## "Bleaching" glycerol in a microfluidic fuel cell to produce

## high power density at minimal cost

Cauê A. Martins,\*ab Omar A. Ibrahima, Pei Peia and Erik Kjeanga

<sup>a</sup> Fuel Cell Research Lab (FCReL), School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC, Canada.

<sup>b</sup> Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, 79804-970, Dourados, MS, Brazil.

\* Corresponding Author. Phone: +55 67 3410-2100

e-mail: cauealvesmartins@gmail.com, cauemartins@ufgd.edu.br

| Author              | Category              | Electrode     | Fabrication | Additional | Fuel   | Oxidant               | Flow rate   | Peak      | Peak               | Open    | Maximum                |
|---------------------|-----------------------|---------------|-------------|------------|--------|-----------------------|-------------|-----------|--------------------|---------|------------------------|
| (Year)              |                       | type          |             | features   |        |                       |             | potential | power              | circuit | current                |
| [Reference]         |                       |               |             |            |        |                       |             | (mV)      | density            | voltage | density                |
|                     |                       |               |             |            |        |                       |             |           | (mW                | (mV)    | (mA cm <sup>-2</sup> ) |
|                     |                       |               |             |            |        |                       |             |           | cm <sup>-2</sup> ) |         |                        |
| Arjona              | Liquid/liquid         | Flow-by       | Multi-layer |            | EgOH 2 | Dissolved             | 183         | 210       | 1.6                | 0.53 V  | 6.3                    |
| (2014) <sup>1</sup> |                       |               |             |            | M in   | $O_2$ in 0.3          | (anolyte);  |           |                    |         |                        |
|                     |                       |               |             |            | 0.3 M  | М КОН                 | 50          |           |                    |         |                        |
|                     |                       |               |             |            | КОН    |                       | (catholyte) |           |                    |         |                        |
| Maya-               | Liquid/liquid+gaseous | Flow-through  | Multi-layer | Cu@Pd      | MeOH   | Dissolved             | 200         |           | 17.1               | 610     | 100                    |
| Cornejo             |                       | & flow-       |             | (anode)    | 0.1 M  | O <sub>2</sub> in 0.3 | (anolyte);  |           |                    |         |                        |
| (2015) <sup>2</sup> |                       | through + air |             |            | in 0.3 | M KOH +               | 200         |           |                    |         |                        |
|                     |                       | breathing     |             |            | М КОН  | air                   | (catholyte) |           |                    |         |                        |
| Maya-               | Liquid/liquid+gaseous | Flow-through  | Multi-layer | Cu@Pd      | EtOH   | Dissolved             | 100         |           | 25.75              | 670     | 153.70                 |
| Cornejo             |                       | & flow-       |             | (anode)    | 0.1 M  | O <sub>2</sub> in 0.3 | (anolyte);  |           |                    |         |                        |
| (2015) <sup>2</sup> |                       | through + air |             |            | in 0.3 | M KOH +               | 50          |           |                    |         |                        |
|                     |                       | breathing     |             |            | М КОН  | air                   | (catholyte) |           |                    |         |                        |
| Maya-               | Liquid/liquid+gaseous | Flow-through  | Multi-layer | Cu@Pd      | EgOH   | Dissolved             | 50          |           | 19.95              | 653     | 142.55                 |
| Cornejo             |                       | & flow-       |             | (anode)    | 0.1 M  | O <sub>2</sub> in 0.3 | (anolyte);  |           |                    |         |                        |
| (2015) <sup>2</sup> |                       | through + air |             |            | in 0.3 | M KOH +               | 100         |           |                    |         |                        |
|                     |                       | breathing     |             |            | М КОН  | air                   | (catholyte) |           |                    |         |                        |

