128.53 (2C), 128.74 (2C), 139.25, 141.76, 152.30.

N-Benzyl-4-methoxyaniline (3s)¹³

[Scheme 5: 1a (0.25 mmol), 2d (0.75 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.75 mmol), toluene (1 mL), 120 °C, 20 h] 3s (48.3 mg, 0.226 mmol, 91% yield) was isolated by silica gel column chromatography with hexane/EtOAc 95:5 to 85:15.

Yellow oil. ¹**H NMR** (400 MHz, CDCl₃): δ 3.74 (s, 3H), 3.78 (br s, 1H), 4.28 (s, 2H), 6.59–6.63 (m, 2H), 6.76–6.80 (m, 2H), 7.26–7.29 (m, 1H), 7.32–7.39 (m, 4H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 49.14, 55.72, 114.01 (2C), 114.81 (2C), 127.10, 127.49 (2C), 128.53 (2C), 139.61, 142.38, 152.08.

N-Ethyl-4-methoxyaniline (3t)¹⁴

[Scheme 5: 1a (0.25 mmol), $2e \cdot HCl$ (0.75 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (1.5 mmol), CPME (1 mL), 120 °C, 20 h] 3t (29.2 mg, 0.193 mmol, 77% yield) was isolated by silica gel column chromatography with hexane/EtOAc 95:5 to 85:15.

Yellow oil. ¹**H NMR** (400 MHz, CDCl₃): δ 1.24 (t, J = 6.8 Hz, 3H), 3.11 (q, J = 7.6 Hz, 2H), 3.31 (br, 1H), 3.75 (s, 3H), 6.57–6.61 (m, 2H), 6.77–6.81 (m, 2H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 14.95, 39.43, 55.77, 114.09 (2C), 114.81 (2C), 142.65, 152.00.

N-(2,2-Diethoxyethyl)-4-methoxyaniline (3u)¹⁵

[Scheme 5: **1a** (0.25 mmol), **2f** (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaO*t*Bu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] **3u** (45.3 mg, 0.189 mmol, 76% yield) was

isolated by silica gel column chromatography with hexane/EtOAc 70:30.

Yellow oil. ¹**H NMR** (400 MHz, CDCl₃): δ 1.24 (t, J = 6.8 Hz, 6H), 3.21 (d, J = 5.6 Hz, 2H), 3.53–3.61 (m, 2H), 3.64 (br s, 1H), 3.69–3.77 (m, 5H), 4.68 (t, J = 5.6 Hz, 1H), 6.60–6.64 (m, 2H), 6.76–6.80 (m, 2H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 15.34 (2C), 47.30, 55.68, 62.31 (2C), 100.95, 114.43 (2C), 114.77 (2C), 142.05, 152.23.

4-Methoxy-*N*-(2-morpholinoethyl)aniline (3v)¹⁶

[Scheme 5: **1a** (0.25 mmol), **2g** (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] **3v** (27.0 mg, 0.114 mmol, 46% yield) was isolated by silica gel column chromatography with hexane/EtOAc 50:50 to 0:100

Pale yellow solids. ¹H NMR (400 MHz, CDCl₃): δ 2.47 (br m, 4H), 2.63 (t, J = 6.0 Hz, 2H), 3.13 (t, J = 6.0 Hz, 2H), 3.72 (t, J = 4.4 Hz, 4H), 3.75 (s, 3H), 6.61–6.63 (m, 2H), 6.78–6.80 (m, 2H) (NH proton is missing). ¹³C NMR (100.5 MHz, CDCl₃): δ 40.87, 53.33 (2C), 55.77, 57.22, 66.92 (2C), 114.17 (2C), 114.81 (2C), 142.68, 152.08.

N-Cyclohexyl-4-methoxyaniline (3w)⁴

[Scheme 5: 1a (0.25 mmol), 2h (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] 3w (40.8 mg, 0.199 mmol, 80% yield) was isolated by silica gel column chromatography with hexane/EtOAc 95:5 to 85:15.

