Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Use of Azido Naphthalimide Carboxylic Acids as Fluorescent Template with Built-in Photo-reactive Group and Flexible Linker Simplifies Protein Labeling Study: Applications in Selective Tagging of HCAII and Penicillin Binding Proteins

Monisha Singha,^{*a+} Sayantani Roy,^b Subhendu Sekhar Bag,^c Prabuddha Bhattacharya,^a Satya Deo Pandey,^d Mainak Das,^a Anindya Sundar Ghosh,^d Debashis Ray^a and Amit Basak^{*a+}

^aDepartment of Chemistry, ^bSchool of Bioscience, ^dDepartment of Biotechnology, Indian Institute of Technology Kharagpur 721 302, India, ^cDepartment of Chemistry, Indian Institute of Technology Guwahati 781039 India

*Corresponding authors

⁺singhamonishachem@iitkgp.ac.in; absk@chem.iitkgp.ernet.in

Table of Contents

•	Experimental section	S2-S9
•	Determination of IC ₅₀ values	S10
•	SDS-PAGE Gel Experiments	S11-S-15
•	MALDI Mass Spectra	S16
•	Docking information	S17-S31
•	NMR spectra	\$32-\$55
•	HPLC data	\$56-\$57
•	Reference	S58

Experimental Section

General

All the reactions under inert atmosphere were conducted with oven-dried glassware with anhydrous solvents dried using standard methods and purified by distillation prior to use. All common reagents were of commercial grade unless otherwise specified. Silica gel 60–120 mesh was used for column chromatography. Thin layer chromatography (TLC) was performed on aluminium-backed plates coated with Silica gel 60. Locally available Ultra violet light chamber was used as the TLC spot indicator. All new compounds were characterized using proton (¹H) nuclear magnetic resonance (NMR), ¹³C NMR spectroscopy. The NMR spectra were recorded using Bruker 400 MHz and 600 MHz spectrometer. Proton and carbon spectra were referenced internally to solvent signals, using values of $\delta = 2.50$ for proton and $\delta = 39.52$ for carbon (middle peak) in DMSO-d₆ and of $\delta = 7.26$ for proton and $\delta = 77.16$ for carbon (middle peak) in chloroform-d and of $\delta = 2.05$ for proton and $\delta = 206.26$, 29.84 for carbon (middle peak) in acetone-d₆. The following abbreviations have been used for NMR peak assignments: s = singlet, bs = broad singlet, d = doublet, t = triplet, p = pentet, m = multiplet, dd = double of doublet.

Preparation of 4-azido-1,8-naphthalic anhydride

To a solution of 4-bromo-1,8-naphthalic anhydride (1.08 mmol) in DMF (7 mL) a solution of sodium azide (0.106 g, 1.624 mmol) in water (0.5 mL) was added at room temperature. The mixture was stirred vigorously for 12 h at room temperature and the solution was poured into ice water (80 mL). The yellow precipitate was filtered to get the compound **3** (0.232 g, 90 % yield). ¹H NMR (400 MHz, CDCl₃) δ = 8.66 (d, *J* = 7.2 Hz, 1H), 8.60 (d, *J* = 8.0 Hz, 1H), 8.55 (d, *J* = 8.4 Hz, 1H), 7.81 (t, *J* = 7.9 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 1H).¹

General method for the preparation of carboxylic acid derivatives of 4-azido-1,8naphthalimide

To a solution of 4-azido-1,8-naphthalic anhydride (0.05 g, 0.2 mmol) in dry ethanol (7 mL) DMAP (0.002 g, 0.02 mmol) was added and stirred for 10 min. Corresponding amino acids (**6a-6i**) (0.272 mmol) were added to the reaction mixture and refluxed for 12 h. After cooling the precipitated yellow solids were separated from the solution, washed with cold ethanol and were

air dried to furnish the azidonaphthalimide carboxylic acids **4a-4i**. The compounds were reprecipitated from DCM-hexane mixture and washed with hexane to get carboxylic acid **4a-4i** as yellow solid.

Glycine naphthalimide (4a): Yellow solid (0.047 g, 80%); mp 130-132 °C; ¹H NMR (400 MHz, Acetone-d₆) δ 8.59 (d, *J* = 7.3 Hz, 1H), 8.55 (d, *J* = 8.0 Hz, 1H), 8.48 (d, *J* = 8.4 Hz, 1H), 7.88 (t, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 4.88 (s, 2H); ¹³C NMR (100 MHz, Acetone-d₆) δ 169.5, 164.0, 163.5, 144.6, 132.8, 132.7, 129.9, 129.7, 128.0, 125.1, 123.1, 119.2, 116.4, 41.6. HRMS: Calcd. for C₁₄H₈N₄O₄Na (M+Na)⁺ 319.0443, found 319.0443.

β-alanine naphthalimide (4b): Yellow solid (0.050 g, 81%); mp 164-165 °C (dec); ¹H NMR (400 MHz, DMSO-d₆) δ 8.53 (d, J = 7.3 Hz, 1H), 8.48 (d, J = 8.0 Hz, 1H), 8.43 (d, J = 8.4 Hz, 1H), 7.87 (t, J = 7.9 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 4.24 (t, J = 7.8 Hz, 2H), 2.58 (t, J = 7.8 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 172.5, 163.0, 162.5, 142.7, 131.4, 131.3, 128.2, 128.1, 127.1, 123.3, 121.9, 117.9, 115.8, 35.8, 32.3. HRMS: Calcd. for C₁₅H₁₀N₄O₄Na (M+Na)⁺ 333.0600, found 333.0602.¹

GABA naphthalimide (4c): Yellow solid (0.052 g, 80%); mp 145-147 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 12.02 (s, 1H), 8.54 (d, *J* = 7.3 Hz, 1H), 8.49 (d, *J* = 8.0 Hz, 1H), 8.44 (d, *J* = 8.4 Hz, 1H), 7.88 (t, *J* = 7.9 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 4.08 (t, *J* = 6.8 Hz, 2H), 2.30 (t, *J* = 7.3 Hz, 2H), 1.88 (p, *J* = 6.9, 2H);¹³C NMR (150 MHz, DMSO-d₆) δ 173.9, 163.2, 162.8, 142.6, 131.4, 131.3, 128.2, 128.1, 127.1, 123.4, 122.1, 118.1, 115.8, 31.3, 23.0. HRMS: Calcd. for C₁₆H₁₂N₄O₄Na (M+Na)⁺ 347.0756, found 347.0759.

Valeric naphthalimide (4d): Yellow solid (0.055 g, 82%); mp 150-151 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 12.02 (s, 1H), 8.55 (d, *J* = 7.2 Hz, 1H), 8.50 (d, *J* = 8.0 Hz, 1H) 8.42 (d, *J* = 8.3 Hz, 1H), 7.87 (t, *J* = 7.8 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 4.03 (t, *J* = 6.8 Hz, 2H), 2.27 (t, *J* = 7.0 Hz, 2H), 1.69-1.51 (m, 4H); ¹³C NMR (100 MHz, DMSO-d₆) δ 174.3, 163.3, 162.8, 142.9, 131.6, 131.6, 128.4, 128.3, 127.3, 123.6, 122.2, 118.2, 116.0, 33.3, 27.1, 22.0. HRMS: Calcd. for C₁₇H₁₄N₄O₄Na (M+Na)⁺ 361.0913, found 361.0913.

Caproic naphthalimide (4e): Yellow solid (0.057 g, 82%); mp 128-129 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 11.99 (s, 1H), 8.36 (d, J = 7.2 Hz, 1H), 8.27 (d, J = 8.0 Hz, 1H), 8.21 (d, J = 8.3 Hz, 1H), 7.72 (t, J = 7.8 Hz, 1H), 7.56 (d, J = 7.9 Hz, 1H), 3.94 (t, J = 7.1 Hz, 2H), 2.22 (t, J = 7.2 Hz, 2H), 1.63 – 1.51 (m, 4H), 1.37 – 1.29 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ

174.4, 163.0, 162.5, 142.5, 131.4, 131.3, 128.1, 128.0, 127.1, 123.3, 121.9, 117.9, 115.7, 33.5, 27.2, 26.0, 24.2. HRMS: Calcd. for C₁₈H₁₆N₄O₄Na (M+Na)⁺ 375.1069, found 375.1069.

L-Leucine naphthalimide (4f): Yellow solid (0.058 g, 82%); mp 149-150 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, *J* = 7.2 Hz, 1H), 8.57 (d, *J* = 7.9 Hz, 1H), 8.44 (d, *J* = 8.4 Hz, 1H), 7.73 (t, *J* = 7.8 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 5.81 (dd, *J* = 8.9, 5.0 Hz, 1H), 2.25-2.18 (m,1H), 2.11 – 2.04 (m, 1H), 1.62-1.52 (m, 1H), 0.99 (d, *J* = 6.5 Hz, 3H), 0.91 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 163.8, 163.3, 144.0, 132.9, 132.4, 129.5, 129.3, 127.1, 124.5, 122.3, 118.5, 114.9, 51.9, 38.1, 25.5, 23.2, 22.2. HRMS: Calcd. for C₁₈H₁₆N₄O₄Na (M+Na)⁺ 375.1069, found 375.1069.