**Table S1.** Performance comparison of alcohol fed microfluidic fuel cells.

| Maya-                   | Liquid/liquid+gaseous | Flow-through  | Multi-layer | Cu@Pd/C                      | GIOH      | Dissolved             | 100               |     | 20.43 | 622  | 111.95 |
|-------------------------|-----------------------|---------------|-------------|------------------------------|-----------|-----------------------|-------------------|-----|-------|------|--------|
| Cornejo                 |                       | & flow-       |             | (anode)                      | 0.1 M     | O <sub>2</sub> in 0.3 | (anolyte);        |     |       |      |        |
| (2015) <sup>2</sup>     |                       | through + air |             |                              | in 0.3    | M KOH +               | 66.7              |     |       |      |        |
|                         |                       | breathing     |             |                              | М КОН     | air                   | (catholyte)       |     |       |      |        |
| Maya-                   | Liquid/liquid+gaseous | Flow-through  | Multi-layer | Cu@Pt/C                      | GIOH      | Dissolved             | 33.4              | 370 | 23.16 | 791  | 104.10 |
| Cornejo                 |                       | & flow-       |             | (anode); Pt/C                | 5% in     | O <sub>2</sub> in 0.3 |                   |     |       |      |        |
| (2016) <sup>3</sup>     |                       | through + air |             | (cathode)                    | 0.3 M     | M KOH +               |                   |     |       |      |        |
|                         |                       | breathing     |             |                              | КОН       | air                   |                   |     |       |      |        |
| Dector                  | Liquid/liquid+gaseous | Flow-by       | Multi-layer | Pd/MWCNTs                    | GIOH      | Dissolved             | 333.3             |     | 0.70  | 550  | 5      |
| (2013) 4                |                       |               |             | (anode); Pt/C                | 0.1 M     | O <sub>2</sub> in 0.3 | (anolyte);        |     |       |      |        |
|                         |                       |               |             | (cathode)                    | in 0.3    | M KOH +               | 1666.7            |     |       |      |        |
|                         |                       |               |             |                              | М КОН     | air                   | (catholyte)       |     |       |      |        |
| Hollinger               | Liquid/gaseous        | Flow-by       | Multi-layer | Pt/Ru//C                     | 1 M       | O <sub>2</sub>        | 300               |     | 10.9  | ~700 | ~100   |
| (2013) 5                |                       |               |             | (anode); Pt/C                | MeOH      |                       |                   |     |       |      |        |
|                         |                       |               |             | (cathode)                    | in 1 M    |                       |                   |     |       |      |        |
|                         |                       |               |             |                              | $H_2SO_4$ |                       |                   |     |       |      |        |
| Miao (2017)             | Liquid/liquid         | Microtubular  | Monolithic  | $TiO_2$ -Pt-RuO <sub>2</sub> | MeOH      | Dissolved             | 0.16              | 275 | 257   | 620  | 936    |
| 6                       |                       |               |             | (anode); Pt                  | 2 M in    | O <sub>2</sub> in 0.5 |                   |     |       |      |        |
|                         |                       |               |             | (cathode)                    | 0.5 M     | $M H_2SO_4$           |                   |     |       |      |        |
|                         |                       |               |             |                              | $H_2SO_4$ |                       |                   |     |       |      |        |
| Xin (2012) <sup>7</sup> | Liquid/gaseous        | AEM           |             | Au/C (anode);                | GIOH      | O <sub>2</sub>        | 4 10 <sup>5</sup> |     | 57.9  | 670  | ~400   |
|                         |                       |               |             | 80 °C                        | 1M in     |                       |                   |     |       |      |        |
|                         |                       |               |             |                              | 2M        |                       |                   |     |       |      |        |

