# **Electronic Supplementary Information**

# Solvent-free iodine-promoted synthesis of 3,2'-pyrrolinyl spirooxindoles from alkylidene oxindoles and enamino esters under ball-milling conditions

Hui Xu,<sup>a</sup> Hong-Wei Liu,<sup>a</sup> Hao-Sheng Lin<sup>a</sup> and Guan-Wu Wang\*<sup>a,b</sup>

 <sup>a</sup> CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
 <sup>b</sup> State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China

E-mail: gwang@ustc.edu.cn

## **Table of contents**

| 1. | General information                          | S2  |
|----|----------------------------------------------|-----|
| 2. | Optimization of the reaction conditions      | S2  |
| 3. | Synthesis and characterization of products 3 | S5  |
| 4. | References                                   | S16 |
| 5. | HRMS of intermediate A                       | S17 |
| 6. | NMR spectra                                  | S18 |
| 7. | X-ray single-crystal structure of <b>3bm</b> | S62 |

#### 1. General information

All reagents were obtained from commercial sources and used without further purification. NMR spectra were recorded on a 400 MHz NMR spectrometer (400 MHz for <sup>1</sup>H NMR; 101 MHz for <sup>13</sup>C NMR). <sup>1</sup>H NMR chemical shifts were determined relative to internal TMS at  $\delta$  0.0 ppm. <sup>13</sup>C NMR chemical shifts were determined relative to CDCl<sub>3</sub> at  $\delta$  77.16 ppm. Data for <sup>1</sup>H NMR and <sup>13</sup>C NMR are reported as follows: chemical shift ( $\delta$ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, br = broad). High-resolution mass spectra (HRMS) were measured with FTMS-ESI in a positive mode. Ball-milling reactions were performed in a Spex SamplePrep 5100 mixer mill, using a 3.5 mL stainless steel jar with eight 5 mm-diameter stainless steel balls and were milled vigorously at a rate of 3000 rounds per minute (50 Hz) at room temperature (~25 °C). Alkylidene oxindoles **1** and enamino esters **2** were prepared according to the reported protocols.<sup>1,2</sup> Single crystal of **3bm** was obtained from dichloromethane/*n*-hexane.

#### 2. Optimization of the reaction conditions

At first, the mixture of alkylidene oxindole 1a (0.2 mmol), enamine ester 2a (0.2 mmol) and  $I_2$  (0.2 mmol) together with 8 stainless steel balls (5 mm in diameter) were introduced into a stainless steel jar (3.5 mL) and milled vigorously (50 Hz) in a Spex SamplePrep 5100 mixer mill at room temperature for 0.5 h. As a result, the desired product 3,2'-pyrrolinyl spirooxindole 3aa was easily generated, but in a poor yield of 32% (Table S1, entry 1). Encouraged by this outcome, we further optimized the reaction conditions for a highly efficient construction of such spirocyclic compound by screening molar ratio of the starting materials, reaction time, grinding auxiliaries, bases and solvents. The results are summarized in Table S1. The effect of the amount of 2a on the product yield was firstly examined. Increasing the amount of **2a** to 1.5 equiv., the yield of the product **3aa** was improved to 41% (entry 2). Delightedly, a higher yield was obtained when 2 equiv. of **2a** was used (entry 3). However, continuing to increase the dosage of 2a could not achieve a better yield (entry 4). Next, the amount of  $I_2$  was optimized and the results undoubtedly indicated that 1 equiv. of  $I_2$  was necessary for this transformation, since a decreased yield was obtained as the usage of  $I_2$  was reduced to 0.8 equiv. (entry 5), and excess  $I_2$  failed to improve the transformation (entry 6). It was found that no product could be detected in the absence of  $I_2$ , indicating that  $I_2$  was indispensable (entry 7). The influence of the reaction time on the product yield was also investigated. As the reaction time was extended to 1 h, the yield of **3aa** was increased to 52% (entry 8). However, a longer reaction time of 1.5 h led to a slightly decreased yield (entry 9). Silica gel has been utilized as the milling auxiliary in mechanosynthesis and can dramatically facilitate many transformations.<sup>3</sup> Accordingly, 200 mg of silica gel (200–300 mesh) was added and resulted in a higher yield of 63% (entry 10). It is worth mentioning that the resulting powdery silica gel containing the reaction mixture could be directly loaded on a silica gel column to separate out the desired product. Therefore, the work-up procedure of this protocol was facile and straightforward. Considering that HI was formed during this process, we speculated that the introduction of a base would be beneficial to this transformation. Thus, various inorganic and organic bases were attempted with the molar ratio of 1a, 2a and  $I_2$  fixed at 1:2:1 under the mechanical ball-milling conditions for 1 h. It was found that the addition of 1 equiv. of Na<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub>, NaOH, Et<sub>3</sub>N, pyridine and 1,8diazabicyclo[5.4.0]undec-7-ene (DBU) were detrimental to the reaction (entries 11-16), while 4-dimethylaminopyridine (DMAP) could facilitate the reaction slightly (entry 17). To our delight, 1,4-diazobicyclo[2,2,2]octane hexahydrate (DABCO·6H<sub>2</sub>O) exhibited higher efficiency to deliver the desired product in 75% yield (entry 18). Moreover, the influence of DABCO 6H<sub>2</sub>O loadings on the product yield was further investigated, and the results indicated that 0.5 equiv. of the base was sufficient (entry 19 vs. entries 18 and 20). It should be noted that a decreased yield (68%) was obtained when DABCO 6H<sub>2</sub>O was replaced by anhydrous DABCO (entry 21). To identify whether the water in DABCO  $\cdot$  6H<sub>2</sub>O facilitated the reaction as a liquid-assisted grinding (LAG) agent, thus we added the same amount of water (11  $\mu$ L, 0.6 mmol, 3 equiv) into the reaction system with anhydrous DABCO as the base, and obtained product 3aa in an increased yield of 75% (entry 22 vs. entry 21). Furthermore, when DMAP was chosen as the base and the same amount of water was added, a similar yield (73%) was obtained (entry 23 vs. entry 22). Nevertheless, a decreased yield of 62% was obtained when the water was added without any base (entry 24 vs. entries 22 and 23). These results indicated that both the base and water were important to facilitate this reaction. It was found that when the amount of **2a** was reduced to 1 equiv., and the reaction was carried out under otherwise the same conditions, product **3aa** was obtained in a poor yield of 36% (entry 25). A low yield (38%) was also obtained when the amount of DABCO 6H<sub>2</sub>O was increased to 1.0 equiv. (entry 26). In addition, several grinding auxiliaries including Na<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub>, NaCl, Na<sub>2</sub>SO<sub>4</sub>, γ-Al<sub>2</sub>O<sub>3</sub> (neutral) and γ-Al<sub>2</sub>O<sub>3</sub> (neutral) were also examined. Unfortunately, all of these grinding auxiliaries gave the desired product **3aa** in lower yields (28–61%, entries 27–32). On the other hand, LAG has demonstrated as a power tool to promote mechanochemical reactions.<sup>4</sup> However, the addition of a variety of solvents such as 1,2-dichloroethane (DCE), acetonitrile, toluene, ethanol and water was detrimental to this reaction, and afforded the spirooxindole 3aa in only moderate yields (entries 33-37). Next, we performed the reaction with a catalytic amount of I<sub>2</sub> in the presence of oxidant FeCl<sub>3</sub>, product **3aa** was isolated in a poor yield of 33% (entry 38). For the purpose of comparing the present solvent-free reaction and its liquid-phase counterpart, the reaction was also carried out in several organic solvents including DCE, acetonitrile and toluene (entries 39-44). At first, the reaction was carried out in solvents at ambient temperature (entries 39-41). The results demonstrated that acetonitrile was the most effective solvent, and afforded **3aa** in 62% yield after reaction time of 6 h (entry 40). When the liquid-phase reactions were performed at a higher temperature of 50 °C (entries 42-44), DCE exhibited the highest efficiency and delivered **3aa** in 71% yield after reaction time of 5 h (entry 42). From these results, it can be obviously found that the mechanochemical protocol has remarkable advantages, including shorter reaction time, higher yield and easier work-up procedure. Thus, the optimal reaction conditions were as follows: 1a (0.2 mmol), 2 equiv. of 2a, 1 equiv. of I<sub>2</sub>, 0.5 equiv. of DABCO·6H<sub>2</sub>O and 200 mg of silica gel under solvent-free ball-milling conditions for 1 h (entry 19).

**Table S1** Optimization of the reaction conditions<sup>a</sup>

|                 | -                       |                                                    | EtO <sub>2</sub> C              |                 |                    |
|-----------------|-------------------------|----------------------------------------------------|---------------------------------|-----------------|--------------------|
|                 | EtO <sub>2</sub> C      | Pn                                                 | EtO <sub>2</sub> C              | $\leq$          |                    |
|                 |                         |                                                    | I <sub>2</sub> , base           | <sup>™</sup> Bn |                    |
|                 | ľ N                     | CO2EI                                              | ball-milling                    |                 |                    |
| _               | A<br>1a                 | ас<br><b>2а</b>                                    | 3aa                             | Ac<br>a         |                    |
| Entry           | Molar ratio             | Grinding auxiliary                                 | Base                            | Time            | Yield <sup>b</sup> |
| Linuy           | (1a:2a:I <sub>2</sub> ) | (200 mg)                                           | (equiv.)                        | (h)             | (%)                |
| 1               | 1:1:1                   | _                                                  | —                               | 0.5             | 32                 |
| 2               | 1:1.5:1                 | _                                                  | —                               | 0.5             | 41                 |
| 3               | 1:2:1                   |                                                    | —                               | 0.5             | 46                 |
| 4               | 1:2.5:1                 | _                                                  | —                               | 0.5             | 46                 |
| 5               | 1:2:0.8                 |                                                    | —                               | 0.5             | 39                 |
| 6               | 1:2:1.2                 | _                                                  | —                               | 0.5             | 45                 |
| 7               | 1:2:0                   |                                                    | —                               | 0.5             | 0                  |
| 8               | 1:2:1                   |                                                    | —                               | 1               | 52                 |
| 9               | 1:2:1                   |                                                    |                                 | 1.5             | 49                 |
| 10              | 1:2:1                   | silica gel                                         |                                 | 1               | 63                 |
| 11              | 1:2:1                   | silica gel                                         | $Na_2CO_3(1)$                   | 1               | 44                 |
| 12              | 1:2:1                   | silica gel                                         | $K_2CO_3(1)$                    | 1               | 39                 |
| 13              | 1:2:1                   | silica gel                                         | NaOH (1)                        | 1               | 36                 |
| 14              | 1:2:1                   | silica gel                                         | Et <sub>3</sub> N (1)           | 1               | 52                 |
| 15              | 1:2:1                   | silica gel                                         | pyridine (1)                    | 1               | 43                 |
| 16              | 1:2:1                   | silica gel                                         | DBU (1)                         | 1               | 51                 |
| 17              | 1:2:1                   | silica gel                                         | DMAP(1)                         | 1               | 65                 |
| 18              | 1:2:1                   | silica gel                                         | $DABCO \cdot 6H_2O(1)$          | 1               | 75                 |
| 19              | 1:2:1                   | silica gel                                         | DABCO-6H <sub>2</sub> O (0.5)   | 1               | 74                 |
| 20              | 1:2:1                   | silica gel                                         | DABCO·6H2O (0.4)                | 1               | 65                 |
| 21              | 1:2:1                   | silica gel                                         | DABCO (0.5)                     | 1               | 68                 |
| $22^c$          | 1:2:1                   | silica gel                                         | DABCO (0.5)                     | 1               | 75                 |
| 23 <sup>c</sup> | 1:2:1                   | silica gel                                         | DMAP(1)                         | 1               | 73                 |
| 24 <sup>c</sup> | 1:2:1                   | silica gel                                         | _                               | 1               | 62                 |
| 25              | 1:1:1                   | silica gel                                         | DABCO-6H <sub>2</sub> O (0.5)   | 1               | 36                 |
| 26              | 1:1:1                   | silica gel                                         | DABCO-6H2O (1.0)                | 1               | 38                 |
| 27              | 1:2:1                   | Na <sub>2</sub> CO <sub>3</sub>                    | DABCO-6H <sub>2</sub> O (0.5)   | 1               | 55                 |
| 28              | 1:2:1                   | $K_2CO_3$                                          | DABCO-6H2O (0.5)                | 1               | 28                 |
| 29              | 1:2:1                   | NaCl                                               | DABCO-6H2O (0.5)                | 1               | 56                 |
| 30              | 1:2:1                   | $Na_2SO_4$                                         | DABCO-6H <sub>2</sub> O (0.5)   | 1               | 52                 |
| 31              | 1:2:1                   | $\gamma$ -Al <sub>2</sub> O <sub>3</sub> (neutral) | DABCO-6H <sub>2</sub> O (0.5)   | 1               | 61                 |
| 32              | 1:2:1                   | $\gamma$ -Al <sub>2</sub> O <sub>3</sub> (basic)   | DABCO-6H <sub>2</sub> O (0.5)   | 1               | 55                 |
| 33 <sup>d</sup> | 1:2:1                   |                                                    | DABCO-6H <sub>2</sub> O (0.5)   | 1               | 52                 |
| 34 <sup>e</sup> | 1:2:1                   |                                                    | DABCO-6H <sub>2</sub> O (0.5)   | 1               | 53                 |
| 35 <sup>f</sup> | 1:2:1                   |                                                    | DABCO · 6H <sub>2</sub> O (0.5) | 1               | 54                 |
| 36 <sup>g</sup> | 1:2:1                   |                                                    | DABCO-6H2O (0.5)                | 1               | 52                 |