L-Valine naphthalimide (4g): Yellow solid (0.055 g, 82%); mp 112-114 °C (dec); ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, *J* = 7.2 Hz, 1H), 8.59 (d, *J* = 8.0 Hz, 1H), 8.47 (d, *J* = 8.3 Hz, 1H), 7.76 (t, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 5.40 (d, *J* = 9.2 Hz, 1H), 2.84 (m, 1H), 1.29 (d, *J* = 6.4 Hz, 3H), 0.79 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.4, 164.0, 163.5, 144.2, 133.0, 132.6, 129.5, 129.4, 127.1, 124.5, 122.1, 118.3, 114.9, 58.6, 27.6, 22.2, 19.2. HRMS: Calcd. for C₁₇H₁₄N₄O₄Na (M+Na)⁺ 361.0913, found 361.0913.

L-Serine naphthalimide (4h): Yellow solid (0.052 g, 80%); mp 124-125 °C; ¹H NMR (400 MHz, Acetone-d₆) δ 8.62-8.54 (complex m, 2H), 8.47 (d, *J* = 8.5 Hz, 1H), 7.88 (t, *J* = 7.8 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 5.90 (dd, *J* = 8.6, 5.4 Hz, 1H), 4.35 (dd, *J* = 11.6, 5.4 Hz, 1H), 4.26 (dd, *J* = 11.6, 8.6 Hz, 1H);¹³C NMR (100 MHz, DMSO-d₆) δ 170.0, 163.2, 162.7, 143.1, 131.9, 131.8, 128.6, 128.5, 127.4, 123.5, 122.1, 118.1, 116.1, 58.6, 55.4. HRMS: Calcd. for C₁₅H₁₀N₄O₅Na (M+Na)⁺ 349.0549, found 349.0549.

L-Phenylalanine naphthalimide (4i): Yellow solid (0.061 g, 80%); mp 80-81 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.54 (d, *J* = 7.0 Hz, 1H), 8.48 (d, *J* = 8.0 Hz, 1H), 8.39 (d, *J* = 7.8 Hz, 1H), 7.68 (t, *J* = 7.8 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.18 (d, *J* = 7.3 Hz, 2H), 7.11 (t, *J* = 7.4 Hz, 2H), 7.05 (t, *J* = 7.2 Hz, 1H), 6.06 (dd, *J* = 9.6, 5.7 Hz, 1H), 3.68 (dd, *J* = 14.3, 5.7 Hz, 1H), 3.47 (dd, *J* = 14.3, 9.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 174.9, 163.6, 163.1, 144.0, 137.3, 132.8, 132.3, 129.4, 129.3, 128.4, 127.0, 126.7, 124.5, 122.1, 118.3, 114.9, 54.3, 34.9. HRMS: Calcd. for C₂₁H₁₄N₄O₄Na (M+Na)⁺ 409.0913, found 409.0914.

Preparation of 2-bromo-N-(4-sulfamoyl-phenyl)-acetamide (7)

At 0 °C, to a solution of sulfanilamide (0.35 g, 2.03 mmol) in dry THF (10 mL), K₂CO₃ (0.561g, 4.06 mmol) was added. Bromoacetyl chloride (0.2 mL, 2.44 mmol) was added dropwise to the reaction mixture and was stirred for 30 mins at 0°C. Water was added and the mixture was extracted with EtOAc (50 mL × 2), washed with brine, dried over Na₂SO₄ and concentrated *in vacuo* to get the product as white crystalline solid. ¹H NMR (400 MHz, DMSO-d₆) δ 10.72 (s, 1H), 7.79 (d, *J* = 8.8 Hz, 2H), 7.74 (d, *J* = 8.8 Hz, 2H), 7.29 (s, 2H), 4.08 (s, 2H). ¹³C NMR (150 MHz, DMSO-d₆) δ 171.5, 141.5, 138.5, 126.5, 119.2, 61.9. HRMS: Calcd. for C₈H₉N₂O₃SBrNa (M+Na)⁺ 314.9415, found 314.9416.

General method for the preparation of the sulfonamides 1a-1i

To a solution of azidonaphthalimide carboxylic acids **4a-4i** (0.15 mmol) in dry DMF (5 mL) under N₂, anhydrous K₂CO₃ (0.025 g, 0.18 mmol) was added and stirred for 30 mins at room temperature. A solution of 2-bromo-N-(4-sulfamoyl-phenyl)-acetamide (0.053 g, 0.18 mmol) in dry DMF (2 mL) was added and stirring was continued for 10 h at room temperature. The reaction was quenched by adding water (30 mL) and the aqueous layer was extracted with EtOAc (30 mL x 2). The combined organic layers was washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. For compounds **1a-1g**, the yellowish brown gummy product was first precipitated from acetone-hexane mixture to get dark yellow solid which was washed with DCM to furnish the target materials as bright yellow solids. Further purification was done by washing with hexane. For compounds **1h-1i**, the yellowish brown gummy product was precipitated from acetone-hexane to get dark yellow solid. The final purification was done by column chromatography (DCM/MeOH=7:0.5) followed by washing of the yellow solid with hexane. The spectral and other details are mentioned below:

Glycine sulfonamide 1a: Yellow solid (0.062 g, 82%); mp 150-151 °C; R_f0.50 (DCM/MeOH) (7:0.5); ¹H NMR (600 MHz, DMSO-d₆) δ 10.45 (s, 1H), 8.58 (d, *J* = 7.3 Hz, 1H), 8.53 (d, *J* = 8.0 Hz, 1H), 8.49 (d, *J* = 7.5 Hz, 1H), 7.91 (t, *J* = 7.8 Hz, 1H), 7.80 – 7.73 (m, 7H), 7.26 (s, 2H), 4.98 (s, 2H), 4.83 (s, 2H). ¹³C NMR (150 MHz, DMSO) δ 167.8, 165.4, 162.9, 162.4, 143.6, 141.2, 138.8, 132.1, 132.1, 129.1, 128.4, 127.5, 126.7, 123.7, 121.5, 118.9, 117.4, 116.2, 63.2,

40.9. IR (KBr, cm⁻¹) 3358, 2926, 2854, 2130, 1702, 1654, 1592, 1382, 1320, 1158, 838, 782. HRMS: Calcd for C₂₂H₁₆N₆O₇SNa (M+Na)⁺ 531.0699, found 531.0699.

β-alanine sulfonamide 1b: Yellow solid (0.064 g, 82%); mp 176-178 °C (dec); R_f 0.49 (DCM/MeOH) (7:0.5); ¹H NMR (600 MHz, DMSO-d₆) δ 10.40 (s, 1H), 8.54 (d, J = 6.4 Hz, 1H), 8.48 (d, J = 8.0 Hz, 1H), 8.44 (d, J = 8.4 Hz, 1H), 7.87 (m, 1H), 7.75 (dd, J = 8.4, 3.7 Hz, 3H), 7.65 (d, J = 8.8 Hz, 2H), 7.27 (s, 2H), 4.71 (s, 2H), 4.34 (t, J = 7.6 Hz, 2H), 2.84 (t, J = 7.6 Hz, 2H).¹³C NMR (150 MHz, DMSO-d₆) δ 170.6, 165.8, 163.2, 162.8, 143.0, 141.2, 138.7, 131.6, 131.6, 128.5, 128.4, 127.3, 126.7, 126.7, 123.6, 122.2, 118.8, 118.2, 116.0, 62.8, 35.6, 31.8; IR (KBr, cm⁻¹) 3332, 2926, 2372, 2128, 1658, 1592, 1358, 1302, 1156, 836, 782. HRMS: Calcd for C₂₃H₁₉N₆O₇S (M+H)⁺ 523.1036, found 523.1032.

GABA sulfonamide 1c: Yellow solid (0.068 g, 84%); mp 150-152 °C ; R_f 0.49 (DCM/MeOH) (7:0.5); ¹H NMR (600 MHz, DMSO-d₆) δ 10.35 (s, 1H), 8.52 (d, J = 6.4 Hz, 1H), 8.46 (d, J = 7.9 Hz, 1H), 8.41 (d, J = 7.6 Hz, 1H), 7.87 – 7.84 (m, 1H), 7.77 (m, 4H), 7.69 (d, J = 8.8 Hz, 1H), 7.25 (s, 2H), 4.65 (s, 2H), 4.11 (t, J = 6.9 Hz, 2H), 2.54 (t, J = 7.4 Hz, 2H), 2.00 – 1.95 (m, 2H).¹³C NMR (150 MHz, DMSO-d₆) δ 172.1, 165.9, 163.4, 163.0, 142.8, 141.2, 138.7, 131.6, 131.5, 128.4, 128.3, 127.2, 126.8, 126.7, 123.5, 122.2, 118.8, 115.9, 62.4, 30.9, 22.9; IR (KBr, cm⁻¹) 3337, 2125, 1676, 1593, 1353, 1158, 1098, 840, 783. HRMS: Calcd for C₂₄H₂₀N₆O₇SNa (M+Na)⁺ 559.1012, found 559.1011.