Yellow oil. ¹**H NMR** (400 MHz, CDCl₃): δ 1.09–1.14 (m, 2H), 1.15–1.28 (m, 1H), 1.29–1.41 (m, 2H), 1.61–1.67 (m, 1H), 1.72–1.77 (m, 2H), 2.02–2.06 (m, 2H), 3.13–3.24 (m, 2H), 3.74 (s, 3H), 6.55–6.59 (m, 2H), 6.75–6.79 (m, 2H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 25.04 (2C), 25.93, 33.57 (2C), 52.71, 55.75, 114.74 (2C), 114.82 (2C), 141.55, 151.75.

N-Benzhydryl-4-methoxyaniline (3x)⁴

[Scheme 5: 1a (0.25 mmol), 2i (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] 3x (56.5 mg, 0.195 mmol, 78% yield) was isolated by silica gel column chromatography with hexane/EtOAc 99:1 to 90:10.

Yellow oil. ¹**H NMR** (400 MHz, CDCl₃): δ 3.71 (s, 3H), 4.00 (br s, 1H), 5.42 (s, 1H), 6.49– 6.52 (m, 2H), 6.69–6.72 (m, 2H), 7.23–7.27 (m, 2H), 7.29–7.40 (m, 8H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 55.63, 63.75, 114.54 (2C), 114.64 (2C), 127.23 (2C), 127.35 (4C), 128.66 (4C), 141.61, 143.14 (2C), 152.04.

N-(4-Methoxyphenyl)adamantan-1-amine (3y)⁴

[Scheme 5: **1a** (0.25 mmol), **2j** (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.375 mmol), *o*-xylene (1 mL), 140 °C, 20 h] **3y** (11.3 mg, 0.044 mmol, 18% yield) was isolated by silica gel column chromatography with hexane/EtOAc 70:30.

White solids. ¹**H** NMR (400 MHz, CDCl₃): δ 1.63 (q, J = 12.4 Hz, 6H), 1.74 (d, J = 2.4 Hz, 6H), 2.08 (br s, 3H), 3.77 (s, 3H), 6.74–6.78 (m, 2H), 6.81–6.84 (m, 2H). ¹³C NMR (100.5 MHz, CDCl₃): δ 29.67 (3C), 36.42 (3C), 43.68 (3C), 52.60, 55.43, 113.78 (2C), 124.35 (2C), 138.20, 154.79.

4-Methoxy-*N*-phenylaniline (3z)¹⁷

[Scheme 5: 1a (0.25 mmol), 2k (0.75 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.75 mmol), toluene (1 mL), 120 °C, 20 h] 3z (44.6 mg, 0.224 mmol, 90% yield) was isolated by silica gel column chromatography with hexane/EtOAc 95:5 to 85:15.

White solids. ¹H NMR (400 MHz, CDCl₃): δ 3.80 (s, 3H), 5.49 (br s, 1H), 6.81–6.92 (m, 5H), 7.06–7.10 (m, 2H), 7.18–7.24 (m, 2H). ¹³C NMR (100.5 MHz, CDCl₃): δ 55.51, 114.59 (2C), 115.55 (2C), 119.49, 122.14 (2C), 129.26 (2C), 135.63, 145.09, 155.18.

Bis(4-methoxyphenyl)amine (3aa)¹⁸

[Scheme 5: **1a** (0.25 mmol), **2l** (0.75 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.75 mmol), toluene (1 mL), 120 °C, 20 h] **3aa** (48.5 mg, 0.212 mmol, 85% yield) was isolated by silica gel column chromatography with hexane/EtOAc 90:10 to 80:20.

Yellow solids. ¹**H NMR** (400 MHz, CDCl₃): δ 3.78 (s, 6H), 5.28 (br s, 1H), 6.80–6.84 (m, 4H), 6.92–6.96 (m, 4H). ¹³C NMR (100.5 MHz, CDCl₃): δ 55.58 (2C), 114.63 (4C), 119.45 (4C), 137.86 (2C), 154.14 (2C).

N-(4-Methoxyphenyl)-2,6-dimethylaniline (3ab)¹⁹

[Scheme 5: **1a** (0.25 mmol), **2m** (0.75 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.75 mmol), toluene (1 mL), 120 °C, 20 h] **3ab** (32.4 mg, 0.143 mmol, 57% yield) was isolated by silica gel column chromatography with hexane/EtOAc 95:5 to 85:15.