| 37 <sup><i>h</i></sup> | 1:2:1   |            | DABCO·6H <sub>2</sub> O (0.5)   | 1  | 53 |
|------------------------|---------|------------|---------------------------------|----|----|
| 38 <sup>i</sup>        | 1:2:0.2 | silica gel | DABCO·6H <sub>2</sub> O (0.5)   | 1  | 33 |
| 39 <sup>i</sup>        | 1:2:1   |            | DABCO · 6H <sub>2</sub> O (0.5) | 12 | 31 |
| $40^{k}$               | 1:2:1   |            | $DABCO \cdot 6H_2O(0.5)$        | 6  | 62 |
| $41^{l}$               | 1:2:1   |            | DABCO · 6H <sub>2</sub> O (0.5) | 10 | 45 |
| $42^{m}$               | 1:2:1   | —          | DABCO-6H2O (0.5)                | 5  | 71 |
| 43 <sup>n</sup>        | 1:2:1   |            | DABCO·6H <sub>2</sub> O (0.5)   | 3  | 67 |
| $44^{o}$               | 1:2:1   | —          | DABCO-6H2O (0.5)                | 10 | 35 |
|                        |         |            |                                 |    |    |

<sup>*a*</sup> Unless otherwise noted, the reactions were carried out in a Spex SamplePrep 5100 mixer mill with 0.2 mmol of **1a**. <sup>*b*</sup> Isolated yield based on **1a**. <sup>*c*</sup> 11µL of water was used. <sup>*d*</sup> 20 µL of 1,2-dichloroethane was used. <sup>*e*</sup> 20 µL of acetonitrile was used. <sup>*f*</sup> 20 µL of toluene was used. <sup>*g*</sup> 20 µL of ethanol was used. <sup>*h*</sup> 20 µL of water was used. <sup>*i*</sup> 2 equiv. of FeCl<sub>3</sub> was added. <sup>*j*</sup> The reaction was performed in 1,2-dichloroethane (2 mL) at 25 °C for 12 h. <sup>*k*</sup> The reaction was performed in acetonitrile (2 mL) at 25 °C for 5 h. <sup>*n*</sup> The reaction was performed in acetonitrile (2 mL) at 50 °C for 5 h. <sup>*n*</sup> The reaction was performed in acetonitrile (2 mL) at 50 °C for 10 h. <sup>*m*</sup> The reaction the reaction was performed in toluene (2 mL) at 50 °C for 10 h.

#### 3. Synthesis and characterization of products 3

General procedure for the iodine-promoted synthesis of 3,2'-pyrrolinyl spirooxindoles from alkylidene oxindoles and enamino esters under ball-milling conditions



A mixture of alkylidene oxindoles (1, 0.2 mmol), enamino esters (2, 0.4 mmol),  $I_2$  (0.2 mmol), DABCO·6H<sub>2</sub>O (0.1 mmol) and silica gel (200–300 mesh, 200 mg) together with eight stainless balls (5 mm in diameter) was introduced into a stainless steel jar (3.5 mL), and the jar was fixed on a Spex SamplePrep 5100 mixer mill and milled vigorously at a rate of 3000 rounds per minute (50 Hz) at room temperature for 1 h. After the reaction was completed, a powdery mixture was obtained, and the temperature of the reaction mixture reached to approximately 35 °C. Then, the resulting powdery mixture was directly loaded on a silica gel column and separated with ethyl acetate/petroleum ether as the eluent to afford products **3**.



**Diethyl** 1-acetyl-1'-benzyl-5'-methyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'dicarboxylate (3aa). General procedure was followed to afford 3aa as a white solid (70.3 mg, 74% yield, dr = 95:5); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (d, *J* = 8.0 Hz, 1H), 7.40 (td, *J* = 7.9, 1.3 Hz, 1H), 7.33 (d, *J* = 6.4 Hz, 1H), 7.24–7.15 (m, 4H), 6.89–6.83 (m, 2 H), 4.39 (d, *J* = 15.4 Hz, 1H), 4.30 (q, *J* = 1.1 Hz, 1H), 4.18 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.10 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.735 (d,

 $J = 15.4 \text{ Hz}, 1\text{H}, 3.729 \text{ (dq}, J = 10.8, 7.1 \text{ Hz}, 1\text{H}), 3.63 \text{ (dq}, J = 10.8, 7.1 \text{ Hz}, 1\text{H}), 2.52 \text{ (d}, J = 1.1 \text{ Hz}, 3\text{H}), 2.30 \text{ (s}, 3\text{H}), 1.21 \text{ (t}, J = 7.1 \text{ Hz}, 3\text{H}), 0.78 \text{ (t}, J = 7.1 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (101 \text{ MHz}, \text{CDCl}_3) \\\delta 176.7, 170.5, 169.2, 165.7, 161.7, 140.7, 135.3, 131.0, 128.9 (2C), 128.5 (2C), 128.3, 125.8, 125.2, 123.3, 116.9, 96.5, 72.8, 60.8, 59.3, 57.6, 48.3, 26.4, 14.6, 13.8, 13.4; \text{HRMS} (ESI) Calcd for <math>C_{27}H_{29}N_2O_6 \text{ [M+H]}^+ 477.2020$ ; found 477.2019.



**Diethyl 1-acetyl-1'-benzyl-5,5'-dimethyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'-dicarboxylate (3ba).** General procedure was followed to afford **3ba** as a white solid (80.0 mg, 82% yield, dr = 93:7); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, J = 8.3 Hz, 1H), 7.22–7.15 (m, 4H), 7.12 (s, 1H), 6.90–6.85 (m, 2H), 4.37 (d, J = 15.4 Hz, 1H), 4.30 (q, J = 1.2 Hz, 1H), 4.19 (dq, J = 10.8, 7.1 Hz, 1H), 3.75 (d, J = 15.4 Hz, 1H), 3.73 (dq, J = 10.8, 7.1 Hz, 1H), 3.67 (dq, J = 10.8, 7.1 Hz, 1H), 2.52 (d, J = 1.2 Hz, 3H), 2.33 (s, 3H), 2.28 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H), 0.78 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  176.8, 170.4, 169.2, 165.7, 161.6, 138.3, 135.5, 135.0, 131.4, 128.8 (2C), 128.4 (2C), 128.2, 126.1, 123.2, 116.6, 96.3, 72.9, 60.8, 59.2, 57.5, 48.2, 26.3, 21.1, 14.6, 13.7, 13.3; HRMS (ESI) Calcd for C<sub>28</sub>H<sub>31</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 491.2177; found 491.2175.



**Diethyl** 1-acetyl-1'-benzyl-5-methoxy-5'-methyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'pyrrole]-3',4'-dicarboxylate (3ca). General procedure was followed to afford 3ca as a white solid (71.7 mg, 71% yield, dr = 93:7); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (d, *J* = 9.0 Hz, 1H), 7.24–7.16 (m, 3H), 6.94–6.87 (m, 3H), 6.85 (d, *J* = 2.7 Hz, 1H), 4.36 (d, *J* = 15.5 Hz, 1H), 4.29 (q, *J* = 1.0 Hz, 1H), 4.18 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.09 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.80 (d, *J* = 15.5 Hz, 1H), 3.78 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.77 (s, 3H), 3.70 (dq, *J* = 10.7, 7.1 Hz, 1H), 2.52 (d, *J* = 1.0 Hz, 3H), 2.28 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H), 0.82 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  176.6, 170.2, 169.3, 165.6, 161.6, 157.1, 135.5, 134.1, 128.7 (2C), 128.5 (2C), 128.3, 124.5, 118.0, 116.5, 110.9, 96.4, 73.0, 60.9, 59.2, 57.5, 55.9, 48.2, 26.2, 14.6, 13.8, 13.3; HRMS (ESI) Calcd for C<sub>28</sub>H<sub>31</sub>N<sub>2</sub>O<sub>7</sub> [M+H]<sup>+</sup> 507.2126; found 507.2123.





1-acetyl-1'-benzyl-5-chloro-5'-methyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'-

**pyrrole]-3',4'-dicarboxylate (3da).** General procedure was followed to afford **3da** as a white solid (58.4 mg, 57% yield, dr > 99:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.11 (d, J = 8.7 Hz, 1H), 7.37 (dd, J = 8.7, 2.2 Hz, 1H), 7.30 (d, J = 2.2 Hz, 1H), 7.25–7.16 (m, 3H), 6.90–6.85 (m, 2H), 4.41 (d, J = 15.3 Hz, 1H), 4.30 (q, J = 1.3 Hz, 1H), 4.19 (dq, J = 10.8, 7.1 Hz, 1H), 4.10 (dq, J = 10.8, 7.1 Hz, 1H), 3.79 (dq, J = 10.8, 7.1 Hz, 1H), 3.77 (d, J = 15.3 Hz, 1H), 3.75 (dq, J = 10.8, 7.1 Hz, 1H), 2.53 (d, J = 1.3 Hz, 3H), 2.29 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H), 0.87 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 176.0, 170.3, 169.0, 165.5, 161.4, 139.0, 135.0, 130.9, 130.7, 128.9 (2C), 128.53 (2C), 128.49, 125.8, 125.2, 118.1, 96.7, 72.5, 61.1, 59.3, 57.8, 48.4, 26.3, 14.6, 13.8, 13.3; HRMS (ESI) Calcd for C<sub>27</sub>H<sub>28</sub><sup>35</sup>ClN<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 511.1630; found 511.1628.



**Diethyl 1-acetyl-1'-benzyl-5-bromo-5'-methyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'-dicarboxylate (3ea).** General procedure was followed to afford **3ea** as a white solid (66.5 mg, 60% yield, dr > 99:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (d, J = 8.7 Hz, 1H), 7.51 (dd, J = 8.7, 2.1 Hz, 1H), 7.44 (d, J = 2.1 Hz, 1H), 7.25–7.16 (m, 3H), 6.90–6.85 (m, 2H), 4.41 (d, J = 15.3 Hz, 1H), 4.30 (q, J = 1.3 Hz, 1H), 4.19 (dq, J = 10.8, 7.1 Hz, 1H), 4.09 (dq, J = 10.8, 7.1 Hz, 1H), 3.79 (dq, J = 10.8, 7.1 Hz, 1H), 3.77 (d, J = 15.3 Hz, 1H), 3.76 (dq, J = 10.8, 7.1 Hz, 1H), 2.53 (d, J = 1.3 Hz, 3H), 2.29 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H), 0.88 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  175.9, 170.3, 169.0, 165.5, 161.4, 139.5, 135.0, 133.8, 128.9 (2C), 128.7, 128.52 (2C), 128.50, 125.5, 118.5, 118.2, 96.7, 72.4, 61.1, 59.3, 57.8, 48.4, 26.3, 14.5, 13.9, 13.3; HRMS (ESI) Calcd for C<sub>27</sub>H<sub>28</sub><sup>79</sup>BrN<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 555.1125; found 555.1124.