Valeric sulfonamide 1d: Yellow solid (0.069 g, 84%); mp 160-163 °C; R_f 0.48 (DCM/MeOH) (7:0.5); ¹H NMR (400 MHz, DMSO-d₆) δ 10.43 (s, 1H), 8.51 (d, *J* = 7.2 Hz, 1H), 8.46 (d, *J* = 8.0 Hz, 1H), 8.40 (d, *J* = 8.5 Hz, 1H), 7.85 (t, *J* = 7.2 Hz, 1H), 7.76-7.68 (m, 5H), 7.28 (s, 2H), 4.68 (s, 2H), 4.05 (t, *J* = 6.8 Hz, 2H), 2.50-2.47 (m, 2H), 1.74-1.61 (m, 4H). ¹³C NMR (150 MHz, DMSO-d₆) δ 172.4, 166.0, 163.3, 162.8, 142.8, 141.3, 138.6, 131.6, 131.5, 128.4, 128.3, 127.3, 126.7, 123.5, 122.1, 118.8, 118.2, 116.0, 62.4, 32.8, 27.0, 21.9. IR (KBr, cm⁻¹) 3334, 3250, 2129, 1740, 1684, 1648, 1618, 1595, 1388, 1347, 1285, 1158, 842, 785. HRMS: Calcd for C₂₅H₂₂N₆O₇SNa (M+Na)⁺ 573.1168, found 573.1168.

Caproic sulfonamide 1e: Yellow solid (0.069 g, 82%); mp 146-148 °C; R_f 0.43(DCM/MeOH) (7:0.5); ¹H NMR (400 MHz, DMSO-d₆) δ 10.43 (s, 1H), 8.55 (d, *J* = 7.2 Hz, 1H), 8.50 (d, *J* = 8.0 Hz, 1H), 8.44 (d, *J* = 8.3 Hz, 1H), 7.87 (t, *J* = 7.2 Hz 1H), 7.78 – 7.68 (m, 5H), 7.28 (s, 2H), 4.68

(s, 2H), 4.04 (t, J = 7.3 Hz, 2H), 2.44 (t, J = 7.3 Hz, 2H), 1.69 – 1.60 (m, 4H), 1.44 – 1.35 (m, 2H). ¹³C NMR (150 MHz, DMSO-d₆) δ 172.5, 166.0, 163.2, 162.8, 142.8, 141.3, 138.6, 131.6, 131.5, 128.3, 127.3, 126.8, 126.7, 123.5, 122.2, 118.8, 118.2, 115.9, 62.3, 33.0, 27.1, 25.8, 24.1. IR (KBr, cm⁻¹) 3351, 2936, 2128, 1696, 1654, 1593, 1355, 1240, 1158, 784. HRMS: Calcd for C₂₆H₂₄N₆O₇SNa (M+Na)⁺ 587.1325, found 587.1325.

Leucine sulfonamide 1f: Yellow solid (0.068 g, 81%); mp 160-162 °C; R_f 0.43, (DCM/MeOH) (7:0.5); ¹H NMR (600 MHz, DMSO-d₆) δ 10.29 (s, 1H), 8.59 (d, J = 7.2 Hz, 1H), 8.54 (d, J = 8.0 Hz, 1H), 8.48 (d, J = 8.4 Hz, 1H), 7.87 (t, J = 9 Hz, 1H), 7.77 (dd, J = 15.8, 8.4 Hz, 3H), 7.67 (d, J = 8.8 Hz, 2H), 7.25 (s, 2H), 5.81 (dd, J = 8.9, 5.0 Hz, 1H), 4.76, 4.70 (ABq, $J_{AB} = 14.4$ Hz, 2H), 2.16 – 2.12 (m, 1H), 2.05-2.00 (m, 1H), 1.59 – 1.53 (m, 1H), 0.96 (d, J = 6.5 Hz, 3H), 0.88 (d, J = 6.6 Hz, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ 169.6, 165.6, 163.1, 162.6, 143.7, 141.1, 138.7, 132.4, 132.3, 129.1, 128.5, 127.5, 126.7, 123.6, 121.5, 118.8, 117.4, 116.2, 63.2, 51.1, 37.5, 24.7, 22.9, 21.9. IR (KBr, cm⁻¹) 3319, 2959, 2125, 1758, 1677, 1654, 1589, 1534, 1380, 1342, 1163, 786. HRMS: Calcd for C₂₆H₂₅N₆O₇S (M+H)⁺ 565.1505, found 565.1504.

Valine sulfonamide 1g: Yellow solid (0.069 g, 84%); mp 127-128 °C; R_f 0.47 (DCM/MeOH) (7:0.5); ¹H NMR (600 MHz, DMSO-d₆) δ 10.28 (s, 1H), 8.60 (d, J = 7.2 Hz, 1H), 8.55 (d, J = 8.0 Hz, 1H), 8.52 (d, J = 8.4 Hz, 1H), 7.92 (t, J = 7.8 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.7 Hz, 2H), 7.64 (d, J = 8.7 Hz, 2H), 7.25 (s, 2H), 5.40 (d, J = 9.1 Hz, 1H), 4.74, 4.66 (ABq, $J_{AB} = 14.7, 2$ H), 2.75-2.69 (m, 1H), 1.24 (d, J = 6.5 Hz, 3H), 0.75 (d, J = 6.9 Hz, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ 168.8, 165.6, 163.2, 162.8, 143.8, 141.1, 138.7, 132.6, 132.5, 129.2, 128.5, 127.6, 126.7, 123.6, 121.2, 118.7, 117.1, 116.3, 63.1, 57.6, 27.1, 21.7, 18.7. IR (KBr, cm⁻¹) 3344, 2126, 1654, 1589, 1380, 1289, 1246, 1161, 840, 784. HRMS: Calcd for C₂₅H₂₂N₆O₇SNa (M+Na)⁺ 573.1168, found 573.1167.

Serine sulfonamide 1h: Yellow solid (0.057 g, 71%); mp 130-131 °C; R_f 0.32 (DCM/MeOH) (7:0.5); ¹H NMR (600 MHz, DMSO-d₆) δ 10.28 (s, 1H), 8.59 (d, *J* = 7.3 Hz, 1H), 8.54 (d, *J* = 8.0 Hz, 1H), 8.51 (d, *J* = 8.4 Hz, 1H), 7.92 (t, *J* = 7.9 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 8.8 Hz, 2H), 7.69 (d, *J* = 8.8 Hz, 2H), 7.25 (s, 2H), 5.91 (dd, *J* = 9.0, 5.1 Hz, 1H), 5.02 (t, *J* = 6.5 Hz, 1H), 4.76, 4.72 (ABq, *J*_{AB}= 15 Hz, 2H), 4.19 – 4.15 (m, 1H), 4.12 – 4.07 (m, 1H). ¹³C

NMR (100 MHz, DMSO-d₆) δ 168.0, 165.6, 163.3, 162.8, 143.6, 141.2, 138.8, 132.2, 132.2, 129.0, 128.6, 127.5, 126.8, 123.6, 121.8, 118.8, 117.7, 116.2, 63.1, 58.1, 54.7. IR (KBr, cm⁻¹) 3349, 2127, 1696, 1586, 1380, 1281, 1257, 1157, 835, 782. HRMS: Calcd for C₂₃H₁₈N₆O₈SNa (M+Na)⁺ 561.0805, found 561.0806.

Phenylalanine sulfonamide 1i: Yellow solid (0.065 g, 72%); mp 101-103 °C; R_f 0.22 (DCM/MeOH) (7:0.5); ¹H NMR (600 MHz, DMSO-d₆) δ 10.42 (s, 1H), 8.52 (d, J = 7.2 Hz, 1H), 8.47 (t, J = 9.2 Hz, 2H) 7.90 – 7.85 (m, 3H), 7.81 – 7.74 (m, 4H), 7.27 (s, 2H), 7.16 (d, J = 7.3 Hz, 2H), 7.11 (t, J = 7.4 Hz, 2H), 7.06 (t, J = 7.2 Hz, 1H), 6.10 (dd, J = 9.6, 5.7 Hz, 1H), 4.81, 4.74 (ABq, J_{AB} = 14.7,2H), 3.63 (dd, J =14.1, 5.7 Hz, 1H), 3.39 (dd, J =14.0, 9.6 Hz, 1H). ¹³C NMR (150 MHz, DMSO-d₆) δ 169.0, 168.1, 165.7, 162.8, 143.8, 141.3, 138.8, 137.1, 132.2, 129.1, 129.0, 128.5, 128.2, 128.1, 127.5, 126.8, 126.4, 123.6, 121.2, 119.1, 118.8, 117.0, 116.3, 63.4, 55.8, 34.1. IR (KBr, cm⁻¹) 3251, 2127, 1690, 1590, 1539, 1333, 1157, 839, 777. MS: Calcd for C₂₉H₂₂N₄O₅H (M-SO₂-N₂)⁺ 507.1, found 507.0.