Brown solids. ¹H NMR (400 MHz, CDCl₃): δ 2.19 (s, 6H), 3.74 (s, 3H), 5.02 (br s, 1H), 6.42–6.54 (m, 2H), 6.73–6.77 (m, 2H), 7.02–7.05 (m, 1H), 7.10 (d, J = 7.2 Hz, 2H). ¹³C NMR (100.5 MHz, CDCl₃): 18.35 (2C), 55.64, 114.63 (2C), 115.22 (2C), 124.97 (2C), 128.54 (2C), 134.83, 139.19, 140.03, 152.66.

4-((3*S*,4*R*)-3-((Benzo[*d*][1,3]dioxol-5-yloxy)methyl)-1-(4-methoxybenzyl)piperidin-4-yl)-*N*-octy laniline (3ac)

[Scheme 6: **1q** (0.25 mmol), **2a** (0.75 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.75 mmol), *m*-xylene (1 mL), 140 °C, 20 h] **3ac** (131.2 mg, 0.234 mmol, 94% yield) was isolated by silica gel column chromatography with hexane/EtOAc 80:20 to 60:40.

Colorless oil. ¹**H** NMR (400 MHz, CDCl₃): δ 0.88 (t, J = 6.4 Hz, 3H), 1.22–1.42 (m, 10H), 1.58 (quint, J = 6.8 Hz, 2H), 1.72–1.88 (m, 2H), 2.00 (t, J = 11.2 Hz, 2H), 2.15–2.24 (m, 1H), 2.30 (td, J = 11.6, 4.4 Hz, 1H), 2.94 (br d, J = 11.2 Hz, 1H), 3.04 (t, J = 7.2 Hz, 2H), 3.25 (br d, J = 10.2 Hz, 1H), 3.43–3.47 (br m, 2H+1H), 3.56–3.61 (m, 2H), 3.79 (s, 3H), 5.84 (s, 2H), 6.11 (dd, J = 8.4, 2.4 Hz, 1H), 6.34 (d, J = 2.4 Hz, 1H), 6.52 (d, J = 8.4 Hz, 2H), 6.60 (d, J = 8.8 Hz, 1H), 6.86 (d, J = 8.4 Hz, 2H), 6.99 (d, J = 8.8 Hz, 2H), 7.25 (d, J = 8.8 Hz, 2H). ¹³C NMR (100.5 MHz, CDCl₃): 14.05, 22.59, 27.12, 29.18, 29.34, 29.56, 31.75, 34.34, 41.99, 43.87, 44.08, 53.76, 55.13, 57.69, 62.77, 69.88, 97.96, 100.88, 105.56, 107.68, 112.76 (2C), 113.43 (2C), 128.09 (2C), 130.17, 130.38 (2C), 132.50, 141.23 147.00, 147.94, 154.48, 158.55. IR (ATR): 2925, 2855, 1614, 1512, 1502, 1487, 1466, 1243, 1180, 1037, 816, 753, 733 cm⁻¹. FD-HRMS (m/z): [M]⁺ calcd for C₃₅H₄₆N₂O₄, 558.34576; found, 558.34764. [α] p^{24} –47.55 (c = 1.08, CHCl₃).

4-((3*S*,4*R*)-3-((Benzo[*d*][1,3]dioxol-5-yloxy)methyl)-1-(4-methoxybenzyl)piperidin-4-yl)-*N*-phe nylaniline (3ad)

[Scheme 6: 1q (0.25 mmol), 2k (0.75 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.75 mmol), *m*-xylene (1 mL), 140 °C, 20 h] 3ad (121.4 mg, 0.232 mmol, 93% yield) was isolated by silica gel column chromatography with hexane/EtOAc 80:20 to 50:50.