**Diethyl 1-acetyl-1'-benzyl-5',7-dimethyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'-dicarboxylate (3fa).** General procedure was followed to afford **3fa** as a white solid (79.7 mg, 81% yield, dr > 99:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.25–7.10 (m, 6H), 6.87 (d, *J* = 7.0 Hz, 2H), 4.34 (d, *J* = 15.6 Hz, 1H), 4.32 (s, 1H), 4.18 (dq, *J* = 10.7, 7.1 Hz, 1H), 4.09 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.72 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.70 (d, *J* = 15.6 Hz, 1H), 3.62 (dq, *J* = 10.7, 7.1 Hz, 1H), 2.47 (s, 3H), 2.35 (s, 3H), 2.07 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H), 0.77 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  177.5, 169.4, 169.1, 165.7, 161.8, 139.0, 135.5, 133.7, 128.7 (2C), 128.4 (2C), 128.1, 127.1, 125.4, 124.9, 123.0, 96.4, 73.9, 60.8, 59.2, 57.8, 48.3, 26.1, 21.5, 14.6, 13.7, 13.3; HRMS (ESI) Calcd for C<sub>28</sub>H<sub>31</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 491.2177; found 491.2173.



**Diethyl** 1-acetyl-1'-benzyl-5,5',7-trimethyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'-dicarboxylate (3ga). General procedure was followed to afford 3ga as a white solid (81.1 mg, 80% yield, dr = 98:2); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.25–7.16 (m, 3H), 7.01 (s, 1H), 6.94 (s, 1H), 6.92–6.87 (m, 2H), 4.33 (d, *J* = 15.6 Hz, 1H), 4.32 (q, *J* = 1.1 Hz, 1H), 4.18 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.09 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.722 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.719 (d, *J* = 15.6 Hz, 1H), 3.65 (dq, *J* = 10.8, 7.1 Hz, 1H), 2.48 (d, *J* = 1.1 Hz, 3H), 2.33 (s, 3H), 2.29 (s, 3H), 2.05 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H), 0.78 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  177.6, 169.3, 169.1, 165.7, 161.7, 136.6, 135.6, 135.2, 134.2, 128.6 (2C), 128.4 (2C), 128.0, 126.8, 124.9, 123.4, 96.2, 73.9, 60.8, 59.2, 57.7, 48.3, 26.0, 21.4, 21.0, 14.6, 13.6, 13.3; HRMS (ESI) Calcd for C<sub>29</sub>H<sub>33</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 505.2333; found 505.2331.



**4'-Ethyl 3'-methyl 1-acetyl-1'-benzyl-5'-methyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'pyrrole]-3',4'-dicarboxylate (3ha).** General procedure was followed to afford **3ha** as a white solid (64.9 mg, 70% yield, dr = 98:2); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (d, *J* = 8.2 Hz, 1H), 7.40 (td, *J* = 7.9, 1.2 Hz, 1H), 7.31 (dd, *J* = 7.5, 0.7 Hz, 1H), 7.24–7.15 (m, 4H), 6.89–6.82 (m, 2H), 4.38 (d, *J* = 15.4 Hz, 1H), 4.31 (q, *J* = 0.9 Hz, 1H), 4.19 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.09 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.75 (d, *J* = 15.4 Hz, 1H), 3.23 (s, 3H), 2.53 (d, *J* = 0.9 Hz, 3H), 2.29 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  176.5, 170.5, 169.8, 165.6, 161.7, 140.6, 135.3, 131.0, 128.8 (2C), 128.5 (2C), 128.3, 125.5, 125.1, 123.2, 116.9, 96.3, 72.6, 59.2, 57.5, 51.8, 48.1, 26.3, 14.6, 13.3; HRMS (ESI) Calcd for C<sub>26</sub>H<sub>27</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 463.1864; found 463.1864.



**3'-tert-Butyl 4'-ethyl 1-acetyl-1'-benzyl-5'-methyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'pyrrole]-3',4'-dicarboxylate (3ia).** General procedure was followed to afford **3ia** as a white solid (72.5 mg, 72% yield, dr = 98:2); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (d, J = 8.2 Hz, 1H), 7.44–7.36 (m, 2H), 7.24–7.15 (m, 4H), 6.87–6.83 (m, 2H), 4.41 (d, J = 15.0 Hz, 1H), 4.30 (q, J = 1.4 Hz, 1H), 4.19 (dq, J = 10.8, 7.1 Hz, 1H), 4.08 (dq, J = 10.8, 7.1 Hz, 1H), 3.65 (d, J = 15.0 Hz, 1H), 2.48 (d, J = 1.4 Hz, 3H), 2.29 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H), 0.97 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  177.2, 170.5, 167.7, 165.8, 161.4, 140.7, 135.2, 130.8, 129.1 (2C), 128.4 (2C), 128.3, 126.2, 125.2, 123.5, 116.8, 97.1, 81.0, 73.1, 59.2, 58.5, 48.5, 27.4 (3C), 26.3, 14.5, 13.2; HRMS (ESI) Calcd for C<sub>29</sub>H<sub>33</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 505.2333; found 505.2330.



**Diethyl 1'-benzyl-5'-methyl-2-oxo-1-propionyl-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'-dicarboxylate (3ja).** General procedure was followed to afford **3ja** as a white solid (68.9 mg, 70% yield, dr > 99:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (d, J = 8.2 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.33 (d, J = 7.4 Hz, 1H), 7.23–7.14 (m, 4H), 6.88–6.84 (m, 2H), 4.38 (d, J = 15.4 Hz, 1H), 4.31 (s, 1H), 4.18 (dq, J = 10.8, 7.1 Hz, 1H), 4.09 (dq, J = 10.8, 7.1 Hz, 1H), 3.729 (d, J = 15.4 Hz, 1H), 3.725 (dq, J = 10.8, 7.1 Hz, 1H), 3.64 (dq, J = 10.8, 7.1 Hz, 1H), 2.81 (dq, J = 18.4, 7.2 Hz, 1H), 2.51 (s, 3H), 2.45 (dq, J = 18.4, 7.2 Hz, 1H), 1.21 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.2 Hz, 3H), 0.77 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  176.6, 174.5, 169.2, 165.7, 161.6, 140.8, 135.4, 130.9, 128.8 (2C), 128.4 (2C), 128.1, 125.7, 125.0, 123.4, 116.9, 96.4, 72.8, 60.8, 59.2, 57.5, 48.2, 31.5, 14.5, 13.7, 13.3, 8.1; HRMS (ESI) Calcd for C<sub>28</sub>H<sub>31</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 491.2177; found 491.2174.



**Diethyl** 1-benzoyl-1'-benzyl-5'-methyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'dicarboxylate (3ka). General procedure was followed to afford 3ka as a white solid (73.2 mg, 68% yield, dr > 99:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, *J* = 8.1 Hz, 1H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.52–7.47 (m, 2H), 7.45–7.34 (m, 4H), 7.26–7.21 (m, 3H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.06–6.99 (m, 2H), 4.42 (q, *J* = 1.2 Hz, 1H), 4.28 (d, *J* = 16.1 Hz, 1H), 4.19 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.09 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.89 (d, *J* = 16.1 Hz, 1H), 3.79 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.69 (dq, *J* = 10.8, 7.1 Hz, 1H), 2.39 (d, *J* = 1.2 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 3H), 0.86 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  175.4, 169.2, 168.7, 165.7, 162.2, 140.6, 136.0, 133.6, 133.2, 130.9, 129.4 (2C), 128.7 (2C), 128.3 (2C), 127.9, 127.8 (2C), 125.9, 125.0, 123.9, 115.3, 96.2, 73.8, 60.9, 59.2, 57.8, 48.5, 14.6, 13.9, 13.3; HRMS (ESI) Calcd for C<sub>32</sub>H<sub>31</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 539.2177; found 539.2176.



**Diethyl** 1'-benzyl-5'-methyl-1-(4-methylbenzoyl)-2-oxo-1',3'-dihydrospiro[indoline-3,2'pyrrole]-3',4'-dicarboxylate (3la). General procedure was followed to afford 3la as a white solid (65.2 mg, 59% yield, dr > 99:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, *J* = 8.1 Hz, 1H), 7.46–7.38 (m, 3H), 7.35 (d, *J* = 7.5 Hz, 1H), 7.25–7.14 (m, 6H), 7.07–7.00 (m, 2H), 4.43 (q, *J* = 1.0 Hz, 1H), 4.25 (d, *J* = 16.2 Hz, 1H), 4.19 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.09 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.89 (d,

 $J = 16.2 \text{ Hz}, 1\text{H}, 3.79 \text{ (dq}, J = 10.8, 7.1 \text{ Hz}, 1\text{H}), 3.68 \text{ (dq}, J = 10.8, 7.1 \text{ Hz}, 1\text{H}), 2.41 \text{ (s}, 3\text{H}), 2.38 \text{ (d}, J = 1.0 \text{ Hz}, 3\text{H}), 1.22 \text{ (t}, J = 7.1 \text{ Hz}, 3\text{H}), 0.85 \text{ (t}, J = 7.1 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 175.5, 169.3, 168.5, 165.7, 162.3, 144.3, 140.7, 136.2, 130.8, 130.7, 129.7 (2C), 129.1 (2C), 128.7 (2C), 127.9, 127.8 (2C), 125.9, 124.8, 123.9, 115.2, 96.2, 74.0, 60.9, 59.2, 57.7, 48.5, 21.9, 14.6, 13.9, 13.3; \text{HRMS} (\text{ESI}) \text{ Calcd for } C_{33}\text{H}_{33}\text{N}_2\text{O}_6 \text{ [M+H]}^+ 553.2333; \text{ found } 553.2331.$ 



**Diethyl** 1'-benzyl-1-(4-chlorobenzoyl)-5'-methyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'pyrrole]-3',4'-dicarboxylate (3ma). General procedure was followed to afford 3ma as a white solid (72.6 mg, 63% yield, dr > 99:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, J = 8.2 Hz, 1H), 7.43 (td, J= 7.9, 1.2 Hz, 1H), 7.40–7.32 (m, 5H), 7.26–7.18 (m, 4H), 7.03–6.97 (m, 2H), 4.40 (q, J = 1.1 Hz, 1H), 4.33 (d, J = 16.1 Hz, 1H), 4.19 (dq, J = 10.8, 7.1 Hz, 1H), 4.09 (dq, J = 10.8, 7.1 Hz, 1H), 3.84 (d, J = 16.1 Hz, 1H), 3.78 (dq, J = 10.8, 7.1 Hz, 1H), 3.68 (dq, J = 10.8, 7.1 Hz, 1H), 2.42 (d, J = 1.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H), 0.85 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  175.5, 169.1, 167.6, 165.6, 162.0, 140.3, 139.5, 135.9, 131.9, 130.94, 130.85 (2C), 128.72 (2C), 128.67 (2C), 128.00, 127.98 (2C), 126.0, 125.1, 123.8, 115.4, 96.3, 73.7, 61.0, 59.3, 57.9, 48.4, 14.6, 13.9, 13.3; HRMS (ESI) Calcd for C<sub>32</sub>H<sub>30</sub><sup>35</sup>ClN<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 573.1787; found 573.1777.