Preparation of the NHS ester (5)

To a solution of NHS (0.016 mg, 0.05 mmol) in dry EtOAc (4 mL) compound 4c (0.007 mg, 0.06 mmol) was added under inert atmosphere. To this solution EDC.HCl (0.012 mg, 0.06 mmol) was added and was stirred for 12 h at room temperature. The reaction was quenched by adding water (30 mL) and the organic layer was extracted with EtOAc (30 mL×2). The organic layer was dried over Na₂SO₄ and was concentrated *in vacuo* to get the compound 5.

NHS ester 5: Yellow solid (0.020g, 80%) ¹H NMR (600 MHz, Chloroform-*d*) δ 8.64 (dd, J = 7.2, 1.2 Hz, 1H), 8.59 (d, J = 8.0 Hz, 1H), 8.45 (dd, J = 8.5, 1.2 Hz, 1H), 7.75 (dd, J = 8.5, 7.3 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 4.30 (t, J = 7.1 Hz, 2H), 2.81 (bs, 4H), 2.77 (t, J = 7.7 Hz, 2H), 2.21 (p, J = 7.4 Hz, 2H);¹³C NMR (150 MHz, CDCl₃) δ 169.2, 168.2, 164.2, 163.8, 143.9, 132.7, 132.2, 129.5, 129.2, 127.1, 124.6, 122.7, 118.9, 114.9, 39.4, 29.1, 25.8, 23.4. HRMS: Calcd. for C₂₀H₁₅N₅O₆Na (M+Na)⁺ 444.0918, found 444.0919.

Preparation of the compound 1j

To a solution of ampicillin (0.024 g, 0.07 mmol) in dry DMF (4 mL) DIEA (1 drop) was added at 0 °C under stirring condition. The NHS ester **5** (0.019 g, 0.04 mmol) in DMF (1 mL) was

added dropwise to the reaction mixture and stirred for 12 h at room temperature. The reaction was quenched by adding 10% citric acid aq. and the mixture was extracted with EtOAc. The organic layer was washed with 10% citric acid aq. And water, then was dried over Na₂SO₄ and was concentrated *in vacuo*. The crude product was purified by precipitating from EtOAc-hexane layer. Isolated as a yellow solid (0.034 g, 75%); mp 200-202 °C (dec); R_f 0.3 (DCM/MeOH) (7:0.5); ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.01 (d, *J* = 8.0 Hz, 1H), 8.54 (d, *J* = 7.2 Hz, 1H), 8.51 – 8.49 (m, 2H), 8.45 (d, *J* = 8.4 Hz, 1H), 7.88 (t, *J* = 7.8 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 7.5 Hz, 2H), 7.34 – 7.28 (m, 2H), 7.27 (d, *J* = 7.2 Hz, 1H), 5.68 (d, *J* = 8.1 Hz, 1H), 5.47 (dd, *J* = 7.9, 4.0 Hz, 1H), 5.36 (d, *J* = 4.1 Hz, 1H), 4.13 (s, 1H), 4.07 (t, *J* = 7.1 Hz, 2H), 2.31 (t, *J* = 7.8 Hz, 2H), 1.91-1.86 (m, 2H), 1.51 (s, 3H), 1.38 (s, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 172.9, 171.2, 169.9, 168.8, 163.1, 162.7, 142.7, 137.9, 131.5, 131.4, 128.3, 128.2, 127.9, 127.3, 127.1, 126.9, 123.4, 122.1, 118.1, 115.8, 66.9, 63.7, 57.8, 55.3, 32.6, 30.5, 26.6, 23.8. IR (KBr, cm⁻¹) 3422, 2366, 2124, 1649, 1356.Calcd for C₃₂H₂₉N₇O₇SNa (M+Na)⁺ 678.1741, found 678.1746.

Determination of IC₅₀ Values

Figure S1: Representative picture of Inhibition profile: IC_{50} determination of compound 1c by using 2 mM PNPA (p-nitrophenyl acetate) as the substrate and 14 μ M HCA II (working concentration). Absorbance was measured at 405 nm on a microplate spectrophotometer. 50 mM HEPES (pH 7.2) was used for the measurements.

Entry	Name of Inhibitory Compounds	IC ₅₀ (μM)
1	1a Gly	1.6
2	1b β-Ala	1.5
3	1c GABA	1.3
4	1d Valeric	1.2
5	1e Caproic	1.3
6	1g Valine	2.0
7	1i Phe	9.2

Table S1: IC₅₀ values of the sulfonamides (The α -amino acids used had L-configuration)

SDS-PAGE Gel Experiments

HCA II Cross-linking experiment with α-amino acid based capture compounds (1a, 1f-1i)

Figure S2: Gel pictures and relative cross-linking efficiencies of α -amino acid based sulfonamides: (a) Lanes 1–5: Irradiation of a 50 µL mixture with HCA II (20 µM) with compounds **1A**, **1I**, **1F**, **1H**, **1G** respectively (all at 20 µM) and lane 6: irradiation of a 50 µL mixture of HCA II (20 µM) in DMSO (2%) as the control. (b) Image analysis of **Figure 4a**.

• Demonstration of requirement of UV for cross-linking

(-) = No UV irradiation, (+) = UV irradiation

Figure S3: Gel pictures of cross-linking efficiencies of amino acid based sulfonamides with or without UV irradiation: (a) Lanes 1–4: No UV irradiation was applied to a 50 μ L mixture with HCA II (20 μ M) with compound **1a** and **1d** respectively (lanes 1, 3: 20 μ M and lanes 2, 4: 10 μ M) and lanes 5-9: UV irradiation was applied to a 50 μ L mixture of HCA II with compound **1a** and **1d** respectively (lanes 5, 7: 20 μ M and lanes 6, 8: 10 μ M) and lane 9: UV irradiated mixture of HCA II in DMSO (2%) as the control.

• Efficiency of Gaba-sulfonamide (1c) at different protein concentration

Figure S4: Results of Gel electrophoresis analysis of 1C (20 µM) at different protein concentrations

• Efficiency of Gaba-sulfonamide (1c) at different compound concentration

Figure S5: Results of Gel electrophoresis analysis of 1C at different concentrations with constant HCAII concentration $10 \,\mu M$

• Crosslinking of compound 1I with PBP5 and comparison with commercially available Bocillin FL

Figure S6: Gel pictures and relative cross-linking efficiencies with penicillin binding protein (EC sPBP5). (a) Lanes 1–3: Irradiation of a 25 μ L mixture with EC sPBP5 (20 μ M) with compound **1j** (10, 20, 40 μ M respectively) and irradiation of a 25 μ L mixture of EC sPBP5 (20 μ M) either in DMSO (2%) (lane 4) or Bocillin (70 μ M) (lane 5) as the controls. (b) Image analysis of **Figure 10a**. The reaction was done in 10 mM Tris-HCl at pH 7.8.

• Cross-linking of membrane protein lysate from E. coli (uninduced)

Figure S7: Results of Gel electrophoresis analysis of uninduced membrane lysate of *E. Coli* (A) Typhoon scanned (B) Coomassie stained.

• Cross-linking of membrane protein lysate from E. coli (induced)

Figure S8: Results of Gel electrophoresis analysis of PBP5 over expressed membrane lysate of *E. Coli* (**A**) Typhoon scanned (**B**) Coomassie stained.

Capture experiment protocol

The HCA II concentration was kept at 40 μ M for initial experiment with **1b** and the total volume was made up to 50 μ L with buffer (50 mM HEPES; pH 7.2). HCA II and capture compound (**1b**: 40, 20, 10 μ M) in DMSO were mixed by vortexing followed by centrifugation. For all comparison experiments of **1a-1c** (10 μ M), **1c-1e** (20, 10 mM respectively) and **1a**, **1f-1i** (10 μ M) the HCA II was kept constant at 20 μ M concentration. The compounds were incubated with proteins for 15 min at room temperature, and then photo-irradiated (UV $\lambda \ge 254$ nm, 15 watts each x 5 bulbs, 15 pulses, using auto cross-linking mode and has a duration of 120 s) in a 96 well plate followed by SDS-PAGE and trypsin digestion for mass spectrometric analysis.

The experiment was repeated with cell lysates of *E. coli* where the selective capturing of HCA II was clearly apparent by PAGE. For cell lysate preparation, 10 mL of induced, lag phase BL21(DE3) pLysS cells carrying plasmid pACA/HCA II were resuspended in 1 mL of buffer (50 mM Tris; pH 8.0, 50 mM NaCl, 10 mM EDTA, 1 mM dithiothreitol, 1 mM phenyl methane sulfonyl fluoride, 0.2 mM ZnSO₄), sonicated and centrifuged at 10 000 rpm for 10 minutes. 10 μ L the supernatant (cell lysate) thus obtained was mixed with each of the 100, 50 and 25 \Box M capture compounds and the total volume was made up to 50 μ L with buffer (50 mM HEPES; pH 7.2).