Pale yellow solids. M.p. 42.4–44.5 °C. ¹H NMR (400 MHz, CDCl₃): δ 1.74–1.91 (m, 2H),

1.95–2.09 (m, 2H), 2.14–2.26 (m, 1H), 2.37 (td, J = 11.2, 4.4 Hz, 1H), 2.96 (br d, J = 10.8 Hz, 1H), 3.25 (br d, J = 9.2 Hz, 1H), 3.42–3.50 (m, 2H), 3.52–3.63 (m, 2H), 3.77 (s, 3H), 5.67 (s, 1H), 5.82 (s, 2H), 6.11 (dd, J = 8.8, 2.4 Hz, 1H), 6.34 (d, J = 2.4 Hz, 1H), 6.59 (d, J = 8.0 Hz, 1H), 6.85–6.90 (m, 3H), 6.94–7.04 (m, 4H), 7.06 (d, J = 8.4 Hz, 2H), 7.18–7.28 (m, 4H). ¹³C NMR (100.5 MHz, CDCl₃): 34.22, 41.91, 44.03, 53.66, 55.11, 57.54, 62.71, 69.74, 97.90, 100.89, 105.51, 107.70, 113.45 (2C), 117.29 (2C), 118.08 (2C), 120.51, 128.17 (2C), 129.18 (2C), 130.10, 130.37 (2C), 136.70, 141.27 (1C + 1C), 143.24, 147.96, 154.40, 158.55. IR (ATR): 3397, 2915, 1597, 1512, 1499, 1487, 1466, 1313, 1242, 1178, 1036, 908, 815, 747, 729 cm⁻¹. FD-HRMS (m/z): [M+H]⁺ calcd for C₃₃H₃₄N₂O₄ 522.25186; found, 522.25338. [α] $_{0}^{26}$ –67.42 (c = 1.00, CHCl₃).

Trans,trans-4-(4-N-octylaminophenyl)-4'-propylbicyclohexyl (3ae)

[Scheme 6: 1r (0.25 mmol), 2a (0.375 mmol), [Ni(cod)₂] (5 mol%), DCYPBz (7.5 mol%), NaOtBu (0.375 mmol), toluene (1 mL), 120 °C, 20 h] 3ae (94.0 mg, 0.228 mmol, 91% yield) was isolated by silica gel column chromatography with hexane/EtOAc 99.5:0.5 to 99:1.

White solids. **M.p.** 146.7–149.1 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 0.79–0.90 (m, 8H), 0.91– 1.20 (m, 9H), 1.21–1.50 (m, 14H), 1.59 (t, *J* = 6.8 Hz, 2H), 1.69–1.94 (m, 8H), 2.33 (br t, *J* = 11.6 Hz, 1H), 3.06 (t, *J* = 7.6 Hz, 2H), 3.33 (br, 1H), 6.53 (d, *J* = 7.6 Hz, 2H), 7.01 (d, *J* = 8.0 Hz, 2H). ¹³**C NMR** (100.5 MHz, CDCl₃): δ 14.09, 14.43, 20.04, 22.65, 27.20, 29.28, 29.43, 29.66, 30.10 (2C), 30.45 (2C), 31.83, 33.62 (2C), 34.88 (2C), 37.63, 39.84, 42.94, 43.45, 43.67, 44.25, 112.64 (2C), 127.38 (2C), 136.65, 146.57. **IR** (ATR): 2914, 2846, 1615, 1519, 1313, 1186, 815, 721 cm⁻¹. **EI-HRMS** (*m/z*): [M]⁺ calcd for C₂₉H₄₉N, 411.38650; found, 411.38639.

Trans,trans-4-(4-N-phenylaminophenyl)-4'-propylbicyclohexyl (3af)

[Scheme 6: 1r (0.25 mmol), 2k (0.75 mmol), $[Ni(cod)_2] (5 \text{ mol}\%)$, DCYPBz (7.5 mol%), NaOtBu (0.75 mmol), toluene (1 mL), 120 °C, 20 h] **3af** (80.2 mg, 0.213 mmol, 85% yield) was isolated by silica gel column chromatography with hexane/EtOAc 99.5:0.5 to 99:1.