**Diethyl** 1'-benzyl-1,5'-dimethyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'dicarboxylate (3na). General procedure was followed to afford 3na as a colorless oil (48.5 mg, 54% yield, dr > 99:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.31 (td, *J* = 7.7, 0.6 Hz, 1H), 7.26 (d, *J* = 7.2 Hz, 1H), 7.22–7.14 (m, 3H), 6.99 (t, *J* = 7.5 Hz, 1H), 6.97–6.93 (m, 2H), 6.71 (d, *J* = 7.8 Hz, 1H), 4.30 (q, *J* = 0.8 Hz, 1H), 4.17 (d, *J* = 15.7 Hz, 1H), 4.15 (dq, *J* = 10.7, 7.1 Hz, 1H), 4.08 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.85 (d, *J* = 15.7 Hz, 1H), 3.75 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.68 (dq, *J* = 10.8, 7.1 Hz, 1H), 2.92 (s, 3H), 2.42 (d, *J* = 0.8 Hz, 3H), 1.19 (t, *J* = 7.1 Hz, 3H), 0.81 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  175.6, 169.9, 165.7, 162.3, 144.1, 136.0, 130.5, 128.2 (2C), 128.0 (2C), 127.7, 126.1, 124.2, 122.5, 108.4, 96.7, 72.7, 60.4, 58.9, 56.2, 48.4, 26.3, 14.5, 13.8, 13.4; HRMS (ESI) Calcd for C<sub>26</sub>H<sub>29</sub>N<sub>2</sub>O<sub>5</sub> [M+H]<sup>+</sup> 449.2071; found 449.2069.





1'-benzyl-5'-methyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'-

**dicarboxylate (30a).** General procedure was followed to afford **30a** as a colorless oil (52.1 mg, 60% yield, dr = 95:5); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.21 (s, 1H), 7.28–7.21 (m, 2H), 7.18–7.10 (m, 3H), 7.04 (d, *J* = 7.3 Hz, 2H), 6.95 (t, *J* = 7.6 Hz, 1H), 6.86 (d, *J* = 7.7 Hz, 1H), 4.34 (s, 1H), 4.17 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.14 (d, *J* = 16.2 Hz, 1H), 4.08 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.98 (d, *J* = 16.2 Hz, 1H), 3.80 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.73 (dq, *J* = 10.8, 7.1 Hz, 1H), 2.40 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H), 0.85 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  178.3, 170.0, 165.8, 162.7, 141.6, 136.5, 130.5, 128.3 (2C), 127.7 (3C), 126.5, 124.8, 122.6, 110.7, 96.4, 73.5, 60.7, 59.1, 56.1, 48.4, 14.5, 13.8, 13.4; HRMS (ESI) Calcd for C<sub>25</sub>H<sub>27</sub>N<sub>2</sub>O<sub>5</sub> [M+H]<sup>+</sup> 435.1915; found 435.1914.



**Diethyl 1-acetyl-5,5'-dimethyl-2-oxo-1'-propyl-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'-dicarboxylate (3bb).** General procedure was followed to afford **3bb** as a white solid (66.9 mg, 76% yield, dr > 99:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (d, *J* = 8.3 Hz, 1H), 7.19 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.08 (d, *J* = 1.2 Hz, 1H), 4.28 (q, *J* = 1.2 Hz, 1H), 4.16 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.06 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.73 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.65 (dq, *J* = 10.7, 7.1 Hz, 1H), 2.92–2.83 (m, 1H), 2.80–2.71 (m, 1H), 2.70 (s, 3H), 2.46 (d, *J* = 1.2 Hz, 3H), 2.32 (s, 3H), 1.32–1.22 (m, 2H), 1.19 (t, *J* = 7.1 Hz, 3H), 0.82 (t, *J* = 7.1 Hz, 3H), 0.74 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  177.5, 170.6, 169.3, 165.7, 162.6, 138.0, 135.2, 131.3, 126.0, 124.1, 116.5, 94.6, 73.5, 60.7, 59.0, 57.7, 46.2, 26.7, 23.5, 21.1, 14.6, 13.8, 12.9, 11.3; HRMS (ESI) Calcd for C<sub>24</sub>H<sub>31</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 443.2177; found 443.2177.



**Diethyl** 1-acetyl-1'-butyl-5,5'-dimethyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'dicarboxylate (3bc). General procedure was followed to afford 3bc as a white solid (60.5 mg, 66% yield, dr > 99:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (d, *J* = 8.4 Hz, 1H), 7.19 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.09 (d, *J* = 1.2 Hz, 1H), 4.28 (q, *J* = 1.2 Hz, 1H), 4.16 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.06 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.74 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.65 (dq, *J* = 10.8, 7.1 Hz, 1H), 2.96–2.87 (m, 1H), 2.82–2.73 (m, 1H), 2.70 (s, 3H), 2.45 (d, *J* = 1.2 Hz, 3H), 2.32 (s, 3H), 1.27–1.06 (m, 4H), 1.19 (t, *J* = 7.1 Hz, 3H), 0.82 (t, *J* = 7.1 Hz, 3H), 0.76 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  177.5, 170.6, 169.3, 165.7, 162.6, 138.0, 135.2, 131.3, 126.0, 124.1, 116.5, 94.5, 73.5, 60.7, 59.0, 57.6, 44.2, 32.2, 26.6, 21.1, 19.9, 14.5, 13.74, 13.66, 12.9; HRMS (ESI) Calcd for C<sub>25</sub>H<sub>33</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 457.2333; found 457.2337.



**Diethyl 1-acetyl-1'-isobutyl-5,5'-dimethyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'-dicarboxylate (3bd).** General procedure was followed to afford **3bd** as a white solid (62.4 mg, 71% yield, dr = 92:8); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (d, *J* = 8.4 Hz, 1H), 7.19 (dd, *J* = 8.5, 1.2 Hz, 1H), 7.07 (s, 1H), 4.31 (q, *J* = 1.2 Hz, 1H), 4.17 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.07 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.73 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.64 (dq, *J* = 10.8, 7.1 Hz, 1H), 2.73 (dd, *J* = 14.9, 9.2 Hz, 1H), 2.69 (s, 3H), 2.60 (dd, *J* = 14.9, 6.3 Hz, 1H), 2.44 (d, *J* = 1.2 Hz, 3H), 2.32 (s, 3H), 1.34– 1.24 (m, 1H), 1.20 (t, *J* = 7.1 Hz, 3H), 0.815 (t, *J* = 7.1 Hz, 3H), 0.813 (d, *J* = 6.6 Hz, 3H), 0.70 (d, *J* = 6.6 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  177.4, 170.6, 169.3, 165.7, 163.0, 137.9, 135.1, 131.3, 126.1, 123.8, 116.5, 95.1, 73.5, 60.7, 59.0, 57.9, 52.2, 28.3, 26.7, 21.1, 20.3, 20.0, 14.6, 13.8, 13.3; HRMS (ESI) Calcd for C<sub>25</sub>H<sub>33</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 457.2333; found 457.2335.



**Diethyl** 1-acetyl-5,5'-dimethyl-2-oxo-1'-phenethyl-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'-dicarboxylate (3be). General procedure was followed to afford 3be as a white solid (78.9 mg, 78% yield, dr = 92:8); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (d, J = 8.4 Hz, 1H), 7.26–7.17 (m, 4H), 7.10 (s, 1H), 6.95–6.91 (m, 2H), 4.32 (q, J = 1.1 Hz, 1H), 4.17 (dq, J = 10.8, 7.1 Hz, 1H), 4.07 (dq, J = 10.8, 7.1 Hz, 1H), 3.75 (dq, J = 10.8, 7.1 Hz, 1H), 3.67 (dq, J = 10.8, 7.1 Hz, 1H), 3.14–2.98 (m, 2H), 2.70 (s, 3H), 2.56 (t, J = 7.8 Hz, 2H), 2.35 (d, J = 1.1 Hz, 3H), 2.32 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H), 0.83 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  177.6, 170.5, 169.3, 165.6, 162.3, 138.2, 138.0, 135.3, 131.5, 128.8 (2C), 128.7 (2C), 126.9, 126.1, 124.1, 116.6, 95.1, 73.7, 60.8, 59.1, 57.6, 46.4, 36.9, 26.7, 21.2, 14.6, 13.8, 12.7; HRMS (ESI) Calcd for C<sub>29</sub>H<sub>33</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 505.2333; found 505.2333.



**Diethyl** 1-acetyl-1'-(4-methoxybenzyl)-5,5'-dimethyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'pyrrole]-3',4'-dicarboxylate (3bf). General procedure was followed to afford 3bf as a white solid (86.3 mg, 83% yield, dr = 97:3); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, *J* = 8.3 Hz, 1H), 7.19 (d, *J* = 8.3 Hz, 1H), 7.11 (s, 1H), 6.72 (d, *J* = 8.8 Hz, 2H), 6.68 (d, *J* = 8.8 Hz, 2H), 4.36 (d, *J* = 15.0 Hz, 1H), 4.28 (q, *J* = 1.0 Hz, 1H), 4.18 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.08 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.75 (s, 3H), 3.71 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.68 (d, *J* = 15.0 Hz, 1H), 3.65 (dq, *J* = 10.8, 7.1 Hz, 1H), 2.53 (d, *J* = 1.0 Hz, 3H), 2.34 (s, 3H), 2.30 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H), 0.78 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) *δ* 176.9, 170.4, 169.2, 165.7, 161.5, 159.6, 138.3, 134.9, 131.3, 130.5 (2C), 126.9, 126.0, 123.3, 116.7, 113.7 (2C), 96.2, 72.7, 60.7, 59.2, 57.6, 55.4, 47.6, 26.2, 21.1, 14.6, 13.7, 13.3; HRMS (ESI) Calcd for C<sub>29</sub>H<sub>33</sub>N<sub>2</sub>O<sub>7</sub> [M+H]<sup>+</sup> 521.2282; found 521.2279.



**Diethyl** 1-acetyl-1'-(4-chlorobenzyl)-5,5'-dimethyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'pyrrole]-3',4'-dicarboxylate (3bg). General procedure was followed to afford 3bg as a white solid (83.6 mg, 80% yield, dr = 92:8); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, J = 8.4 Hz, 1H), 7.19 (dd, J = 8.4, 1.4 Hz, 1H), 7.16 (d, J = 8.4 Hz, 2H), 7.08 (s, 1H), 6.83 (d, J = 8.4 Hz, 2H), 4.31 (q, J = 1.1 Hz, 1H), 4.29 (d, J = 15.5 Hz, 1H), 4.19 (dq, J = 10.8, 7.1 Hz, 1H), 4.09 (dq, J = 10.8, 7.1 Hz, 1H), 3.76 (d, J = 15.5 Hz, 1H), 3.73 (dq, J = 10.8, 7.1 Hz, 1H), 3.66 (dq, J = 10.8, 7.1 Hz, 1H), 2.49 (d, J = 1.1 Hz, 3H), 2.36 (s, 3H), 2.32 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H), 0.78 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  176.7, 170.2, 169.1, 165.6, 161.3, 138.2, 135.1, 134.12, 134.10, 131.5, 130.0 (2C), 128.5 (2C), 126.0, 123.1, 116.7, 96.7, 72.9, 60.8, 59.3, 57.5, 47.6, 26.1, 21.1, 14.5, 13.7, 13.3; HRMS (ESI) Calcd for C<sub>28</sub>H<sub>30</sub><sup>35</sup>ClN<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 525.1787; found 525.1787.



**Diethyl** 1-acetyl-1'-(2-chlorobenzyl)-5,5'-dimethyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'pyrrole]-3',4'-dicarboxylate (3bh). General procedure was followed to afford 3bh as a white solid (74.4 mg, 71% yield, dr = 95:5); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, *J* = 8.3 Hz, 1H), 7.25 (d, *J* = 7.9 Hz, 1H), 7.20–7.13 (m, 2H), 7.10 (s, 1H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.78 (d, *J* = 7.6 Hz, 1H), 4.42 (d, *J* = 15.7 Hz, 1H), 4.32 (q, *J* = 1.1 Hz, 1H), 4.19 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.09 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.98 (d, *J* = 15.7 Hz, 1H), 3.71 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.64 (dq, *J* = 10.7, 7.1 Hz, 1H), 2.53 (d, *J* = 1.1 Hz, 3H), 2.36 (s, 3H), 2.31 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H), 0.79 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  176.4, 170.3, 169.1, 165.6, 161.9, 138.2, 135.0, 134.6, 132.9, 131.4, 130.7, 129.7, 129.6, 126.6, 126.0, 123.2, 116.7, 96.4, 73.1, 60.8, 59.2, 57.8, 46.1, 26.4, 21.1, 14.5, 13.7, 13.1; HRMS (ESI) Calcd for C<sub>28</sub>H<sub>30</sub><sup>35</sup>ClN<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 525.1787; found 525.1787.