|                        |                |              |            |             | КОН   |                              |                                   |     |       |      |       |
|------------------------|----------------|--------------|------------|-------------|-------|------------------------------|-----------------------------------|-----|-------|------|-------|
| Benipal                | Liquid/gaseous | AEM          |            | PdAg/CNT    | GIOH  | O <sub>2</sub>               | 4 10 <sup>3</sup>                 |     | 277.7 | 880  | ~900  |
| (2017) <sup>8</sup>    |                |              |            | (anode); 80 | 1M in |                              | (anolyte); 2                      |     |       |      |       |
|                        |                |              |            | °C          | 6 M   |                              | 10 <sup>5</sup> (O <sub>2</sub> ) |     |       |      |       |
|                        |                |              |            |             | КОН   |                              |                                   |     |       |      |       |
| Qi (2013) <sup>9</sup> | Liquid/gaseous | AEM          |            | PtCo/CNT    | GIOH  | O <sub>2</sub>               | 4 10 <sup>3</sup>                 |     | 268.5 | 860  | ~1500 |
|                        |                |              |            | (anode); 80 | 3M in |                              |                                   |     |       |      |       |
|                        |                |              |            | °C          | 6 M   |                              |                                   |     |       |      |       |
|                        |                |              |            |             | КОН   |                              |                                   |     |       |      |       |
| This work              | Liquid/Liquid  | Flow-through | Monolithic | Pt/C        | GIOH  | Bleach in                    | 100                               | 362 | 71.2  | 1000 | 337.3 |
|                        |                |              |            |             | 1M in | 2 М КОН                      |                                   |     |       |      |       |
|                        |                |              |            |             | 1M    |                              |                                   |     |       |      |       |
|                        |                |              |            |             | КОН   |                              |                                   |     |       |      |       |
| This work              | Liquid/Liquid  | Flow-through | Monolithic | Pt/C; mixed | GIOH  | Bleach in                    | 100                               | 814 | 315.3 | 1970 | 637.8 |
|                        |                |              |            | media       | 1M in | $1 \text{ M H}_2\text{SO}_4$ |                                   |     |       |      |       |
|                        |                |              |            |             | 1M    |                              |                                   |     |       |      |       |
|                        |                |              |            |             | КОН   |                              |                                   |     |       |      |       |



**Figure S1**. Representative transmission electron microscopy image of Pt/C nanoparticles.



**Figure S2**. Power density performance of the most active glycerol microfluidic fuel cells ( $\mu$ DGFC), alcohol fed microfluidic fuel cell ( $\mu$ DMFC), glycerol fuel cells (DGFC), and the present work (blue and red bars).



**Figure S3**. Successive power density curves for the GIOH/Bleach microfluidic fuel cell in (a) all-alkaline and (b) mixed media with Pt/C/CP as anode and cathode. Polarization curves were measured with 1 M glycerol in 1 M KOH as anolyte and bleach in 2 M KOH (all-alkaline) or 1 M H<sub>2</sub>SO<sub>4</sub> (mixed media) as catholyte. All solutions were N<sub>2</sub>-saturated and supplied at a flow rate of 100  $\mu$ L min<sup>-1</sup>.

## REFERNCES

- 1 N. Arjona, A. Palacios, A. Moreno-Zuria, M. Guerra-Balcázar, J. Ledesma-García and L. G. Arriaga, *Chem. Commun.*, 2014, **50**, 8151–8153.
- 2 J. Maya-Cornejo, E. Ortiz-Ortega, L. Álvarez-Contreras, N. Arjona, M. Guerra-Balcázar, J. Ledesma-García and L. G. Arriaga, *Chem. Commun.*, 2015, **51**, 2536–2539.
- 3 J. Maya-Cornejo, M. Guerra-Balcázar, N. Arjona, L. Álvarez-Contreras, F. J. Rodríguez Valadez, M. P. Gurrola, J. Ledesma-García and L. G. Arriaga, *Fuel*, 2016, **183**, 195–205.
- 4 A. Dector, F. M. Cuevas-Muñiz, M. Guerra-Balcázar, L. A. Godínez, J. Ledesma-García and L. G. Arriaga, *Int. J. Hydrog. Energy*, 2013, **38**, 12617–12622.
- 5 A. S. Hollinger and P. J. A. Kenis, *J. Power Sources*, 2013, **240**, 486–493.
- 6 S. Miao, S. He, M. Liang, G. Lin, B. Cai and O. G. Schmidt, Adv. Mater., 2017, 29, n/a-n/a.
- 7 Z. Zhang, L. Xin and W. Li, Int. J. Hydrog. Energy, 2012, 37, 9393–9401.
- 8 N. Benipal, J. Qi, J. C. Gentile and W. Li, *Renew. Energy*, 2017, **105**, 647–655.
- 9 J. Qi, L. Xin, Z. Zhang, K. Sun, H. He, F. Wang, D. Chadderdon, Y. Qiu, C. Liang and W. Li, *Green Chem.*, 2013, **15**, 1133–1137.