SDS-polyacrylamide gel electrophoresis

For SDS-polyacrylamide gel analysis, the samples were mixed with $6\times$ Laemmli buffer (1× buffer composition was 63 mMTris-HCl (pH 6.8), 2% SDS, 10% glycerol, 0.1% 2-mercaptoethanol and 0.01% bromophenol blue) (U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, *Nature*, 1970, 227, 680–685) and kept at 95 °C for 5 min. A 20 µL sample from each mixture was loaded in each well of 12% discontinuous SDS-PAGE (Mini-PROTEAN 3, Multi casting chamber, BioRad Instruments). The electrophoresis was performed under denaturing conditions. The stacking and resolving gels were composed of 5% (w/v) and 12% (w/v) acrylamide with Tris (pH 6.8 and pH 8.8)

respectively, and 0.1% SDS. The composition of the electrophoresis buffer was 0.025 M Tris, 0.2 M glycine, pH 8.3 and 0.1% SDS. An electric potential of 160 volts was applied to run the gel until the bromophenol blue dye reached the end of the resolving gel. The gel was visualized under UV light in a UVP gel documentation system. The position of the fluorescent bands was confirmed by staining the gels with 0.1% (w/v) Coomassie Brilliant Blue R-250 in 50% (v/v) methanol and 10% (v/v) acetic acid and destained with methanol/acetic acid.

Expression, purification and compound 1j binding analysis of soluble penicillin-binding protein 5 (sPBP5)

The sPBP5 from *Escherichia coli* was expressed and purified by essentially following the method as described earlier.² Briefly, the gene for the soluble PBP5 (devoid of signal peptide and partially the membrane anchor) was cloned in pET28a (+) vector (Addgene, Cambridge, MA, USA). Hexa-histidine tagged sPBP5 was expressed in *E. coli* BL21 Star under the control of T7 promoter by inducing with 0.05 mM isopropyl β -D-1-thiogalacto pyranoside (IPTG) and subsequently incubating at 30 °C for 8 h. The protein was purified through Ni-NTA affinity chromatography (QIAGEN GmbH, Hilden, Germany) in presence of 60 and 150 mM imidazole in the following buffer conditions: 10 mMTris-HCl, 300 mM NaCl, pH 7.8. The protein concentration was estimated by Bradford assay before performing the binding reaction.

The binding assays were performed with purified protein (20 μ M) and the test compound **1j** (10, 20 and 40 μ M) in total reaction volume of 25 μ l. After incubating for 15 min at room temperature (25 °C), the reaction mixtures were subjected to crosslink under Ultra Violet Crosslinker for 30 min. For each set of experiment, Bocillin-FL (Thermo Fischer Scientific, Waltham, MA, USA) was used as positive control while the protein in DMSO was used as negative control. The cross-linked proteins in the reaction mixtures were denatured and subjected to 12% Sodium Dodecyl Sulphate Poly Acrylamide Gel Electrophoresis (SDS-PAGE) to study the nature of binding. The sPBP5 bound with **1j** was assessed by scanning the gel using Typhoon FLA 7000 scanner at an excitation wavelength of 488 nm and an emission wavelength of 526 nm²⁵ and the protein bands in the gel were visualized by staining with Coomassie brilliant blue.

Membrane isolation from *E. coli* cells

The membrane proteins were isolated from *E. coli* BL21 (DE3) cells. The cells were grown in 200 ml of LB broth at 37 °C and 180 rpm agitation. The cells were harvested at $OD_{600} \sim 1.0$ and pellets were washed twice with 10 mM Tris-buffer pH 7.8 before sonication. The bulk debris of sonicated cells were removed by spinning at 10,000 rpm for 2 min at 4 °C in the Oakridge tube. The supernatant was further centrifuged at 20,000 rpm for 1 h at 4 °C and pellet (membrane proteins) was dissolved in 100 µl of above buffer. The compound, 1j was allowed to bind with 300 µg of membrane protein in 30 µl of reaction volume. After 30 min of UV crossliniking the reaction mix was treated with 1% sarcosyl and incubated at 37 °C and 200 rpm shaking. The reaction mixture was centrifuged for 20,000 rpm for 1 h at 4 °C. The clear supernatant was collected and mixed with the protein loading dye (denaturing buffer) before resolving in 15% SDS PAGE. Post run, the gel was scanned in Typhoon, stained with coomassie brilliant blue, destained with destaining solution (methanol:glacial acetic acid: water:: 2:1:7) and documented using Gel-doc.

MALDI Mass Spectra

Trypsin digestion and matrix assisted laser desorption ionization spectrometry (MALDI

analysis): This was carried out following the protocol as described by Basak et al.³

Figure S9: A) Reported⁴ fragments from tryptic digest of HCA II; B) MALDI-MS spectra of tryptic digestion HCA II + Capture compound **1c**; C) MS/MS on fragment at m/z 2966; D) MALDI TOF analysis of tryptic digested fragments

Docking Information

The number of distinct conformational clusters from the docking analyses was found to be 5-8 out of 10 runs with rmsd-tolerance of 2.0 Å. The docking poses of each capturing inhibitors, **GABA sulfonamide 1c**, **Valine sulfonamide 1g**, **Glycine sulfonamide 1a** and **Phenylalanine sulfonamide 1i** with HCA II as shown in **Figure 6** in the manuscript revealed binding energies of -7.30, -8.56, -7.63 and -6.42 kcal/mol, respectively.

Figure S10. Docking pose of various sulfonamides with HCA II: (a) Glycine sulfonamide 1a, (b) Gaba sulfonamide 1c, (c) Valine sulfonamide 1g, (d) Phenyl alanine sulfonamide 1i

Capture Compound	Distances
GABA sulfonamide 1c	6.58 Å
Valine sulfonamide 1g	6.72 Å
Glycine sulfonamide 1a	12.87 Å
Phenylalanine sulfonamide 1i	13.19 Å

 Table S2: Distances between amido-N of Q (92 A) in protein and azido-N (directly attached to the aromatic ring) of capture compounds

The capturing inhibitors involved in various types of interactions with HCA II protein as is shown in **Figure 2a-d** below. For the case of capturing inhibitor **GABA sulfonamide 1c**, the residues Leu (60A), Gln (92A), Val (121A) and Leu (198A) of HCA II protein hydrophobically interacted with the ligand. The ligand's carbonyls and amine functionalities are involved in H-bonding interactions with protein's side chain residues, Asn (62A), Hi s(64A), Glu (69A), Ile (91A), Gln (92A) and Thr (199A) (**Figure 2a**).

The side chain amino acids Gln (92A) involved both in hydrophobic and in H-bonding interactions with the capturing inhibitor **Valine sulfonamide 1g**. The Ile (91A), Val (121A/135A), Phe (131A), and Leu (198A) are also involved in hydrophobic interaction. The tetrahedral Zn complexation with three His (64A/96A/119A) and sulphonamido-N unit of the ligand was observed in the complex. The compound **1g** is also surrounded by other side chain residues such as, Asn (62A), His (64A), Phe (70A), Thr (199A) *via* H-bonding interactions. Histidine (94A) is involved in π -cationic interactions with naphthalimido aromatic unit of **Valine sulfonamide 1g**. The carboxylate group of the ligand is involved in salt bridge interaction with His (64A) of the protein (**Figure 2b**).

In case of **Glycine sulfonamide 1a**-HCA II complex, both the His residues of HCAII are engaged in "T"-shaped π -stacking interaction. The stabilization of the complex is also assisted by the hydrophobic interaction among the aromatic moieties of **1a** and the side chain amino acids. The ligand's carbonyls and amine functionalities are involved in H-bonding interactions with protein's side chain residues, Trp (5A), Asn (62A), Val (121A), and Leu (198A) of the HCA II. Further, involvement of H-bonding interactions with Asn (62A), His (64A), Gln (92A), Glu (106A), Lys (170A), Thr (199A/200A) makes the compound **1a** to interact moderately with the protein HCA II (**Figure 2c**).

Among the four capturing inhibitors, the weakest interaction is observed for the case of **Phenylalanine sulfonamide 1i** which might be because of sterically bulky benzyl side chain. In this case, both the hydrophobic and H-bonding interactions with Glu (69A), hydrophobic interactions with Leu (57A), Ile (91), Gln (92A), Phe (131A) and H-bonding interactions with Asn (62A/67A), Thr (200A) played a role for possible interaction (**Figure 2d**).

Figure S11. Various interactions exhibited by the capturing inhibitors-(a) **Gaba sulfonamide 1c**, (b) **Valine sulfonamide 1g**, (c) **Glycine sulfonamide 1a**, (d) **Phenylalanine sulfonamide 1i** with HCA II.