**Diethyl** 1-acetyl-1'-(furan-2-ylmethyl)-5,5'-dimethyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'pyrrole]-3',4'-dicarboxylate (3bi). General procedure was followed to afford 3bi as a white solid (64.5 mg, 67% yield, dr > 99:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 (d, *J* = 8.4 Hz, 1H), 7.34 (d, *J* 

= 1.2 Hz, 1H), 7.20 (dd, J = 8.4, 1.0 Hz, 1H), 7.07 (s, 1H), 6.13 (dd, J = 3.1, 1.9 Hz, 1H), 5.68 (d, J = 3.2 Hz, 1H), 4.33 (d, J = 16.1 Hz, 1H), 4.22 (q, J = 1.0 Hz, 1H), 4.16 (dq, J = 10.8, 7.1 Hz, 1H), 4.07 (dq, J = 10.8, 7.1 Hz, 1H), 3.81 (d, J = 16.1 Hz, 1H), 3.75 (dq, J = 10.8, 7.1 Hz, 1H), 3.67 (dq, J = 10.8, 7.1 Hz, 1H), 2.60 (d, J = 1.0 Hz, 3H), 2.47 (s, 3H), 2.33 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H), 0.81 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  176.0, 170.6, 169.2, 165.6, 161.3, 148.9, 143.3, 138.3, 135.1, 131.3, 125.8, 123.1, 116.6, 110.1, 109.9, 96.1, 72.3, 60.8, 59.1, 57.4, 39.9, 26.5, 21.1, 14.5, 13.7, 12.9; HRMS (ESI) Calcd for C<sub>26</sub>H<sub>29</sub>N<sub>2</sub>O<sub>7</sub> [M+H]<sup>+</sup> 481.1969; found 481.1968.



**Diethyl 1-acetyl-5,5'-dimethyl-2-oxo-1'-phenyl-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'-dicarboxylate (3bj).** General procedure was followed to afford **3bj** as a white solid (64.1 mg, 67% yield, dr > 99:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.93 (d, J = 8.4 Hz, 1H), 7.27 (d, J = 1.2 Hz, 1H), 7.22–7.15 (m, 3H), 7.09 (dd, J = 8.4, 1.2 Hz, 1H), 6.90–6.84 (m, 2H), 4.51 (q, J = 1.3 Hz, 1H), 4.22 (dq, J = 10.8, 7.1 Hz, 1H), 4.13 (dq, J = 10.8, 7.1 Hz, 1H), 3.79 (dq, J = 10.8, 7.1 Hz, 1H), 3.71 (dq, J = 10.8, 7.1 Hz, 1H), 2.61 (s, 3H), 2.32 (s, 3H), 2.22 (d, J = 1.3 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H), 0.83 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  176.6, 170.4, 169.3, 165.7, 161.2, 137.9, 137.4, 135.0, 131.2, 129.3 (2C), 129.1 (2C), 128.2, 126.3, 124.6, 116.3, 97.6, 74.9, 60.9, 59.3, 57.6, 26.6, 21.2, 14.6, 14.1, 13.8; HRMS (ESI) Calcd for C<sub>27</sub>H<sub>29</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 477.2020; found 477.2022.



**3'-Ethyl 4'-methyl 1-acetyl-1'-benzyl-5,5'-dimethyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'-dicarboxylate (3bk).** General procedure was followed to afford **3bk** as a white solid (74.7 mg, 78% yield, dr = 96:4); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, J = 8.4 Hz, 1H), 7.22–7.16 (m, 4H), 7.11 (s, 1H), 6.90–6.85 (m, 2H), 4.37 (d, J = 15.4 Hz, 1H), 4.29 (q, J = 1.0 Hz, 1H), 3.78–3.63 (m, 2H), 3.75 (d, J = 15.4 Hz, 1H), 3.67 (s, 3H), 2.52 (d, J = 1.0 Hz, 3H), 2.33 (s, 3H), 2.27 (s, 3H), 0.77 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  176.7, 170.4, 169.2, 166.1, 161.8, 138.4, 135.4, 135.0, 131.4, 128.8 (2C), 128.4 (2C), 128.3, 126.0, 123.2, 116.7, 96.1, 72.9, 60.8, 57.4, 50.7, 48.2, 26.3, 21.1, 13.7, 13.4; HRMS (ESI) Calcd for C<sub>27</sub>H<sub>29</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 477.2020; found 477.2019.



3'-Ethyl 4'-propyl 1-acetyl-1'-benzyl-5,5'-dimethyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'-

**pyrrole]-3',4'-dicarboxylate (3bl).** General procedure was followed to afford **3bl** as a white solid (75.9 mg, 75% yield, dr > 99:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, *J* = 8.4 Hz, 1H), 7.24–7.15 (m, 4H), 7.12 (s, 1H), 6.91–6.84 (m, 2H), 4.37 (d, *J* = 15.4 Hz, 1H), 4.30 (q, *J* = 1.1 Hz, 1H), 4.10 (dt, *J* = 10.7, 6.5 Hz, 1H), 3.98 (dt, *J* = 10.7, 6.5 Hz, 1H), 3.75 (d, *J* = 15.4 Hz, 1H), 3.76–3.62 (m, 2H), 2.53 (d, *J* = 1.1 Hz, 3H), 2.33 (s, 3H), 2.28 (s, 3H), 1.65–1.55 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H), 0.77 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  176.8, 170.4, 169.2, 165.7, 161.7, 138.3, 135.5, 134.9, 131.4, 128.8 (2C), 128.4 (2C), 128.2, 126.1, 123.2, 116.6, 96.3, 72.8, 64.9, 60.8, 57.5, 48.2, 26.3, 22.3, 21.1, 13.7, 13.3, 10.7; HRMS (ESI) Calcd for C<sub>29</sub>H<sub>33</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 505.2333; found 505.2331.



**4'-tert-Butyl 3'-ethyl 1-acetyl-1'-benzyl-5,5'-dimethyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'-dicarboxylate (3bm).** General procedure was followed to afford **3bm** as a white solid (81.5 mg, 79% yield, dr = 95:5); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (d, J = 8.3 Hz, 1H), 7.23–7.15 (m, 4H), 7.13 (s, 1H), 6.90–6.84 (m, 2H), 4.36 (d, J = 15.3 Hz, 1H), 4.27 (q, J = 1.3 Hz, 1H), 3.71 (d, J = 15.3 Hz, 1H), 3.70 (dq, J = 10.8, 7.1 Hz, 1H), 3.67 (dq, J = 10.8, 7.1 Hz, 1H), 2.49 (d, J = 1.3 Hz, 3H), 2.33 (s, 3H), 2.28 (s, 3H), 1.43 (s, 9H), 0.78 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  177.0, 170.3, 169.3, 165.1, 160.7, 138.2, 135.5, 134.8, 131.2, 128.8 (2C), 128.3 (2C), 128.1, 126.1, 123.2, 116.5, 97.6, 79.1, 72.6, 60.6, 58.0, 48.1, 28.4 (3C), 26.2, 21.1, 13.7, 13.1; HRMS (ESI) Calcd for C<sub>30</sub>H<sub>35</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 519.2490; found 519.2490.



**Diethyl 1-acetyl-1'-benzyl-5'-ethyl-5-methyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'-dicarboxylate (3bn).** General procedure was followed to afford **3bn** as a white solid (74.9 mg, 74% yield, dr = 97:3); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (d, J = 8.3 Hz, 1H), 7.23–7.14 (m, 4H), 7.08 (s, 1H), 6.85 (d, J = 7.1 Hz, 2H), 4.39 (d, J = 15.3 Hz, 1H), 4.29 (s, 1H), 4.18 (dq, J = 10.8, 7.1 Hz, 1H), 4.09 (dq, J = 10.8, 7.1 Hz, 1H), 3.75 (d, J = 15.3 Hz, 1H), 3.76–3.60 (m, 2H), 3.05–2.91 (m, 2H), 2.33 (s, 3H), 2.26 (s, 3H), 1.33 (t, J = 7.5 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H), 0.77 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  176.8, 170.3, 169.1, 167.1, 165.3, 138.2, 135.2, 134.8, 131.3, 129.0 (2C), 128.31 (2C), 128.28, 126.0, 123.2, 116.6, 95.3, 72.8, 60.7, 59.1, 57.5, 48.1, 26.2, 21.1, 19.8, 14.5, 13.7, 12.7; HRMS (ESI) Calcd for C<sub>29</sub>H<sub>33</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 505.2333; found 505.2348.



**Diethyl** 1-acetyl-1'-benzyl-5'-isopropyl-5-methyl-2-oxo-1',3'-dihydrospiro[indoline-3,2'pyrrole]-3',4'-dicarboxylate (3bo). General procedure was followed to afford 3bo as a colorless oil (70.6 mg, 68% yield, dr = 98:2); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.99 (d, *J* = 8.3 Hz, 1H), 7.23– 7.14 (m, 4H), 7.11 (s, 1H), 6.88 (d, *J* = 6.7 Hz, 2H), 4.57 (d, *J* = 15.4 Hz, 1H), 4.31 (s, 1H), 4.16 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.06 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.11–3.93 (m, 1H), 3.80 (d, *J* = 15.4 Hz, 1H), 3.69 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.64 (dq, *J* = 10.7, 7.1 Hz, 1H), 2.34 (s, 3H), 2.25 (s, 3H), 1.49 (d, *J* = 7.3 Hz, 3H), 1.45 (d, *J* = 7.3 Hz, 3H), 1.18 (t, *J* = 7.1 Hz, 3H), 0.77 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  177.0, 170.3, 170.0, 169.2, 165.3, 138.2, 135.2, 134.7, 131.3, 128.8 (2C), 128.2 (3C), 125.9, 123.3, 116.6, 95.6, 72.8, 60.6, 59.2, 57.9, 49.6, 26.2, 25.8, 21.2, 19.6, 19.1, 14.4, 13.6; HRMS (ESI) Calcd for C<sub>30</sub>H<sub>35</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 519.2490; found 519.2500.



**Diethyl 1-acetyl-1'-benzyl-5-methyl-2-oxo-5'-phenyl-1',3'-dihydrospiro[indoline-3,2'pyrrole]-3',4'-dicarboxylate (3bp).** General procedure by using 0.3 mmol of I<sub>2</sub> and 0.2 mmol of DABCO·6H<sub>2</sub>O was followed to afford **3bp** as a white solid (53.3 mg, 48% yield, dr > 99:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (d, *J* = 8.3 Hz, 1H), 7.63–7.52 (bs, 2H), 7.52–7.42 (m, 3H), 7.26 (s, 1H), 7.21 (d, *J* = 8.4 Hz, 1H), 7.15 (t, *J* = 7.2 Hz, 1H), 7.09 (t, *J* = 7.2 Hz, 2H), 6.70 (d, *J* = 7.2 Hz, 2H), 4.49 (s, 1H), 4.12 (d, *J* = 14.8 Hz, 1H), 3.99 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.91 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.74 (dq, *J* = 10.9, 7.1 Hz, 1H), 3.69 (dq, *J* = 10.9, 7.1 Hz, 1H), 3.51 (d, *J* = 14.8 Hz, 1H), 2.39 (s, 3H), 2.22 (s, 3H), 0.96 (t, *J* = 7.1 Hz, 3H), 0.77 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  176.7, 170.3, 168.8, 164.7, 162.7, 138.3, 135.0, 134.8, 131.5, 131.4, 130.0, 129.48, 129.45 (2C), 128.6, 128.4, 128.2, 128.1 (3C), 126.1, 123.0, 116.7, 98.6, 72.7, 60.8, 59.2, 57.9, 49.2, 26.2, 21.2, 14.1, 13.7; HRMS (ESI) Calcd for C<sub>33</sub>H<sub>33</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 553.2339; found 553.2339.

#### 4. References

J.-Y. Liu, G.-E. Cao, W. Xu, J. Cao and W.-L. Wang, *Appl. Organometal. Chem.*, 2010, 24, 685.
 S.-H. Cao, X.-C. Zhang, Y. Wei and M. Shi, *Eur. J. Org. Chem.*, 2011, 2668.