White solids. **M.p.** 130.9–133.2 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 0.82–0.91 (m, 5H), 0.95– 1.08 (m, 3H), 1.09–1.21 (m, 6H), 1.26–1.44 (m, 4H), 1.72–1.78 (m, 4H), 1.80–1.87 (m, 2H), 1.91 (br d, *J* = 12.4 Hz, 2H), 2.40 (tt, *J* = 11.6, 3.2 Hz, 1H), 5.62 (s, 1H), 6.88 (t, *J* = 7.2 Hz, 1H), 7.01– 7.03 (m, 4H), 7.11 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 7.2 Hz, 2H). ¹³**C NMR** (100.5 MHz, CDCl₃): 14.43, 20.04, 30.08 (2C), 30.38 (2C), 33.60 (2C), 34.73 (2C), 37.61, 39.82, 42.90, 43.41, 43.91, 116.96 (2C), 118.49 (2C), 120.28, 127.53 (2C), 129.25 (2C), 140.56, 141.07, 143.74. **IR** (ATR): 2913, 2847, 1597, 1513, 1177, 1029, 934, 746 cm⁻¹. **EI-HRMS** (m/z): [M]⁺ calcd for C₂₇H₃₇N 375.29260; found, 375.29226.

7. References

- (*a*) K. Motokura, D. Kashiwame, N. Takahashi, A. Miyaji and T. Baba, *Chem. Eur. J.*, 2013, 19, 10030–10037; (*b*) R. Takise, K. Muto, J. Yamaguchi and K. Itami, *Angew. Chem., Int. Ed.*, 2014, 53, 6791–6794.
- M. J. Overett, K. Blann, A. Bollmann, R. de Villiers, J. T. Dixon, E. Killian, M. C. Maumela, H. Maumela, D. S. McGuinness, D. H. Morgan, A. Rucklidge and A. M. Z. Slawin, *J. Mol. Catal. A: Chem.*, 2008, 283, 114–119.
- 3 F. A. Hart, J. Chem. Soc., 1960, 3324–3328.
- 4 T. Iwai, T. Harada, H. Shimada, K. Asano and M. Sawamura, *ACS Catal.*, 2017, **7**, 1681–1692.
- 5 T. Niwa, H. Ochiai, Y. Watanabe and T. Hosoya, J. Am. Chem. Soc., 2015, **137**, 14313–14318.
- 6 X.-W. Liu, J. Echavarren, C. Zarate and R. Martin, J. Am. Chem. Soc., 2015, 137, 12470– 12473.
- 7 J. M. A. Miguez, L. A. Adrio, A Sousa-Pedrares, J. M. Vila and K. K. Hii, J. Org. Chem., 2007, 72, 7771–7774.
- 8 J. A. Greenberg and T. Sammakia, J. Org. Chem., 2017, 82, 3245–3251.
- 9 T. Ogata and J. F. Hartwig, J. Am. Chem. Soc., 2008, 130, 13848–13849.
- Z. Chen, H. Zeng, S. A. Girard, F. Wang, N. Chen and C.-J. Li, *Angew. Chem.*, *Int. Ed.*, 2015, 54, 14487–14491.
- 11 H.-Y. Kuo, B.-S. Liao and S.-T. Liu, Synthesis, 2013, 45, 189–192.
- 12 C. M. Lavoie, P. M. MacQueen, N. L. Rotta-Loria, R. S. Sawatzky, A. Borzenko, A. J. Chisholm, B. K. V. Hargreaves, R. McDonald, M. J. Ferguson and M. Stradiotto, *Nature Commun.*, 2016, 7, 11073.
- 13 B. P. Fors, N. R. Davis and S. L. Buchwald, J. Am. Chem. Soc., 2009, 131, 5766–5768.
- 14 J. R. Cabrero-Antonino, E. Alberico, K. Junge, H. Jungea and M. Beller, *Chem. Sci.*, 2016, 7, 3432–3442.
- 15 M.-Q. Jia and S.-L. You, *Chem. Commun.*, 2012, **48**, 6363–6365.
- 16 J. P. Wolfe, H. Tomori, J. P. Sadighi, J. Yin and S. L. Buchwald, J. Org. Chem., 2000, 65, 1158–1174.
- S. S. Kampmann, A. N. Sobolev, G. A. Koutsantonis and S. G. Stewart, *Adv. Synth. Catal.*, 2014, 356, 1967–1973.
- 18 L. L. Hill, L. R. Moore, R. Huang, R. Craciun, A. J. Vincent, D. A. Dixon, J. Chou, C. J. Woltermann and K. H. Shaughnessy, J. Org. Chem., 2006, 71, 5117–5125.
- 19 C. Desmarets, R. Schneider and Y. Fort, J. Org. Chem., 2002, 67, 3029–3036.