More interestingly, as the capture efficiency rely possibly on the covalent bond formation between nitrene generated from azido functionality from the ligand and the amino acids Q (92/103), S (99/105) and T (108) of the fragment 90-111 from HCA II, we analysed the docked conformations to find out the closeness of these amino acids. Our analysis revealed that none of the ligands are in close proximity or involved in interactions with S or T. However, in all the cases we observed that only Q (92A) side chain residue is involved in interactions and maintain a closeness with the azido functionality allowing us to measure the distance for a comparison. The proximal distance between azido-N directly attached to the aromatic ring and the amido-N of Q (92A) could be a probe for predicting the capturing efficiency of the ligands. Thus, we observed that the distance increases as we move from **GABA sulfonamide 1c** (6.58 Å) to **Phenylalanine sulfonamide 1i** (13.19 Å) through **Valine sulfonamide 1g** (6.72 Å) and **Glycine sulfonamide 1a** (12.87 Å). Thus, the capturing efficiency follows the descending order as **GABA sulfonamide 1c**-Valine sulfonamide1g>Glycine sulfonamide 1a>Phenylalanine sulfonamide 1i corroborating our experimental result of cross linking efficiency.

1. DFT Optimized Geometries, Energy and Cartesian Coordinates of the Synthesized Compounds

The ground state structures of the synthesized inhibitors fluorophores were optimized using density functional theory (DFT) with B3LYP functional and 6-31G (d) basis set with Gaussian 09 program package.⁵ There were no imaginary frequencies observed in frequency analysis for all the calculated structures; therefore, each calculated structure was a local energy minimum.

25	1	0	-5.406732	0.486582	1.475606	25	8	0	2.430149	1.291029	2.671888
26	1	0	-8.196987	-3.729413	-1.486695	26	6	0	0.422554	1.331427	-0.534880
27	1	0	-7.824123	-3.936875	0.148619	27	8	0	-0.320657	2.106939	-1.360997
28	1	0	-3.519146	4.397157	-0.322157	28	8	0	0.253506	0.138512	-0.423011
29	1	Ő	-2.810276	3 299705	-1 541846	29	6	Ő	-1 382511	1 431198	-2.018211
30	1	Ő	-6 562311	1 177401	-2 61/239	30	6	Õ	-2 552173	1 196625	-1.047216
21	1	0	6 122406	4 272155	1.024701	21	1	0	1.027118	0.480070	2 447161
22	1	0	7 875700	-4.272133	0.250571	22	1	0	-1.02/110	0.469070	-2.44/101
32	1	0	1.873790	-5.51/501	0.559571	52	1	0	-1.705252	2.105195	-2.819805
33	1	0	4.224001	-2.744149	2.522014	33	/	0	-3.455/10	0.20/184	-1.515050
34	1	0	8.629254	0.554926	-2.109246	34	8	0	-2.662188	1.818/60	-0.006866
35	I	0	6./1/8//	2.022496	-1.483847	35	6	0	-4.6/68/9	-0.139229	-0.946755
36	1	0	2.365969	1.640276	2.4/8669	36	1	0	-3.199714	-0.216/12	-2.366546
37	1	0	3.042724	2.917040	1.433937	37	6	0	-5.150482	0.349306	0.283049
38	1	0	1.784408	1.966200	-0.516205	38	6	0	-5.435891	-1.083930	-1.658722
39	1	0	1.099909	0.718762	0.526676	39	6	0	-6.372043	-0.102903	0.774346
40	1	0	-0.018508	2.504667	1.924446	40	1	0	-4.556935	1.060079	0.840111
41	1	0	0.645119	3.746973	0.883215	41	6	0	-6.654717	-1.530595	-1.164413
42	1	0	-4.808694	2.282069	-1.714668	42	1	0	-5.063234	-1.476714	-2.602445
43	1	0	-8.396520	-0.473728	-2.382349	43	6	0	-7.125802	-1.029969	0.051500
44	1	0	-7.261203	-1.155157	1.704844	44	1	0	-6.729008	0.247476	1.737624
45	7	Õ	9.029758	-1.979100	-1.175285	45	1	Ő	-7.230253	-2.277104	-1.701460
46	7	Ő	3 769296	1 007749	1 092552	46	16	0	-8 714513	-1 581778	0.680271
47	7	Ő	-8 533175	-3 667388	-0 528886	40	7	0	-9 874547	-0.476583	0.150601
18	7	0	-4 844976	1 888110	-0.783070	47	8	0	-8 683781	-1.443075	2 13/052
40	7	0	0.000757	1.616611	1 060628	40	8	0	0.036704	2 836480	0.001845
49	7	0	9.909737	-1.010011	-1.909028	49 50	0	0	-9.030794	-2.030409	0.001643
50	/	0	10.780525	-1.417902	-2.070300	50	1	0	-9.750100	0.431130	0.343022
51	8	0	4.589566	2.61/9//	-0.30/321	51	I	0	-9.961//3	-0.460108	-0.862487
52	8	0	2.897898	-0.633963	2.422325	52	6	0	1./596/8	3.580682	-0.205728
53	8	0	-1.781678	3.557954	0.241617	53	I	0	1.863730	3.568580	-1.294570
54	8	0	-3.704031	1.8/1636	1.219958	54	6	0	0.596/26	4.513933	0.186295
55	8	0	-1.073119	1.695591	-0.824991	55	1	0	0.766393	5.515125	-0.225361
56	8	0	-10.174129	-1.915024	-1.258966	56	1	0	-0.370158	4.158262	-0.174967
57	8	0	-9.596958	-2.227079	1.227815	57	1	0	0.531723	4.615981	1.276468
58	16	0	-9.216278	-2.163940	-0.182165	58	6	0	3.068636	4.101106	0.408716
						59	1	0	3.043575	4.030585	1.503264
						60	1	0	3.947779	3.559433	0.051170
						61	1	0	3.204931	5.155399	0.143452
1.3.	Glycine-	-sulfon	amide 1a			1.4. Phe	-sulfon	amide 1	i		
	·										
											1
		5	P Q P					-	<u>.</u>		
-		~							- Carl		
		7	🤍 🛡 <u>o</u>						- 1		
2		്	<u> </u>		I 🕹 👝 🛛						
		~	—	~ ••							
			4				200	* ک	🍎 🛰	6	
							5.5			30.	
						93					
						•				5	1
E(R)	E(RB3LYP) = -2101.18591055 a.u.; Imaginary Freq = 0; Dipol						VD) -	2271 5	5081750	1. Imaginar	$r_{\rm W}$ Freq = 0.
Mon	nent = 6.4	4226	Debye			Dinala N	$\mathbf{I}\mathbf{F} = \mathbf{I}$	-23/1.3	JUOI/JY d.l 1710 Dahara	i., imaginar	$y \operatorname{Fleq} = 0;$
						Dipole N	ioment	= 8.2	LI IS Debye		
1						1					

 Standard orientation:
 Standard orientation:

 Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z
 Standard orientation:

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ζ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40234
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	69298
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42053
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29376
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46627
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30928
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05092
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	84458
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	69763
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	686320
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	010170
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14507
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)14507)52605
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	232003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	329344
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	364631
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	449588
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/6/855
21 6 0 -2.507173 1.689565 -0.187003 20 7 0 7.505584 -3.451792 -0.0 22 7 0 -3.649278 1.701194 0.585428 21 7 0 2.675237 0.822950 0.2 23 1 0 -3.641860 2.319998 1.386986 22 7 0 8.065799 -4.010706 -0.0	017925
22 7 0 -3.649278 1.701194 0.585428 21 7 0 2.675237 0.822950 0.2 23 1 0 -3.641860 2.319998 1.386986 22 7 0 8.065799 -4.010706 0.0	034263
23 1 0 -3 641860 2 319998 1 386986 22 7 0 8 065700 -4 010706 -0 0	225661
25 1 0 -5.0 + 1000 2.517776 1.500700 222 7 0 0.005777 -4.010700 -0.25	988955
24 8 0 2.308977 -0.606748 -2.539797 23 7 0 8.665334 -4.592064 -1.7	763252
25 8 0 3.345706 2.847678 0.256547 24 8 0 2.833343 0.525635 -2.0	028470
26 1 0 1.203171 1.340838 -2.395005 25 8 0 2.528288 1.149399 2.4	88303
27 1 0 1.838651 2.874798 -1.737979 26 6 0 0.443345 0.989312 -0.7	732054
28 8 0 0.609948 0.965139 0.523318 27 8 0 -0.287177 1.810606 -1.5	520553
29 1 0 -1.096212 2.348117 1.327154 28 8 0 0.201523 -0.187349 -0.3	591810
30 1 0 -1.835070 3.681818 0.391012 29 6 0 -1.396023 1.184883 -2.	153633
31 8 0 -2.333136 0.999709 -1.173493 30 6 0 -2.495717 0.840806 -1.	134650
32 6 0 -4 820345 0.932405 0.443706 31 1 0 -1.064533 0.296167 -2.2	700537
33 6 0 -5 823856 1 104491 1 413354 32 1 0 -1 778866 1 927497 -2 9	859558
34 6 0 -7.007903 0.383676 1.341395 33 7 0 -3.355760 -0.137134 -1	588835
35 6 0 -7194134 -0518932 0 292447 34 8 0 -2601110 142867 -000000000000000000000000000000000000	075268
36 = 6 = 0 $-6.216466 = 0.689032 = 0.683000 = 35 = 6 = 0$ $-4.51772 = 0.642607 = 0.4$	075200
37 6 0 502078 0.030101 0.613864 36 1 0 310040 0.58073 2	/57381
38 16 0 9715041 1451150 0100208 37 6 0 4050731 021301 0	200250
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	677402
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	077492 9 2572 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	023739
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	128042
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130942
45 1 0 0.030390 -3.090885 -1.933021 42 1 0 -4.891744 -1.939093 -2.1	049334
44 1 0 7.554183 -2.737929 -0.281835 43 6 0 -6.845130 -1.728696 0	112500
45 1 0 7.553445 1.380908 2.294526 44 1 0 -6.452901 -0.471040 1.3	814915
46 1 0 5.494659 2.592526 1.525237 45 1 0 -6.951424 -2.933058 -1.0	670212
47 1 0 -5.675706 1.812567 2.226023 46 16 0 -8.361499 -2.402243 0.	.797641
48 1 0 -/.189202 0.529122 2.079587 47 7 0 -9.613163 -1.355886 0.3	364788
49 1 0 -6.384113 -1.372865 -1.507258 48 8 0 -8.267839 -2.309532 2.3	253407
50 1 0 -4.253706 -0.093983 -1.364764 49 8 0 -8.639033 -3.652469 0.0	091586
51 1 0 -9.186591 -2.935492 1.812079 50 1 0 -9.512629 -0.436330 0.2	787599
52 1 0 -8.306451 -3.640128 0.571857 51 1 0 -9.747324 -1.306526 -0.	642068
52 6 0 1.982899 3.101663 -0.5	583562
53 1 0 2.048344 3.025245 -1.6	570138
54 1 0 3.000878 3.282175 -0.2	215534
55 6 0 1.098274 4.264647 -0.1	177100
56 6 0 0.378912 4.992849 -1.1	130854
57 6 0 1.007099 4.649903 1.1	68458
58 6 0 -0.410823 6.080701 -0.7	754799
59 1 0 0.437411 4.701327 -2.1	176535
60 6 0 0.214954 5.732778 1.5	548707

61	1	0	1.559784	4.095231	1.924426	
62	6	0	-0.496102	6.453651	0.586860	
63	1	0	-0.960918	6.635336	-1.510843	
64	1	0	0.155752	6.015671	2.596449	
65	1	0	-1.111826	7.299198	0.881898	

2. Molecular Docking Study

Molecular Docking study was carried out using **AutoDock4** (Bikadi, Hazai, 2009). The amino acid sequence of HCA II protein was observed from the website, <u>http://www.rcsb.org/pdb/explore.do?structureId=1CA2</u>. Following is the HCAII sequence which was used to generate the 3D model. >1CA2:A|PDBID|CHAIN|SEQUENCE Human Carbonic Anhydrase II:

SHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLKPLSVSYDQATSL RILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTVDKKKYA AELHLVHWNTKYGDFGKAVQQPDGLAVLGIFLKVGSAKPGLQKVVDVLDSIKTKGKS ADFTNFDPRGLLPESLDYWTYPGSLTTPPLLECVTWIVLKEPISVSSEQVLKFRKLNFNGE GEPEELMVDNWRPAQPLKNRQIKASFK

The Binding interaction was studied from protein-ligand interaction profiler <u>https://projects.biotec.tu-dresden.de/plip-web/plip/index</u>.

2.1. Results for Docking/Interaction of GABA sulfonamide (1c) with HCA II

2.1.1. DOCKED CONFORMATION and the Energy

Estimated Free Energy of Binding = -7.30 kcal/mol

2.1.2. Interaction Study:

We have detected 2 binding site(s) in GABA sulfonamide –HCA II complex.

ION-ZN (zinc ion); ZN-A-262; Interacting chains A-Metal Complexation

Metal Complexes

Index	Residue	AA	Metal	Target	Distance	Location
Comple	ex 1: Zn, tri	gonal.p	oyramida	1 (3)		
1	94A	HIS	2491	900	1.99	protein.sidechain
2	96A	HIS	2491	924	2.10	protein.sidechain
3	119A	HIS	2491	1143	1.91	protein.sidechain

SMALL MOLECULE-FRA Interacting chains: A

Hydrophobic Interactions

Index	Residue	AA	Distance	Ligand Atom	Protein Atom
1	60A	LEU	3.28	2499	572
2	92A	GLN	3.28	2508	873
3	121A	VAL	3.88	2525	1164
4	198A	LEU	3.79	2525	1880
5	198A	LEU	3.33	2523	1877

Hydrogen Bonds

Index	Residue	AA	Distance	Distance	Donor	Protein	Sidechain	Donor	Acceptor
			H-A	D-A	Angle	donor?		Atom	Atom
1	62A	ASN	2.32	2.98	121.32		\checkmark	592 [Nam]	2504 [O2]
2	64A	HIS	3.71	4.09	104.53		\checkmark	611 [Npl]	2504 [O2]
3	69A	GLU	2.96	3.28	101.72		\checkmark	659 [O3]	2492 [N2]
4	91A	ILE	3.11	3.96	144.57	Х	Х	2494 [N2]	862 [O2]
5	92A	GLN	2.22	2.68	107.01		\checkmark	876 [Nam]	2507 [O2]
6	199A	THR	2.44	3.36	149.43		Х	1881 [Nam]	2530 [N3]
7	199A	THR	2.06	2.52	105.12	Х		2530 [N3]	1887 [O3]

2.2. Results for Docking/Interaction of Valine sulfonamide (1g) with HCA II

2.2.1. DOCKED CONFORMATION and Energy

Estimated Free Energy of Binding = -8.56 kcal/mol

2.2.2. Interaction Study

We have detected 2 binding site(s) in valine sulfonamide(1g) -HCA II complex

Metal Complexes

Metal Complexes

Index	Residue	AA	Metal	Target	Distance	Location	
Complex 1: Zn, tetrahedral (4)							
1	0Z	LIG	2491	2526	2.94	protein.mainchain	
2	94A	HIS	2491	900	1.99	protein.sidechain	
3	96A	HIS	2491	924	2.10	protein.sidechain	
4	119A	HIS	2491	1143	1.91	protein.sidechain	

SMALLMOLECULE-Interacting chains: A

Hydrophobic Interactions

Index	Residue	AA	Distance	Ligand Atom	Protein Atom
1	91A	ILE	3.26	2509	864
2	92A	GLN	3.32	2508	873
3	121A	VAL	3.60	2521	1164
4	131A	PHE	3.81	2506	1266
5	131A	PHE	3.86	2531	1268
6	135A	VAL	3.72	2533	1299
7	198A	LEU	3.78	2521	1880
8	198A	LEU	3.24	2532	1879

Hydrogen Bonds

Index	Residue	AA	Distance	Distance	Donor	Protein	Sidechain	Donor Atom	Acceptor
			H-A	D-A	Angle	donor?			Atom
1	62A	ASN	3.31	4.03	128.77			592 [Nam]	2518 [O2]
2	64A	HIS	1.80	2.71	147.20			\checkmark	2518 [O2]
3	70A	PHE	3.26	4.01	131.87		Х	660 [Nam]	2494 [N2]
4	92A	GLN	2.38	3.18	137.02			\checkmark	2507 [O2]
5	199A	THR	1.92	2.78	140.20		Х	1881 [Nam]	2528 [N3]
6	199A	THR	2.21	2.62	102.73	X		2528 [N3]	1887 [O3]

π -Cation Interactions

Index	Residue	AA	Distance	Offset	Protein charged?	Ligand Group	Ligand Atoms
1	94A	HIS	4.25	0.65		Aromatic	2519, 2520, 2521, 2522, 2523, 2524

Salt Bridges

Index	Residue	AA	Distance	Protein positive?	Ligand Group	Ligand Atoms
1	64A	HIS	5.49	\checkmark	Carboxylate	2513, 2512

2.3 Results for Docking/Interaction of Glycine sulfonamide (1a) with HCA II

2.3.1. DOCKED CONFORMATION and Energy

Estimated Free Energy of Binding = -7.63 kcal/mol

2.3.2. Interaction Study:

We have detected 2 binding site(s) in Glycine sulfonamide(1a) –HCA II complex.