[3]. (a) X. Zhu, Z. Li, C. Jin, L. Xu, Q. Wu and W. Su, *Green Chem.*, 2009, **11**, 163; (b) W. Su, J. Yu, Z. Li and Z. Jiang, *J. Org. Chem.*, 2011, **76**, 9144; (c) Z. Li, Z. Jiang and W. Su, *Green Chem.*, 2015, **17**, 2330; (d) K.-Y. Jia, J.-B. Yu, Z.-J. Jiang and W.-K. Su, *J. Org. Chem.*, 2016, **81**, 6049; (e) J.-B. Yu, Y. Zhang, Z.-J. Jiang and W.-K. Su, *J. Org. Chem.*, 2016, **81**, 11514.

[4]. (a) T. Friščić, S. L. Childs, S. A. A. Rizvi and W. Jones, *CrystEngComm*, 2009, **11**, 418; (b) G.
A. Bowmaker, *Chem. Commun.*, 2013, **49**, 334; (c) J. Bonnamour, T.-X. Métro, J. Martinez and F.
Lamaty; *Green Chem.*, 2013, **15**, 1116; (d) Z.-J. Jiang, Z.-H. Li, J.-B. Yu and W.-K. Su, *J. Org. Chem.*, 2016, **81**, 10049.

#### 5. HRMS of intermediate A



A mixture of alkylidene oxindole **1a** (0.1 mmol), enamino ester **2a** (1.1 equiv) and I<sub>2</sub> (20 mol%) together with eight stainless balls (5 mm in diameter) was introduced into a stainless steel jar (3.5 mL), and the jar was fixed on a Spex SamplePrep 5100 mixer mill and milled vigorously at a rate of 3000 rounds per minute (50 Hz) at room temperature for 30 min. Then the resulting oily mixture was analyzed by HRMS.



HRMS (ESI) Calcd for  $C_{27}H_{29}N_2O_6$  [ $M_{3aa}+H$ ]<sup>+</sup> 477.2020; found 477.2040; HRMS (ESI) Calcd for  $C_{27}H_{31}N_2O_6$  [ $M_A+H$ ]<sup>+</sup> 479.2177; found 479.2196; HRMS (ESI) Calcd for  $C_{27}H_{28}N_2O_6Na$  [ $M_{3aa}+Na$ ]<sup>+</sup> 499.1840; found 499.1857; HRMS (ESI) Calcd for  $C_{27}H_{30}N_2O_6Na$  [ $M_A+Na$ ]<sup>+</sup> 501.1996; found 501.2011.

# 6. NMR spectra



#### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3aa

Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3aa



#### <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3aa



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3ba





Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3ba

#### <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3ba



#### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3ca



Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3ca





#### <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3ca



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3da





<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3da



#### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3ea



#### Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3ea





S24

#### <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3ea



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3fa





Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3fa

# <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3fa



### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3ga



Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3ga

| 7.2375<br>7.2335<br>7.2177<br>7.2049<br>7.1874<br>7.1791<br>7.1735<br>7.1735 | 5.9018<br>5.8871<br>5.8826 | 4.3455<br>4.3249<br>4.3218<br>4.3066 | 4,2215<br>4,2037<br>4,1945<br>4,1945<br>4,1768<br>4,1768<br>4,1768<br>4,1768<br>4,1768<br>4,1768<br>4,1758<br>4,1758<br>4,1412<br>4,1258<br>4,0456<br>4,0456 | 3,7623<br>3,7441<br>3,7741<br>3,7776<br>3,7776<br>3,7776<br>3,7776<br>3,7776<br>3,7776<br>3,7776<br>3,7776<br>3,7776<br>3,7776<br>3,7776<br>3,7776<br>3,7776<br>3,7776<br>3,6726<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,6728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3,7728<br>3, |
|------------------------------------------------------------------------------|----------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\chi = \chi = \chi$                                                         | 1 M                        | ÍÝÍ                                  |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



#### <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3ga



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3ha





<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3ha



#### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3ia



Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3ia



#### <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3ia



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3ja





<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3ja



#### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3ka



Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3ka





#### <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3ka



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3la





<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3la



#### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3ma



Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3ma


# <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3ma



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3na





<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3na



# <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3oa



Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3oa



# <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3oa



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bb





<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3bb



#### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bc



Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bc





### <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3bc



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bd





<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3bd



### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3be



Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3be





# <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3be



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bf





<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3bf



# <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bg



Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bg





0.80

0 ppm

ppm

3.33

ppm

5.95

# <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3bg



#### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bh





<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3bh



### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bi



Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bi



# <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3bi



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bj





<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3bj



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bk



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3bk



# <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bl



Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bl



## <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3bl



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bm



## <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3bm



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bn





Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bn

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3bn



# <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bo



Expanded <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bo



# <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3bo



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 3bp





<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of compound 3bp



# 7. X-ray single-crystal structure of 3bm



(CCDC 1557956)

# Table S2 Crystal data and structure refinement for 3bm.

| Identification code                   | 1557956                                          |
|---------------------------------------|--------------------------------------------------|
| Empirical formula                     | $C_{30}H_{34}N_2O_6$                             |
| Formula weight                        | 518.59                                           |
| Temperature/K                         | 296(2)                                           |
| Crystal system                        | monoclinic                                       |
| Space group                           | $P2_1/n$                                         |
| a/Å                                   | 11.13730(10)                                     |
| b/Å                                   | 24.0612(2)                                       |
| c/Å                                   | 11.22560(10)                                     |
| α/°                                   | 90                                               |
| β/°                                   | 112.9450(10)                                     |
| γ/°                                   | 90                                               |
| Volume/Å <sup>3</sup>                 | 2770.19(5)                                       |
| Z                                     | 4                                                |
| $\rho_{calc}g/cm^3$                   | 1.243                                            |
| μ/mm <sup>-1</sup>                    | 0.706                                            |
| F(000)                                | 1104.0                                           |
| Crystal size/mm <sup>3</sup>          | $0.240 \times 0.210 \times 0.170$                |
| Radiation                             | $CuK\alpha (\lambda = 1.54184)$                  |
| $2\Theta$ range for data collection/° | 7.348 to 142.676                                 |
| Index ranges                          | $-13 \le h \le 13, -29 \le k \le 29, -11 \le 13$ |
| Reflections collected                 | 24796                                            |
| Independent reflections               | $5269 [R_{int} = 0.0196, R_{sigma} = 0.0112]$    |
| Data/restraints/parameters            | 5269/0/354                                       |
| Goodness-of-fit on F <sup>2</sup>     | 1.045                                            |
| Final R indexes [I>= $2\sigma$ (I)]   | $R_1 = 0.0460, wR_2 = 0.1244$                    |
| Final R indexes [all data]            | $R_1 = 0.0486, wR_2 = 0.1273$                    |
|                                       | 662                                              |

| tensor. |            |           |             |          |
|---------|------------|-----------|-------------|----------|
| Atom    | x          | у         | z           | U(eq)    |
| 06      | 1493.1(10) | 5062.0(4) | 7337.1(10)  | 48.7(3)  |
| O4      | 2297.4(12) | 3925.4(5) | 8439.4(12)  | 61.2(3)  |
| 01      | 3544.2(12) | 4010.5(5) | 4535.2(10)  | 61.7(3)  |
| N2      | 5227.1(11) | 4455.1(5) | 7214.9(11)  | 42.6(3)  |
| 05      | 3114.5(12) | 5589.3(5) | 8718.4(13)  | 69.1(4)  |
| N1      | 4155.1(12) | 3171.6(5) | 5660.6(12)  | 50.8(3)  |
| 03      | 1482.9(14) | 3559.4(6) | 6459.6(14)  | 79.0(4)  |
| C10     | 3571.0(13) | 4795.2(5) | 7697.1(12)  | 38.9(3)  |
| С9      | 3022.1(12) | 4289.6(5) | 6874.5(12)  | 38.7(3)  |
| C11     | 4816.6(13) | 4869.6(5) | 7829.4(13)  | 40.4(3)  |
| C12     | 2753.5(14) | 5192.5(5) | 8004.1(13)  | 43.4(3)  |
| C6      | 4726.6(13) | 3493.4(5) | 7744.6(13)  | 41.5(3)  |
| C24     | 6905.0(13) | 4000.9(6) | 6599.8(15)  | 47.1(3)  |
| C7      | 4278.6(13) | 3994.8(5) | 6885.0(12)  | 39.4(3)  |
| C8      | 3959.3(13) | 3749.6(6) | 5527.8(14)  | 46.0(3)  |
| C30     | 2170.5(14) | 3889.7(6) | 7222.7(15)  | 48.1(3)  |
| C1      | 4618.2(14) | 3021.0(6) | 7001.4(15)  | 47.2(3)  |
| O2      | 4156(2)    | 2307.0(6) | 4886.0(16)  | 106.6(6) |
| C5      | 5213.8(14) | 3460.9(6) | 9076.0(14)  | 47.3(3)  |
| C23     | 6616.3(14) | 4323.1(7) | 7607.3(16)  | 52.7(4)  |
| C16     | 5700.0(16) | 5345.3(6) | 8442.4(17)  | 55.8(4)  |
| C17     | 411.4(15)  | 5376.6(7) | 7445.7(16)  | 52.9(4)  |
| C4      | 5576.7(17) | 2948.5(6) | 9685.5(16)  | 55.9(4)  |
| C29     | 6556.7(16) | 4202.0(7) | 5350.5(17)  | 57.4(4)  |
| C2      | 4958.5(18) | 2505.7(6) | 7584.0(19)  | 63.8(5)  |
| C25     | 7586.5(18) | 3507.1(7) | 6924.8(18)  | 62.3(4)  |
| C28     | 6875.2(19) | 3913.9(8) | 4455.6(18)  | 67.4(5)  |
| C3      | 5428.5(19) | 2480.5(7) | 8919.3(19)  | 65.6(5)  |
| C13     | 3976(2)    | 2793.5(8) | 4652.8(19)  | 71.7(5)  |
| C27     | 7562(2)    | 3427.3(9) | 4794(2)     | 76.9(6)  |
| C15     | 6128(2)    | 2908.4(8) | 11143.3(19) | 79.8(6)  |
| C26     | 7917(2)    | 3226.3(9) | 6020(2)     | 80.7(6)  |
| C19     | -759.9(18) | 5044.2(9) | 6578(2)     | 82.8(6)  |
| C20     | 356(2)     | 5948.2(8) | 6891(3)     | 89.6(7)  |

Table S3 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for 3bm. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

S63

| C18  | 519(3)   | 5371.4(16) | 8815(2)  | 119.7(11) |
|------|----------|------------|----------|-----------|
| C14  | 3562(4)  | 3019.3(11) | 3317(2)  | 116.3(10) |
| C21  | 1524(3)  | 3532.3(12) | 8827(3)  | 103.8(9)  |
| C22  | 1880(6)  | 3522(2)    | 10126(4) | 124.9(18) |
| C21' | 1524(3)  | 3532.3(12) | 8827(3)  | 103.8(9)  |
| C22' | 2179(10) | 3118(4)    | 9537(8)  | 124.9(18) |