¹H NMR spectrum of DCYPBz in CDCl₃

¹³C NMR spectrum of DCYPBz in CDCl₃

 ^{31}P NMR spectrum of DCYPBz in CDCl_3

¹H NMR spectrum of **1q** in CDCl₃

 ^{13}C NMR spectrum of 1q in CDCl_3

¹H NMR spectrum of 3a in CDCl₃

¹³C NMR spectrum of **3a** in CDCl₃

¹H NMR spectrum of $\mathbf{3b}$ in CDCl₃

 ^{13}C NMR spectrum of 3b in CDCl_3

¹H NMR spectrum of 3c in CDCl₃

¹³C NMR spectrum of **3c** in CDCl₃

 1 H NMR spectrum of **3d** in CDCl₃

 ^{13}C NMR spectrum of 3d in CDCl_3

¹H NMR spectrum of **3e** in CDCl₃

¹³C NMR spectrum of **3e** in CDCl₃

¹H NMR spectrum of **3f** in CDCl₃

¹³C NMR spectrum of **3f** in CDCl₃

¹H NMR spectrum of 3g in CDCl₃

¹³C NMR spectrum of **3g** in CDCl₃

¹H NMR spectrum of **3h** in CDCl₃

¹³C NMR spectrum of **3h** in CDCl₃

¹H NMR spectrum of **3h'** in CDCl₃

¹³C NMR spectrum of **3h'** in CDCl₃

¹H NMR spectrum of **3j** in CDCl₃

¹³C NMR spectrum of **3j** in CDCl₃

¹H NMR spectrum of 3k in CDCl₃

¹³C NMR spectrum of **3k** in CDCl₃

X : ppm : Proton

 1 H NMR spectrum of **3l** in CDCl₃

¹³C NMR spectrum of **31** in CDCl₃

¹H NMR spectrum of **3m** in CDCl₃

 ^{13}C NMR spectrum of 3m in CDCl₃

¹H NMR spectrum of **3n** in CDCl₃

 13 C NMR spectrum of **3n** in CDCl₃

¹H NMR spectrum of 30 in CDCl₃

¹³C NMR spectrum of **30** in CDCl₃

¹H NMR spectrum of **3p** in CDCl₃

¹³C NMR spectrum of **3p** in CDCl₃

¹H NMR spectrum of 3q in CDCl₃

 ^{13}C NMR spectrum of 3q in CDCl_3

¹H NMR spectrum of **3r** in CDCl₃

 13 C NMR spectrum of **3r** in CDCl₃

¹H NMR spectrum of **3s** in CDCl₃

 ^{13}C NMR spectrum of 3s in CDCl₃

¹H NMR spectrum of **3t** in CDCl₃

 13 C NMR spectrum of **3t** in CDCl₃

¹H NMR spectrum of 3u in CDCl₃

 ^{13}C NMR spectrum of 3u in CDCl_3

¹H NMR spectrum of 3v in CDCl₃

¹³C NMR spectrum of **3v** in CDCl₃

¹H NMR spectrum of $\mathbf{3w}$ in CDCl₃

 13 C NMR spectrum of **3w** in CDCl₃

¹H NMR spectrum of 3x in CDCl₃

¹³C NMR spectrum of **3x** in CDCl₃

¹H NMR spectrum of 3y in CDCl₃

¹³C NMR spectrum of **3y** in CDCl₃

¹H NMR spectrum of 3z in CDCl₃

¹³C NMR spectrum of **3z** in CDCl₃

¹H NMR spectrum of **3aa** in CDCl₃

¹³C NMR spectrum of **3aa** in CDCl₃

¹H NMR spectrum of **3ab** in CDCl₃

¹³C NMR spectrum of **3ab** in CDCl₃

X : ppm : Proton

¹H NMR spectrum of **3ac** in CDCl₃

¹³C NMR spectrum of **3ac** in CDCl₃

X : ppm : Proton

 1 H NMR spectrum of **3ad** in CDCl₃

¹³C NMR spectrum of **3ad** in CDCl₃

¹H NMR spectrum of **3ae** in CDCl₃

 ^{13}C NMR spectrum of **3ae** in CDCl₃

¹H NMR spectrum of **3af** in CDCl₃

 ^{13}C NMR spectrum of 3af in CDCl_3