Metal Complexes

Metal Complexes

	Index	Residue	AA	Metal	Target	Distance	Location		
	Complex 1: Zn, trigonal.pyramidal (3)								
ſ	1	94A	HIS	2491	900	1.99	protein.sidechain		
ſ	2	96A	HIS	2491	924	2.10	protein.sidechain		
	3	119A	HIS	2491	1143	1.91	protein.sidechain		

SMALLMOLECULE-Interacting chains: A

Hydrophobic Interactions

Index	Residue	AA	Distance	Ligand Atom	Protein Atom
1	5A	TRP	3.67	2508	29
2	62A	ASN	3.13	2501	589
3	121A	VAL	3.60	2523	1164
4	121A	VAL	3.77	2524	1163
5	198A	LEU	3.33	2523	1880
6	198A	LEU	3.81	2521	1880

Hydrogen Bonds

Index	Residue	AA	Distance H-A	Distance D-A	Donor Angle	Protein donor?	Sidechain	Donor Atom	Acceptor Atom
1	62A	ASN	2.38	3.10	126.95	\checkmark	\checkmark	592	2505 [O2]
								[Nam]	
2	64A	HIS	3.46	4.07	120.43		\checkmark	611	2505 [O2]
								[Npl]	
3	92A	GLN	3.52	4.05	116.19	\checkmark		876	2512 [O2]
								[Nam]	
4	106A	GLU	3.20	3.99	135.77	Х		2528	1010 [O3]
								[N3]	
5	170A	LYS	2.83	3.85	176.23	\checkmark		1611	2492 [N2]
								[N3+]	
6	199A	THR	2.57	3.47	147.01	\checkmark	Х	1881	2528 [N3]
								[Nam]	
7	200A	THR	3.62	3.96	103.88	\checkmark		1896	2507 [O2]
								[O3]	

π-Stacking

Index	Residue	AA	Distance	Angle	Offset	Туре	Ligand Atoms
1	64A	HIS	4.00	78.77	0.55	Т	2497, 2499, 2500, 2502, 2504, 2506
2	94A	HIS	5.36	72.00	1.61	Т	2519, 2520, 2521, 2522, 2523, 2524

2.4. Results for Docking/Interaction of Phenylalanine sulfonamide (1i) with HCA II

2.4.1. DOCKED CONFORMATION and Energy

Estimated Free Energy of Binding = -6.42 kcal/mol

2.4.2. Interaction Study:

We have detected 2 binding site(s) in Phenylalanine sulfonamide(1i) –HCA II complex.

Metal Complexes

Metal Complexes

Index	Residue	AA	Metal	Target	Distance	Location	
Complex 1: Zn, trigonal.pyramidal (3)							
1	94A	HIS	2491	900	1.99	protein.sidechain	
2	96A	HIS	2491	924	2.10	protein.sidechain	
3	119A	HIS	2491	1143	1.91	protein.sidechain	

SMALLMOLECULE-Interacting chains: A

Hydrophobic Interactions

Index	Residue	AA	Distance	Ligand Atom	Protein Atom
1	57A	LEU	3.21	2499	536
2	69A	GLU	3.30	2500	655
3	91A	ILE	3.95	2531	866
4	92A	GLN	3.70	2537	873
5	131A	PHE	3.36	2536	1268

Hydrogen Bonds

Index	Residue	AA	Distance	Distance	Donor	Protein	Sidechain	Donor	Acceptor
			H-A	D-A	Angle	donor?		Atom	Atom
1	62A	ASN	2.76	3.75	164.51		\checkmark	592	2516
								[Nam]	[Nam]
2	67A	ASN	1.87	2.83	158.77	Х		2516	638 [O2]
								[Nam]	
3	69A	GLU	2.13	3.06	170.67			659	2513 [O3]
								[O3]	
4	200A	THR	2.26	2.75	111.39			1896	2528 [N3]
								[O3]	
5	200A	THR	1.87	2.75	142.71	Х	\checkmark	2528	1896 [O3]
								[N3]	

NMR Spectra

Figure S12. The ¹H NMR (400 MHz, Acetone-d₆) spectrum of compound **3**

Figure S13. The ¹H NMR (400 MHz, Acetone-d₆) spectrum of compound 4a

Figure S14. The ¹³C NMR (100 MHz, Acetone-d₆) spectrum of compound 4a

Figure S15. The ¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 4b

Figure S16. The ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 4b

Figure S17. The ¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 4c

Figure S18. The 13 C NMR (150 MHz, DMSO-d₆) spectrum of compound 4c

Figure S19. The ¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 4d

Figure S20. The ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 4d

Figure S21. The ¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 4e

Figure S22. The ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 4e

Figure S23. The ¹H NMR (400 MHz, Chloroform-d) spectrum of compound 4f

Figure S24. The ¹³C NMR (100 MHz, Chloroform-d) spectrum of compound 4f

Figure S25. The ¹H NMR (400 MHz, Chloroform-d) spectrum of compound 4g

Figure S26. The ¹³C NMR (100 MHz, Chloroform-d) spectrum of compound 4g

Figure S27. The ¹H NMR (400 MHz, Acetone-d₆) spectrum of compound 4h

Figure S28. The ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 4h

Figure S29. The ¹H NMR (400 MHz, Chloroform-d) spectrum of compound 4i

Figure S30. The ¹³C NMR (100 MHz, Chloroform-d) spectrum of compound 4i

Figure S31. The ¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 7

Figure S32. The ¹³C NMR (400 MHz, DMSO-d₆) spectrum of 7

Figure S33. The ¹H NMR (600 MHz, Chloroform-d) spectrum of compound 5

Figure S34. The ¹³C NMR (150 MHz, Chloroform-d) spectrum of compound 5

Figure S35. The ¹H NMR (600 MHz, DMSO-d₆) spectrum of compound 1a

Figure S36. The ¹³C NMR (150 MHz, DMSO-d₆) spectrum of compound 1a

Figure S37. The ¹H NMR (600 MHz, DMSO-d₆) spectrum of compound 1b

Figure S38. The ¹³C NMR (150 MHz, DMSO-d₆) spectrum of compound 1b

Figure S39. The ¹H NMR (600 MHz, DMSO-d₆) spectrum of compound 1c

Figure S40. The ¹³C NMR (150 MHz, DMSO-d₆) spectrum of compound 1c

Figure S41. The DEPT 135 NMR (150 MHz, DMSO-d₆) spectrum of compound 1c

Figure S42. The ¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 1d

Figure S43. The ¹³C NMR (150 MHz, DMSO-d₆) spectrum of compound 1d

Figure S44. The DEPT 135 NMR (150 MHz, DMSO-d₆) spectrum of compound 1d

Figure S45. The ¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 1e

Figure S46. The ¹³C NMR (150 MHz, DMSO-d₆) spectrum of compound 1e

Figure S47. The DEPT 135 NMR (150 MHz, DMSO-d₆) spectrum of compound 1e

Figure S48. The ¹H NMR (600 MHz, DMSO-d₆) spectrum of compound 1f

Figure S49. The ¹³C NMR (150 MHz, DMSO-d₆) spectrum of compound 1f

Figure S50. The DEPT 135 NMR (150 MHz, DMSO-d₆) spectrum of compound 1f

Figure S51. The ¹H NMR (600 MHz, DMSO-d₆) spectrum of compound 1g

Figure S52. The ¹³C NMR (150 MHz, DMSO-d₆) spectrum of compound 1g

Figure S53. The DEPT 135 NMR (150 MHz, DMSO-d₆) spectrum of compound 1g

Figure S54. The ¹H NMR (600 MHz, DMSO-d₆) spectrum of compound 1h

Figure S55. The ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 1h

Figure S56. The ¹H NMR (600 MHz, DMSO-d₆) spectrum of compound 1i

Figure S57. The ¹³C NMR (150 MHz, DMSO-d₆) spectrum of compound 1i

Figure S58. The ¹H NMR (600 MHz, DMSO-d₆) spectrum of compound 1j

Figure S59. The ¹³C NMR (150 MHz, DMSO-d₆) spectrum of compound 1j

HPLC Data

Peak	Retention Time [min.]	Area	Area %		
1	19.489	663.29934	1.4834		
2	20.109	584.95901	1.3082		
3	20.968	43466.54164	97.2084		

Peak	Retention Time [min.]	Area	Area %
1	3.722	8241.26666	95.1431
2	4.515	179.25080	2.0694
3	5.157	95.50688	1.1026
4	5.379	32.94147	0.3803
5	5.843	113.00406	1.3046

References

- 1. Cai, Y.; Zhan, J.; Shen, H.; Mao, D.; Ji, S.; Liu, R.; Yang, B.; Kong, D.; Wang, L.; Yang, Z. *Anal Chem.* **2016**, 88, 740.
- M. Dutta, D. Kar, A. Bansal, S. Chakraborty and A. S. Ghosh, *Microbiology* 2015, 161, 895-902.
- 3. J. Das, S. Roy, S. Halnor, A. K. Das and A. Basak, Org. Biomol. Chem. 2017, 15, 1122.
- 4. Web.expasy.org/peptide_mass/. The entered protein was CAH2_HUMAN (P00918) from Uni Prot KB/Swiss-Prot and the selected enzyme was trypsin.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E;. Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc. Wallingford CT, **2009**.