Table S4 Anisotropic Displacement Parameters (Ų×10³) for 3bm. The Anisotropicdisplacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U11       | $U_{22}$ | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U12      |
|------|-----------|----------|-----------------|-----------------|-----------------|----------|
| 06   | 43.4(5)   | 42.7(5)  | 58.9(6)         | -3.2(4)         | 18.7(4)         | 4.9(4)   |
| O4   | 67.7(7)   | 57.0(6)  | 63.8(7)         | 6.2(5)          | 30.9(6)         | -12.6(5) |
| 01   | 66.2(7)   | 72.6(7)  | 41.1(6)         | -0.9(5)         | 15.1(5)         | 8.9(6)   |
| N2   | 38.0(6)   | 40.4(6)  | 47.4(6)         | -3.3(5)         | 14.5(5)         | -2.1(4)  |
| 05   | 60.7(7)   | 58.6(7)  | 80.9(8)         | -32.0(6)        | 20.0(6)         | -0.3(5)  |
| N1   | 52.4(7)   | 48.4(7)  | 49.7(7)         | -15.8(5)        | 17.8(5)         | -2.8(5)  |
| 03   | 71.7(8)   | 67.7(8)  | 90(1)           | -22.2(7)        | 23.4(7)         | -32.3(7) |
| C10  | 42.9(7)   | 31.9(6)  | 39.1(7)         | -0.4(5)         | 12.8(5)         | -0.9(5)  |
| C9   | 38.8(7)   | 34.5(6)  | 38.4(6)         | -1.7(5)         | 10.4(5)         | 1.0(5)   |
| C11  | 44.4(7)   | 34.3(6)  | 38.9(7)         | 0.9(5)          | 12.3(5)         | -1.5(5)  |
| C12  | 47.4(7)   | 36.8(7)  | 44.3(7)         | -0.3(5)         | 16.1(6)         | 1.1(5)   |
| C6   | 39.4(7)   | 34.9(6)  | 46.2(7)         | -3.8(5)         | 12.5(6)         | 1.8(5)   |
| C24  | 38.4(7)   | 49.6(8)  | 54.5(8)         | 4.9(6)          | 19.5(6)         | -0.3(6)  |
| C7   | 38.7(6)   | 36.6(6)  | 39.2(7)         | -3.8(5)         | 11.3(5)         | -0.3(5)  |
| C8   | 40.7(7)   | 52.2(8)  | 42.5(8)         | -7.1(6)         | 13.4(6)         | 0.2(6)   |
| C30  | 42.1(7)   | 38.2(7)  | 60.7(9)         | -2.8(6)         | 16.5(6)         | -2.1(6)  |
| C1   | 44.2(7)   | 39.8(7)  | 53.7(8)         | -9.6(6)         | 15.0(6)         | -0.5(6)  |
| O2   | 151.9(17) | 64.3(9)  | 91.6(11)        | -36.0(8)        | 34.5(11)        | 8.9(9)   |
| C5   | 50.4(8)   | 39.4(7)  | 46.6(8)         | -2.3(6)         | 12.8(6)         | 2.4(6)   |
| C23  | 37.9(7)   | 60.7(9)  | 56.0(9)         | -4.3(7)         | 14.7(6)         | -1.3(6)  |
| C16  | 52.1(8)   | 43.7(8)  | 66.4(10)        | -8.9(7)         | 17.4(7)         | -10.8(6) |
| C17  | 50.3(8)   | 51.7(8)  | 63.3(9)         | 8.3(7)          | 29.3(7)         | 11.9(6)  |
| C4   | 57.5(9)   | 45.7(8)  | 57.4(9)         | 7.0(7)          | 14.7(7)         | 4.0(7)   |
| C29  | 53.7(9)   | 56.0(9)  | 63.7(10)        | 15.4(7)         | 24.2(7)         | 7.0(7)   |
| C2   | 72.3(11)  | 35.2(7)  | 77.9(12)        | -9.7(7)         | 22.7(9)         | 2.6(7)   |
| C25  | 69.1(10)  | 61.2(10) | 61.3(10)        | 17.9(8)         | 30.6(8)         | 15.1(8)  |
| C28  | 72.7(11)  | 78.7(12) | 58.7(10)        | 15.3(9)         | 34.3(9)         | 5.3(9)   |
| C3   | 74.6(11)  | 37.1(7)  | 75.9(12)        | 6.8(7)          | 19.5(9)         | 6.5(7)   |
| C13  | 81.5(13)  | 67.0(12) | 67.2(11)        | -31.2(9)        | 29.5(10)        | -9.2(9)  |
| C27  | 95.3(15)  | 77.9(12) | 75.5(13)        | 6.4(10)         | 52.8(11)        | 16.6(11) |

| C15  | 98.2(15)  | 64.7(11)  | 60.5(11)  | 18.1(9)   | 13.5(10) | 8.8(10)   |
|------|-----------|-----------|-----------|-----------|----------|-----------|
| C26  | 103.9(16) | 65.3(11)  | 87.6(14)  | 18.3(10)  | 53.5(12) | 33.8(11)  |
| C19  | 48.6(10)  | 77.6(13)  | 118.0(18) | 7.7(12)   | 27.9(11) | 5.4(9)    |
| C20  | 72.4(13)  | 52.9(10)  | 144(2)    | 21.7(12)  | 42.5(13) | 17.4(9)   |
| C18  | 98.4(18)  | 205(3)    | 75.9(15)  | 14.5(18)  | 55.4(14) | 44(2)     |
| C14  | 197(3)    | 95.4(17)  | 66.9(14)  | -37.8(13) | 63.4(17) | -29.4(19) |
| C21  | 103.1(18) | 109.0(19) | 105.3(19) | 31.6(15)  | 47.3(15) | -35.2(15) |
| C22  | 160(4)    | 137(4)    | 90(3)     | 5(2)      | 62(3)    | -68(3)    |
| C21' | 103.1(18) | 109.0(19) | 105.3(19) | 31.6(15)  | 47.3(15) | -35.2(15) |
| C22' | 160(4)    | 137(4)    | 90(3)     | 5(2)      | 62(3)    | -68(3)    |

# Table S5 Bond Lengths for 3bm.

| Ator | Atom Atom Length/Å |            |     | Atom Atom Length/Å |            |  |  |
|------|--------------------|------------|-----|--------------------|------------|--|--|
| 06   | C12                | 1.3454(17) | C6  | C7                 | 1.5033(18) |  |  |
| 06   | C17                | 1.4676(17) | C24 | C25                | 1.380(2)   |  |  |
| O4   | C30                | 1.320(2)   | C24 | C29                | 1.388(2)   |  |  |
| O4   | C21                | 1.455(2)   | C24 | C23                | 1.506(2)   |  |  |
| 01   | C8                 | 1.2033(18) | C7  | C8                 | 1.5405(19) |  |  |
| N2   | C11                | 1.3875(18) | C1  | C2                 | 1.384(2)   |  |  |
| N2   | C23                | 1.4688(18) | O2  | C13                | 1.199(3)   |  |  |
| N2   | C7                 | 1.4748(17) | C5  | C4                 | 1.391(2)   |  |  |
| 05   | C12                | 1.2103(17) | C17 | C18                | 1.494(3)   |  |  |
| N1   | C13                | 1.404(2)   | C17 | C20                | 1.501(2)   |  |  |
| N1   | C8                 | 1.4065(19) | C17 | C19                | 1.516(3)   |  |  |
| N1   | C1                 | 1.434(2)   | C4  | C3                 | 1.387(2)   |  |  |
| 03   | C30                | 1.2002(19) | C4  | C15                | 1.510(3)   |  |  |
| C10  | C11                | 1.3483(19) | C29 | C28                | 1.376(3)   |  |  |
| C10  | C12                | 1.4513(19) | C2  | C3                 | 1.383(3)   |  |  |
| C10  | C9                 | 1.5053(17) | C25 | C26                | 1.384(3)   |  |  |
| C9   | C30                | 1.5058(19) | C28 | C27                | 1.369(3)   |  |  |
| C9   | C7                 | 1.5649(18) | C13 | C14                | 1.489(3)   |  |  |
| C11  | C16                | 1.4912(19) | C27 | C26                | 1.364(3)   |  |  |
| C6   | C5                 | 1.379(2)   | C21 | C22                | 1.354(5)   |  |  |
| C6   | C1                 | 1.3871(18) |     |                    |            |  |  |

# Table S6 Bond Angles for 3bm.

# Atom Atom Atom Angle/°

| C12 | 06 | C17 | 123.06(11) |
|-----|----|-----|------------|
| C30 | O4 | C21 | 115.46(16) |
| C11 | N2 | C23 | 121.27(11) |

# Atom Atom Atom Angle/°

| 01 | C8 | N1 | 127.00(13) |
|----|----|----|------------|
| 01 | C8 | C7 | 124.98(13) |
| N1 | C8 | C7 | 107.90(12) |

| C11 | N2  | C7  | 108.79(11) | 03  | C30 | O4  | 124.24(15) |
|-----|-----|-----|------------|-----|-----|-----|------------|
| C23 | N2  | C7  | 118.71(11) | 03  | C30 | C9  | 121.95(15) |
| C13 | N1  | C8  | 126.00(15) | O4  | C30 | C9  | 113.76(12) |
| C13 | N1  | C1  | 124.18(14) | C2  | C1  | C6  | 120.42(14) |
| C8  | N1  | C1  | 109.79(11) | C2  | C1  | N1  | 129.97(14) |
| C11 | C10 | C12 | 126.88(12) | C6  | C1  | N1  | 109.60(12) |
| C11 | C10 | C9  | 109.22(11) | C6  | C5  | C4  | 119.95(13) |
| C12 | C10 | C9  | 122.38(12) | N2  | C23 | C24 | 113.24(12) |
| C10 | C9  | C30 | 120.23(12) | 06  | C17 | C18 | 109.98(15) |
| C10 | C9  | C7  | 102.34(10) | 06  | C17 | C20 | 109.88(14) |
| C30 | C9  | C7  | 111.11(10) | C18 | C17 | C20 | 114.1(2)   |
| C10 | C11 | N2  | 111.97(11) | 06  | C17 | C19 | 101.72(13) |
| C10 | C11 | C16 | 128.18(13) | C18 | C17 | C19 | 111.1(2)   |
| N2  | C11 | C16 | 119.67(13) | C20 | C17 | C19 | 109.32(17) |
| 05  | C12 | 06  | 123.91(13) | C3  | C4  | C5  | 118.23(15) |
| 05  | C12 | C10 | 126.85(14) | C3  | C4  | C15 | 121.31(15) |
| 06  | C12 | C10 | 109.22(11) | C5  | C4  | C15 | 120.46(15) |
| C5  | C6  | C1  | 120.71(13) | C28 | C29 | C24 | 120.79(16) |
| C5  | C6  | C7  | 129.27(12) | C3  | C2  | C1  | 118.01(15) |
| C1  | C6  | C7  | 110.01(12) | C24 | C25 | C26 | 120.16(16) |
| C25 | C24 | C29 | 118.38(15) | C27 | C28 | C29 | 120.26(17) |
| C25 | C24 | C23 | 120.08(14) | C2  | C3  | C4  | 122.65(15) |
| C29 | C24 | C23 | 121.47(14) | 02  | C13 | N1  | 119.83(19) |
| N2  | C7  | C6  | 114.55(11) | 02  | C13 | C14 | 122.39(17) |
| N2  | C7  | C8  | 113.74(11) | N1  | C13 | C14 | 117.77(18) |
| C6  | C7  | C8  | 102.62(10) | C26 | C27 | C28 | 119.57(18) |
| N2  | C7  | C9  | 102.25(10) | C27 | C26 | C25 | 120.83(17) |
| C6  | C7  | C9  | 116.15(11) | C22 | C21 | O4  | 112.0(3)   |
| C8  | C7  | C9  | 107.77(10) |     |     |     |            |

# Table S7 Torsion Angles for 3bm.

| A   | В    | С   | D   | Angle/°     |
|-----|------|-----|-----|-------------|
| C11 | C10  | C9  | C30 | 138.99(13)  |
| C12 | 2C10 | C9  | C30 | -54.15(18)  |
| C11 | C10  | C9  | C7  | 15.34(14)   |
| C12 | 2C10 | C9  | C7  | -177.81(12) |
| C12 | 2C10 | C11 | N2  | -168.06(12) |
| C9  | C10  | C11 | N2  | -1.96(15)   |
| C12 | 2C10 | C11 | C16 | 7.0(2)      |
| C9  | C10  | C11 | C16 | 173.14(14)  |

| A   | B   | С   | D  | Angle/°     |
|-----|-----|-----|----|-------------|
| C9  | C7  | C8  | N1 | -120.24(12) |
| C21 | 04  | C30 | 03 | -0.5(3)     |
| C21 | 04  | C30 | C9 | -177.94(17) |
| C10 | )C9 | C30 | 03 | 162.73(14)  |
| C7  | C9  | C30 | 03 | -77.93(18)  |
| C10 | )C9 | C30 | 04 | -19.77(18)  |
| C7  | C9  | C30 | 04 | 99.57(14)   |
| C5  | C6  | C1  | C2 | 2.1(2)      |

| C23N2 C11 | C10 | -156.77(13) | C7 C6 C1    | C2 -179.08(14)  |
|-----------|-----|-------------|-------------|-----------------|
| C7 N2 C11 | C10 | -13.60(15)  | C5 C6 C1    | N1 -176.88(13)  |
| C23N2 C11 | C16 | 27.67(19)   | C7 C6 C1    | N1 1.92(16)     |
| C7 N2 C11 | C16 | 170.84(12)  | C13N1 C1    | C2 -1.0(3)      |
| C17O6 C12 | 05  | -2.6(2)     | C8 N1 C1    | C2 -178.85(16)  |
| C17O6 C12 | C10 | 178.88(12)  | C13N1 C1    | C6 177.92(15)   |
| C11C10C12 | 05  | -20.5(2)    | C8 N1 C1    | C6 0.02(16)     |
| C9 C10C12 | 05  | 175.08(15)  | C1 C6 C5    | C4 -1.4(2)      |
| C11C10C12 | 06  | 157.97(13)  | C7 C6 C5    | C4 -179.91(14)  |
| C9 C10C12 | 06  | -6.46(18)   | C11 N2 C23  | C24 -161.99(12) |
| C11 N2 C7 | C6  | -104.46(13) | C7 N2 C23   | C24 58.33(17)   |
| C23N2 C7  | C6  | 39.80(17)   | C25C24C23   | N2 -126.61(16)  |
| C11 N2 C7 | C8  | 137.95(11)  | C29C24C23   | N2 56.62(19)    |
| C23N2 C7  | C8  | -77.80(15)  | C12O6 C17   | C18 -59.1(2)    |
| C11 N2 C7 | C9  | 22.05(13)   | C12O6 C17   | C20 67.4(2)     |
| C23N2 C7  | C9  | 166.30(12)  | C12O6 C17   | C19 -176.89(14) |
| C5 C6 C7  | N2  | 52.0(2)     | C6 C5 C4    | C3 -0.2(2)      |
| C1 C6 C7  | N2  | -126.65(13) | C6 C5 C4    | C15 179.21(17)  |
| C5 C6 C7  | C8  | 175.79(14)  | C25C24C29   | C28 0.4(2)      |
| C1 C6 C7  | C8  | -2.89(15)   | C23C24C29   | C28 177.28(16)  |
| C5 C6 C7  | C9  | -66.94(19)  | C6 C1 C2    | C3 -1.2(3)      |
| C1 C6 C7  | C9  | 114.39(13)  | N1 C1 C2    | C3 177.56(16)   |
| C10C9 C7  | N2  | -21.84(12)  | C29C24C25   | C26 0.5(3)      |
| C30C9 C7  | N2  | -151.39(11) | C23C24C25   | C26 -176.35(18) |
| C10C9 C7  | C6  | 103.63(12)  | C24 C29 C28 | C27 -1.1(3)     |
| C30C9 C7  | C6  | -25.92(15)  | C1 C2 C3    | C4 -0.4(3)      |
| C10C9 C7  | C8  | -141.98(11) | C5 C4 C3    | C2 1.1(3)       |
| C30C9 C7  | C8  | 88.46(13)   | C15C4 C3    | C2 -178.30(19)  |
| C13N1 C8  | 01  | 4.3(3)      | C8 N1 C13   | O2 -178.85(19)  |
| C1 N1 C8  | 01  | -177.87(15) | C1 N1 C13   | O2 3.6(3)       |
| C13N1 C8  | C7  | -179.73(15) | C8 N1 C13   | C14 1.1(3)      |
| C1 N1 C8  | C7  | -1.88(15)   | C1 N1 C13   | C14 -176.5(2)   |
| N2 C7 C8  | 01  | -56.76(18)  | C29C28C27   | C26 0.7(3)      |
| C6 C7 C8  | 01  | 178.93(14)  | C28 C27 C26 | C25 0.2(4)      |
| C9 C7 C8  | 01  | 55.84(18)   | C24 C25 C26 | C27 -0.9(3)     |
| N2 C7 C8  | N1  | 127.15(12)  | C30O4 C21   | C22 168.5(4)    |
| C6 C7 C8  | N1  | 2.84(14)    |             |                 |

| Atom | x     | у    | z     | U(eq) |
|------|-------|------|-------|-------|
| Н9   | 2525  | 4418 | 5989  | 46    |
| Н5   | 5300  | 3781 | 9566  | 57    |
| H23A | 6905  | 4108 | 8401  | 63    |
| H23B | 7111  | 4667 | 7787  | 63    |
| H16A | 6426  | 5216 | 9187  | 84    |
| H16B | 5231  | 5622 | 8703  | 84    |
| H16C | 6012  | 5504 | 7832  | 84    |
| H29  | 6103  | 4535 | 5116  | 69    |
| H2   | 4874  | 2186 | 7092  | 77    |
| H25  | 7824  | 3363 | 7754  | 75    |
| H28  | 6623  | 4050 | 3618  | 81    |
| H3   | 5654  | 2136 | 9320  | 79    |
| H27  | 7786  | 3235 | 4191  | 92    |
| H15A | 5881  | 3232 | 11495 | 120   |
| H15B | 7061  | 2886 | 11464 | 120   |
| H15C | 5791  | 2582 | 11397 | 120   |
| H26  | 8387  | 2896 | 6251  | 97    |
| H19A | -775  | 5034 | 5717  | 124   |
| H19B | -1544 | 5216 | 6562  | 124   |
| H19C | -702  | 4672 | 6905  | 124   |
| H20A | 1064  | 6168 | 7468  | 134   |
| H20B | -457  | 6121 | 6782  | 134   |
| H20C | 427   | 5922 | 6067  | 134   |
| H18A | 670   | 4998 | 9142  | 180   |
| H18B | -275  | 5509 | 8850  | 180   |
| H18C | 1233  | 5604 | 9333  | 180   |
| H14A | 2747  | 3211 | 3089  | 174   |
| H14B | 3460  | 2719 | 2721  | 174   |
| H14C | 4212  | 3273 | 3279  | 174   |
| H21A | 611   | 3633 | 8416  | 125   |
| H21B | 1627  | 3164 | 8530  | 125   |
| H22A | 1347  | 3260 | 10341 | 187   |
| H22B | 1766  | 3885 | 10421 | 187   |
| H22C | 2779  | 3414 | 10536 | 187   |
| H21C | 1097  | 3732 | 9303  | 125   |
| H21D | 848   | 3383 | 8053  | 125   |
| H22D | 1595  | 2880 | 9743  | 187   |

Table S8 Hydrogen Atom Coordinates  $(\mathring{A}{\times}10^4)$  and Isotropic Displacement Parameters  $(\mathring{A}^2{\times}10^3)$  for 3bm.

| H22E | 2833 | 3260 | 10322 | 187 |
|------|------|------|-------|-----|
| H22F | 2589 | 2911 | 9069  | 187 |

# Table S9 Atomic Occupancy for 3bm.

| Atom | Occupancy | Atom | Occupancy | Atom | Occupancy |
|------|-----------|------|-----------|------|-----------|
| C21  | 0.633(4)  | H21A | 0.633(4)  | H21B | 0.633(4)  |
| C22  | 0.633(4)  | H22A | 0.633(4)  | H22B | 0.633(4)  |
| H22C | 0.633(4)  | C21' | 0.367(4)  | H21C | 0.367(4)  |
| H21D | 0.367(4)  | C22' | 0.367(4)  | H22D | 0.367(4)  |
| H22E | 0.367(4)  | H22F | 0.367(4)  |      |           |

# checkCIF/PLATON report

| No syntax errors fo | ound.             | CIF dictionary           | Interpreting this report |
|---------------------|-------------------|--------------------------|--------------------------|
| Datablock: shel     | xl                |                          |                          |
| Bond precision:     | C-C = 0           | .0024 A                  | Wavelength=1.54184       |
| Cell:               | a=11.1373(1)      | b=24.0612(2)             | c=11.2256(1)             |
|                     | alpha=90          | beta=112.945(1)          | gamma=90                 |
| Temperature:        | 296 K             |                          |                          |
|                     | Cal               | culated                  | Reported                 |
| Volume              | 277               | 0.19(5)                  | 2770.19(5)               |
| Space group         | P 2               | 1/n                      | P 21/n                   |
| Hall group          | -P 2              | 2yn                      | -P 2yn                   |
| Moiety formula      | C30               | ) H34 N2 O6              | ?                        |
| Sum formula         | C30               | ) H34 N2 O6              | C30 H34 N2 O6            |
| Mr                  | 518               | .59                      | 518.59                   |
| Dx,g cm-3           | 1.24              | 43                       | 1.243                    |
| Z                   | 4                 |                          | 4                        |
| Mu (mm-1)           | 0.7               | 06                       | 0.706                    |
| F000                | 110               | 4.0                      | 1104.0                   |
| F000'               | 110               | 7.44                     |                          |
| h,k,lmax            | 13,               | 29,13                    | 13,29,13                 |
| Nref                | 539               | 0                        | 5269                     |
| Tmin,Tmax           | 0.84              | 44,0.887                 | 0.743,1.000              |
| Tmin'               | 0.84              | 44                       |                          |
| Correction method   | = # Reported T Li | mits: Tmin=0.743 Tmax=1. | 000 AbsCorr =            |
| MULTI-SCAN          |                   |                          |                          |
| Data completeness   | = 0.978           | Theta(max)= 71.338       | 3                        |

R(reflections) = 0.0460(4877)

C17 Check

S = 1.045

The following ALERTS were generated. Each ALERT has the format

Npar= 354

test-name\_ALERT\_alert-type\_alert-level.

Click on the hyperlinks for more details of the test.

# Alert level C

| PLAT220_ALERT_2_C Non-So   | lvent Resd 1 | С      | Ueq(max)/Ueq(min) Range   | 3.2 Ratio |
|----------------------------|--------------|--------|---------------------------|-----------|
| PLAT222_ALERT_3_C Non-So   | lvent Resd 1 | ΗU     | Jiso(max)/Uiso(min) Range | 4.1 Ratio |
| PLAT242_ALERT_2_C Low      | 'MainMol' U  | leq as | Compared to Neighbors of  | O4 Check  |
| And 2 other PLAT242 Alerts |              |        |                           |           |
| PLAT242_ALERT_2_C Low      | 'MainMol' U  | eq as  | Compared to Neighbors of  | C13 Check |

'MainMol' Ueq as Compared to Neighbors of PLAT242 ALERT 2 C Low PLAT906 ALERT 3 C Large K value in the Analysis of Variance ..... 2.195 Check PLAT911\_ALERT\_3\_C Missing # FCF Refl Between THmin & STh/L= 0.600 31 Report

#### Alert level G

| PLAT142_ALERT_4_G s.u. on b - Axis Small or Missing 0.00020 A      | ng.      |
|--------------------------------------------------------------------|----------|
| PLAT143_ALERT_4_G s.u. on c - Axis Small or Missing 0.00010 A      | .ng.     |
| PLAT171_ALERT_4_G The CIF-Embedded .res File Contains EADP Records | 2 Report |
| PLAT301_ALERT_3_G Main Residue Disorder(Resd 1)                    | 5 % Note |
| PLAT793 ALERT 4 G The Model has Chirality at C7 (Centro SPGR)      | R Verify |
| PLAT793_ALERT_4_G The Model has Chirality at C9 (Centro SPGR)      | S Verify |
| PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600  | 91 Note  |
| PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. | 7 Note   |

0 ALERT level A = Most likely a serious problem - resolve or explain

0 ALERT level B = A potentially serious problem, consider carefully

7 ALERT level C = Check. Ensure it is not caused by an omission or oversight

8 ALERT level G = General information/check it is not something unexpected

0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

5 ALERT type 2 Indicator that the structure model may be wrong or deficient

4 ALERT type 3 Indicator that the structure quality may be low

6 ALERT type 4 Improvement, methodology, query or suggestion

0 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement

strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special\_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

# Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that <u>full publication checks</u> are run on the final version of your CIF prior to submission.

#### Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 27/03/2017; check.def file version of 24/03/2017 Datablock shelxl - ellipsoid plot

